11
12
13
14
15
16
17
18
1.9
1.10
111
112
113
114
115

1.16
117
118
1.19

21
2.2

Contents

Preface XXXV

Introduction to Computers, the Internet and the Web 1
Introduction 2
What |s a Computer? 7
Computer Organization 7
Evolution of Operating Systems 8
Personal, Distributed and Client/Server Computing 9

Machine Languages, Assembly Languages and High-Level Languages 10
History of C++ 11
History of Java 12
JavaClass Libraries 13
Other High-Level Languages 14
Structured Programming 14
The Internet and the World Wide Web 15
Basics of a Typical Java Environment 16
General Notes about Java and This Book 19
Thinking About Objects: Introduction to Object Technology and the Unified

Modeling Language 22
Discovering Design Patterns: Introduction 26
Tour of the Book 28
(Optional) A Tour of the Case Study on Object-Oriented Design withthe UML 41
(Optional) A Tour of the “Discovering Design Patterns’ Sections 45
Introduction to Java Applications 55
Introduction 56
A First Program in Java: Printing a Line of Text 56
221 Compiling and Executing your First Java Application 61

© Copyright 2002 by Prentice Hall. All Rights Reserved.

Vil

2.3

24
25
2.6
2.7
2.8
29

31
32

3.3

34
35
3.6

37
38

41
42
4.3
4.4
45
4.6
4.7
4.8
4.9

4.10

411
412
4.13
414

Modifying Our First Java Program

231 Displaying a Single Line of Text with Multiple Statements
232 Displaying Multiple Lines of Text with a Single Statement
Displaying Text in a Dialog Box

Another Java Application: Adding Integers

Memory Concepts

Arithmetic

Decision Making: Equality and Relational Operators

(Optional Case Study) Thinking About Objects: Examining the
Problem Statement

Introduction to Java Applets

Introduction

Sample Applets from the Java 2 Software Development Kit
321 TheTi cTacToe Applet

322 The Dr awTest Applet

323 TheJava2D Applet

A Simple Java Applet: Drawing a String

331 Compiling and Executing \el coneAppl et
Two More Simple Applets. Drawing Strings and Lines
Another Java Applet: Adding Floating-Point Numbers
Viewing Appletsin a Web Browser

3.6.1 Viewing Appletsin Netscape Navigator 6

36.2 Viewing Appletsin Other Browsers Using the Java Plug-In
Java Applet Internet and World Wide Web Resources

Contents

62
62
63
65
69
75
76
79

87

105
106
107
107
111
112
112
118
120
123
130
131
131
134

(Optional Case Study) Thinking About Objects: Identifying the Classesin a

Problem Statement135

Control Structures: Part 1
Introduction

Algorithms

Pseudocode

Control Structures

Thei f Selection Structure

Thei f /el se Selection Structure
Thewhi | e Repetition Structure

Formulating Algorithms: Case Study 1 (Counter-Controlled Repetition)

Formulating Algorithms with Top-Down, Stepwise Refinement:
Case Study 2 (Sentinel-Controlled Repetition)

Formulating Algorithms with Top-Down, Stepwise Refinement:
Case Study 3 (Nested Control Structures)

Assignment Operators

Increment and Decrement Operators

Primitive Data Types

148
149
149
150
150
153
155
159
160

165

173
178
179
182

(Optional Case Study) Thinking About Objects: Identifying Class Attributes 183

© Copyright 2002 by Prentice Hall. All Rights Reserved.

Contents

5
51
52
53
54
55
56
57
58
59
510
511

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

7.1
7.2
7.3
7.4

Control Structures: Part 2
Introduction

Essentials of Counter-Controlled Repetition
Thef or Repetition Structure

Examples Using thef or Structure

Theswi t ch Multiple-Selection Structure
Thedo/whi | e Repetition Structure
Statementsbr eak and cont i nue

Labeled br eak and cont i nue Statements
Logical Operators

Structured Programming Summary
(Optional Case Study) Thinking About Objects: Identifying
Objects’ Statesand Activities

Methods

Introduction

Program Modulesin Java

Mat h Class Methods

Methods

Method Definitions

Argument Promotion

Java APl Packages

Random-Number Generation

Example: A Game of Chance

Duration of Identifiers

Scope Rules

Recursion

Example Using Recursion: The Fibonacci Series
Recursion vs. Iteration

Method Overloading

Methods of Class JAppl et

(Optional Case Study) Thinking About Objects: Identifying
Class Operations

Arrays

Introduction

Arrays

Declaring and Allocating Arrays

Examples Using Arrays

74.1 Allocating an Array and Initiaizing Its Elements
7.4.2 Using an Initializer List to Initialize Elements of an Array
74.3 Cdculating the Value to Store in Each Array Element
74.4 Summing the Elements of an Array

745 Using Histograms to Display Array Data Graphically
7.4.6 Using the Elements of an Array as Counters

74.7 Using Arraysto Analyze Survey Results

© Copyright 2002 by Prentice Hall. All Rights Reserved.

197
198
198
201
205
210
215
218
220
222
229

234

246
247
247
249
249
251
258
259
261
265
274
275
278
281
286
288
2901

293

313
314
315
317
317
318
319
320
322
323
324
326

7.5
7.6
7.7
7.8

7.9
7.10

8.1
8.2
8.3
8.4
85
8.6
8.7
8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15
8.16

8.17

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
911
9.12
9.13
9.14

Contents

References and Reference Parameters

Passing Arrays to Methods

Sorting Arrays

Searching Arrays: Linear Search and Binary Search

781 Searching an Array with Linear Search

782 Searching a Sorted Array with Binary Search
Multiple-Subscripted Arrays

(Optional Case Study) Thinking About Objects: Collaboration
Among Objects

Object-Based Programming

Introduction

Implementing a Time Abstract Data Type with a Class

Class Scope

Controlling Access to Members

Creating Packages

Initializing Class Objects: Constructors

Using Overloaded Constructors

Using Set and Get Methods

8.8.1 Executing an Applet that Uses Programmer-Defined Packages
Software Reusability

Final Instance Variables

Composition: Objects as Instance V ariables of Other Classes
Package Access

Using thet hi s Reference

Finalizers

Static Class Members

Data Abstraction and Encapsulation

8.16.1 Example: Queue Abstract Data Type

(Optional Case Study) Thinking About Objects: Starting to Program
the Classes for the Elevator Simulation

Object-Oriented Programming

Introduction

Superclasses and Subclasses

pr ot ect ed Members

Relationship between Superclass Objects and Subclass Objects
Constructors and Finalizers in Subclasses

Implicit Subclass-Object-to-Superclass-Object Conversion
Software Engineering with Inheritance

Composition vs. Inheritance

Case Study: Paint, Circle, Cylinder

Introduction to Polymorphism

Type Fieldsand swi t ch Statements

Dynamic Method Binding

fi nal Methodsand Classes

Abstract Superclasses and Concrete Classes

© Copyright 2002 by Prentice Hall. All Rights Reserved.

329
329
332
335
335
338
343

350

378
379
380
388
388
390
394
395
400
409
411
412
414
417
419
426
427
432
433

434

445
446
449
451
452
459
463
464
465
465
472
473
473
474
474

Contents

9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23

9.24

10
10.1
10.2
10.3
104
10.5
10.6
10.7
10.8
109
10.10
10.11
10.12
10.13
10.14
10.15

10.16

10.17
10.18
10.19
10.20
10.21
10.22

11
111
11.2

Polymorphism Examples

Case Study: A Payroll System Using Polymorphism

New Classes and Dynamic Binding

Case Study: Inheriting Interface and Implementation

Case Study: Creating and Using Interfaces

Inner Class Definitions

Notes on Inner Class Definitions

Type-Wrapper Classes for Primitive Types

(Optional Case Study) Thinking About Objects: Incorporating
Inheritance into the Elevator Simulation

(Optional) Discovering Design Patterns:. Introducing Creational,
Structural and Behavioral Design Patterns

9.24.1 Creational Design Patterns

9.24.2 Structural Design Patterns

9.24.3 Behavioral Design Patterns

9.244 Conclusion

9.245 Internet and World-Wide-Web Resources

Strings and Characters

Introduction

Fundamentals of Characters and Strings

St ri ng Constructors

Stri ng Methods| engt h, char At and get Char s
Comparing St ri ngs

St ri ng Method hashCode

Locating Characters and Substringsin St r i ngs

Extracting Substringsfrom St r i ngs

Concatenating St r i ngs

Miscellaneous St r i ng Methods

Using St ri ng Method val ueO

String Methodi nt ern

Stri ngBuf f er Class

St ri ngBuf f er Constructors

St ri ngBuf f er Methods| engt h, capaci ty, set Length
and ensur eCapacity

St ri ngBuf f er Methodschar At , set Char At , get Char s
andr everse

Stri ngBuf f er append Methods

St ri ngBuf f er Insertion and Deletion Methods

Char act er Class Examples

Class St ri ngTokeni zer

Card Shuffling and Dealing Simulation

(Optional Case Study) Thinking About Objects: Event Handling

Graphics and Java2D
Introduction
Graphics Contexts and Graphics Objects

© Copyright 2002 by Prentice Hall. All Rights Reserved.

Xl

475
477
485
486
494
501
512
513

513

520
521
523
524
526
526

536
537
538
538
540
542
547
549
551
552
553
555
557
559
560

561

563
564
566
568
576
579
583

601
602
604

Xl

11.3
114
115
116
117
11.8
11.9
11.10

12
121
12.2
12.3
124
125

12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13
12.14

12.15
12.16

13
131
13.2
13.3
134
135
13.6
13.7
138
13.9
13.10
13.11
13.12
13.13
13.14

Color Control

Font Control

Drawing Lines, Rectangles and Ovals

Drawing Arcs

Drawing Polygons and Polylines

The Java2D API

Java?D Shapes

(Optional Case Study) Thinking About Objects: Designing
Interfaces with the UML

Graphical User Interface Components: Part 1
Introduction

Swing Overview

JLabel

Event-Handling Model

JText Fi el d and JPasswor dFi el d
1251 How Event Handling Works
JBut t on

JCheckBox and JRadi oBut t on
JConboBox

JLi st

Multiple-Selection Lists

Mouse Event Handling

Adapter Classes

Keyboard Event Handling

Layout Managers

12.14.1 Fl owLayout

12.14.2 Bor der Layout

12143 GidLayout

Panels

(Optional Case Study) Thinking About Objects: Use Cases

Graphical User Interface Components: Part 2
Introduction

JText Area

Creating a Customized Subclass of JPanel

Creating a Self-Contained Subclass of JPanel

JSli der

Windows

Designing Programs that Execute as Applets or Applications
Using Menus with Frames

Using JPopupMenus

Pluggable L ook-and-Feel

Using JDeskt opPane and JI nt er nal Fr anme

Layout Managers

BoxLayout Layout Manager

Car dLayout Layout Manager

© Copyright 2002 by Prentice Hall. All Rights Reserved.

Contents

605
612
618
622
625
628
628

635

646
647
649
651
654
656
660
662
665
671
673
676
678
683
689
692
693
696
699
701
703

720
721
722
725
730
735
739
741
747
755
758
762
766
767
770

Contents

13.15
13.16
13.17
13.18

14
141
14.2
14.3
144
14.5
14.6
14.7
14.8
14.9
14.10
1411
14.12
14.13
14.14

15
151
15.2
15.3
154
155
156
15.7
158
159
15.10
1511
15.12
15.13

16
16.1
16.2
16.3
16.4
16.5

Gri dBaglLayout Layout Manager

Gri dBagConst rai nt s Constants RELATI VE and REMAI NDER
(Optional Case Study) Thinking About Objects: Model-View-Controller
(Optional) Discovering Design Patterns: Design Patterns Used in
Packagesj ava. awmt andj avax. sw ng

13.18.1 Creationa Design Patterns

13.18.2 Structural Design Patterns

13.18.3 Behavioral Design Patterns

13.18.4 Conclusion

Exception Handling

Introduction

When Exception Handling Should Be Used
Other Error-Handling Techniques

Basics of Java Exception Handling

t ry Blocks

Throwing an Exception

Catching an Exception

Exception-Handling Example: Divide by Zero
Rethrowing an Exception

t hr ows Clause

Constructors, Finalizers and Exception Handling
Exceptions and Inheritance

final |y Block

Using pri nt St ackTr ace and get Message

Multithreading

Introduction

Class Thr ead: An Overview of the Thr ead Methods

Thread States: Life Cycle of a Thread

Thread Priorities and Thread Scheduling

Thread Synchronization

Producer/Consumer Relationship without Thread Synchronization
Producer/Consumer Relationship with Thread Synchronization
Producer/Consumer Relationship: The Circular Buffer

Daemon Threads

Runnabl e Interface

Thread Groups

(Optional Case Study) Thinking About Objects: Multithreading
(Optional) Discovering Design Patterns: Concurrent Design Patterns

Files and Streams

Introduction

Data Hierarchy

Files and Streams

Creating a Sequential-Access File

Reading Data from a Sequential-Access File

© Copyright 2002 by Prentice Hall. All Rights Reserved.

Xl

774
780
783

788
789
789
792
795

804
805
807
807
808
809
809
810
812
818
818
824
824
825
830

837
838
840
841
842
848
849
854
860
869
870
876
877
886

894
895
895
897
903
915

XV

16.6
16.7
16.8
16.9
16.10
16.11
16.12

17
17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9
17.10

1711

18
18.1
18.2
18.3
18.4
18.5
18.6
18.7

19
191
19.2
19.3
194
19.5
19.6
19.7

Updating Sequential-Access Files

Random-Access Files

Creating a Random-Access File

Writing Data Randomly to a Random-Access File
Reading Data Sequentially from a Random-Access File
Example: A Transaction-Processing Program

ClassFi | e

Networking

Introduction

Manipulating URIs

Reading a File on a Web Server

Establishing a Simple Server Using Stream Sockets

Establishing a Simple Client Using Stream Sockets
Client/Server Interaction with Stream Socket Connections
Connectionless Client/Server Interaction with Datagrams
Client/Server Tic-Tac-Toe Using a Multithreaded Server
Security and the Network

DeitelMessenger Chat Server and Client

17.10.1 Dei t el Messenger Ser ver and Supporting Classes
17.10.2 Dei t el Messenger Client and Supporting Classes
(Optional) Discovering Design Peatterns: Design Patterns Used in
Packagesj ava. i 0 andj ava. net

17.11.1 Creationa Design Patterns

17.11.2 Structural Design Patterns

17.11.3 Architectural Patterns

17.11.4 Conclusion

Multimedia: Images, Animation, Audio and Video

Introduction

Loading, Displaying and Scaling |mages

Animating a Series of Images

Customizing LogoAni mat or viaApplet Parameters
Image Maps

Loading and Playing Audio Clips

Internet and World Wide Web Resources

Data Structures
Introduction

Self-Referential Classes
Dynamic Memory Allocation
Linked Lists

Stacks

Queues

Trees

© Copyright 2002 by Prentice Hall. All Rights Reserved.

Contents

927
928
928
933
939
944
961

978
979
981
986
990
991
992

1003

1011

1026

1026

1027

1036

1056
1056
1057
1058
1060

1068
1069
1070
1073
1077
1081
1084
1087

1094
1095
1096
1096
1097
1108
1113
1116

Contents

20
20.1
20.2
20.3
20.4
205
20.6
20.7
20.8
209

21

211
21.2
21.3
214
21.5
21.6

21.7
21.8
21.9
21.10
2111
21.12

22
22.1
22.2
223
224
225
226
22.7

22.8

Java Utilities Package and Bit Manipulation
Introduction

Vect or Classand Enuner at i on Interface

St ack Class

Di ctionary Class

Hasht abl e Class

Properti es Class

RandomClass

Bit Manipulation and the Bitwise Operators

Bi t Set Class

Collections

Introduction

Collections Overview

ClassArrays

Interface Col | ect i on and ClassCol | ecti ons
Lists

Algorithms

21.6.1 Algorithmsort

21.6.2 Algorithmshuffle

21.6.3 Algorithmsr everse,fill,copy,max andmi n
21.6.4 Algorithm bi nar ySear ch

Sets

Maps

Synchronization Wrappers

Unmodifiable Wrappers
Abstract |mplementations

(Optional) Discovering Design Patterns: Design Patterns Used in

Packagej ava. uti |
21.12.1 Creationa Design Patterns
21.12.2 Behavioral Design Patterns
21.12.3 Conclusion

Java Media Framework and Java Sound (on CD)

Introduction

Playing Media

Formatting and Saving Captured Media
RTP Streaming

Java Sound

Playing Sampled Audio

Musical Instrument Digital Interface (MIDI)
22,71 MIDI Playback

22.7.2 MIDI Recording

22.7.3 MIDI Synthesis

22.74 ClassM di Denp

Internet and World Wide Web Resources

© Copyright 2002 by Prentice Hall. All Rights Reserved.

XV

1147
1148
1148
1156
1160
1161
1168
1174
1175
1190

1201
1202
1203
1203
1208
1208
1215
1215
1217
1219
1221
1223
1226
1228
1228
1229

1229
1229
1230
1230

1236
1237
1238
1249
1263
1277
1278
1285
1286
1291
1295
1299
1316

XVI

22.9

A.l
A.2

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8

E.l
E.2
E.3
E4
E.5
E.6

F.1
F.2
F.3
F.4
F.5

G1
G2
G3
G4

H.1
H.2
H.3
H.4
H.5

(Optional Case Study) Thinking About Objects: Animation and

Sound in the View

Java Demos
Introduction
The Sites

Java Resources
Resources

Products

FAQs

Tutorias

Magazines

Java Applets
Multimedia
Newsgroups

Operator Precedence Chart
ASCII Character Set

Number Systems (on CD)
Introduction

Contents

1317

1346
1346
1346

1348
1348
1349
1350
1350
1350
1350
1351
1351

1353
1355

1356
1357

Abbreviating Binary Numbers as Octal Numbers and Hexadecima Numbers 1360
Converting Octal Numbers and Hexadecimal Numbers to Binary Numbers 1361

Converting from Binary, Octal, or Hexadecimal to Decimal
Converting from Decimal to Binary, Octal, or Hexadecimal
Negative Binary Numbers. Two's Complement Notation

1361
1362
1364

Creating HTML Documentation with j avadoc (on CD) 1369

Introduction

Documentation Comments
Documenting Java Source Code
j avadoc

Files Produced by j avadoc

Elevator Events and Listener Interfaces (on CD)

Introduction

Events

Listeners

Component Diagrams Revisited

Elevator Model (on CD)
Introduction

ClassEl evat or Model
ClassesLocat i on and Fl oor
Class Door

ClassBut t on

© Copyright 2002 by Prentice Hall. All Rights Reserved.

1370
1370
1370
1379
1379

1384
1384
1384
1388
1391

1393
1393
1393
1401
1404
1408

Contents

H.6
H.7
H.8
H.9
H.10
H.11

I

1.1
1.2
1.3
1.4
1.5

1.6
1.7

J1
J2
J.3

J4

J5

J.6

K.1
K.2
K.3
K.4
K.5

ClassEl evat or Shaf t
ClassesLi ght and Bel |
ClassEl evat or

ClassPer son

Component Diagrams Revisited
Conclusion

Elevator View (on CD)
Introduction
Class Objects
Class Constants
Class constructor
Event Handling
1.5.1 El evat or MoveEvent types
1.5.2 Per sonMoveEvent types
1.5.3 Door Event types
.54 ButtonEvent types
1.5.5 Bel | Event types
1.5.6 Li ght Event types
Component Diagrams Revisited
Conclusion

Career Opportunities (on CD)
Introduction
Resources for the Job Seeker
Online Opportunities for Employers

J3.1 Posting Jobs Online

J3.2 Problemswith Recruiting on the Web

J.3.3 Diversity in the Workplace
Recruiting Services

J4.1 Testing Potential Employees Online
Career Sites

J5.1 Comprehensive Career Sites

J5.2 Technical Positions

J5.3 Wireless Positions

J5.4 Contracting Online

J5.5 Executive Positions

J5.6 Studentsand Young Professionals

J5.7 Other Online Career Services
Internet and World Wide Web Resources

Unicode® (on CD)
Introduction

Unicode Transformation Formats
Characters and Glyphs
Advantages/Disadvantages of Unicode
Unicode Consortium’s Web Site

© Copyright 2002 by Prentice Hall. All Rights Reserved.

XVII

1409
1416
1420
1429
1436
1436

1438
1438
1455
1457
1458
1460
1461
1461
1462
1462
1463
1463
1463
1463

1465
1466
1467
1468
1470
1472
1472
1473
1474
1475
1475
1476
1477
1477
1478
1479
1480
1481

1489
1490
1491
1492
1493
1493

XVIII Contents

K.6 Using Unicode 1494
K.7 Character Ranges 1497
Bibliography 1501
Index 1506

© Copyright 2002 by Prentice Hall. All Rights Reserved.

Preface

Live in fragments no longer. Only connect.
Edward Morgan Forster

Welcome to Java How to Program, Fourth Edition and the exciting world of programming
with the Java™ 2 Platform, Standard Edition. This book is by an old guy and a young guy.
The old guy (HMD; Massachusetts Institute of Technology 1967) has been programming
and/or teaching programming for 40 years. The young guy (PJD; MIT 1991) has been pro-
gramming and/or teaching programming for 22 years, and is both a Sun Certified Java Pro-
grammer and a Sun Certified Java Developer. The old guy programs and teaches from
experience; the young guy does so from an inexhaustible reserve of energy. The old guy
wants clarity; the young guy wants performance. The old guy seeks elegance and beauty;
the young guy wants results. We got together to produce a book we hope you will find in-
formative, challenging and entertaining.

In November 1995, we attended an Internet/World Wide Web conference in Boston to
hear about Java. A Sun Microsystems representative spoke on Java in a packed convention
ballroom. During that presentation, we saw the future of programming unfold. The first edi-
tion of Java How to Program was born at that moment and was published as the world’s
first Java computer science textbook.

The world of Java is evolving so rapidly that Java How to Program: Fourth Edition is
being published less than five years after the first edition. This creates tremendous chal-
lenges and opportunities for us as authors, for our publisher—Prentice Hall, for instructors,
for students and for professional people.

Before Java appeared, we were convinced that C++ would replace C as the dominant
application development language and systems programming language for the next decade.
However, the combination of the World Wide Web and Java now increases the prominence
of the Internet in information systems strategic planning and implementation. Organiza-
tions want to integrate the Internet “seamlessly” into their information systems. Java is
more appropriate than C++ for this purpose.

XXXVI

Preface Appendix

New Features in Java How to Program: Fourth Edition

This edition contains many new features and enhancements including:

Full-Color Presentation. The book is now in full color. In the book’s earlier two-
color editions, the programs were displayed in black and the screen captures ap-
peared in the second color. Full color enables readers to see sample outputs as they
would appear on a color monitor. Also, we now syntax color all the Java code, as
many of today’s Java development environments do. Our syntax-coloring conven-
tions are as follows:

keywords appear in dark blue

class, method and variable names appear in black

“Code Washing.” This is our own term for the process we used to convert all the
programs in the book to a more open layout with enhanced commenting. We have
grouped program code into small, well-documented pieces. This greatly improves
code readability—an especially important goal for us given that this new edition
contains more than 25,000 lines of code.

Tune-Up. We performed a substantial tune-up of the book’s contents based on our
own notes from extensive teaching in our professional Java seminars. In addition,
a distinguished team of reviewers read the third edition book and provided us with
their comments and criticisms. There are literally thousands of fine-tuning im-
provements over the third edition.

Thinking About Objects. This optional 180-page case study introduces object-
oriented design (OOD) with the Unified Modeling Language (the UML). Many
chapters in this edition end with a “Thinking About Objects” section in which we
present a carefully paced introduction to object orientation. Our goal in these sec-
tions is to help you develop an object-oriented way of thinking to be able to design
and implement more substantial systems. These sections also introduce you to the
Unified Modeling Language (UML). The UML is a graphical language that allows
people who build systems (e.g., software architects, systems engineers and pro-
grammers) to represent their object-oriented designs using a common notation.
The “Thinking About Objects” section in Chapter 1 introduces basic concepts and
terminology. Chapters 2—13, 15 and 22 (22 is on the CD) and Appendices G, H
and I (also on the CD) include optional “Thinking About Objects” sections that
present a substantial object-oriented elevator case study that applies the tech-
niques of object-oriented design (OOD). Appendices G, H and I fully implement
the case study design in Java code. This case study will help prepare you for the
kinds of substantial projects you are likely to encounter in industry. If you are a
student and your instructor does not plan to include this case study in your course,
you may want to read the case study on your own. We believe it will be well worth
your effort to walk through this large and challenging project. The material pre-
sented in the case-study sections reinforces the material covered in the corre-
sponding chapters. You will experience a solid introduction to object-oriented
design with the UML. Also, you will sharpen your code-reading skills by touring

Appendix Preface XXXVII

a carefully written and well-documented 3,465-line Java program that completely
solves the problem presented in the case study.

* Discovering Design Patterns. These optional sections introduce popular object-
oriented design patterns in use today. Most of the examples provided in this book
contain fewer than 150 lines of code. Such small examples normally do not require
an extensive design process. However, some programs, such as our optional ele-
vator-simulation case study, are more complex—they can require thousands of
lines of code. Larger systems, such as automated teller machines or air-traffic con-
trol systems, could contain millions, or even hundreds of millions, of lines of code.
Effective design is crucial to the proper construction of such complex systems.
Over the past decade, the software engineering industry has made significant
progress in the field of design patterns—proven architectures for constructing
flexible and maintainable object-oriented software. ! Using design patterns can
substantially reduce the complexity of the design process. We present several de-
sign patterns in Java, but these design patterns can be implemented in any object-
oriented language, such as C++, C# or Visual Basic. We describe several design
patterns used by Sun Microsystems in the Java API. We use design patterns in
many programs in this book, which we will identify in our “Discovering Design
Patterns” sections. These programs provide examples of using design patterns to
construct reliable, robust object-oriented software.

e Chapter 22 (on the CD), Java Media Framework (JMF) and JavaSound. This
chapter introduces to Java’s audio and video capabilities, enhancing our Chapter
18 multimedia coverage. With the Java Media Framework, a Java program can
play audio and video media, and capture audio and video media from devices such
as microphones and video cameras. The JMF enables Java developers to create
streaming media applications, in which a Java program sends live or recorded au-
dio or video feeds across the Internet to other computers, then applications on
those other computers play the media as it arrives over the network. The Java-
Sound APIs enable programs to manipulate MIDI (Musical Instrument Digital In-
terface) sounds and captured media (i.e., media from a device such as a
microphone). The chapter concludes with a substantial MIDI-processing applica-
tion that enables users to record MIDI files or select MIDI files to play. Users can
create their own MIDI music by interacting with the application’s simulated syn-
thesizer keyboard. The application can synchronize playing the notes in a MIDI
file with pressing the keys on the simulated synthesizer keyboard—similar to a
player piano. [Note: Chapters 18 and 22 both provide substantial sets of exercises.
Each chapter also has a special section containing additional interesting and chal-
lenging multimedia projects. These are intended only as suggestions for major
projects. Solutions are not provided for these additional exercises in either the In-
structor’s Manual or the Java 2 Multimedia Cyber Classroom.]

* Enhanced TCP/IP-Based Networking. We include a new capstone example in
Chapter 17 that introduces multicasting for sending information to groups of net-
work clients. This Deitel Messenger case study emulates many of today’s popular

1. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns; Elements of
Reusable Object-Oriented Software. (Massachusetts: Addison-Wesley, 1995).

XXXVIII

Preface Appendix

instant-messaging applications that enable computer users to communicate with
friends, relatives and co-workers over the Internet. This 1130-line, multithreaded,
client/server Java program uses most of the techniques presented to this point in
the book.

Appendix J (on the CD), Career Opportunities. This detailed appendix introduces
career services on the Internet. We explore online career services from the employer
and employee’s perspective. We suggest sites on which you can submit applica-
tions, search for jobs and review applicants (if you are interested in hiring someone).
We also review services that build recruiting pages directly into e-businesses. One
of our reviewers told us that he had just gone through a job search largely using the
Internet and this chapter would have really expanded his search dramatically.

Appendix K (on the CD), Unicode. This appendix overviews the Unicode Stan-
dard. As computer systems evolved worldwide, computer vendors developed nu-
meric representations of character sets and special symbols for the local languages
spoken in different countries. In some cases, different representations were devel-
oped for the same languages. Such disparate character sets made communication
between computer systems difficult. Java supports the Unicode Standard (main-
tained by a non-profit organization called the Unicode Consortium), which de-
fines a single character set with unique numeric values for characters and special
symbols in most spoken languages. This appendix discusses the Unicode Stan-
dard, overviews the Unicode Consortium Web site (unicode.org) and shows
a Java example that displays “Welcome” in eight different languages!

Java 2 Plug-In Moved to Chapter 3, Introduction to Applets. Students enjoy see-
ing immediate results as they execute their Java programs. This is difficult if those
programs are Java applets that execute in Web browsers. Most of today’s Web
browsers (with the exception of Netscape Navigator 6) do not support Java 2 ap-
plets directly, so students must test their applet programs with the appletview-
er utility. Sun Microsystems provides the Java 2 Plug-in to enable Java 2 applets
to execute in a Web browser that does not support Java 2. The discussion of the
Java Plug-in walks the student through the steps necessary to execute an applet in
today’s Web browsers.

Chapter 22 and Appendices E-K on the CD. There are so many topics covered in
this new edition that we could not fit them all in the book! On the CD that accom-
panies this book, you will find the following chapter and appendices: Chapter 22,
Java Media Framework (JMF) and Java Sound; Appendix E, Number Systems;
Appendix F, Creating HTML Documentation with javadoc; Appendix G, Ele-
vator Events and Listener Interfaces; Appendix H, Elevator Model; Appendix I,
Elevator View; Appendix J, Career Opportunities; and Appendix K, Unicode.

Chapters Moved to Advanced Java™ 2 Platform How to Program. Four chap-
ters from Java How to Program, Third Edition have been moved to our new book
Advanced Java 2 Platform How to Program and greatly enhanced. These chapters
are: Java Database Connectivity (JDBC), Servlets, Remote Method Invocation
and JavaBeans. Advanced Java 2 Platform How to Program covers each of these
topics in more depth. We present the Table of Contents of Advanced Java 2 Plat-
form How to Program shortly.

Appendix Preface XXXIX

Some Notes to Instructors

A World of Object Orientation

When we wrote the first edition of Java How to Program, universities were still emphasiz-
ing procedural programming in languages like Pascal and C. The leading-edge courses
were using object-oriented C++, but these courses were generally mixing a substantial
amount of procedural programming with object-oriented programming—something that
C++ lets you do, but Java does not. By the third edition of Java How to Program, many
universities were switching from C++ to Java in their introductory curricula, and instructors
were emphasizing a pure object-oriented programming approach. In parallel with this ac-
tivity, the software engineering community was standardizing its approach to modeling ob-
ject-oriented systems with the UML, and the design-patterns movement was taking shape.
Java How to Program has many audiences, so we designed the book to be customizable.
In particular, we included more than 200 pages of optional material that introduces object-
oriented design, the UML and design patterns, and presents a substantial case study in ob-
ject-oriented design and programming. This material is carefully distributed throughout the
book to enable instructors to emphasize “industrial-strength” object-oriented design in their
courses.

Students Like Java

Students are highly motivated by the fact that they are learning a leading-edge language (Ja-
va) and a leading-edge programming paradigm (object-oriented programming) that will be
immediately useful to them while in the university environment and when they head into a
world in which the Internet and the World Wide Web have a massive prominence. Students
quickly discover that they can do great things with Java, so they are willing to put in the
extra effort. Java helps programmers unleash their creativity. We see this in the Java cours-
es Deitel & Associates, Inc. teaches. Once our students enter lab, we can’t hold them back.
They eagerly experiment and explore portions of the Java class libraries that we haven’t as
yet covered in class. They produce applications that go well beyond anything we’ve ever
tried in our introductory C and C++ courses. And they tell us about projects they “can’t
wait” to try after the course.

Focus of the Book

Our goal was clear—produce a Java textbook for introductory university-level courses in
computer programming for students with little or no programming experience, yet offer the
depth and the rigorous treatment of theory and practice demanded by traditional, upper-lev-
el courses and that satisfies professionals’ needs. To meet these goals, we produced a com-
prehensive book, because our text patiently teaches the basics of computer programming
and of the Java language (i.e., data types, control structures, methods, arrays, recursion and
other “traditional” programming topics); presents key programming paradigms, including
object-based programming, object-oriented programming, event-driven programming and
concurrent programming; and provides an extensive treatment of the Java class libraries.

Evolution of Java How to Program

Java How to Program (first edition) was the world’s first university computer science text-
book on Java. We wrote it fresh on the heels of C How to Program, Second Edition and
C++ How to Program. Hundreds of thousands of university students and professional peo-

XL Preface Appendix

ple worldwide have learned C, C++ and Java from these texts. Upon publication in August,
2001 Java How to Program, Fourth Edition will be used in hundreds of universities and
thousands of corporations and government organizations worldwide. Deitel & Associates,
Inc. taught Java courses internationally to thousands of students as we were writing the var-
ious editions of Java How to Program. We carefully monitored the effectiveness of these
courses and tuned the material accordingly.

Conceptualization of Java

We believe in Java. Its conceptualization (and public release in 1995) by Sun Microsys-
tems, the creators of Java, was brilliant. Sun based the new language on two of the world’s
most widely used implementation languages, C and C++. This immediately gave Java a
huge pool of highly skilled programmers who were implementing most of the world’s new
operating systems, communications systems, database systems, personal computer appli-
cations and systems software. Sun removed the messier, more complex and error-prone C/
C++ features (such as pointers, operator overloading and multiple inheritance, among oth-
ers). They kept the language concise by removing special-purpose features that were used
by only small segments of the programming community. They made the language truly por-
table to be appropriate for implementing Internet-based and World-Wide-Web-based ap-
plications, and they built in the features people really need such as strings, graphics,
graphical user interface components, exception handling, multithreading, multimedia (au-
dio, images, animation and video), file processing, database processing, Internet and World
Wide Web-based client/server networking and distributed computing, and prepackaged
data structures. Then they made the language available at no charge to millions of potential
programmers worldwide.

2.5 Million Java Developers

Java was promoted in 1995 as a means of adding “dynamic content” to World-Wide-Web
pages. Instead of Web pages with only text and static graphics, people’s Web pages could
now “come alive” with audios, videos, animations, interactivity—and soon, three-dimen-
sional imaging. But we saw much more in Java than this. Java’s features are precisely what
businesses and organizations need to meet today’s information-processing requirements.
So we immediately viewed Java as having the potential to become one of the world’s key
general-purpose programming languages. In fact, Java has revolutionized software devel-
opment with multimedia-intensive, platform-independent, object-oriented code for con-
ventional, Internet-, Intranet- and Extranet-based applications and applets. Java now has
2.5 million developers worldwide—a stunning accomplishment given that it has only been
available publicly for six years. No other programming language has ever acquired such a
large developer base so quickly.

Enabling Multimedia-Based Applications and Communications

The computer field has never seen anything like the Internet/World Wide Web/Java “ex-
plosion” occurring today. People want to communicate. People need to communicate. Sure
they have been doing that since the dawn of civilization, but computer communications
have been mostly limited to digits, alphabetic characters and special characters. Today, we
are in the midst of a multimedia revolution. People want to transmit pictures and they want
those pictures to be in color. They want to transmit voices, sounds, audio clips and full-mo-
tion color video (and they want nothing less than DVD quality). Eventually, people will in-

Appendix Preface XLl

sist on three-dimensional, moving-image transmission. Our current flat, two-dimensional
televisions will eventually be replaced with three-dimensional versions that turn our living
rooms into “theaters-in-the-round.” Actors will perform their roles as if we were watching
live theater. Our living rooms will be turned into miniature sports stadiums. Our business
offices will enable video conferencing among colleagues half a world apart as if they were
sitting around one conference table. The possibilities are intriguing and Java is playing a
key role in turning many of them into reality.

Teaching Approach

Java How to Program, Fourth Edition contains a rich collection of examples, exercises,
and projects drawn from many fields to provide the student with a chance to solve interest-
ing real-world problems. The book concentrates on the principles of good software engi-
neering and stresses program clarity. We avoid arcane terminology and syntax
specifications in favor of teaching by example. Our code examples have been tested on
popular Java platforms. We are educators who teach edge-of-the-practice topics in industry
classrooms worldwide. The text emphasizes good pedagogy.

Learning Java via the Live-Code™ Approach

The book is loaded with live-code™ examples. This is the focus of the way we teach and
write about programming, and the focus of each of our multimedia Cyber Classrooms and
Web-based training courses as well. Each new concept is presented in the context of a com-
plete, working Java program (application or applet) immediately followed by one or more
screen captures showing the program’s output. We call this style of teaching and writing
our live-code™ approach. We use the language to teach the language. Reading these pro-
grams (25,000+ lines of code) is much like entering and running them on a computer.

Java and Swing from Chapter Two!

Java How to Program, Fourth Edition “jumps right in” with object-oriented programming,
applications and the Swing-style GUI components from Chapter 2! People tell us this is a
“gutsy” move, but Java students really want to “cut to the chase.” There is great stuff to be
done in Java so let’s get right to it! Java is not trivial by any means, but it’s fun to program
with and students can see immediate results. Students can get graphical, animated, multi-
media-based, audio-intensive, multithreaded, database-intensive, network-based programs
running quickly through Java’s extensive class libraries of “reusable components.” They
can implement impressive projects. They are typically more creative and productive in a
one- or two-semester course than in C and C++ introductory courses.

World Wide Web Access

All of the code for Java How to Program is on the CD that accompanies this book and is
available on the Internet at the Deitel & Associates, Inc. Web site www.deitel.com.
Please run each program as you read the text. Make changes to the code examples and see
what happens. See how the Java compiler “complains” when you make various kinds of
errors. Immediately see the effects of making changes to the code. It’s a great way to learn
programming by doing programming. [This is copyrighted material. Feel free to use it as
you study Java, but you may not republish any portion of it without explicit permission
from the authors and Prentice Hall.]

XLII Preface Appendix

Objectives

Each chapter begins with a statement of objectives. This tells the student what to expect and
gives the student an opportunity, after reading the chapter, to determine if he or she has met
these objectives. It is a confidence builder and a source of positive reinforcement.

Quotations

The learning objectives are followed by quotations. Some are humorous, some are philo-
sophical, and some offer interesting insights. Our students enjoy relating the quotations to
the chapter material. The quotations are worth a “second look” after you read each chapter.

Outline
The chapter Outline helps the student approach the material in top-down fashion. This, too,
helps students anticipate what is to come and set a comfortable and effective learning pace.

25,576 Lines of Code in 197 Example Programs (with Program QOutputs)

We present Java features in the context of complete, working Java programs. The programs
range from just a few lines of code to substantial examples with several hundred lines of
code (and 3,465 lines of code for the optional object-oriented elevator simulator example).
Students should use the program code from the CD that accompanies the book or download
the code from our Web site (www.deitel.com) and run each program while studying that
program in the text.

545 Illustrations/Figures

An abundance of charts, line drawings and program outputs is included. The discussion of
control structures, for example, features carefully drawn flowcharts. [Note: We do not teach
flowcharting as a program development tool, but we do use a brief, flowchart-oriented pre-
sentation to specify the precise operation of each of Java’s control structures.]

605 Programming Tips

We have included programming tips to help students focus on important aspects of program
development. We highlight hundreds of these tips in the form of Good Programming Prac-
tices, Common Programming Errors, Testing and Debugging Tips, Performance Tips,
Portability Tips, Software Engineering Observations and Look-and-Feel Observations.
These tips and practices represent the best we have gleaned from a combined six decades
of programming and teaching experience. One of our students—a mathematics major—
told us that she feels this approach is like the highlighting of axioms, theorems, and corol-
laries in mathematics books; it provides a basis on which to build good software.

97 Good Programming Practices

@ When we teach introductory courses, we state that the “buzzword” of each course is “clar-
ity,” and we highlight as Good Programming Practices techniques for writing programs that
are clearer, more understandable, more debuggable, and more maintainable.

199 Common Programming Errors

@ Students learning a language tend to make certain errors frequently. Focusing on these
Common Programming Errors helps students avoid making the same errors and shortens
lines outside instructors’ offices during office hours!

Appendix Preface XL

) When we first designed this “tip type,” we thought we would use it strictly to tell people how
to test and debug Java programs. In fact, many of the tips describe aspects of Java that re-
duce the likelihood of “bugs” and thus simplify the testing and debugging process.

67 Performance Tips

__—ﬁ In our experience, teaching students to write clear and understandable programs is by far
"l the most important goal for a first programming course. But students want to write the pro-
grams that run the fastest, use the least memory, require the smallest number of keystrokes,
or dazzle in other nifty ways. Students really care about performance. They want to know
what they can do to “turbo charge” their programs. So we have included 67 Performance
Tips that highlight opportunities for improving program performance—making programs
run faster or minimizing the amount of memory that they occupy.

@ One of Java’s “claims to fame” is “universal” portability, so some programmers assume that

if they implement an application in Java, the application will automatically be “perfectly”
portable across all Java platforms. Unfortunately, this is not always the case. We include Port-
ability Tips fo help students write portable code and to provide insights on how Java achieves
its high degree of portability. We had many more portability tips in our books, C How to Pro-
gram and C++ How to Program. We needed fewer Portability Tips in Java How to Program
because Java is designed to be portable top-to-bottom (for the most part)—much less effort is
required on the Java programmer’s part to achieve portability than with C or C++.

The object-oriented programming paradigm requires a complete rethinking about the way
we build software systems. Java is an effective language for performing good software engi-
neering. The Software Engineering Observations highlight architectural and design issues
that affect the construction of software systems, especially large-scale systems. Much of what
the student learns here will be useful in upper-level courses and in industry as the student
begins to work with large, complex real-world systems.

»9Open..

93

EOTID

We provide Look-and-Feel Observations to highlight graphical user interface conventions.
These observations help students design their own graphical user interfaces in conformance
with industry norms.

{

Summary (983 Summary bullets)

Each chapter ends with additional pedagogical devices. We present a thorough, bullet-list-
style summary of the chapter. On average, there are 42 summary bullets per chapter. This
helps the students review and reinforce key concepts.

Terminology (2171 Terms)
We include in a Terminology section an alphabetized list of the important terms defined in
the chapter—again, further reinforcement. On average, there are 95 terms per chapter.

397 Self-Review Exercises and Answers (Count Includes Separate Parts)

Extensive self-review exercises and answers are included for self-study. This gives the stu-
dent a chance to build confidence with the material and prepare for the regular exercises.
Students should be encouraged to do all the self-review exercises and check their answers.

XLIV Preface Appendix

779 Exercises (Count Includes Separate Parts)

Each chapter concludes with a set of exercises including simple recall of important termi-
nology and concepts; writing individual Java statements; writing small portions of Java
methods and classes; writing complete Java methods, classes, applications and applets; and
writing major term projects. The large number of exercises across a wide variety of areas
enables instructors to tailor their courses to the unique needs of their audiences and to vary
course assignments each semester. Instructors can use these exercises to form homework
assignments, short quizzes and major examinations. The solutions for most of the exercises
are included on the Instructor’s Manual CD that is available only to instructors through
their Prentice-Hall representatives. [NOTE: Please do not write to us requesting the in-
structor’s manual. Distribution of this publication is strictly limited to college profes-
sors teaching from the book. Instructors may obtain the solutions manual only from
their regular Prentice Hall representatives. We regret that we cannot provide the so-
lutions to professionals.] Solutions to approximately half of the exercises are included on
the Java Multimedia Cyber Classroom, Fourth Edition CD, which also is part of The Com-
plete Java 2 Training Course. For ordering instructions, please see the last few pages of this
book or visit www.deitel.com.

Approximately 5300 Index Entries (with approximately 9500 Page References)

We have included an extensive index at the back of the book. This helps the student find
any term or concept by keyword. The index is useful to people reading the book for the first
time and is especially useful to practicing programmers who use the book as a reference.
The terms in the Terminology sections generally appear in the index (along with many
more index items from each chapter). Students can use the index with the Terminology sec-
tions to be sure they have covered the key material of each chapter.

“Double Indexing” of Java Live-Code™ Examples and Exercises

Java How to Program has 197 live-code™ examples and 1176 exercises (including parts).
Many of the exercises are challenging problems or projects requiring substantial effort. We
have “double indexed” the live-code™ examples. For every Java source-code program in
the book, we took the file name with the .java extension, such as LoadAudioAnd-
Play.java and indexed it both alphabetically (in this case under “L”) and as a subindex
item under “Examples.” This makes it easier to find examples using particular features. The
more substantial exercises, such as “Maze Generator and Walker,” are indexed both alpha-
betically (in this case under “M”) and as subindex items under “Exercises.”

Bibliography
An extensive bibliography of books, articles and Sun Microsystems Java 2 documentation
is included to encourage further reading.

Software Included with Java How to Program, Fourth Edition

There are a number of for-sale Java products available. However, you do not need them to
get started with Java. We wrote Java How to Program, Fourth Edition using only the Java
2 Software Development Kit (J2SDK). For your convenience, Sun’s J2SDK version 1.3.1
is included on the CD that accompanies this book. The J2SDK also can be downloaded
from the Sun Microsystems Java Web site java.sun.com. With Sun’s cooperation, we

Appendix Preface XLV

also were able to include on the CD a powerful Java integrated development environment
(IDE)—Sun Microsystem’s Forté for Java Community Edition.

Forté for Java Community Edition is a professional IDE written in Java that includes
a graphical user interface designer, code editor, compiler, visual debugger and more.
J2SDK 1.3.1 must be installed before installing Forté for Java Community Edition. If you
have any questions about using this software, please read the introductory Forté documen-
tation on the CD. We will provide additional information on our Web site
www.deitel.com.

The CD also contains the book’s examples and an HTML Web page with links to the
Deitel & Associates, Inc. Web site, the Prentice Hall Web site and the many Web sites
listed in the appendices. If you have access to the Internet, this Web page can be loaded into
your Web browser to give you quick access to all the resources. Finally, the CD contains
Chapter 22 and Appendices E-K.

Ancillary Package for Java How fo Program, Fourth Edition

Java How to Program, Fourth Edition has extensive ancillary materials for instructors
teaching from the book. The Instructor’s Manual CD contains solutions to the vast majority
of the end-of-chapter exercises and a test bank of multiple choice questions (approximately
2 per book section). In addition, we provide PowerPoint® slides containing all the code and
figures in the text. You are free to customize these slides to meet your own classroom
needs. Prentice Hall provides a Companion Web Site (www.prenhall.com/deitel)
that includes resources for instructors and students. For instructors, the Web site has a Syl-
labus Manager for course planning, links to the PowerPoint slides and reference materials
from the appendices of the book (such as the operator precedence chart, character sets and
Web resources). For students, the Web site provides chapter objectives, true/false exercises
with instant feedback, chapter highlights and reference materials. [VOTE: Please do not
write to us requesting the instructor’s manual. Distribution of this publication is
strictly limited to college professors teaching from the book. Instructors may obtain
the solutions manual only from their regular Prentice Hall representatives. We regret
that we cannot provide the solutions to professionals.]

Java 2 Multimedia Cyber Classroom, Fourth Edition (CD and
Web-Based Training Versions) and The Complete Java 2
Training Course, Fourth Edition

We have prepared an interactive, CD-based, software version of Java How to Program,
Fourth Edition called the Java 2 Multimedia Cyber Classroom, Fourth Edition. It is loaded
with features for learning and reference. The Cyber Classroom is wrapped with the text-
book at a discount in The Complete Java 2 Training Course, Fourth Edition. If you already
have the book and would like to purchase the Java 2 Multimedia Cyber Classroom, Fourth
Edition separately, please visit www.informit.com/cyberclassrooms. The
ISBN# for the Java 2 Multimedia Cyber Classroom, Fourth Edition is 0-13-064935-x. All
Deitel Cyber Classrooms are generally available in CD and Web-based training formats.
The CD has an introduction with the authors overviewing the Cyber Classroom’s fea-
tures. The 197 live-code™ example Java programs in the textbook truly “come alive” in
the Cyber Classroom. If you are viewing a program and want to execute it, you simply click

XLVI Preface Appendix

on the lightning bolt icon and the program will run. You will immediately see—and hear
for the audio-based multimedia programs—the program’s outputs. If you want to modify a
program and see and hear the effects of your changes, simply click the floppy-disk icon that
causes the source code to be “lifted off” the CD and “dropped into” one of your own direc-
tories so you can edit the text, recompile the program and try out your new version. Click
the audio icon and Paul Deitel will talk about the program and “walk you through” the code.

The Cyber Classroom also provides navigational aids including extensive hyper-
linking. The Cyber Classroom is browser based, so it remembers recent sections you have
visited and allows you to move forward or backward among these sections. The thousands
of index entries are hyperlinked to their text occurrences. You can key in a term using the
“find” feature and the Cyber Classroom will locate its occurrences throughout the text. The
Table of Contents entries are “hot”—so clicking a chapter name takes you to that chapter.

Students tell us that they particularly like the hundreds of solved problems from the
textbook that are included with the Cyber Classroom. Studying and running these extra pro-
grams is a great way for students to enhance their learning experience.

Students and professional users of our Cyber Classrooms tell us they like the interac-
tivity and that the Cyber Classroom is an effective reference because of the extensive
hyperlinking and other navigational features. We received an email from a person who said
that he lives “in the boonies” and cannot take a live course at a university, so the Cyber
Classroom was the solution to his educational needs.

Professors tell us that their students enjoy using the Cyber Classroom, spend more time
on the course and master more of the material than in textbook-only courses. We have pub-
lished (and will be publishing) many other Cyber Classroom and Complete Training
Course products. For a complete list of the available and forthcoming Cyber Classrooms
and Complete Training Courses, see the Deitel™ Series page at the beginning of this book
or the product listing and ordering information at the end of this book. You can also visit
www.deitel.comor www.prenhall.com/deitel for more information.

Advanced Java™ 2 Platform How to Program

Our companion book—Advanced Java 2 Platform How to Program—focuses on the Java
2 Platform, Enterprise Edition (J2EE), presents advanced Java 2 Platform Standard Edi-
tion features and introduces the Java 2 Platform, Micro Edition (J2ME). This book is in-
tended for developers and upper-level university students in advanced courses who already
know Java and want a deeper treatment and understanding of the language. The book fea-
tures our signature live-code™ approach of complete working programs and contains over
37,000 lines of code. The programs are more substantial than those presented in Java How
to Program, Fourth Edition. The book expands the coverage of Java Database Connectivity
(JDBC), remote method invocation (RMI), servlets and JavaBeans from Java How to Pro-
gram, Fourth Edition. The book also covers emerging and more advanced Java technolo-
gies of concern to enterprise application developers. The Table of Contents for Advanced
Java 2 Platform How to Program is: Chapters—Introduction; Advanced Swing Graphi-
cal User Interface Components; Model-View-Controller; Graphics Programming with Java
2D and Java 3D; Case Study: A Java2D Application; JavaBeans Component Model; Secu-
rity; Java Database Connectivity (JDBC); Servlets; Java Server Pages (JSP); Case Study:
Servlet and JSP Bookstore; Java 2 Micro Edition (J2ME) and Wireless Internet; Remote
Method Invocation (RMI); Session Enterprise JavaBeans (EJBs) and Distributed Transac-

Appendix Preface XLVII

tions; Entity EJBs; Java Message Service (JMS) and Message-Driven EJBs; Enterprise
Java Case Study: Architectural Overview; Enterprise Java Case Study: Presentation and
Controller Logic; Enterprise Java Case Study: Business Logic Part 1; Enterprise Java Case
Study: Business Logic Part 2; Application Servers; Jini; JavaSpaces; Jiro; Java Manage-
ment Extensions (JMX); Common Object Request Broker Architecture (CORBA): Part 1;
Common Object Request Broker Architecture (CORBA): Part 2; Peer-to-Peer Networking;
Appendices—Creating Markup with XML; XML Document Type Definitions; XML Doc-
ument Object Model (DOM); XSL: Extensible Stylesheet Language Transformations;
Downloading and Installing J2EE 1.2.1; Java Community Process (JCP); Java Native In-
terface (JNI); Career Opportunities; Unicode.

Acknowledgments

One of the great pleasures of writing a textbook is acknowledging the efforts of the many
people whose names may not appear on the cover, but whose hard work, cooperation,
friendship, and understanding were crucial to the production of the book.

Other people at Deitel & Associates, Inc. devoted long hours to this project. We would
like to acknowledge the efforts of our full-time Deitel & Associates, Inc. colleagues Tem
Nieto, Sean Santry, Jonathan Gadzik, Kate Steinbuhler, Rashmi Jayaprakash and Laura
Treibick.

¢ Tem Nieto is a graduate of the Massachusetts Institute of Technology. Tem teach-
es XML, Java, Internet and Web, C, C++ and Visual Basic seminars and works
with us on textbook writing, course development and multimedia authoring ef-
forts. He is co-author with us of Internet & World Wide Web How to Program
(Second Edition), XML How to Program, Perl How to Program and Visual Basic
6 How to Program. In Java How to Program, Fourth Edition Tem co-authored
Chapters 11, 12, 13 and 21 and the Special Section entitled “Building Your Own
Compiler” in Chapter 19.

¢ Sean Santry, a graduate of Boston College (Computer Science and Philosophy)
and co-author of Advanced Java 2 Platform How to Program, edited Chapter 22
(Java Media Framework and Java Sound), helped update the programs in Chapter
15 (Multithreading), designed and implemented the Deitel Messenger networking
application in Chapter 17 (Networking), helped design the optional case study on
OOD/UML, reviewed the optional design patterns case study and reviewed the
implementation of the elevator simulation for the OOD/UML case study.

e Jonathan Gadzik, a graduate of the Columbia University School of Engineering
and Applied Science (BS in Computer Science) co-authored the optional OOD/
UML case study and the optional “Discovering Design Patterns” sections. He also
implemented the 3,465-line Java program that completely solves the object-ori-
ented elevator simulation exercise presented in the OOD/UML case study.

e Kate Steinbuhler, a graduate of Boston College with majors in English and Com-
munications, co-authored Appendix J, Career Opportunities, and managed the
permissions process. Kate is moving on to law school at the University of Pitts-
burgh—good luck Kate! Thank you for your contributions to three Deitel publica-
tions.

XLV

Preface Appendix

Rashmi Jayaprakash, a graduate of Boston University with a major in Computer
Science, co-authored Appendix K, Unicode.

Laura Treibick, a graduate of University of Colorado at Boulder with a major in
Photography and Multimedia, created the delightful animated bug character for
the implementation of the OOD/UML case study.

We would also like to thank the participants in our Deitel & Associates, Inc. College
Internship Program.2

Susan Warren, a Junior in Computer Science at Brown University, and Eugene
Izumo, a Sophomore in Computer Science at Brown University, reviewed the en-
tire Fourth Edition; reviewed and updated Chapter 22, Java Media Framework
and Java Sound; and updated Appendix A (Java Demos) and Appendix B (Java
Resources). Susan and Eugene also worked on many of the books’s ancillary ma-
terials, including the solutions to the exercises, true/false questions for the com-
panion Web site (www.prenhall.com/deitel), true/false questions for the
Java 2 Multimedia Cyber Classroom and multiple choice questions for the Instruc-
tor’s test bank.

Vincent He, a Senior in Management and Computer Science at Boston College,
co-authored Chapter 22, Java Media Framework and Java Sound—one of the most
exciting and fun chapters in the book! We are sure you will enjoy the multimedia
extravaganza Vincent created for you.

Liz Rockett, a Senior in English at Princeton University edited and updated Chap-
ter 22, Java Media Framework and Java Sound.

Chris Henson, a graduate of Brandeis University (Computer Science and History),
reviewed Chapter 22, Java Media Framework and Java Sound.

Christina Carney, a Senior in Psychology and Business at Framingham State Col-
lege, researched and updated the bibliography, helped prepare the Preface and per-
formed the URL research for the OOD/UML case study and design patterns.

Amy Gips, a Sophomore in Marketing and Finance at Boston College, updated
and added URLs for applets, graphics, Java 2D and Multimedia in Appendices A
and B. Amy also researched quotes for Chapter 22 and helped prepare the Preface.

Varun Ganapathi, a Sophomore in Computer Science and Electrical Engineering
at Cornell University, updated Appendix F, Creating HTML Documentation with
javadoc.

Reshma Khilnani, a Junior in Computer Science and Mathematics at the Massa-
chusetts Institute of Technology, worked with Rashmi on the Unicode Appendix

We are fortunate to have been able to work on this project with the talented and dedi-
cated team of publishing professionals at Prentice Hall. We especially appreciate the

2. The Deitel & Associates, Inc. College Internship Program offers a limited number of salaried po-
sitions to Boston-area college students majoring in Computer Science, Information Technology or
Marketing. Students work at our corporate headquarters in Sudbury, Massachusetts full-time in the
summers and part-time during the academic year. Full-time positions are available to college grad-
uates. For more information about this competitive program, please contact Abbey Deitel at
deitel@deitel.com and check our Web site, www.deitel.com.

Appendix Preface XLIX

extraordinary efforts of our computer science editor, Petra Recter and her boss—our mentor
in publishing—Marcia Horton, Editor-in-Chief of Prentice-Hall’s Engineering and Com-
puter Science Division. Camille Trentacoste did a marvelous job as production manager.

The Java 2 Multimedia Cyber Classroom, Fourth Edition was developed in parallel
with Java How to Program, Fourth Edition. We sincerely appreciate the “new media”
insight, savvy and technical expertise of our e-media editor-in-chief, mentor and friend
Mark Taub. He and our e-media editor, Karen Mclean, did a remarkable job bringing the
Java 2 Multimedia Cyber Classroom, Fourth Edition to publication under a tight schedule.
Michael Ruel did a marvelous job as Cyber Classroom project manager.

We owe special thanks to the creativity of Tamara Newnam Cavallo
(smart_art@earthlink.net) who did the art work for our programming tips icons
and the cover. She created the delightful bug creature who shares with you the book’s pro-
gramming tips.

We sincerely appreciate the efforts of our fourth edition reviewers:

Java How to Program, Fourth Edition Reviewers

Dibyendu Baksi (Sun Microsystems)

Tim Boudreau (Sun Microsystems)

Michael Bundschuh (Sun Microsystems)

Gary Ginstling (Sun Microsystems)

Tomas Pavek (Sun Microsystems)

Rama Roberts (Sun Microsystems)

Terry Hull (Sera Nova)

Ralph Johnson (“gang-of-four” co-author of the seminal book, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison Wesley, 1995)

Cameron Skinner (Embarcadero Technologies; OMG)

Michael Chonoles (Lockheed Martin Adv. Concepts; OMG)

Brian Cook (The Technical Resource Connection; OMG)

Akram Al-Rawi (Zayed University)

Charley Bay (Fronte Range Community College)

Clint Bickmore (Fronte Range Community College)

Ron Braithwaite (Nutriware)

Columbus Brown (IBM)

Larry Brown (co-author of Core Web Programming)

Dan Corkum (Trillium Software)

Jonathan Earl (Technical Training and Consulting)

Karl Frank (togethersoft.com)

Charles Fry (thesundancekid.org)

Kyle Gabhart (Objective Solutions)

Felipe Gaucho (Softexport)

Rob Gordon (SuffolkSoft, Inc.)

Michelle Guy (XOR)

Christopher Green (Colorado Springs Technical Consulting Group)

Kevlin Henney (Curbralan Limited)

Ethan Henry (Sitraka Software)

Faisal Kaleem (Florida International University)

Rob Kelly (SUNY)

L Preface Appendix

Scott Kendall (Consultant, UML author)

Sachin Khana (Freelance Java Programmer)

Michael-Franz Mannion (Java Developer)

Julie McVicar (Oakland Community College)

Matt Mitton (Consultant)

Dan Moore (XOR)

Simon North (Synopsys)

Chetan Patel (Lexisnexis)

Brian Pontarelli (Consultant)

Kendall Scott (Consultant, UML author)

Craig Shofding (CAS Training Corp)

Spencer Roberts (Titus Corporation)

Toby Steel (CertaPay)

Stephen Tockey (Construx Software)

Kim Topley (Author of Core Java Foundation Classes and Core Swing: Advanced
Programming, both published by Prentice Hall)

Gustavo Toretti (Java Programmer; Campinas University)

Michael Van Kleeck (Director of Technology, Learning.com)

Dave Wagstaff (Sungard)

Java How to Program, Third Edition Post-Publication Reviewers
Jonathan Earl (Technical Training Consultants)

Harry Foxwell (Sun Microsystems)

Terry Hull (Sera Nova)

Ron McCarty (Penn State University Behrend Campus)

Bina Ramamurthy (SUNY Buffalo)

Vadim Tkachenko (Sera Nova)

Under a tight time schedule, they scrutinized every aspect of the text and made countless
suggestions for improving the accuracy and completeness of the presentation.

We would sincerely appreciate your comments, criticisms, corrections, and sugges-
tions for improving the text. Please address all correspondence to:

deitel@deitel.com

We will respond immediately. Well, that’s it for now. Welcome to the exciting world
of Java programming. We hope you enjoy this look at leading-edge computer applications
development. Good luck!

Dr. Harvey M. Deitel
Paul J. Deitel

About the Authors

Dr. Harvey M. Deitel, CEO of Deitel & Associates, Inc., has 40 years experience in the
computing field including extensive industry and academic experience. He is one of the
world’s leading computer science instructors and seminar presenters. Dr. Deitel earned
B.S. and M.S. degrees from the Massachusetts Institute of Technology and a Ph.D. from

Appendix Preface Ll

Boston University. He has 20 years of college teaching experience including earning tenure
and serving as the Chairman of the Computer Science Department at Boston College before
founding Deitel & Associates, Inc. with his son Paul J. Deitel. He is author or co-author of
several dozen books and multimedia packages and is currently writing many more. With
translations published in Japanese, Russian, Spanish, Italian, Basic Chinese, Traditional
Chinese, Korean, French, Polish and Portuguese, Dr. Deitel's texts have earned internation-
al recognition. Dr. Deitel has delivered professional seminars internationally to major cor-
porations, government organizations and various branches of the military.

Paul J. Deitel, Chief Technical Officer of Deitel & Associates, Inc., is a graduate of
the Massachusetts Institute of Technology’s Sloan School of Management where he
studied Information Technology. Through Deitel & Associates, Inc. he has delivered
Internet and World Wide Web courses and programming language classes for industry cli-
ents including Sun Microsystems, EMCZ, IBM, BEA Systems, Visa International, Progress
Software, Boeing, Fidelity, Hitachi, Cap Gemini, Compaq, Art Technology, White Sands
Missile Range, NASA at the Kennedy Space Center, the National Severe Storm Labora-
tory, Rogue Wave Software, Lucent Technologies, Computervision, Cambridge Tech-
nology Partners, Adra Systems, Entergy, CableData Systems, Banyan, Stratus, Concord
Communications and many other organizations. He has lectured on Java and C++ for the
Boston Chapter of the Association for Computing Machinery, and has taught satellite-
based courses through a cooperative venture of Deitel & Associates, Inc., Prentice Hall and
the Technology Education Network. He and his father, Dr. Harvey M. Deitel, are the
world’s best-selling Computer Science textbook authors.

About Deitel & Associates, Inc.

Deitel & Associates, Inc. is an internationally recognized corporate training and content-
creation organization specializing in Internet/World Wide Web software technology, e-
business/e-commerce software technology and computer programming languages educa-
tion. Deitel & Associates, Inc. is a member of the World Wide Web Consortium. The com-
pany provides courses on Internet and World Wide Web programming, object technology
and major programming languages. The founders of Deitel & Associates, Inc. are Dr. Har-
vey M. Deitel and Paul J. Deitel. The company’s clients include many of the world’s largest
computer companies, government agencies, branches of the military and business organi-
zations. Through its publishing partnership with Prentice Hall, Deitel & Associates, Inc.
publishes leading-edge programming textbooks, professional books, interactive CD-ROM-
based multimedia Cyber Classrooms, satellite courses and Web-based training courses.
Deitel & Associates, Inc. and the authors can be reached via e-mail at

deitel@deitel.com

To learn more about Deitel & Associates, Inc., its publications and its worldwide corporate
on-site curriculum, see the last few pages of this book and visit:

www.deitel.com

Individuals wishing to purchase Deitel books, Cyber Classrooms, Complete Training
Courses and Web-based training courses can do so through

www.deitel.com

Ll Preface Appendix

Bulk orders by corporations and academic institutions should be placed directly with Pren-
tice Hall. See the last few pages of this book for worldwide ordering details.

The World Wide Web Consortium (W3C)

® Deitel & Associates, Inc. is a member of the World Wide Web Consortium
% (W3C). The W3C was founded in 1994 “to develop common protocols for
N the evolution of the World Wide Web.” As a W3C member, we hold a seat
MEMBER o, the W3C Advisory Committee (our Advisory Committee representa-
tive is our Chief Technology Officer, Paul Deitel). Advisory Committee members help pro-
vide “strategic direction” to the W3C through meetings around the world. Member
organizations also help develop standards recommendations for Web technologies (such as
HTML, XML and many others) through participation in W3C activities and groups. Mem-
bership in the W3C is intended for companies and large organizations. For information on
becoming a member of the W3C visit www.w3.org/Consortium/Prospectus/
Joining.

Introduction to
Computers, the Internet

and the Web

Objectives

* To understand basic computer science concepts.

* To become familiar with different types of
programming languages.

* To introduce the Java development environment.

* To understand Java’s role in developing distributed
client/server applications for the Internet and Web.

* To introduce object-oriented design with the UML
and design patterns.

* To preview the remaining chapters of the book.

Our life is frittered away by detail ... Simplify, simplify.

Henry Thoreau

High thoughts must have high language.

Aristophanes

The chief merit of language is clearness.

Galen

My object all sublime

I shall achieve in time.

W. S. Gilbert

He had a wonderful talent for packing thought close, and
rendering it portable.

Thomas Babington Macaulay

Egad, I think the interpreter is the hardest to be understood
of the two!

Richard Brinsley Sheridan

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

2 Infroduction to Computers, the Internet and the Web Chapter 1

Outline

1.1 Introduction

1.2 What Is a Computer?

1.3 Computer Organization

1.4 Evolution of Operating Systems

1.5 Personal, Distributed and Client/Server Computing

1.6 Machine Languages, Assembly Languages and High-Level
Languages

1.7 History of C++

1.8 History of Java

1.9 Java Class Libraries

1.10 Other High-Level Languages

1.11 Structured Programming

1.12 The Internet and the World Wide Web

1.13 Basics of a Typical Java Environment

1.14 General Notes about Java and This Book

1

.15 Thinking About Objects: Introduction to Object Technology and the
Unified Modeling Language

1.16 Discovering Design Patterns: Infroduction
1.17 Tour of the Book

1.18 (Optional) A Tour of the Case Study on Object-Oriented Design with
the UML

1.19 (Optional) A Tour of the “Discovering Design Patterns” Sections

Summary * Terminology * Self-Review Exercises ® Answers to Self-Review Exercises * Exercises

1.1 Infroduction

Welcome to Java! We have worked hard to create what we hope will be an informative,
entertaining and challenging learning experience for you. Java is a powerful computer pro-
gramming language that is fun to use for novices and appropriate for experienced program-
mers building substantial information systems. Java How to Program: Fourth Edition is
designed to be an effective learning tool for each of these audiences.

How can one book appeal to both groups? The answer is that the common core of the
book emphasizes achieving program clarity through the proven techniques of structured
programming and object-oriented programming. Nonprogrammers will learn program-
ming the right way from the beginning. We have attempted to write in a clear and straight-
forward manner. The book is abundantly illustrated. Perhaps most importantly, the book
presents hundreds of working Java programs and shows the outputs produced when those
programs are run on a computer. We teach all Java features in the context of complete
working Java programs. We call this the live-code™ approach. These examples are avail-
able from three locations—they are on the CD that accompanies this book, they may be

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Intfroduction to Computers, the Internet and the Web 3

downloaded from our Web site www.deitel.com and they are available on our interac-
tive CD product, the Java 2 Multimedia Cyber Classroom: Fourth Edition. The Cyber
Classroom’s features and ordering information appear at the back of this book. The Cyber
Classroom also contains answers to approximately half of the solved exercises in this book,
including short answers, small programs and many full projects. If you purchased The
Complete Java 2 Training Course: Fourth Edition, you already have the Cyber Classroom.

The early chapters introduce the fundamentals of computers, computer programming
and the Java computer programming language. Novices who have taken our courses tell us
that the material in those chapters presents a solid foundation for the deeper treatment of
Java in the later chapters. Experienced programmers tend to read the early chapters quickly
and find that the treatment of Java in the later chapters is rigorous and challenging.

Many experienced programmers have told us that they appreciate our structured pro-
gramming treatment. Often, they have been programming in structured languages like C or
Pascal, but they were never formally introduced to structured programming, so they are not
writing the best possible code in these languages. As they review structured programming
in the chapters “Control Structures: Part 1” and “Control Structures: Part 2,” they are able
to improve their C and Pascal programming styles as well. So whether you are a novice or
an experienced programmer, there is much here to inform, entertain and challenge you.

Most people are familiar with the exciting tasks computers perform. Using this text-
book, you will learn how to command computers to perform those tasks. It is software (i.e.,
the instructions you write to command computers to perform actions and make decisions)
that controls computers (often referred to as hardware), and Java is one of today’s most
popular software-development languages. Java was developed by Sun Microsystems and
an implementation of it is available free over the Internet from the Sun Web site

java.sun.com/j2se

This book is based on the Java 2 Platform, Standard Edition, which describes the Java lan-
guage, libraries and tools. Other vendors can implement Java development kits based on the
Java 2 Platform. Sun provides an implementation of the Java 2 Platform, Standard Edition
called the Java 2 Software Development Kit, Standard Edition (J2SDK) that includes the
minimum set of tools you need to write software in Java. At the time of this publication, the
most recent version was J2SDK 1.3.1. You can download future updates to the J2SDK from
the Sun Web site java.sun.com/j2se.

Computer use is increasing in almost every field of endeavor. In an era of steadily rising
costs, computing costs have been decreasing dramatically due to rapid developments in both
hardware and software technology. Computers that might have filled large rooms and cost
millions of dollars two decades ago can now be inscribed on the surfaces of silicon chips
smaller than a fingernail, costing perhaps a few dollars each. Ironically, silicon is one of the
most abundant materials on earth—it is an ingredient in common sand. Silicon-chip tech-
nology has made computing so economical that hundreds of millions of general-purpose
computers are in use worldwide helping people in business, industry, government, and in their
personal lives. The number of computers worldwide easily could double in the next few years.

This book will challenge you for several reasons. For many years, students learned C or
Pascal as their first programming language. They probably learned the programming meth-
odology called structured programming. Y ou will learn both structured programming and the
exciting newer methodology, object-oriented programming. Why do we teach both? We

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

4 Infroduction to Computers, the Internet and the Web Chapter 1

believe that object orientation is the key programming methodology of the future. You will
build and work with many objects in this course. However, you will discover that the internal
structure of those objects is built with structured programming techniques. Also, the logic of
manipulating objects is occasionally best expressed with structured programming.

Another reason we present both methodologies is the continuing migration from C-based
systems (built primarily with structured programming techniques) to C++ and Java-based
systems (built primarily with object-oriented programming techniques). There is a huge
amount of so-called “legacy C code” in place, because C has been in use for over three
decades. Once people learn C++ or Java, they find these languages to be more powerful than
C. These people often choose to move their programming projects to C++ or Java. They begin
converting their legacy systems and begin employing the object-oriented programming capa-
bilities of C++ or Java to realize the full benefits of these languages. Often, the choice
between C++ and Java is made based on the simplicity of Java compared to C++.

Java has become the language of choice for implementing Internet-based and Intranet-
based applications and software for devices that communicate over a network. Do not be
surprised when your new stereo and other devices in your home will be networked together
by Java technology! Also, do not be surprised when your wireless devices, like cell phones,
pagers and personal digital assistants (PDAs) communicate over the so-called Wireless
Internet via the kind of Java-based networking protocols that you will learn in this book and
its companion Advanced Java 2 Platform How to Program.

Java is a particularly attractive first programming language. At the JavaOne™ trade
show in June 2001, it was announced that Java is now a required part of the programming
languages curriculum in 56% of US colleges and universities. Also, 87% of US colleges
and universities offer Java courses. Java is attractive to high schools as well. In 2003, the
College Board will standardize on Java for Advanced Placement computer science courses.

Java has evolved rapidly into the large-scale applications arena. Java is no longer a lan-
guage used simply to make World Wide Web pages “come alive.” Java has become the pre-
ferred language for meeting many organizations’ programming needs.

For many years, languages like C and C++ appealed to universities because of their
portability. Introductory courses could be offered in these languages on any hardware/oper-
ating system combination, as long as a C/C++ compiler was available. However, the pro-
gramming world has become more complex and more demanding. Today, users want
applications with graphical user interfaces (GUIs). They want applications that use multi-
media capabilities such as graphics, images, animation, audio and video. They want appli-
cations that can run on the Internet and the World Wide Web and communicate with other
applications. They want applications that can take advantage of the flexibility and perfor-
mance improvements of multithreading (which enables programmers to specify that sev-
eral activities should occur in parallel). They want applications with richer file processing
than is provided by C or C++. They want applications that are not limited to the desktop or
even to some local computer network, but can integrate Internet components and remote
databases as well. They want applications that can be written quickly and correctly in a
manner that takes advantage of prebuilt software components. They want easy access to a
growing universe of reusable software components. Programmers want all these benefits in
a truly portable manner, so that applications will run without modification on a variety of
platforms (i.e., different types of computers running different operating systems). Java
offers all these benefits to the programming community.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Intfroduction to Computers, the Internet and the Web 5

Another reason Java is attractive for university courses is that it is fully object oriented.
One reason that C++ use has grown so quickly is that it extends C programming into the
arena of object orientation. For the huge community of C programmers, this has been a
powerful advantage. C++ includes ANSI/ISO C and offers the ability to do object-oriented
programming as well. (ANSI is the American National Standards Institute, and ISO is the
International Standards Organization.) An enormous amount of C code has been written in
industry over the last several decades. C++ is a superset of C, so many organizations find
it to be an ideal next step. Programmers can take their C code, compile it (often with nom-
inal changes) in a C++ compiler and continue writing C-like code while mastering the
object paradigm. Then, the programmers can gradually migrate portions of the legacy C
code into C++ as time permits. New systems can be entirely written in object-oriented C++.
Such strategies have been appealing to many organizations. The downside is that, even
after adopting this strategy, companies tend to continue producing C-like code for many
years. This, of course, means that they do not realize the benefits of object-oriented pro-
gramming quickly and could produce programs that are confusing and hard to maintain as
a result of to their hybrid design. Many organizations would prefer to plunge 100% into
object-oriented development, but the realities of mountains of legacy code and the tempta-
tion to take a C-programming approach often prevent this.

Java is a fully object-oriented language with strong support for proper software engi-
neering techniques. It is difficult to write C-like, so-called procedural programs in Java.
You must create and manipulate objects. Error processing is built into the language. Many
of the complex details of C and C++ programming that prevent programmers from “looking
at the big picture” are not included in Java. For universities, these features are powerfully
appealing. Students will learn object-oriented programming from the start. They will
simply think in an object-oriented manner.

Here, too, there is a trade-off. Organizations turning to Java for new applications
development do not want to convert all their legacy code to Java. So Java allows for so-
called native code. This means that existing C and C++ code can be integrated with Java
code. Although this may seem a bit awkward (and it certainly can be), it presents a prag-
matic solution to a problem most organizations face.

The fact that Java is free for download at the Sun Web site, java.sun.com/j2se,
is appealing to universities facing tight budgets and lengthy budget planning cycles. Also,
as bug fixes and new versions of Java are developed, these become available immediately
over the Internet, so universities can keep their Java software current.

Can Java be taught in a first programming course—the intended audience for this book?
We think so. Prior to writing this book, Deitel & Associates, Inc. instructors taught hundreds
of Java courses to several thousand people at all levels of expertise, including many nonpro-
grammers. We found that nonprogrammers become productive faster with Java than with C
or C++. They are anxious to experiment with Java’s powerful features for graphics, graphical
user interfaces, multimedia, animation, multithreading, networking and the like—and they
are successful at building substantial Java programs even in their first courses.

For many years, the Pascal programming language was the preferred vehicle for use in
introductory and intermediate programming courses. Many people said that C was too dif-
ficult a language for these courses. In 1992, we published the first edition of C How fo Pro-
gram, to encourage universities to try C instead of Pascal in these courses. We used the
same pedagogic approach we had used in our university courses for a dozen years, but

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

6 Infroduction to Computers, the Internet and the Web Chapter 1

wrapped the concepts in C rather than Pascal. We found that students were able to handle
C at about the same level as Pascal. However, there was one noticeable difference—stu-
dents appreciated that they were learning a language (C) likely to be valuable to them in
industry. Our industry clients appreciated the availability of C-literate graduates who could
work immediately on substantial projects rather than first having to go through costly and
time-consuming training programs.

The first edition of C How to Program included a 60-page introduction to C++ and
object-oriented programming. We saw C++ coming on strong, but we felt it would be at
least a few more years before the universities would be ready to teach C++ and object-ori-
ented programming (OOP) in introductory courses.

During 1993, we saw a surge in interest in C++ and OOP among our industry clients,
but we still did not sense that the universities were ready to switch to C++ and OOP en
masse. So, in January 1994, we published the Second Edition of C How to Program with a
300-page section on C++ and OOP. In May 1994, we published the first edition of C++
How to Program, a 950-page book devoted to the premise that C++ and OOP were now
ready for prime time in introductory university courses for many schools that wanted to be
at the leading edge of programming-languages education.

In 1995, we were following the introduction of Java carefully. In November 1995, we
attended an Internet conference in Boston. A representative from Sun Microsystems gave
a presentation on Java that filled one of the large ballrooms at the Hynes Convention
Center. As the presentation proceeded, it became clear to us that Java would play a signif-
icant part in the development of interactive, multimedia Web pages. We immediately saw
a much greater potential for the language. We saw Java as the proper language for univer-
sities to teach first-year programming language students in this modern world of graphics,
images, animation, audio, video, database, networking, multithreading and collaborative
computing. At the time, we were busy writing the second edition of C++ How to Program.
We discussed with our publisher, Prentice Hall, our vision of Java making a strong impact
in the university curriculum. We all agreed to delay the second edition of C++ How tfo Pro-
gram a bit so that we could get the first edition of Java How to Program (based on Java
1.0.2) to the market in time for fall 1996 courses.

As Java rapidly evolved to Java 1.1, we wrote Java How to Program: Second Edition
in 1997, less than a year after the first edition reached bookstores. Hundreds of universities
and corporate training programs worldwide used the second edition. To keep pace with the
enhancements in Java, we published Java How to Program: Third Edition in 1999. The
third edition was a major overhaul to upgrade the book to the Java 2 Platform.

Java continues to evolve rapidly, so we wrote this fourth edition of Java How to Pro-
gram—our first book to reach a fourth edition—just five years after the first edition was
published. This edition is based on the Java 2 Platform, Standard Edition (J2SE). Java has
grown so rapidly over the last several years that it now has two other editions. The Java 2
Platform, Enterprise Edition (J2EE) is geared toward developing large-scale, distributed
networking applications and Web-based applications. The Java 2 Platform, Micro Edition
(J2ME) is geared toward development of applications for small devices (such as cell
phones, pagers and personal digital assistants) and other memory-constrained applications.
The number of topics to cover in Java has become far too large for one book. So, in parallel
with Java How to Program, Fourth Edition, we are publishing Advanced Java 2 Platform
How to Program, which emphasizes developing applications with J2EE and provides cov-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Intfroduction to Computers, the Internet and the Web 7

erage of several high-end topics from the J2SE. In addition, this book also includes sub-
stantial materials on J2ME and wireless-application development.

So, there you have it! You are about to start on a challenging and rewarding path. As
you proceed, please share your thoughts on Java and Java How to Program: Fourth Edition
with us via e-mail at deitel@deitel.com. We will respond promptly.

Prentice Hall maintains www.prenhall .com/deitel—a Web site dedicated to
our Prentice Hall publications, including textbooks, professional books, interactive multi-
media CD-based Cyber Classrooms, Complete Training Courses (boxed products con-
taining both a Cyber Classroom and the corresponding book), Web-based training, e-
whitepapers, e-books and ancillary materials for all these products. For each of our books,
the site contains companion Web sites that include frequently asked questions (FAQs),
code downloads, errata, updates, additional text and examples, additional self-test ques-
tions and new developments in programming languages and object-oriented programming
technologies. If you would like to learn more about the authors or Deitel & Associates, Inc.
please visit www.deitel.com. Good luck!

1.2 What Is a Computer?

A computer is a device capable of performing computations and making logical decisions at
speeds millions, even billions, of times faster than human beings can. For example, many of
today’s personal computers can perform hundreds of millions, even billions, of additions per
second. A person operating a desk calculator might require decades to complete the same
number of calculations a powerful personal computer can perform in one second. (Points to
ponder: How would you know whether the person added the numbers correctly? How would
you know whether the computer added the numbers correctly?) Today’s fastest supercomput-
ers can perform hundreds of billions of additions per second—about as many calculations as
hundreds of thousands of people could perform in one year! And trillion-instruction-per-sec-
ond computers are already functioning in research laboratories!

Computers process data under the control of sets of instructions called computer pro-
grams. These programs guide the computer through orderly sets of actions specified by
people called computer programmers.

The various devices that comprise a computer system (such as the keyboard, screen,
disks, memory and processing units) are referred to as hardware. The computer programs
that run on a computer are referred to as software. Hardware costs have been declining dra-
matically in recent years, to the point that personal computers have become a commodity.
Unfortunately, software-development costs have been rising steadily, as programmers
develop ever more powerful and complex applications without being able to improve sig-
nificantly the technology of software development. In this book, you will learn proven soft-
ware-development methods that can reduce software-development costs—top-down
stepwise refinement, functionalization and object-oriented programming. Object-oriented
programming is widely believed to be the significant breakthrough that can greatly enhance
programmer productivity.

1.3 Computer Organization

Regardless of differences in physical appearance, virtually every computer may be envi-
sioned as being divided into six logical units or sections. These are as follows:

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

8 Infroduction to Computers, the Internet and the Web Chapter 1

1. Input unit. This is the “receiving” section of the computer. It obtains information
(data and computer programs) from input devices and places this information at
the disposal of the other units so that the information may be processed. Most in-
formation is entered into computers today through typewriter-like keyboards,
“mouse” devices and disks. In the future, most information will be entered by
speaking to computers, by electronically scanning images and by video recording.

2. Output unit. This is the “shipping” section of the computer. It takes information
processed by the computer and places it on various output devices to make the in-
formation available for use outside the computer. Information output from com-
puters is displayed on screens, printed on paper, played through audio speakers,
magnetically recorded on disks and tapes or used to control other devices.

3. Memory unit. This is the rapid-access, relatively low-capacity “warehouse” sec-
tion of the computer. It retains information that has been entered through the input
unit so that the information may be made immediately available for processing
when it is needed. The memory unit also retains information that has already been
processed until that information can be placed on output devices by the output
unit. The memory unit often is called either memory, primary memory or random-
access memory (RAM).

4. Arithmetic and logic unit (ALU). This is the “manufacturing” section of the com-
puter. It is responsible for performing calculations such as addition, subtraction,
multiplication and division. It contains the decision mechanisms that allow the
computer, for example, to compare two items from the memory unit to determine
whether they are equal.

5. Central processing unit (CPU). This is the “administrative” section of the com-
puter. It is the computer’s coordinator and is responsible for supervising the oper-
ation of the other sections. The CPU tells the input unit when information should
be read into the memory unit, tells the ALU when information from the memory
unit should be utilized in calculations and tells the output unit when to send infor-
mation from the memory unit to certain output devices.

6. Secondary storage unit. This is the long-term, high-capacity “warehousing” sec-
tion of the computer. Programs or data not being used by the other units are nor-
mally placed on secondary storage devices (such as disks) until they are needed,
possibly hours, days, months or even years later. Information in secondary storage
takes longer to access than information in primary memory. The cost per unit of
secondary storage is much less than the cost per unit of primary memory.

1.4 Evolution of Operating Systems

Early computers were capable of performing only one job or fask at a time. This form of
computer operation is often called single-user batch processing. The computer runs a single
program at a time while processing data in groups or batches. In these early systems, users
generally submitted their jobs to the computer center on decks of punched cards. Users of-
ten had to wait hours or even days before printouts were returned to their desks.

Software systems called operating systems were developed to help make it more con-
venient to use computers. Early operating systems managed the smooth transition between

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Intfroduction to Computers, the Internet and the Web 9

jobs. This minimized the time it took for computer operators to switch between jobs and
hence increased the amount of work, or throughput, computers could process.

As computers became more powerful, it became evident that single-user batch pro-
cessing rarely utilized the computer’s resources efficiently. Instead, it was thought that
many jobs or tasks could be made to share the resources of the computer to achieve better
utilization. This is called multiprogramming. Multiprogramming involves the *“simulta-
neous” operation of many jobs on the computer—the computer shares its resources among
the jobs competing for its attention. With early multiprogramming operating systems, users
still submitted jobs on decks of punched cards and waited hours or days for results.

In the 1960s, several groups in industry and the universities pioneered timesharing
operating systems. Timesharing is a special case of multiprogramming in which users
access the computer through ferminals, typically devices with keyboards and screens. In a
typical timesharing computer system, there may be dozens or even hundreds of users
sharing the computer at once. The computer does not actually run all the users’ jobs simul-
taneously. Rather, it runs a small portion of one user’s job and moves on to service the next
user. The computer does this so quickly that it might provide service to each user several
times per second. Thus the users’ programs appear to be running simultaneously. An
advantage of timesharing is that the user receives almost immediate responses to requests
rather than having to wait long periods for results, as with previous modes of computing.
Also, if a particular user is currently idle, the computer can continue to service other users
rather than wait for one user.

1.5 Personal, Distributed and Client/Server Computing

In 1977, Apple Computer popularized the phenomenon of personal computing. Initially, it
was a hobbyist’s dream. Computers became economical enough for people to buy them for
their own personal use. In 1981, IBM, the world’s largest computer vendor, introduced the
IBM Personal Computer. Almost overnight, personal computing became legitimate in busi-
ness, industry and government organizations.

But these computers were “stand-alone” units—people did their work on their own
machines and transported disks back and forth to share information. Although early per-
sonal computers were not powerful enough to timeshare several users, these machines
could be linked together in computer networks, sometimes over telephone lines and some-
times in local area networks (LANs) within an organization. This led to the phenomenon of
distributed computing, in which an organization’s computing, instead of being performed
strictly at some central computer installation, is distributed over networks to the sites at
which the real work of the organization is performed. Personal computers were powerful
enough both to handle the computing requirements of individual users and to handle the
basic communications tasks of passing information back and forth electronically.

Today’s most powerful personal computers are as powerful as the million-dollar
machines of just a decade ago. The most powerful desktop machines—called worksta-
tions—provide individual users with enormous capabilities. Information is shared easily
across computer networks where some computers called file servers offer a common store
of programs and data that may be used by client computers distributed throughout the net-
work (hence the term client/server computing). C and C++ have become and remain the
languages of choice for writing operating systems. They also remain popular for writing
computer networking, distributed client/server and Internet and Web applications, although

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

10 Infroduction to Computers, the Internet and the Web Chapter 1

Java is now the dominant language in each of these areas. Many programmers have discov-
ered that programming in Java helps them be more productive than programming in C or
C++. Today’s popular operating systems, such as UNIX, Linux, MacOS, Windows and
Windows 2000, provide the kinds of capabilities discussed in this section.

1.6 Machine Languages, Assembly Languages and High-Level
Languages

Programmers write instructions in various programming languages, some directly under-
standable by computers and others that require intermediate translation steps. Hundreds of
computer languages are in use today. These may be divided into three general types:

1. Machine languages
2. Assembly languages
3. High-level languages

Any computer can directly understand only its own machine language. Machine lan-
guage is the “natural language” of a particular computer. It is defined by the hardware
design of that computer. Machine languages generally consist of strings of numbers (ulti-
mately reduced to 1s and 0s) that instruct computers to perform their most elementary oper-
ations one at a time. Machine languages are machine dependent (i.e., a particular machine
language can be used on only one type of computer). Machine languages are cumbersome
for humans, as can be seen by the following section of a machine-language program that
adds overtime pay to base pay and stores the result in gross pay.

+1300042774
+1400593419
+1200274027

As computers became more popular, it became apparent that machine-language pro-
gramming was simply too slow and tedious for most programmers. Instead of using the
strings of numbers that computers could directly understand, programmers began using
English-like abbreviations to represent the elementary operations of computers. These
English-like abbreviations formed the basis of assembly languages. Translator programs
called assemblers were developed to convert assembly-language programs to machine lan-
guage at computer speeds. The following section of an assembly-language program also
adds overtime pay to base pay and stores the result in gross pay, but somewhat more clearly
than its machine-language equivalent.

LOAD BASEPAY
ADD OVERPAY
STORE GROSSPAY

Although such code is clearer to humans, it is incomprehensible to computers until trans-
lated to machine language.

Computer usage increased rapidly with the advent of assembly languages, but pro-
gramming in these still required many instructions to accomplish even the simplest tasks.
To speed the programming process, high-level languages were developed in which single
statements could be written to accomplish substantial tasks. The translator programs that
convert high-level language programs into machine language are called compilers. High-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 11

level languages allow programmers to write instructions that look almost like everyday
English and contain commonly used mathematical notations. A payroll program written in
a high-level language might contain a statement such as

grossPay = basePay + overTimePay

Obviously, high-level languages are much more desirable from the programmer’s
standpoint than either machine languages or assembly languages. C, C++ and Java are
among the most powerful and most widely used high-level programming languages.

The process of compiling a high-level language program into machine language can
take a considerable amount of computer time. Inferpreter programs were developed to exe-
cute high-level language programs directly without the need for compiling those programs
into machine language. Although compiled programs execute much faster than interpreted
programs, interpreters are popular in program-development environments in which pro-
grams are recompiled frequently as new features are added and errors are corrected. Once
a program is developed, a compiled version can be produced to run most efficiently. As we
study Java, you will see that interpreters have played an especially important part in helping
Java achieve its goal of portability across a great variety of platforms.

1.7 History of C++

C++ evolved from C, which evolved from two previous languages, BCPL and B. BCPL
was developed in 1967 by Martin Richards as a language for writing operating-systems
software and compilers. Ken Thompson modeled many features in his language B after
their counterparts in BCPL and used B to create early versions of the UNIX operating sys-
tem at Bell Laboratories in 1970 on a Digital Equipment Corporation PDP-7 computer.
Both BCPL and B were “typeless” languages—every data item occupied one “word” in
memory. For example, it was the programmer’s responsibility to treat a data item as a
whole number or a real number.

The C language was evolved from B by Dennis Ritchie at Bell Laboratories and was
originally implemented on a DEC PDP-11 computer in 1972. C uses many important con-
cepts of BCPL and B while adding data typing and other features. C initially became widely
known as the development language of the UNIX operating system. Today, virtually all
new major operating systems are written in C or C++. Over the past two decades, C has
become available for most computers. C is hardware independent. With careful design, it
is possible to write C programs that are portable to most computers.

By the late 1970s, C had evolved into what is now referred to as “traditional C,” or
“Kernighan and Ritchie C.” The publication by Prentice Hall in 1978 of Kernighan and
Ritchie’s book, The C Programming Language, brought wide attention to the language.
This publication became one of the most successful computer science books ever.

The widespread use of C with various types of computers (sometimes called hardware
platforms) led to many variations. These were similar, but often incompatible. This was a
serious problem for programmers who needed to write portable programs that would run
on several platforms. It became clear that a standard version of C was needed. In 1983, the
X3J11 technical committee was created under the American National Standards Com-
mittee on Computers and Information Processing (X3) to “provide an unambiguous and
machine-independent definition of the language.” In 1989, the standard was approved.
ANSI cooperated with the International Standards Organization (ISO) to standardize C

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

12 Infroduction to Computers, the Internet and the Web Chapter 1

worldwide; the joint standard document was published in 1990 and is referred to as ANSI/
ISO 9899: 1990. The second edition of Kernighan and Ritchie,! published in 1988, reflects
this version called ANSI C, a version of the language still used worldwide (Ke88).

C++, an extension of C, was developed by Bjarne Stroustrup in the early 1980s at Bell
Laboratories. C++ provides a number of features that “spruce up” the C language, but more
importantly, it provides capabilities for object-oriented programming. C++ was also stan-
dardized by the ANSI and ISO committees.

There is a revolution brewing in the software community. Building software quickly,
correctly and economically remains an elusive goal, and this at a time when demands for
new and more powerful software are soaring. Objects are essentially reusable software
components that model items in the real world. Software developers are discovering that
using a modular, object-oriented design and implementation approach can make software-
development groups much more productive than is possible with previous popular pro-
gramming techniques such as structured programming. Object-oriented programs are often
easier to understand, correct and modify.

Many other object-oriented languages have been developed, including Smalltalk,
developed at Xerox’s Palo Alto Research Center (PARC). Smalltalk is a pure object-ori-
ented language—literally everything is an object. C++ is a hybrid language—it is possible
to program in either a C-like style, an object-oriented style or both.

1.8 History of Java

Perhaps the microprocessor revolution’s most important contribution to date is that it made
possible the development of personal computers, which now number in the hundreds of
millions worldwide. Personal computers have had a profound impact on people and the way
organizations conduct and manage their business.

Many people believe that the next major area in which microprocessors will have a
profound impact is in intelligent consumer-electronic devices. Recognizing this, Sun
Microsystems funded an internal corporate research project code-named Green in 1991.
The project resulted in the development of a C- and C++-based language that its creator,
James Gosling, called Oak after an oak tree outside his window at Sun. It was later discov-
ered that there already was a computer language called Oak. When a group of Sun people
visited a local coffee place, the name Java was suggested, and it stuck.

The Green project ran into some difficulties. The marketplace for intelligent con-
sumer-electronic devices was not developing as quickly as Sun had anticipated. Worse yet,
a major contract for which Sun competed was awarded to another company. So the project
was in danger of being canceled. By sheer good fortune, the World Wide Web exploded in
popularity in 1993, and Sun people saw the immediate potential of using Java to create Web
pages with so-called dynamic content. This breathed new life into the project.

Sun formally announced Java at a major conference in May 1995. Ordinarily, an event
like this would not have generated much attention. However, Java generated immediate
interest in the business community because of the phenomenal interest in the World Wide
Web. Java is now used to create Web pages with dynamic and interactive content, to
develop large-scale enterprise applications, to enhance the functionality of World Wide

1. Kernighan, B. W., and D. M. Ritchie, The C Programming Language (Second Edition), Engle-
wood Cliffs, NJ: Prentice Hall, 1988.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 13

Web servers (the computers that provide the content we see in our Web browsers), to pro-
vide applications for consumer devices (such as cell phones, pagers and personal digital
assistants) and for many other purposes.

1.9 Java Class Libraries

Java programs consist of pieces called classes. Classes consist of pieces called methods that
perform tasks and return information when they complete their tasks. You can program
each piece you may need to form a Java program. However, most Java programmers take
advantage of rich collections of existing classes in Java class libraries. The class libraries
are also known as the Java APIs (Application Programming Interfaces). Thus, there are re-
ally two pieces to learning the Java “world.” The first is learning the Java language itself
so that you can program your own classes; the second is learning how to use the classes in
the extensive Java class libraries. Throughout the book, we discuss many library classes.
Class libraries are provided primarily by compiler vendors, but many class libraries are sup-
plied by independent software vendors (ISVs). Also, many class libraries are available
from the Internet and World Wide Web as freeware or shareware. You can download free-
ware products and use them for free—subject to any restrictions specified by the copyright
owner. You also can download shareware products for free, so you can try the software.
Shareware products often are free of charge for personal use. However, for shareware prod-
ucts that you use regularly or use for commercial purposes, you are expected to pay a fee
designated by the copyright owner.

Many freeware and shareware products are also open source. The source code for
open-source products is freely available on the Internet, which enables you to learn from
the source code, validate that the code serves its stated purpose and even modify the code.
Often, open-source products require that you publish any enhancements you make so the
open-source community can continue to evolve those products. One example of a popular
open-source product is the Linux operating system.

Use a building-block approach to creating programs. Avoid reinventing the wheel. Use ex-
isting pieces—this is called software reuse and it is central to object-oriented programming.

[Note: We will include many of these Software Engineering Observations throughout
the text to explain concepts that affect and improve the overall architecture and quality of
software systems, and particularly, of large software systems. We will also highlight Good
Programming Practices (practices that can help you write programs that are clearer, more
understandable, more maintainable and easier to test and debug), Common Programming
Errors (problems to watch out for so you do not make these same errors in your programs),
Performance Tips (techniques that will help you write programs that run faster and use less
memory), Portability Tips (techniques that will help you write programs that can run, with
little or no modifications, on a variety of computers; these tips also include general obser-
vations about how Java achieves its high degree of portability), Testing and Debugging
Tips (techniques that will help you remove bugs from your programs and, more important,
techniques that will help you write bug-free programs to begin with) and Look and Feel
Observations (techniques that will help you design the “look™ and “feel” of your graphical
user interfaces for appearance and ease of use). Many of these techniques and practices are
only guidelines; you will, no doubt, develop your own preferred programming style.]

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

14 Infroduction to Computers, the Internet and the Web Chapter 1

When programming in Java, you will typically use the following building blocks: Classes
from class libraries, classes and methods you create yourself and classes and methods other
people create and make available to you.

The advantage of creating your own classes and methods is that you know exactly how
they work and you can examine the Java code. The disadvantage is the time-consuming and
complex effort that goes into designing and developing new classes and methods.

Performance Tip 1.1

__—‘£ Using Java API classes and methods instead of writing your own versions can improve pro-
" gram performance, because these classes and methods are carefully written to perform effi-
ciently. This technique also improves the prototyping speed of program development (i.e., the
time it takes to develop a new program and get its first version running).

@ Using classes and methods from the Java API instead of writing your own versions improves
program portability, because these classes and methods are included in every Java imple-
mentation (assuming the same version number).

%Eansive class libraries of reusable software components are available over the Internet and
the Web. Many of these libraries provide source code and are available at no charge.

1.10 Other High-Level Languages

Hundreds of high-level languages have been developed, but only a few have achieved
broad acceptance. Fortran (FORmula TRANslator) was developed by IBM Corporation
between 1954 and 1957 to be used for scientific and engineering applications that require
complex mathematical computations. Fortran is still widely used.

COBOL (COmmon Business Oriented Language) was developed in 1959 by a group
of computer manufacturers and government and industrial computer users. COBOL is used
primarily for commercial applications that require precise and efficient manipulation of
large amounts of data. Today, about half of all business software is still programmed in
COBOL. Approximately one million people are actively writing COBOL programs.

Pascal was designed at about the same time as C. It was created by Professor Nicklaus
Wirth and was intended for academic use. We discuss Pascal further in the next section.

Basic was developed in 1965 at Dartmouth College as a simple language to help nov-
ices become comfortable with programming. Bill Gates implemented Basic on several
early personal computers. Today, Microsoft—the company Bill Gates created—is the
world’s leading software-development organization.

1.11 Structured Programming

During the 1960s, many large software-development efforts encountered severe difficul-
ties. Software schedules were typically late, costs greatly exceeded budgets and the fin-
ished products were unreliable. People began to realize that software development was a
far more complex activity than they had imagined. Research activity in the 1960s resulted

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 15

in the evolution of structured programming—a disciplined approach to writing programs
that are clearer than unstructured programs, easier to test and debug and easier to modify.
Chapters 4 and 5 discuss the principles of structured programming.

One of the more tangible results of this research was the development of the Pascal
programming language by Nicklaus Wirth in 1971. Pascal, named after the seventeenth-
century mathematician and philosopher Blaise Pascal, was designed for teaching structured
programming in academic environments and rapidly became the preferred programming
language in most universities. Unfortunately, the language lacks many features needed to
make it useful in commercial, industrial and government applications, so it has not been
widely accepted in these environments.

The Ada programming language was developed under the sponsorship of the United
States Department of Defense (DOD) during the 1970s and early 1980s. Hundreds of sep-
arate languages were being used to produce DOD’s massive command-and-control soft-
ware systems. DOD wanted a single language that would fill most of its needs. Pascal
was chosen as a base, but the final Ada language is quite different from Pascal. The lan-
guage was named after Lady Ada Lovelace, daughter of the poet Lord Byron. Lady Love-
lace is credited with writing the world’s first computer program in the early 1800s (for
the Analytical Engine mechanical computing device designed by Charles Babbage). One
important capability of Ada is called multitasking, which allows programmers to specify
that many activities are to occur in parallel. The native capabilities of other widely used
high-level languages we have discussed—including C and C++—generally allow the
programmer to write programs that perform only one activity at a time. Java, through a
technique we will explain called multithreading, also enables programmers to write pro-
grams with parallel activities. [Note: Most operating systems provide libraries specific to
individual platforms (sometimes called platform-dependent libraries) that enable high-
level languages like C and C++ to specify that many activities are to occur in parallel in
a program.]

1.12 The Internet and the World Wide Web

The Internet was developed more than three decades ago with funding supplied by the De-
partment of Defense. Originally designed to connect the main computer systems of about
a dozen universities and research organizations, the Internet today is accessible by hun-
dreds of millions of computers worldwide.

With the introduction of the World Wide Web—which allows computer users to locate
and view multimedia-based documents on almost any subject—the Internet has exploded
into one of the world’s premier communication mechanisms.

The Internet and the World Wide Web will surely be listed among the most important
and profound creations of humankind. In the past, most computer applications ran on com-
puters that were not connected to one another. Today’s applications can be written to com-
municate among the world’s hundreds of millions of computers. The Internet mixes
computing and communications technologies. It makes our work easier. It makes informa-
tion instantly and conveniently accessible worldwide. It makes it possible for individuals
and local small businesses to get worldwide exposure. It is changing the nature of the way
business is done. People can search for the best prices on virtually any product or service.
Special-interest communities can stay in touch with one another. Researchers can be made
instantly aware of the latest breakthroughs worldwide.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

16 Infroduction to Computers, the Internet and the Web Chapter 1

Java How to Program: Fourth Edition presents programming techniques that allow
Java applications to use the Internet and World Wide Web to interact with other applica-
tions. These capabilities, and the capabilities discussed in our companion book Advanced
Java 2 Platform How to Program, allow Java programmers to develop the kind of enter-
prise-level distributed applications that are used in industry today. Java applications can be
written to execute on any computer platform, yielding major savings in systems develop-
ment time and cost for corporations. If you have been hearing a great deal about the Internet
and World Wide Web lately, and if you are interested in developing applications to run over
the Internet and the Web, learning Java may be the key to challenging and rewarding career
opportunities for you.

1.13 Basics of a Typical Java Environment

Java systems generally consist of several parts: An environment, the language, the Java Ap-
plications Programming Interface (API) and various class libraries. The following discus-
sion explains a typical Java program development environment, as shown in Fig. 1.1.

Java programs normally go through five phases to be executed (Fig. 1.1). These are: edit,
compile, load, verify and execute. We discuss these concepts in the context of the Java 2 Soft-
ware Development Kit (J2SDK) that is included on the CD that accompanies this book. Care-
fully follow the installation instructions for the J2SDK provided on the CD to ensure that you
set up your computer properly to compile and execute Java programs. [Note: If you are not
using UNIX/Linux, Windows 95/98/ME or Windows NT/2000, refer to the manuals for your
system’s Java environment or ask your instructor how to accomplish these tasks in your envi-
ronment (which will probably be similar to the environment in Fig. 1.1).]

Phase 1 consists of editing a file. This is accomplished with an editor program (nor-
mally known as an edifor). The programmer types a Java program, using the editor, and
makes corrections, if necessary. When the programmer specifies that the file in the editor
should be saved, the program is stored on a secondary storage device, such as a disk. Java
program file names end with the . java extension. Two editors widely used on UNIX/
Linux systems are vi and emacs. On Windows 95/98/ME and Windows NT/2000, simple
edit programs like the DOS Edit command and the Windows Notepad will suffice. Java
integrated development environments (IDEs), such as Forté for Java Community Edition,
NetBeans, Borland’s JBuilder, Symantec’s Visual Cafe and IBM’s VisualAge have built-
in editors that are integrated into the programming environment. We assume the reader
knows how to edit a file.

[Note that Forté for Java Community Edition is written in Java and is free for non-
commercial use. It is included on the CD accompanying this book. Sun updates this soft-
ware approximately twice a year. Newer versions can be downloaded from

www. sun.com/forte/ffj

Forté for Java Community Edition executes on most major platforms. This book is written
for any generic Java 2 development environment. It is not dependent on Forté for Java
Community Edition. Our example programs should operate properly with most Java inte-
grated development environments. |

In Phase 2 (discussed again in Chapters 2 and 3), the programmer gives the command
Javac to compile the program. The Java compiler translates the Java program into byfte-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 17

codes—the language understood by the Java interpreter. To compile a program called
Welcome. java, type

Program is created in
the editor and stored
on disk.

Phase 1 Editor

Compiler creates
bytecodes and stores

Phase 2 i
Compiler them on disk.

X

Primary

Phase 3 Class Loader >

|

Class loader puts
bytecodes in memory.

Y

confirms that alll
bytecodes are valid
and do not violate
Java’s security
restrictions.

Primary

Interpreter reads
bytecodes and
franslates them into a
language that the
computer can
understand, possibly
storing data values as
the program executes.

A

Phase 5 Interpreter

Primary
Phase 4 Bytecode Verifier [* Bytecode verifier

Fig. 1.1 Typical Java environment.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

18 Infroduction to Computers, the Internet and the Web Chapter 1

javac Welcome.java

at the command window of your system (i.e., the MS-DOS prompt in Windows, the Com-
mand Prompt in Windows NT/2000 or the shell prompt in UNIX/Linux). If the program
compiles correctly, the compiler produces a file called Welcome.class. This is the file
containing the bytecodes that will be interpreted during the execution phase.

Phase 3 is called loading. The program must first be placed in memory before it can be
executed. This is done by the class loader, which takes the .class file (or files) containing
the bytecodes and transfers it to memory. The . class file can be loaded from a disk on your
system or over a network (such as your local university or company network or even the
Internet). There are two types of programs for which the class loader loads .class files—
applications and applets. An application is a program (such as a word-processor program, a
spreadsheet program, a drawing program or an e-mail program) that normally is stored and
executed from the user’s local computer. An applet is a small program that normally is stored
on a remote computer that users connect to via a World Wide Web browser. Applets are
loaded from a remote computer into the browser, executed in the browser and discarded when
execution completes. To execute an applet again, the user must point a browser at the appro-
priate location on the World Wide Web and reload the program into the browser.

Applications are loaded into memory and executed by using the Java interpreter via
the command java. When executing a Java application called Welcome, the command

java Welcome

invokes the interpreter for the Welcome application and causes the class loader to load in-
formation used in the Welcome program. [Note: Many Java programmers refer to the in-
terpreter as the Java Virtual Machine or the JVM.]

The class loader also executes when a World Wide Web browser such as Netscape
Navigator or Microsoft Internet Explorer loads a Java applet. Browsers are used to view
documents on the World Wide Web called Hypertext Markup Language (HTML) docu-
ments. HTML describes the format of a document in a manner that is understood by the
browser application (we introduce HTML in Section 3.4; for a detailed treatment of HTML
and other Internet programming technologies, please see our text Internet and World Wide
Web How to Program, Second Edition). An HTML document may refer to a Java applet.
When the browser sees an applet referenced in an HTML document, the browser launches
the Java class loader to load the applet (normally from the location where the HTML doc-
ument is stored). Each browser that supports Java has a built-in Java interpreter. After the
applet loads, the browser’s Java interpreter executes the applet. Applets can also execute
from the command line, using the appletviewer command provided with the J2SDK—
the set of tools including the compiler (javac), interpreter (java), appletviewer and
other tools used by Java programmers. Like Netscape Navigator and Microsoft Internet
Explorer, the appletviewer requires an HTML document to invoke an applet. For
example, if the Welcome . html file refers to the Welcome applet, the appletviewer
command is used as follows:

appletviewer Welcome.html

This causes the class loader to load the information used in the Welcome applet. The ap-
pletviewer is a minimal browser—it knows only how to interpret references to applets
and ignores all other HTML in a document.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 19

Before the Java interpreter built into a browser or the appletviewer executes the
bytecodes in an applet, the bytecodes are verified by the bytecode verifier in Phase 4.
This ensures that the bytecodes for classes that are loaded from the Internet (referred to
as downloaded classes) are valid and that they do not violate Java’s security restrictions.
Java enforces strong security, because Java programs arriving over the network should
not be able to cause damage to your files and your system (as computer viruses might).
Note that bytecode verification also occurs in applications that download classes from a
network.

Finally, in Phase 5, the computer, under the control of its CPU, interprets the program
one bytecode at a time, thus performing the actions specified by the program.

Programs might not work on the first try. Each of the preceding phases can fail because
of various errors that we will discuss in this text. For example, an executing program might
attempt to divide by zero (an illegal operation in Java just as it is in arithmetic). This would
cause the Java program to print an error message. The programmer would return to the edit
phase, make the necessary corrections and proceed through the remaining phases again to
determine that the corrections work properly.

Common Programming Error 1.1

@ Errors like division-by-zero errors occur as a program runs, so these errors are called run-

time errors or execution-time errors. Fatal runtime errors cause programs to terminate imme-
diately without having successfully performed their jobs. Nonfatal runtime errors allow pro-
grams to run to completion, often producing incorrect results.

Most programs in Java input or output data. When we say that a program prints a result,
we normally mean that the program displays results on the computer screen. Data may be
output to other devices, such as disks and hardcopy printers.

1.14 General Notes about Java and This Book

Java is a powerful language. Experienced programmers sometimes take pride in being able
to create some weird, contorted, convoluted usage of a language. This is a poor program-
ming practice. It makes programs more difficult to read, more likely to behave strangely,
more difficult to test and debug and more difficult to adapt to changing requirements. This
book is also geared for novice programmers, so we stress clarity. The following is our first
“good programming practice.”

Good Programming Practice 1.1

@ Write your Java programs in a simple and straightforward manner. This is sometimes re-
ferred to as KIS (“keep it simple”). Do not “stretch” the language by trying bizarre usages.

You have heard that Java is a portable language and that programs written in Java can
run on many different computers. For programming in general, portability is an elusive
goal. For example, the ANSI C standard document” contains a lengthy list of portability
issues, and complete books have been written that discuss p01rtability.3’4

2. ANSI, American National Standard for Information Systems—Programming Language C (ANSI
Document ANSI/ISO 9899: 1990), New York, NY: American National Standards Institute, 1990.

3. Jaeschke, R., Portability and the C Language, Indianapolis, IN: Hayden Books, 1989.

4. Rabinowitz, H., and C. Schaap, Portable C, Englewood Cliffs, NJ: Prentice Hall, 1990.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

20 Infroduction to Computers, the Internet and the Web Chapter 1

@ Although it is easier to write portable programs in Java than in other programming languag-

es, there are differences among compilers, interpreters and computers that can make porta-
bility difficult to achieve. Simply writing programs in Java does not guarantee portability.
The programmer will occasionally need to deal with compiler and computer variations.

@Always test your Java programs on all systems on which you intend to run those programs,
to ensure that your Java programs will work correctly for their intended audience.

We have done a careful walkthrough of Sun’s Java documentation and audited our pre-
sentation against it for completeness and accuracy. However, Java is a rich language, and
there are some subtleties in the language and some topics we have not covered. If you need
additional technical details on Java, we suggest that you read the most current Java docu-
mentation available over the Internet at java. sun.com. Our book contains an extensive
bibliography of books and papers on the Java language in particular and on object-oriented
programming in general. A Web-based version of the Java API documentation can be
found at java.sun.com/j2se/1.3/docs/api/index.html. Also, you can
download this documentation to your own computer from java.sun.com/j2se/
1.3/docs.html.

Good Programming Practice 1.2

@ Read the documentation for the version of Java you are using. Refer to this documentation
frequently to be sure you are aware of the rich collection of Java features and that you are
using these features correctly.

Good Programming Practice 1.3

@ Your computer and compiler are good teachers. If, after carefully reading your Java docu-

mentation manual, you are not sure how a feature of Java works, experiment and see what
happens. Study each error or warning message you get when you compile your programs,
and correct the programs to eliminate these messages.

Good Programming Practice 1.4

@ The Java 2 Software Development Kit comes with the Java source code. Many programmers

read the actual source code of the Java API classes to determine how those classes work and
to learn additional programming techniques. If the Java API documentation is not clear on
a particular topic, try studying the source code of the class.

In this book, we explain how Java works in its current implementations. Perhaps the
most striking problem with the early versions of Java is that Java programs execute inter-
pretively on the client’s machine. Interpreters execute slowly compared to fully compiled
machine code.

Performance Tip 1.2

__—‘ﬁ Interpreters have an advantage over compilers for the Java world, namely that an interpret-
ed program can begin execution immediately as soon as it is downloaded to the client’s ma-
chine, whereas a source program to be compiled must first suffer a potentially long delay as
the program is compiled before it can be executed.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 21

@ Although only Java interpreters were available to execute bytecodes at the client’s site on

early Java systems, compilers that translate Java bytecodes (or in some cases the Java
source code) into the native machine code of the client’s machine have been written for most
popular platforms. These compiled programs perform comparably to compiled C or C++
code. However, there are not bytecode compilers for every Java platform, so Java programs
will not perform at the same level on all platforms.

Applets present some more interesting issues. Remember, an applet could be coming
from virtually any Web server in the world. So the applet will have to be able to run on any
possible Java platform.

@ Short, fast-executing Java applets can certainly still be interpreted. But what about more

substantial, compute-intensive applets? Here, the user might be willing to suffer the compi-
lation delay to get better execution performance. For some especially performance-intensive
applets, the user might have no choice; interpreted code would run too slowly for the applet
to perform properly, so the applet would have to be compiled.

@ An intermediate step between interpreters and compilers is a just-in-time (JIT) compiler that,

as the interpreter runs, produces compiled code for the programs and executes the programs
in machine language rather than reinterpreting them. JIT compilers do not produce machine
language that is as efficient as that from a full compiler.

@ For the latest information on high-speed Java program translation, you might want to read
about Sun’s HotSpot™ compiler, so visit java.sun.com/products/hotspot. The
HotSpot compiler is a standard component of the Java 2 Software Development Kit.

The Java compiler, javac, is not a traditional compiler in that it does not convert a
Java program from source code into native machine code for a particular computer plat-
form. Instead, the Java compiler translates source code into bytecodes. Bytecodes are the
language of the Java Virtual Machine—a program that simulates the operation of a com-
puter and executes its own machine language (i.e., Java bytecodes). The Java Virtual
Machine is implemented in the J2SDK as the java interpreter, which translates the byte-
codes into native machine language for the local computer platform.

%F{W organizations wanting to do heavy-duty information systems development, Integrated

Development Environments (IDEs) are available from many major software suppliers, in-
cluding Sun Microsystems. The IDEs provide many tools for supporting the software-devel-
opment process, such as editors for writing and editing programs, debuggers for locating
logic errors in programs and many other features.

Sun Microsystems, Inc.’s powerful Java IDE—Forté for Java, Community Edition—is avail-
able on the CD that accompanies this book and can be downloaded from www. sun.com/
forte/ff7.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

22 Infroduction to Computers, the Internet and the Web Chapter 1

1.15 Thinking About Objects: Introduction to Object
Technology and the Unified Modeling Language

Now we begin our early introduction to object orientation. We will see that object orien-
tation is a natural way of thinking about the world and a natural way of writing computer
programs.

In the bodies of each of the first seven chapters, we concentrate on the “conventional”
methodology of structured programming, because the objects we will build will be com-
posed in part of structured-program pieces. However, we end each chapter with a
“Thinking About Objects” section in which we present a carefully paced introduction to
object orientation. Our goal in these “Thinking About Objects” sections is to help you
develop an object-oriented way of thinking, so that you immediately can use the object-ori-
ented programming techniques that we present starting in Chapter 8. The “Thinking About
Objects” sections also introduce you to the Unified Modeling Language (UML). The UML
is a graphical language that allows people who build systems (e.g., software architects, sys-
tems engineers, programmers and so on) to represent their object-oriented designs, using a
common notation.

In this section, we introduce basic concepts (i.e., “object think”) and terminology (i.e.,
“object speak”). Chapters 2—13, 15 and 22 and Appendices G-I include optional “Thinking
About Objects” sections that present a substantial case study that applies the techniques of
object-oriented design (OOD). The optional sections at the ends of Chapters 2 through 7
analyze a typical problem statement that requires a system to be built, determine the objects
required to implement that system, determine the attributes the objects will have, determine
the behaviors these objects will exhibit and specify how the objects will interact with one
another to meet the system requirements. All this occurs before you learn to write object-
oriented Java programs! The optional sections at the ends of Chapters 8—13 and 15 modify
and enhance the design presented in Chapters 2—7. Chapter 22 presents how to display our
multimedia-rich design on the screen. The optional “Thinking About Objects” sections in
each chapter apply the concepts discussed in that chapter to the case study. In
Appendices G, H and I, we present a complete Java implementation of the object-oriented
system we design in the earlier chapters.

This case study will help prepare you for the kinds of substantial projects you are likely
to encounter in industry. If you are a student and your instructor does not plan to include
this case study in your course, you may want to cover it on your own time. We believe it
will be well worth your time to walk through this large and challenging project, because the
material presented in the case-study sections reinforces the material covered in the corre-
sponding chapters. You will experience a solid introduction to object-oriented design with
the UML. Also, you will sharpen your code-reading skills by touring a carefully written and
well-documented 3,594-line Java program that completely solves the problem presented in
the case study.

We begin our introduction to object orientation with some key terminology. Every-
where you look in the real world you see them—objects: People, animals, plants, cars,
planes, buildings, computers and so on. Humans think in terms of objects. We possess the
marvelous ability of abstraction, which enables us to view screen images such as people,
planes, trees and mountains as objects, rather than as individual dots of color (called
pixels—for “picture elements”). We can, if we wish, think in terms of beaches rather than
grains of sand, forests rather than trees and houses rather than bricks.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 23

We might be inclined to divide objects into two categories—animate objects and inan-
imate objects. Animate objects are “alive” in some sense; they move around and do things.
Inanimate objects, on the other hand, seem not to do much at all. They do not move on their
own. All these objects, however, do have some things in common. They all have attributes
like size, shape, color, and weight, and they all exhibit behaviors (e.g., a ball rolls, bounces,
inflates and deflates; a baby cries, sleeps, crawls, walks and blinks; a car accelerates, brakes
and turns; a towel absorbs water).

Humans learn about objects by studying their attributes and observing their behaviors.
Different objects can have similar attributes and can exhibit similar behaviors. Compari-
sons can be made, for example, between babies and adults and between humans and chim-
panzees. Cars, trucks, little red wagons and roller skates have much in common.

Object-oriented design models real-world objects. It takes advantage of class relation-
ships, where objects of a certain class—such as a class of vehicles—have the same charac-
teristics. It takes advantage of inheritance relationships, and even multiple-inhen’tance5
relationships, where newly created classes of objects are derived by absorbing characteris-
tics of existing classes and adding unique characteristics of their own. An object of class
“convertible” certainly has the characteristics of the more general class “automobile,” plus
a convertible’s roof goes up and down.

Object-oriented design provides a more natural and intuitive way to view the design pro-
cess—namely, by modeling real-world objects, their attributes, their behavior. OOD also
models communication between objects. Just as people send messages to one another (e.g., a
sergeant commanding a soldier to stand at attention), objects also communicate via messages.

OOD encapsulates data (attributes) and functions (behavior) into objects; the data and
functions of an object are intimately tied together. Objects have the property of information
hiding. This means that, although objects may know how to communicate with one another
across well-defined interfaces, objects normally are not allowed to know how other objects
are implemented—implementation details are hidden within the objects themselves.
Surely, it is possible to drive a car effectively without knowing the details of how engines,
transmissions and exhaust systems work internally. We will see why information hiding is
so crucial to good software engineering.

Languages such as Java are object-oriented—programming in such a language is
called object-oriented programming (OOP) and allows designers to implement the object-
oriented design as a working system. Languages such as C, on the other hand, are proce-
dural programming languages, so programming tends to be action-oriented. In C, the unit
of programming is the function. In Java, the unit of programming is the class from which
objects are eventually instantiated (a fancy term for “created”). Java classes contain
methods (that implement class behaviors) and attributes (that implement class data).

C programmers concentrate on writing functions. Groups of actions that perform some
common task are formed into functions, and functions are grouped to form programs. Data
are certainly important in C, but the view is that data exist primarily in support of the
actions that functions perform. The verbs in a system specification help the C programmer
determine the set of functions needed to implement that system.

Java programmers concentrate on creating their own user-defined types called classes
and components. Each class contains data and the set of functions that manipulate that data.

5. We will learn later that although Java—unlike C++—does not support multiple inheritance, it does
offer most of the key benefits of this technology by supporting multiple interfaces per class.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

24 Infroduction to Computers, the Internet and the Web Chapter 1

The data components of a Java class are called attributes. The function components of a
Java class are called methods. Just as an instance of a built-in type such as int is called a
variable, an instance of a user-defined type (i.e., a class) is called an object. The pro-
grammer uses built-in types as the “building blocks” for constructing user-defined types.
The focus in Java is on classes (out of which we make objects) rather than on functions.
The nouns in a system specification help the Java programmer determine the set of classes
from which objects will be created that will work together to implement the system.

Classes are to objects as blueprints are to houses. We can build many houses from one
blueprint, and we can instantiate many objects from one class. Classes can also have rela-
tionships with other classes. For example, in an object-oriented design of a bank, the “bank-
teller” class needs to relate to the “customer” class. These relationships are called
associations.

We will see that, when software is packaged as classes, these classes can be reused in
future software systems. Groups of related classes are often packaged as reusable compo-
nents. Just as real-estate brokers tell their clients that the three most important factors
affecting the price of real estate are “location, location and location,” many people in the
software community believe that the three most important factors affecting the future of
software development are “reuse, reuse and reuse.”

Indeed, with object technology, we can build much of the software we will need by
combining “standardized, interchangeable parts” called classes. This book teaches you how
to “craft valuable classes” for reuse. Each new class you create will have the potential to
become a valuable software asset that you and other programmers can use to speed and
enhance the quality of future software-development efforts—an exciting possibility.

Introduction to Object-Oriented Analysis and Design (OOAD)

You soon will be writing programs in Java. How will you create the code for your programs?
If you are like many beginning programmers, you will simply turn on your computer and
start typing. This approach may work for small projects, but what would you do if you were
asked to create a software system to control the automated teller machines for a major bank?
Such a project is too large and complex for you to sit down and simply start typing.

To create the best solutions, you should follow a detailed process for obtaining an anal-
ysis of your project’s requirements and developing a design for satisfying those require-
ments. Ideally, you would go through this process and have its results reviewed and
approved by your superiors before writing any code for your project. If this process
involves analyzing and designing your system from an object-oriented point of view, we
call it an object-oriented analysis and design (OOAD) process. Experienced programmers
know that, no matter how simple a problem appears, time spent on analysis and design can
save innumerable hours that might be lost from abandoning an ill-planned system-develop-
ment approach part of the way through its implementation.

OOAD is the generic term for the ideas behind the process we employ to analyze a
problem and develop an approach for solving it. Small problems like the ones discussed in
these first few chapters do not require an exhaustive process. It may be sufficient to write
pseudocode before we begin writing code. (Pseudocode is an informal means of expressing
program code. It is not actually a programming language, but we can use it as a kind of
“outline” to guide us as we write our code. We introduce pseudocode in Chapter 4.)

Pseudocode can suffice for small problems, but as problems and the groups of people
solving these problems increase in size, the methods of OOAD become more involved. Ide-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 25

ally, a group should agree on a strictly defined process for solving the problem and on a uni-
form way of communicating the results of that process to one another. Although many
different OOAD processes exist, a single graphical language for communicating the results
of any OOAD process has become widely used. This language is known as the Unified Mod-
eling Language (UML). The UML was developed in the mid-1990s under the initial direc-
tion of three software methodologists: Grady Booch, James Rumbaugh and Ivar Jacobson.

History of the UML

In the 1980s, increasing numbers of organizations began using OOP to program their ap-
plications, and a need developed for an established process with which to approach OOAD.
Many methodologists—including Booch, Rumbaugh and Jacobson—individually pro-
duced and promoted separate processes to satisfy this need. Each of these processes had its
own notation, or “language” (in the form of graphical diagrams), to convey the results of
analysis and design.

By the early 1990s, different companies, and even different divisions within the same
company, were using different processes and notations. Additionally, these companies
wanted to use software tools that would support their particular processes. With so many
processes, software vendors found it difficult to provide such tools. Clearly, a standard
notation and standard processes were needed.

In 1994, James Rumbaugh joined Grady Booch at Rational Software Corporation, and
the two began working to unify their popular processes. They were soon joined by Ivar
Jacobson. In 1996, the group released early versions of the UML to the software engi-
neering community and requested feedback. Around the same time, an organization known
as the Object Management Group™ (OMG™) invited submissions for a common mod-
eling language. The OMG is a not-for-profit organization that promotes the use of object-
oriented technology by issuing guidelines and specifications for object-oriented technolo-
gies. Several corporations—among them HP, IBM, Microsoft, Oracle and Rational Soft-
ware—had already recognized the need for a common modeling language. These
companies formed the UML Partners in response to the OMG’s request for proposals. This
consortium developed the UML version 1.1 and submitted it to the OMG. The OMG
accepted the proposal and, in 1997, assumed responsibility for the continuing maintenance
and revision of the UML. In 2001, the OMG released the UML version 1.4 (the current ver-
sion at the time this book was published) and is working on version 2.0 (scheduled tenta-
tively for release in 2002).

What is the UML?

The Unified Modeling Language is now the most widely used graphical representation
scheme for modeling object-oriented systems. It has indeed unified the various popular no-
tational schemes. Those who design systems use the language (in the form of graphical di-
agrams) to model their systems.

An attractive feature of the UML is its flexibility. The UML is extendable and is inde-
pendent of the many OOAD processes. UML modelers are free to develop systems by using
various processes, but all developers can now express those systems with one standard set
of notations.

The UML is a complex, feature-rich graphical language. In our “Thinking About
Objects” sections, we present a concise, simplified subset of these features. We then use this
subset to guide the reader through a first design experience with the UML intended for the

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

26 Infroduction to Computers, the Internet and the Web Chapter 1

novice object-oriented designer/programmer. For a more complete discussion of the UML,
refer to the Object Management Group’s Web site (www.omg.org) and to the official
UML 1.4 specifications document (www . omg . org/uml). In addition, many UML books
have been published: UML Distilled: Second Edition, by Martin Fowler (with Kendall
Scott) (ISBN #020165783X) provides a detailed introduction to the UML, with many
examples. The Unified Modeling Language User Guide (ISBN #0201571684), written by
Booch, Rumbaugh and Jacobson, is the definitive tutorial to the UML. The reader looking
for an interactive learning product might consider Grady Booch’s The Complete UML
Training Course (ISBN #0130870145).

Object-oriented technology is ubiquitous in the software industry, and the UML is rap-
idly becoming so. Our goal in these “Thinking About Objects” sections is to encourage you
to think in an object-oriented manner as early, and as often, as possible. In the “Thinking
About Objects” section at the end of Chapter 2, you will begin to apply object technology
to implement a solution to a substantial problem. We hope that you will find this optional
project to be an enjoyable and challenging introduction to object-oriented design with the
UML and to object-oriented programming.

1.16 Discovering Design Patterns: Introduction

This section begins our treatment of design patterns, entitled “Discovering Design Pat-
terns.” Most of the examples provided in this book contain fewer than 150 lines of code.
These examples do not require an extensive design process, because they use only a few
classes and illustrate introductory programming concepts. However, some programs, such
as our optional elevator-simulation case study, are more complex—they can require thou-
sands of lines of code or even more, contain many interactions among objects and involve
many user interactions. Larger systems, such as automated teller machines or air-traffic
control systems, could contain millions of lines of code. Effective design is crucial to the
proper construction of such complex systems.

Over the past decade, the software engineering industry has made significant progress
in the field of design patterns—proven architectures for constructing flexible and maintain-
able object-oriented software. Using design patterns can substantially reduce the com-
plexity of the design process. Designing an ATM system will be a somewhat less
formidable task if developers use design patterns. In addition, well-designed object-ori-
ented software allows designers to reuse and integrate preexisting components in future
systems. Design patterns benefit system developers by

e helping to construct reliable software using proven architectures and accumulated
industry expertise

e promoting design reuse in future systems

e helping to identify common mistakes and pitfalls that occur when building sys-
tems

e helping to design systems independently of the language in which they will ulti-
mately be implemented

6. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns; Elements of
Reusable Object-Oriented Software. (Massachusetts: Addison-Wesley, 1995).

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 27

e establishing a common design vocabulary among developers
e shortening the design phase in a software-development process

The notion of using design patterns to construct software systems originated in the
field of architecture. Architects use a set of established architectural design elements, such
as arches and columns, when designing buildings. Designing with arches and columns is a
proven strategy for constructing sound buildings—these elements may be viewed as archi-
tectural design patterns.

In software, design patterns are neither classes nor objects. Rather, designers use
design patterns to construct sets of classes and objects. To use design patterns effectively,
designers must familiarize themselves with the most popular and effective patterns used in
the software-engineering industry. In this chapter, we discuss fundamental object-oriented
design patterns and architectures, as well as their importance in constructing well-engi-
neered software.

We present several design patterns in Java, but these design patterns can be implemented
in any object-oriented language, such as C++ or Visual Basic. We describe several design pat-
terns used by Sun Microsystems in the Java API. We use design patterns in many programs
in this book, which we will identify throughout our discussion. These programs provide
examples of using design patterns to construct reliable, robust object-oriented software.

History of Object-Oriented Design Patterns

During 1991-1994, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides—
collectively known as the “gang of four”’—used their combined expertise to write the book
Design Patterns, Elements of Reusable Object-Oriented Software (Addison-Wesley: 1995).
This book described 23 design patterns, each providing a solution to a common software
design problem in industry. The book groups design patterns into three categories—cre-
ational design patterns, structural design patterns and behavioral design patterns. Cre-
ational design patterns describe techniques to instantiate objects (or groups of objects).
Structural design patterns allow designers to organize classes and objects into larger struc-
tures. Behavioral design patterns assign responsibilities to objects.

The gang-of-four book showed that design patterns evolved naturally through years of
industry experience. In his article Seven Habits of Successful Pattern Writers,” John Vlissides
states that “the single most important activity in pattern writing is reflection.” This statement
implies that, to create patterns, developers must reflect on, and document, their successes (and
mistakes). Developers use design patterns to capture and employ this collective industry
experience, which ultimately helps them avoid making the same mistakes twice.

New design patterns are being created all the time and being introduced rapidly to
designers worldwide via the Internet. The topic of design patterns has generally been
viewed as advanced, but authors such as ourselves are working this material into introduc-
tory and intermediate-level textbooks to help make this important knowledge available to
a much wider audience.

Our treatment of design patterns begins with this required section in Chapter 1 and
continues with five optional “Discovering Design Patterns” sections at the ends of Chapters
9,13, 15, 17 and 21. Each of these sections is placed at the end of the chapter that introduces

7. Vlissides, John. Pattern Hatching; Design Patterns Applied. (Massachusetts: Addison-Wesley,
1998).

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

28 Infroduction to Computers, the Internet and the Web Chapter 1

the necessary Java technologies. If you are a student and your instructor does not plan to
include this material in your course, we encourage you to read this material on your own.

1.17 Tour of the Book

You are about to study one of today’s most exciting and rapidly developing computer pro-
gramming languages. Mastering Java will help you develop powerful business and person-
al computer-applications software. In this section, we take a tour of the many capabilities
of Java you will study in Java How to Program: Fourth Edition.

Chapter 1datroduction to Computers, the Internet and the Web— discusses
what computers are, how they work and how they are programmed. The chapter gives a
brief history of the development of programming languages from machine languages, to
assembly languages, to high-level languages. The origin of the Java programming language
is discussed. The chapter includes an introduction to a typical Java programming environ-
ment. The chapter also introduces object technology, the Unified Modeling Language and
design patterns.

Chapter 2-Jatroduction to Java Applications— provides a lightweight introduc-
tion to programming applications in the Java programming language. The chapter intro-
duces nonprogrammers to basic programming concepts and constructs. The programs in
this chapter illustrate how to display (also called outputting) data on the screen to the user
and how to obtain (also called inputting) data from the user at the keyboard. Some of the
input and output is by performed using a graphical user interface (GUI) component called
JOptionPane that provides predefined windows (called dialog boxes) for input and
output. This allows a nonprogrammer to concentrate on fundamental programming con-
cepts and constructs rather than on the more complex GUI event handling. Using JOp-
tionPane here enables us to delay our introduction of GUI event handling to Chapter 6,
“Methods.” Chapter 2 also provides detailed treatments of decision making and arithmetic
operations. After studying this chapter, the student will understand how to write simple, but
complete, Java applications.

Chapter 3Jdatroduction to Java Applets— introduces another type of Java pro-
gram, called an applet. Applets are Java programs designed to be transported over the
Internet and executed in World Wide Web browsers (like Netscape Navigator and
Microsoft Internet Explorer). The chapter introduces applets, using several of the demon-
stration applets supplied with the Java 2 Software Development Kit (J2SDK). We use
appletviewer (autility supplied with the J2SDK) or a Web browser to execute several
sample applets. We then write Java applets that perform tasks similar to the programs of
Chapter 2, and we explain the similarities and differences between applets and applications.
After studying this chapter, the student will understand how to write simple, but complete,
Java applets. The next several chapters use both applets and applications to demonstrate
additional key programming concepts.

Chapter 4-Control Structures: Part 1— focuses on the program-development pro-
cess. The chapter discusses how to take a problem statement (i.e., a requirements docu-
ment) and from it develop a working Java program, including performing intermediate
steps in pseudocode. The chapter introduces some fundamental data types and simple con-
trol structures used for decision making (1£ and if/else) and repetition (while). We
examine counter-controlled repetition and sentinel-controlled repetition, and introduce
Java’s increment, decrement and assignment operators. The chapter uses simple flowcharts

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 29

to show the flow of control through each of the control structures. The techniques discussed
in Chapters 2 through 7 constitute a large part of what has been traditionally taught in the
universities under the topic of structured programming. With Java, we do object-oriented
programming. In doing so, we discover that the insides of the objects we build make abun-
dant use of control structures. We have had a particularly positive experience assigning
problems 4.11 through 4.14 in our introductory courses. Since these four problems have
similar structure, doing all four is a nice way for students to “get the hang of”” the program-
development process. This chapter helps the student develop good programming habits in
preparation for dealing with the more substantial programming tasks in the remainder of
the text.

Chapter 5—Control Structures: Part 2—continues the discussions of Java control
structures (for, the switch selection structure and the do/while repetition structure).
The chapter explains the labeled break and cont inue statements with live-code exam-
ples. The chapter also contains a discussion of logical operators—&& (logical AND), &
(boolean logical AND), | | (logical OR), | (boolean logical inclusive OR), 4 (boolean log-
ical exclusive OR) and ! (NOT). There is a substantial exercise set including mathematical,
graphical and business applications. Students will enjoy Exercise 5.25, which asks them to
write a program with repetition and decision structures that prints the iterative song, “The
Twelve Days of Christmas.” The more mathematically inclined students will enjoy prob-
lems on binary, octal, decimal and hexadecimal number systems, calculating the mathemat-
ical constant T with an infinite series, Pythagorean triples and De Morgan’s Laws. Our
students particularly enjoy the challenges of triangle-printing and diamond-printing in
Exercises 5.10, 5.18 and 5.20; these problems help students learn to deal with nested repe-
tition structures—a complex topic to master in introductory courses.

Chapter 6—Methods—takes a deeper look inside objects. Objects contain data
called instance variables and executable units called methods (these are often called func-
tions in non-object-oriented procedural programming languages like C and member func-
tions in C++). We explore methods in depth and include a discussion of methods that
“call themselves,” so-called recursive methods. We discuss class-library methods, pro-
grammer-defined methods and recursion. The techniques presented in Chapter 6 are
essential to the production of properly structured programs, especially the kinds of larger
programs and software that system programmers and application programmers are likely
to develop in real-world applications. The “divide and conquer” strategy is presented as
an effective means for solving complex problems by dividing them into simpler inter-
acting components. Students enjoy the treatment of random numbers and simulation, and
they appreciate the discussion of the dice game of craps that makes elegant use of control
structures (this is one of our most successful lectures in our introductory courses). The
chapter offers a solid introduction to recursion and includes a table summarizing the
dozens of recursion examples and exercises distributed throughout the remainder of the
book. Some texts leave recursion for a chapter late in the book; we feel this topic is best
covered gradually throughout the text. The topic of method overloading (i.e., allowing
multiple methods to have the same name as long as they have different “signatures”) is
motivated and explained clearly. We introduce events and event handling—elements
required for programming graphical user interfaces. Events are notifications of state
change such as button clicks, mouse clicks and pressing a keyboard key. Java allows pro-
grammers to specify the responses to events by coding methods called event handlers.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

30 Infroduction to Computers, the Internet and the Web Chapter 1

The extensive collection of exercises at the end of the chapter includes several classical
recursion problems such as the Towers of Hanoi; we revisit this problem later in the text
where we employ graphics, animation and sound to make the problem “come alive.”
There are many mathematical and graphical examples. Our students particularly enjoy
the development of a “Computer-Assisted Instruction” system in Exercises 6.31 through
6.33; we ask students to develop a multimedia version of this system later in the book.
Students will enjoy the challenges of the “mystery programs.” The more mathematically
inclined students will enjoy problems on perfect numbers, greatest common divisors,
prime numbers and factorials.

Chapter 7—Arrays—explores the processing of data in lists and tables of values.
Arrays in Java are processed as objects, further evidence of Java’s commitment to almost
100% object orientation. We discuss the structuring of data into arrays, or groups, of related
data items of the same type. The chapter presents numerous examples of both single-sub-
scripted arrays and double-subscripted arrays. It is widely recognized that structuring data
properly is just as important as using control structures effectively in the development of
properly structured programs. Examples in the chapter investigate various common array
manipulations, printing histograms, sorting data, passing arrays to methods and an intro-
duction to the field of survey data analysis (with simple statistics). A feature of this chapter
is the discussion of elementary sorting and searching techniques and the presentation of
binary searching as a dramatic improvement over linear searching. The end-of-chapter
exercises include a variety of interesting and challenging problems, such as improved
sorting techniques, the design of an airline reservations system, an introduction to the con-
cept of turtle graphics (made famous in the LOGO programming language) and the
Knight’s Tour and Eight Queens problems that introduce the notions of heuristic program-
ming so widely employed in the field of artificial intelligence. The exercises conclude with
a series of recursion problems including the selection sort, palindromes, linear search,
binary search, the eight queens, printing an array, printing a string backwards and finding
the minimum value in an array. The chapter exercises include a delightful simulation of the
classic race between the tortoise and the hare, card shuffling and dealing algorithms, recur-
sive quicksort and recursive maze traversals. A special section entitled “Building Your
Own Computer” explains machine-language programming and proceeds with the design
and implementation of a computer simulator that allows the reader to write and run machine
language programs. This unique feature of the text will be especially useful to the reader
who wants to understand how computers really work. Our students enjoy this project and
often implement substantial enhancements; many enhancements are suggested in the exer-
cises. In Chapter 19, another special section guides the reader through building a compiler;
the machine language produced by the compiler is then executed on the machine language
simulator produced in Chapter 7. Information is communicated from the compiler to the
simulator in sequential files (presented in Chapter 16).

Chapter 8—Object-Based Programming—begins our deeper discussion of classes.
The chapter represents a wonderful opportunity for teaching data abstraction the “right
way”—through a language (Java) expressly devoted to implementing abstract data types
(ADTs). The chapter focuses on the essence and terminology of classes and objects. What
is an object? What is a class of objects? What does the inside of an object look like? How
are objects created? How are they destroyed? How do objects communicate with one
another? Why are classes such a natural mechanism for packaging software as reusable

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 31

componentry? The chapter discusses implementing ADTs as Java-style classes, accessing
class members, enforcing information hiding with private instance variables, separating
interface from implementation, using access methods and utility methods and initializing
objects with constructors (and using overloaded constructors). The chapter discusses
declaring and using constant references, composition—the process of building classes that
have as members references to objects, the this reference that enables an object to “know
itself,” dynamic memory allocation, static class members for containing and manipu-
lating class-wide data and examples of popular abstract data types such as stacks and
queues. The chapter introduces the package statement and discusses how to create reus-
able packages. The chapter also introduces creating Java archive (JAR) files and demon-
strates how to use JAR files to deploy applets that consist of multiple classes. The chapter
exercises challenge the student to develop classes for complex numbers, rational numbers,
times, dates, rectangles, huge integers, a class for playing Tic-Tac-Toe, a savings-account
class and a class for holding sets of integers.

Chapter 9—Object-Oriented Programming—discusses the relationships among
classes of objects and programming with related classes. How can we exploit commonality
between classes of objects to minimize the amount of work it takes to build large software
systems? What is polymorphism? What does it mean to “program in the general” rather
than “program in the specific?” How does programming in the general make it easy to
modify systems and add new features with minimal effort? How can we program for a
whole category of objects rather than programming individually for each type of object?
The chapter deals with one of the most fundamental capabilities of object-oriented pro-
gramming languages, inheritance, which is a form of software reusability in which new
classes are developed quickly and easily by absorbing the capabilities of existing classes
and adding appropriate new capabilities. The chapter discusses the notions of superclasses
and subclasses, protected members, direct superclasses, indirect superclasses, use of
constructors in superclasses and subclasses, and software engineering with inheritance.
This chapter introduces inner classes that help hide implementation details. Inner classes
are most frequently used to create GUI event handlers. Named inner classes can be declared
inside other classes and are useful in defining common event handlers for several GUI com-
ponents. Anonymous inner classes are declared inside methods and are used to create one
object—typically an event handler for a specific GUI component. The chapter compares
inheritance (“is a” relationships) with composition (“has a” relationships). A feature of the
chapter is its several substantial case studies. In particular, a lengthy case study implements
a point, circle and cylinder class hierarchy. The exercises ask the student to compare the
creation of new classes by inheritance vs. composition; to extend the inheritance hierar-
chies discussed in the chapter; to write an inheritance hierarchy for quadrilaterals, trape-
z0ids, parallelograms, rectangles and squares and to create a more general shape hierarchy
with two-dimensional shapes and three-dimensional shapes. The chapter explains polymor-
phic behavior. When many classes are related through inheritance to a common superclass,
each subclass object may be treated as a superclass object. This enables programs to be
written in a general manner independent of the specific types of the subclass objects. New
kinds of objects can be handled by the same program, thus making systems more exten-
sible. Polymorphism enables programs to eliminate complex switch logic in favor of
simpler “straight-line” logic. A video game screen manager, for example, can send a
“draw” message to every object in a linked list of objects to be drawn. Each object knows

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

32 Infroduction to Computers, the Internet and the Web Chapter 1

how to draw itself. A new type of object can be added to the program without modifying
that program as long as that new object also knows how to draw itself. This style of pro-
gramming is typically used to implement today’s popular graphical user interfaces. The
chapter distinguishes between abstract classes (from which objects cannot be instanti-
ated) and concrete classes (from which objects can be instantiated). The chapter also intro-
duces interfaces—sets of methods that must be defined by any class that implements the
interface. Interfaces are Java’s replacement for the dangerous (albeit powerful) feature of
C++ called multiple inheritance.

Abstract classes are useful for providing a basic set of methods and default implemen-
tation to classes throughout the hierarchy. Interfaces are useful in many situations similar
to abstract classes; however, interfaces do not include any implementation—interfaces
have no method bodies and no instance variables. A feature of the chapter is its three major
polymorphism case studies—a payroll system, a shape hierarchy headed up by an
abstract class and a shape hierarchy headed up by an interface. The chapter exercises
ask the student to discuss a number of conceptual issues and approaches, work with
abstract classes, develop a basic graphics package, modify the chapter’s employee
class—and pursue all these projects with polymorphic programming.

Chapter 10—Strings and Characters—deals with processing words, sentences,
characters and groups of characters. The key difference between Java and C here is that
Java strings are objects. This makes string manipulation more convenient and much safer
than in C where string and array manipulations are based on dangerous pointers. We
present classes String, StringBuf fer, Character and StringTokenizer. For
each, we provide extensive live-code examples demonstrating most of their methods “in
action.” In all cases, we show output windows so that the reader can see the precise effects
of each of the string and character manipulations. Students will enjoy the card shuffling and
dealing example (which they will enhance in the exercises to the later chapters on graphics
and multimedia). A key feature of the chapter is an extensive collection of challenging
string-manipulation exercises related to limericks, pig Latin, text analysis, word pro-
cessing, printing dates in various formats, check protection, writing the word equivalent of
a check amount, Morse Code and metric-to-English conversions. Students will enjoy the
challenges of developing their own spell checker and crossword-puzzle generator.

Advanced Topics

Chapters 11, 12 and 13 were coauthored with our colleague, Mr. Tem Nieto of Deitel &
Associates, Inc. Tem’s infinite patience, attention to detail, illustration skills and creativity
are apparent throughout these chapters. [Take a fast peek at Figure 12.19 to see what hap-
pens when we turn Tem loose!]

Chapter 11—Graphics and Java2D—is the first of several chapters that present the
multimedia “sizzle” of Java. We consider Chapters 11 through 22 to be the book’s
advanced material. This is “fun stuff.” Traditional C and C++ programming are pretty
much confined to character-mode input/output. Some versions of C++ are supported by
platform-dependent class libraries that can do graphics, but using these libraries makes
your applications nonportable. Java’s graphics capabilities are platform independent and
hence, portable—and we mean portable in a worldwide sense. You can develop graphics-
intensive Java applets and distribute them over the World Wide Web to colleagues every-
where, and they will run nicely on the local Java platforms. We discuss graphics contexts

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 33

and graphics objects; drawing strings, characters and bytes; color and font control; screen
manipulation and paint modes and drawing lines, rectangles, rounded rectangles, three-
dimensional rectangles, ovals, arcs and polygons. We introduce the Java2D API, which
provides powerful graphical manipulation tools. Figure 11.22 is an example of how easy it
is to use the Java2D API to create complex graphics effects such as textures and gradients.
The chapter has 23 figures that painstakingly illustrate each of these graphics capabilities
with live-code™ examples, appealing screen outputs, detailed features tables and detailed
line art. Some of the 27 exercises challenge students to develop graphical versions of their
solutions to previous exercises on Turtle Graphics, the Knight’s Tour, the Tortoise and the
Hare simulation, Maze Traversal and the Bucket Sort. Our companion book, Advanced
Java 2 Platform How to Program, presents the Java 3D APIL

Chapter 12—Graphical User Interface Components: Part 1—introduces the cre-
ation of applets and applications with user-friendly graphical user interfaces (GUISs). This
chapter focuses on Java’s Swing GUI components. These platform-independent GUI com-
ponents are written entirely in Java. This provides Swing GUI components with great flex-
ibility—the GUI components can be customized to look like the computer platform on
which the program executes, or they can use the standard Java look-and-feel that provides
an identical user interface across all computer platforms. GUI development is a huge topic,
so we divided it into two chapters. These chapters cover the material in sufficient depth to
enable you to build “industrial-strength” GUI interfaces. We discuss the javax.swing
package, which provides much more powerful GUI components than the java.awt com-
ponents that originated in Java 1.0. Through its 16 programs and many tables and line draw-
ings, the chapter illustrates GUI principles, the javax.swing hierarchy, labels, push
buttons, lists, text fields, combo boxes, checkboxes, radio buttons, panels, handling mouse
events, handling keyboard events and using three of Java’s simpler GUI layout managers,
namely, FlowLayout, BorderLayout and GridLayout. The chapter concentrates
on the delegation event model for GUI processing. The 33 exercises challenge the student
to create specific GUIs, exercise various GUI features, develop drawing programs that let
the user draw with the mouse and control fonts.

Chapter 13—Graphical User Interface Components: Part 2—continues the
detailed Swing discussion started in Chapter 12. Through its 13 programs, as well as
tables and line drawings, the chapter illustrates GUI design principles, the
javax. swing hierarchy, text areas, subclassing Swing components, sliders, windows,
menus, pop-up menus, changing the look-and-feel, and using three of Java’s advanced
GUI layout managers, namely, BoxLayout, CardLayout and GridBagLayout.
Two of the most important examples introduced in this chapter are a program that can
run as either an applet or application and a program that demonstrates how to create a
multiple document interface (MDI) graphical user interface. MDI is a complex graphical
user interface in which one window—called the parent—acts as the controlling window
for the application. This parent window contains one or more child windows—which are
always graphically displayed within the parent window. Most word processors use MDI
graphical user interfaces. The chapter concludes with a series of exercises that encourage
the reader to develop substantial GUIs with the techniques and components presented in
the chapter. One of the most challenging exercises in this chapter is a complete drawing
application that asks the reader to create an object oriented-program that keeps track of
the shapes the user has drawn. Other exercises use inheritance to subclass Swing compo-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

34 Infroduction to Computers, the Internet and the Web Chapter 1

nents and reinforce layout manager concepts. The first six chapters of our companion
book, Advanced Java 2 Platform How to Program, are designed for courses in advanced
GUI programming.

Chapter 14—Exception Handling—is one of the most important chapters in the
book from the standpoint of building so-called “mission-critical” or “business-critical”
applications that require high degrees of robustness and fault tolerance. Things do go
wrong, and at today’s computer speeds—commonly hundreds of millions operations per
second (with recent personal computers running at a billion or more instructions per
second)—if they can go wrong they will, and rather quickly at that. Programmers are often
a bit naive about using components. They ask, “How do I request that a component do
something for me?”” They also ask “What value(s) does that component return to me to indi-
cate it has performed the job I asked it to do?” But programmers also need to be concerned
with, “What happens when the component I call on to do a job experiences difficulty? How
will that component signal that it had a problem?” In Java, when a component (e.g., a class
object) encounters difficulty, it can “throw an exception.” The environment of that compo-
nent is programmed to “catch” that exception and deal with it. Java’s exception-handling
capabilities are geared to an object-oriented world in which programmers construct systems
largely from reusable, prefabricated components built by other programmers. To use a Java
component, you need to know not only how that component behaves when “things go
well,” but also what exceptions that component throws when “things go poorly.” The
chapter distinguishes between rather serious system Errors (normally beyond the control
of most programs) and Exceptions (which programs generally deal with to ensure robust
operation). The chapter discusses the vocabulary of exception handling. The try block
executes program code that either executes properly or throws an exception if something
goes wrong. Associated with each try block are one or more catch blocks that handle
thrown exceptions in an attempt to restore order and keep systems “up and running” rather
than letting them “crash.” Even if order cannot be fully restored, the catch blocks can per-
form operations that enable a system to continue executing, albeit at reduced levels of per-
formance—such activity is often referred to as “graceful degradation.” Regardless of
whether exceptions are thrown, a £inally block accompanying a try block will always
execute; the £inally block normally performs cleanup operations like closing files and
releasing resources acquired in the try block. The material in this chapter is crucial to
many of the live-code examples in the remainder of the book. The chapter enumerates
many of the Exrrors and Exceptions of the Java packages. The chapter has some of the
most appropriate quotes in the book, thanks to Barbara Deitel’s painstaking research. The
vast majority of the book’s Testing and Debugging Tips emerged naturally from the mate-
rial in Chapter 14.

Chapter 15—Multithreading—deals with programming applets and applications
that can perform multiple activities in parallel. Although our bodies are quite good at this
(breathing, eating, blood circulation, vision, hearing, etc. can all occur in parallel), our con-
scious minds have trouble with this. Computers used to be built with a single, rather expen-
sive processor. Today, processors are becoming so inexpensive that it is possible to build
computers with many processors that work in parallel—such computers are called multi-
processors. The trend is clearly towards computers that can perform many tasks in parallel.
Most of today’s programming languages, including C and C++, do not include built-in fea-
tures for expressing parallel operations. These languages are often referred to as “sequen-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 35

tial” programming languages or “single-thread-of-control” languages. Java includes
capabilities to enable multithreaded applications (i.e., applications that can specify that
multiple activities are to occur in parallel). This makes Java better prepared to deal with the
more sophisticated multimedia, network-based multiprocessor-based applications pro-
grammers will develop. As we will see, multithreading is effective even on single-pro-
cessor systems. For years, the “old guy” taught operating systems courses and wrote
operating systems textbooks, but he never had a multithreaded language like Java available
to demonstrate the concepts. In this chapter, we thoroughly enjoyed presenting multi-
threaded programs that demonstrate clearly the kinds of problems that can occur in parallel
programming. There are all kinds of subtleties that develop in parallel programs that you
simply never think about when writing sequential programs. A feature of the chapter is the
extensive set of examples that show these problems and how to solve them. Another feature
is the implementation of the “circular buffer,” a popular means of coordinating control
between asynchronous, concurrent “producer” and “consumer’ processes that, if left to run
without synchronization, would cause data to be lost or duplicated incorrectly, often with
devastating results. We discuss the monitor construct developed by C. A. R. Hoare and
implemented in Java; this is a standard topic in operating systems courses. The chapter dis-
cusses threads and thread methods. It walks through the various thread states and state tran-
sitions with a detailed line drawing showing the life-cycle of a thread. We discuss thread
priorities and thread scheduling and use a line drawing to show Java’s fixed-priority sched-
uling mechanism. We examine a producer/consumer relationship without synchronization,
observe the problems that occur and solve the problem with thread synchronization. We
implement a producer/consumer relationship with a circular buffer and proper synchroni-
zation with a monitor. We discuss daemon threads that “hang around” and perform tasks
(e.g., “garbage collection”) when processor time is available. We discuss interface Run-
nable which enables objects to run as threads without having to subclass class Thread.
We close with a discussion of thread groups which, for example, enable separation to be
enforced between system threads like the garbage collector and user threads. The chapter
has a nice complement of exercises. The featured exercise is the classic readers and writers
problem, a favorite in upper level operating systems courses; citations appear in the exer-
cises for students who wish to research this topic. This is an important problem in database-
oriented transaction-processing systems. It raises subtle issues of solving problems in con-
currency control while ensuring that every separate activity that needs to receive service
does so without the possibility of “indefinite postponement,” that could cause some activ-
ities never to receive service—a condition also referred to as “starvation.” Operating sys-
tems professors will enjoy the projects implemented by Java-literate students. We can
expect substantial progress in the field of parallel programming as Java’s multithreading
capabilities enable large numbers of computing students to pursue parallel-programming
class projects. As these students enter industry over the next several years, we expect a
surge in parallel systems programming and parallel applications programming. We have
been predicting this for decades—Java is making it a reality.

If this is your first Java book and you are an experienced computing professional, you
may well be thinking, “Hey, this just keeps getting better and better. I can’t wait to get
started programming in this language. It will let me do all kinds of stuff I would like to do,
but that was never easy for me to do with the other languages I have used.” You’ve got it
right. Java is an enabler. So, if you liked the multithreading discussion, hold onto your hat,

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

36 Infroduction to Computers, the Internet and the Web Chapter 1

because Java will let you program multimedia applications and make them available instan-
taneously over the World Wide Web.

Chapter 16—Files and Streams—deals with input/output that is accomplished
through streams of data directed to and from files. This is one of the most important chap-
ters for programmers who will be developing commercial applications. Modern business is
centered around data. In this chapter, we translate data (objects) into a persistent format
usable by other applications. Being able to store data in files or move it across networks
(Chapter 17) makes it possible for programs to save data and to communicate with each
other. This is the real strength of software today. The chapter begins with an introduction
to the data hierarchy from bits, to bytes, to fields, to records, to files. Next, Java’s simple
view of files and streams is presented. We then present a walkthrough of the dozens of
classes in Java’s extensive input/output files and streams class hierarchy. We put many of
these classes to work in live-code examples in this chapter and in Chapter 17. We show how
programs pass data to secondary storage devices, like disks, and how programs retrieve
data already stored on those devices. Sequential-access files are discussed using a series of
three programs that show how to open and close files, how to store data sequentially in a
file and how to read data sequentially from a file. Random-access files are discussed using
a series of four programs that show how to create a file sequentially for random access, how
to read and write data to a file with random access and how to read data sequentially from
a randomly accessed file. The fourth random-access program combines many of the tech-
niques of accessing files both sequentially and randomly into a complete transaction-pro-
cessing program. We discuss buffering and how it helps programs that do significant
amounts of input/output perform better. We discuss class File which programs use to
obtain a variety of information about files and directories. We explain how objects can be
output to, and input from, secondary storage devices. Students in our industry seminars
have told us that, after studying the material on file processing, they were able to produce
substantial file-processing programs that were immediately useful to their organizations.
The exercises ask the student to implement a variety of programs that build and process
sequential-access files and random-access files.

Chapter 17—Networking—deals with applets and applications that can communi-
cate over computer networks. This chapter presents Java’s lowest level networking capa-
bilities. We write programs that “walk the Web.” The chapter examples illustrate an applet
interacting with the browser in which it executes, creating a mini Web browser, communi-
cating between two Java programs using streams-based sockets and communicating
between two Java programs using packets of data. A key feature of the chapter is the live-
code implementation of a collaborative client/server Tic-Tac-Toe game in which two cli-
ents play Tic-Tac-Toe with one another arbitrated by a multithreaded server—great stuff!
The multithreaded server architecture is exactly what is used today in popular UNIX and
Windows NT network servers. The capstone example in the chapter is the Deitel Messenger
case study, which simulates many of today’s popular instant-messaging applications that
enable computers users to communicate with friends, relatives and coworkers over the
Internet. This 1130-line, multithreaded, client/server case study uses most of the program-
ming techniques presented up to this point in the book. The messenger application also
introduces multicasting, which enables a program to send packets of data to groups of cli-
ents. The chapter has a nice collection of exercises including several suggested modifica-
tions to the multithreaded server example. Our companion book, Advanced Java 2 Platform

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 37

How to Program, offers a much deeper treatment of networking and distributed computing,
with topics including remote method invocation (RMI), servlets, JavaServer Pages (JSP),
Java 2 Enterprise Edition, wireless Java (and the Java 2 Micro Edition) and Common
Object Request Broker Architecture (CORBA).

Chapter 18—Multimedia: Images, Animation and Audio—is the first of two chap-
ters that present Java’s capabilities for making computer applications come alive (Chapter
22 offers an extensive treatment of the Java Media Framework). It is remarkable that stu-
dents in first programming courses will be writing applications with all these capabilities.
The possibilities are intriguing. Imagine having access (over the Internet and through CD-
ROM technology) to vast libraries of graphics images, audios and videos and being able to
weave your own together with those in the libraries to form creative applications. Already,
most new computers sold come “multimedia equipped.” Students can create extraordinary
term papers and classroom presentations with components drawn from vast public-domain
libraries of images, line drawings, voices, pictures, videos, animations and the like. A
“paper” when many of us were in the earlier grades was a collection of characters, possibly
handwritten, possibly typewritten. A “paper” today can be a multimedia “extravaganza”
that makes the subject matter come alive. It can hold your interest, pique your curiosity and
make you feel what the subjects of the paper felt when they were making history. Multi-
media is making science labs much more exciting. Textbooks are coming alive. Instead of
looking at a static picture of some phenomenon, you can watch that phenomenon occur in
a colorful, animated, presentation with sounds, videos and various other effects, leveraging
the learning process. People are able to learn more, learn it in more depth and experience
more viewpoints.

The chapter discusses images and image manipulation, audios and animation. A fea-
ture of the chapter is the image maps that enable a program to sense the presence of the
mouse pointer over a region of an image, without clicking the mouse. We present a live-
code image-map application with the icons from the programming tips you have seen in this
chapter and will see throughout the book. As the user moves the mouse pointer across the
seven icon images, the type of tip is displayed, either “Good Programming Practice” for the
thumbs-up icon, “Portability Tip” for the bug with the suitcase icon and so on. Once you
have read the chapter, you will be eager to try out all these techniques, so we have included
35 problems to challenge and entertain you (more are provided in Chapter 22). Here are
some of the exercises that you may want to turn into term projects:

15 Puzzle Game of Pool One-Armed Bandit

Analog Clock Horse Race Random Inter-Image Transition
Animation Image Flasher Randomly Erasing an Image
Artist Image Zooming Reaction Time Tester
Calendar/Tickler File Jigsaw Puzzle Generator Rotating Images

Calling Attention to an Image Kaleidoscope Scrolling Image Marquee
Coloring Black and White ImagesLimericks Scrolling Text Marquee
Crossword Maze Generator and Walker Shuffleboard

Fireworks Designer Multimedia Simpletron SimulatorText Flasher

You are going to have a great time attacking these problems! Some will take a few
hours and some are great term projects. We see all kinds of opportunities for multimedia
electives starting to appear in the university computing curriculum. We hope you will have
contests with your classmates to develop the best solutions to several of these problems.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

38 Infroduction to Computers, the Internet and the Web Chapter 1

Chapter 19—Data Structures—is particularly valuable in second- and third-level
university courses. The chapter discusses the techniques used to create and manipulate
dynamic data structures, such as linked lists, stacks, queues (i.e., waiting lines) and trees.
The chapter begins with discussions of self-referential classes and dynamic memory allo-
cation. We proceed with a discussion of how to create and maintain various dynamic data
structures. For each type of data structure, we present live-code programs and show sample
outputs. Although it is valuable to know how these classes are implemented, Java program-
mers will quickly discover that many of the data structures they need are already available
in class libraries, such as Java’s own java.util that we discuss in Chapter 20 and Java
Collections that we discuss in Chapter 21. The chapter helps the student master Java-
style references (i.e., Java’s replacement for the more dangerous pointers of C and C++).
One problem when working with references is that students could have trouble visualizing
the data structures and how their nodes are linked together. So we present illustrations that
show the links and the sequence in which they are created. The binary tree example is a nice
capstone for the study of references and dynamic data structures. This example creates a
binary tree; enforces duplicate elimination and introduces recursive preorder, inorder and
postorder tree traversals. Students have a genuine sense of accomplishment when they
study and implement this example. They particularly appreciate seeing that the inorder tra-
versal prints the node values in sorted order. The chapter includes a substantial collection
of exercises. A highlight of the exercises is the special section “Building Your Own Com-
piler.” This exercise is based on earlier exercises that walk the student through the devel-
opment of an infix-to-postfix conversion program and a postfix-expression evaluation
program. We then modify the postfix evaluation algorithm to generate machine-language
code. The compiler places this code in a file (using techniques the student mastered in
Chapter 16). Students then run the machine language produced by their compilers on the
software simulators they built in the exercises of Chapter 7! The many exercises include a
supermarket simulation using queueing, recursively searching a list, recursively printing a
list backwards, binary tree node deletion, level-order traversal of a binary tree, printing
trees, writing a portion of an optimizing compiler, writing an interpreter, inserting/deleting
anywhere in a linked list, analyzing the performance of binary tree searching and sorting
and implementing an indexed list class.

Chapter 20—Java Utilities Package and Bit Manipulation—walks through the
classes of the java.util package and discusses each of Java’s bitwise operators. This is
a nice chapter for reinforcing the notion of reuse. When classes already exist, it is much
faster to develop software by simply reusing these classes than by “reinventing the wheel.”
Classes are included in class libraries because the classes are generally useful, correct, per-
formance tuned, portability certified and/or for a variety of other reasons. Someone has
invested considerable work in preparing these classes so why should you write your own?
The world’s class libraries are growing at a phenomenal rate. Given this, your skill and
value as a programmer will depend on your familiarity with what classes exist and how you
can reuse them cleverly to develop high-quality software rapidly. University data structures
courses will be changing drastically over the next several years because most important
data structures are already implemented in widely available class libraries. This chapter dis-
cusses many classes. Two of the most useful are Vector (a dynamic array that can grow
and shrink as necessary) and Stack (a dynamic data structure that allows insertions and
deletions from only one end—called the top—thus ensuring last-in-first-out behavior). The

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 39

beauty of studying these two classes is that they are related through inheritance, as is dis-
cussed in Chapter 9, so the java.util package itself implements some classes in terms
of others, thus avoiding reinventing the wheel and taking advantage of reuse. We also dis-
cuss classes Dictionary, Hashtable, Properties (for creating and manipulating
persistent Hashtables), Random and BitSet. The discussion of BitSet includes live
code for one of the classic applications of BitSets, namely the Sieve of Eratosthenes,
used for determining prime numbers. The chapter discusses in detail Java’s powerful bit-
manipulation capabilities, which enable programmers to exercise lower level hardware
capabilities. This helps programs process bit strings, set individual bits on or off and store
information more compactly. Such capabilities—inherited from C—are characteristic of
low-level assembly languages and are valued by programmers writing system software
such as operating systems and networking software.

Chapter 21—Collections—discusses many of the Java 2 classes (of the
java.util package) that provide predefined implementations of many of the data
structures discussed in Chapter 19. This chapter, too, reinforces the notion of reuse.
These classes are modeled after a similar class library in C++—the Standard Template
Library. Collections provide Java programmers with a standard set of data structures for
storing and retrieving data and a standard set of algorithms (i.e., procedures) that allow
programmers to manipulate the data (such as searching for particular data items and
sorting data into ascending or descending order). The chapter examples demonstrate col-
lections, such as linked lists, trees, maps and sets, and algorithms for searching, sorting,
finding the maximum value, finding the minimum value and so on. Each example clearly
shows how powerful and easy to use collections are. The exercises suggest modifications
to the chapter examples and ask the reader to reimplement data structures presented in
Chapter 19 using collections.

Chapter 22—Java Media Framework and Java Sound—is the second of our two
chapters dedicated to Java’s tremendous multimedia capabilities. This chapter focusses on
the Java Media Framework (JMF) and the Java Sound API. The Java Media Framework
provides both audio and video capabilities. With the JMF, a Java program can play audio
and video media and capture audio and video media from devices such as microphones and
video cameras. Many of today’s multimedia applications involve sending audio or video
feeds across the Internet. For example, you can visit the cnn.com Web site to watch or
listen to live news conferences, and many people listen to Internet-based radio stations
through their Web browsers. The JMF enables Java developers to create so-called
streaming media applications, in which a Java program sends live or recorded audio or
video feeds across the Internet to other computers, then applications on those other com-
puters play the media as it arrives over the network. The JavaSound APIs enable programs
to manipulate Musical Instrument Digital Interface (MIDI) sounds and captured media
(i.e., media from a device such as a microphone). This chapter concludes with a substantial
MIDI-processing application that enables users to select MIDI files to play and record new
MIDI files. Users can create their own MIDI music by interacting with the application’s
simulated synthesizer keyboard. In addition, the application can synchronize playing the
notes in a MIDI file with pressing the keys on the simulated synthesizer keyboard—similar
to a player piano! As with Chapter 18, once you read this chapter, you will be eager to try
all these techniques, so we have included 44 additional multimedia exercises to challenge
and entertain you. Some of the interesting projects include the following:

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

40 Infroduction to Computers, the Internet and the Web Chapter 1

Bouncing Ball Physics Demo Knight’s Tour Walker Story Teller

Craps Morse Code Tic-Tac-Toe

Digital Clock MP3 Player Tortoise and the Hare
Flight Simulator Multimedia Authoring System Towers of Hanoi
Karaoke Pinball Machine Video Conferencing
Kinetics Physics Demo Roulette Video Games

Appendix A—Java Demos—presents a huge collection of some of the best Java
demos available on the Web. Many of these sites make their source code available to you,
so you can download the code and add your own features—a truly great way to learn Java!
We encourage our students to do this, and we’re amazed at the results! You should start
your search by checking out the Sun Microsystems applet Web page, java.sun.com/
applets. You can save time finding the best demos by checking out JARS (the Java
Applet Rating Service) at www . jars .com. Here’s a list of some of the demos mentioned

in Appendix A (the URLs and descriptions of each are in Appendix A):

Animated SDSU Logo
Bumpy Lens 3D

Centipedo

Crazy Counter

Famous Curves Applet Index
Goldmine

Iceblox game

Java Game Park
Javadfun games
Missile Commando
PhotoAlbum 11

Play A Piano

Sab’s Game Arcade
SabBowl bowling game

Sevilla RDM 168
Stereoscopic 3D Hypercube
Teamball demos

Tube

Urbanoids

Warp 1.5

Appendix B—Java Resources—presents some of the best Java resources available
on the Web. This is a great way for you to get into the “world of Java.” The appendix lists
various Java resources, such as consortia, journals and companies that make various key
Java-related products. Here are some of the resources mentioned in Appendix B:

animated applets
applets/applications

arts and entertainment
audio sites

books

Borland JBuilder IDE
conferences

consultants

contests

CORBA homepage
current information
databases

demos (many with source code)
developer’s kit
development tools
discussion groups
documentation
downloadable applets
FAQs (frequently asked ?s)
games

graphics

IBM Developers Java Zone

Intelligence.com

Java Applet Rating Service
Java Developer Connection
Java Developer’s Journal
Java Media Framework
Java Report

Java tools

Java Toys

Java Users Group (JUGs)
Java Woman
java.sun.com
JavaWorld on-line magazine
learning Java

links to Java sites

lists of resources

lists of what is new and cool
live chat sessions on Java
multimedia collections
NASA multimedia gallery
NetBeans IDE

news
news:comp.lang.java

newsgroups

newsletters

Object Management Group
products

projects

publications

puzzles

reference materials
resources

seminars

sites

software

Sun Microsystems
SunWorld on-line magazine
Team Java

The Java Tutorial

trade shows

training (please call us!)
tutorials for learning java
URLs for Java applets
www.Jjavaworld.com
Yahoo (Web search engine)

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 41

Appendix C—Operator Precedence Chart—lists each of the Java operators and
indicates their relative precedence and associativity. We list each operator on a separate line
and include the full name of the operator.

Appendix D—ASCII Character Set—lists the characters of the ASCII (American
Standard Code for Information Interchange) character set and indicates the character code
value for each. Java uses the Unicode character set with 16-bit characters for representing
all of the characters in the world’s “commercially significant” languages. Unicode includes
ASCII as a subset. Currently, most English-speaking countries are using ASCII and just
beginning to experiment with Unicode.

Appendix E—Number Systems—discusses the binary (base 2), decimal (base 10),
octal (base 8) and hexadecimal (base 16) number systems. This material is valuable for
introductory courses in computer science and computer engineering. The appendix is pre-
sented with the same pedagogic learning aids as the chapters of the book. A nice feature of
the appendix is its 31 exercises, 19 of which are self-review exercises with answers.

Appendix F—Creating javadoc Documentation—introduces the javadoc doc-
umentation-generation tool. Sun Microsystems uses javadoc to document the Java APIs.
The example in this appendix takes the reader through the javadoc documentation pro-
cess. First, we introduce the comment style and tags that javadoc recognizes and uses to
create documentation. Next, we discuss the commands and options used to run the utility.
Finally, we examine the source files javadoc uses and the HTML files javadoc creates.

1.18 (Optional) A Tour of the Case Study on Object-Oriented
Design with the UML

In this and the next section, we tour the two optional major features of the book—the op-
tional case study of object-oriented design with the UML and our introduction to design
patterns. The case study involving object-oriented design with the UML is an important ad-
dition to Java How to Program, Fourth Edition. This tour previews the contents of the
“Thinking About Objects” sections and discusses how they relate to the case study. After
completing this case study, you will have completed an object-oriented design and imple-
mentation for a significant Java application.

Section 1.15—Thinking About Objects: Introduction to Object Technology and the
Unified Modeling Language

This section introduces the object-oriented design case study with the UML. We provide a
general background of what objects are and how they interact with other objects. We also
discuss briefly the state of the software-engineering industry and how the UML has influ-
enced object-oriented analysis and design processes.

Section 2.9—(Optional Case Study) Thinking About Objects: Examining the Problem
Statement

Our case study begins with a problem statement that specifies the requirements for a system
that we will create. In this case study, we design and implement a simulation of an elevator
system in a two-story building. The application user can “create” a person on either floor.
This person then walks across the floor to the elevator, presses a button, waits for the ele-
vator to arrive and rides it to the other floor. We provide the design of our elevator system
after investigating the structure and behavior of object-oriented systems in general. We dis-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

42 Infroduction to Computers, the Internet and the Web Chapter 1

cuss how the UML will facilitate the design process in subsequent “Thinking About Ob-
ject” sections by providing us with several types of diagrams to model our system. Finally,
we provide a list of URL and book references on object-oriented design with the UML. You
might find these references helpful as you proceed through our case-study presentation.

Section 3.8—(Optional Case Study) Thinking About Objects: Identifying the Classes in
the Problem Statement

In this section, we design the elevator-simulation model, which represents the operations
of the elevator system. We identify the classes, or “building blocks,” of our model by ex-
tracting the nouns and noun phrases from the problem statement. We arrange these classes
into a UML class diagram that describes the class structure of our model. The class diagram
also describes relationships, known as associations, among classes (for example, a person
has an association with the elevator, because the person rides the elevator). Lastly, we ex-
tract from the class diagram another type of diagram in the UML—the object diagram. The
object diagram models the objects (instances of classes) at a specific time in our simulation.

Section 4.14—(Optional Case Study) Thinking About Objects: Identifying Class
Attributes

A class contains both attributes (data) and operations (behaviors). This section focuses on
the attributes of the classes discussed in Section 3.7. As we see in later sections, changes in
an object’s attributes often affect the behavior of that object. To determine the attributes for
the classes in our case study, we extract the adjectives describing the nouns and noun phras-
es (which defined our classes) from the problem statement, then place the attributes in the
class diagram we create in Section 3.7.

Section 5.11—(Optional Case Study) Thinking About Objects: Identifying Objects’
States and Activities

An object, at any given time, occupies a specific condition called a state. A state transition
occurs when that object receives a message to change state. The UML provides the state-
chart diagram, which identifies the set of possible states that an object may occupy and
models that object’s state transitions. An object also has an activity—the work performed
by an object in its lifetime. The UML provides the activity diagram—a flowchart that mod-
els an object’s activity. In this section, we use both types of diagrams to begin modeling
specific behavioral aspects of our elevator simulation, such as how a person rides the ele-
vator and how the elevator responds when a button is pressed on a given floor.

Section 6.16—(Optional Case Study) Thinking About Objects: Identifying Class
Operations

In this section, we identify the operations, or services, of our classes. We extract from the
problem statement the verbs and verb phrases that specify the operations for each class. We
then modify the class diagram of Fig. 3.16 to include each operation with its associated
class. At this point in the case study, we will have gathered all information possible from
the problem statement. However, as future chapters introduce such topics as inheritance,
event-handling and multithreading, we will modify our classes and diagrams.

Section 7.10—(Optional Case Study) Thinking About Objects: Collaboration Among
Objects

At this point, we have created a “rough sketch” of the model for our elevator system. In this
section, we see how it works. We investigate the behavior of the model by discussing col-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 43

laborations—messages that objects send to each other to communicate. The class opera-
tions that we discovered in Section 6.16 turn out to be the collaborations among the objects
in our system. We determine the collaborations in our system, then collect them into a col-
laboration diagram—the UML diagram for modeling collaborations. This diagram reveals
which objects collaborate and when. We present a collaboration diagram of the people en-
tering and exiting the elevator.

Section 8.17—(Optional Case Study) Thinking About Objects: Starting to Program the
Classes for the Elevator Simulation

In this section, we take a break from designing the behavior of our system. We begin the
implementation process to emphasize the material discussed in Chapter 8. Using the UML
class diagram of Section 3.7 and the attributes and operations discussed in Sections 4.14
and 6.16, we show how to implement a class in Java from a design. We do not implement
all classes—because we have not completed the design process. Working from our UML
diagrams, we create code for the Elevator class.

Section 9.23—(Optional Case Study) Thinking About Objects: Incorporating
Inheritance into the Elevator Simulation

Chapter 9 begins our discussion of object-oriented programming. We consider inherit-
ance—classes sharing similar characteristics may inherit attributes and operations from a
“base” class. In this section, we investigate how our elevator simulation can benefit from
using inheritance. We document our discoveries in a class diagram that models inheritance
relationships—the UML refers to these relationships as generalizations. We modify the
class diagram of Section 3.7 by using inheritance to group classes with similar characteris-
tics. We continue implementing the Elevator class of Section 8.17 by incorporating in-
heritance.

Section 10.22—(Optional Case Study) Thinking About Objects: Event Handling

In this section, we include interfaces necessary for the objects in our elevator simulation to
send messages to other objects. In Java, objects often communicate by sending an event—
a notification that some action has occurred. The object receiving the event then performs
an action in response to the type of event received—this is known as event handling. In
Section 7.10, we outlined the message passing, or the collaborations, in our model, using a
collaboration diagram. We now modify this diagram to include event handling, and, as an
example, we explain in detail how doors in our simulation open upon the elevator’s arrival.

Section 11.10—(Optional Case Study) Thinking About Objects: Designing Interfaces
with the UML

In this section, we design a class diagram that models the relationships between classes and
interfaces in our simulation—the UML refers to these relationships as realizations. In ad-
dition, we list all operations that each interface provides to the classes. Lastly, we show how
to create the Java classes that implement these interfaces. As in Section 8.17 and
Section 9.23, we use class Elevator to demonstrate the implementation.

Section 12.16 - (Optional Case Study) Thinking About Objects: Use Cases

Chapter 12 discusses user interfaces that enable a user to interact with a program. In this
section, we discuss the interaction between our elevator simulation and its user. Specifical-
ly, we investigate the scenarios that may occur between the application user and the simu-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

44 Infroduction to Computers, the Internet and the Web Chapter 1

lation itself—this set of scenarios is called a use case. We model these interactions, using
use-case diagrams of the UML. We then discuss the graphical user interface for our simu-
lation, using our use-case diagrams.

Section 13.17—(Optional Case Study) Thinking About Objects: Model-View-Controller
We designed our system to consist of three components, each having a distinct responsibil-
ity. By this point in the case study, we have almost completed the first component, called
the model, which contains data that represent the simulation. We design the view—the sec-
ond component, dealing with how the model is displayed—in Section 22.8. We design the
controller—the component that allows the user to control the model—in Section 12.16. A
system such as ours that uses the model, view and controller components is said to adhere
to Model-View-Controller (MVC) architecture. In this section, we explain the advantages
of using this architecture to design software. We use the UML component diagram to mod-
el the three components, then implement this diagram as Java code.

Section 15.12—(Optional Case Study) Thinking About Objects: Multithreading

In the real world, objects operate and interact concurrently. Java is a multithreaded lan-
guage, which enables the objects in our simulation to act seemingly independently from
each other. In this section, we declare certain objects as “threads” to enable these objects to
operate concurrently. We modify the collaboration diagram originally presented in Section
7.10 (and modified in Section 10.22) to incorporate multithreading. We present the UML
sequence diagram for modeling interactions in a system. This diagram emphasizes the
chronological ordering of messages. We use a sequence diagram to model how a person
inside the simulation interacts with the elevator. This section concludes the design of the
model portion of our simulation. We design how this model is displayed in Section 22.9,
then implement this model as Java code in Appendix H.

Section 22.9—(Optional Case Study) Thinking About Objects: Animation and Sound in
the View

This section designs the view, which specifies how the model portion of the simulation is
displayed. Chapter 18 presents several techniques for integrating animation in programs,
and Chapter 22 presents techniques for integrating sound. Section 22.9 uses some of these
techniques to incorporate sound and animation into our elevator simulation. Specifically,
this section deals with animating the movements of people and our elevator, generating
sound effects and playing “elevator music” when a person rides the elevator. This section
concludes the design of our elevator simulation. Appendices G, H and I implement this de-
sign as a 3,594-line, fully operational Java program.

Appendix G—Elevator Events and Listener Interfaces

[Note: This appendix is on the CD that accompanies this book.] As we discussed in
Section 10.22, several objects in our simulation interact with each other by sending messages,
called events, to other objects wishing to receive these events. The objects receiving the
events are called listener objects—these must implement listener interfaces. In this section,
we implement all event classes and listener interfaces used by the objects in our simulation.

Appendix H—Elevator Model
[Note: This appendix is on the CD that accompanies this book.] The majority of the case
study involved designing the model (i.e., the data and logic) of the elevator simulation. In

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 45

this section, we implement that model in Java. Using all the UML diagrams we created, we
present the Java classes necessary to implement the model. We apply the concepts of ob-
ject-oriented design with the UML and object-oriented programming and Java that you
learned in the chapters.

Appendix I—Elevator View

[Note: This appendix is on the CD that accompanies this book.] The final section imple-
ments how we display the model from Appendix H. We use the same approach to imple-
ment the view as we used to implement the model—we create all the classes required to run
the view, using the UML diagrams and key concepts discussed in the chapters. By the end
of this section, you will have completed an “industrial-strength” design and implementa-
tion of a large-scale system. You should feel confident tackling larger systems, such as the
8000-line Enterprise Java case study we present in our companion book Advanced Java 2
Platform How to Program and the kinds of applications that professional software engi-
neers build. Hopefully, you will move on to even deeper study of object-oriented design
with the UML.

1.19 (Optional) A Tour of the “Discovering Design Patterns”
Sections

Our treatment of design patterns is spread over five optional sections of the book. We over-
view those sections here.

Section 9.24—(Optional) Discovering Design Patterns: Introducing Creational,
Structural and Behavioral Design Patterns

This section provides tables that list the sections in which we discuss the various design pat-
terns. We divide the discussion of each section into creational, structural and behavioral de-
sign patterns. Creational patterns provide ways to instantiate objects, structural patterns
deal with organizing objects and behavioral patterns deal with interactions between objects.
The remainder of the section introduces some of these design patterns, such as the Single-
ton, Proxy, Memento and State design patterns. Finally, we provide several URLs for fur-
ther study on design patterns.

Section 13.18—(Optional) Discovering Design Patterns: Design Patterns Used in
Packages java.awt and javax.swing

This section contains most of our design-patterns discussion. Using the material on Java
Swing GUI components in Chapters 12 and 13, we investigate some examples of pattern
use in packages java.awt and javax.swing. We discuss how these classes use the
Factory Method, Adapter, Bridge, Composite, Chain-of-Responsibility, Command, Ob-
server, Strategy and Template Method design patterns. We motivate each pattern and
present examples of how to apply them.

Section 15.13—(Optional) Discovering Design Patterns: Concurrent Design Patterns
Developers have introduced several design patterns since those described by the gang of
four. In this section, we discuss concurrency design patterns, including Single-Threaded
Execution, Guarded Suspension, Balking, Read/Write Lock and Two-Phase Termina-
tion—these solve various design problems in multithreaded systems. We investigate how
class java.lang.Thread uses concurrency patterns.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

46 Infroduction to Computers, the Internet and the Web Chapter 1

Section 17.11—(Optional) Discovering Design Patterns: Design Patterns Used in
Packages java.ioand java.net

Using the material on files, streams and networking in Chapters 16 and 17, we investigate
some examples of pattern use in packages java.io and java.net. We discuss how
these classes use the Abstract Factory, Decorator and Facade design patterns. We also con-
sider architectural patterns, which specify a set of subsystems—aggregates of objects that
each collectively comprise a major system responsibility—and how these subsystems in-
teract with each other. We discuss the popular Model-View-Controller and Layers archi-
tectural patterns.

Section 21.12—(Optional) Discovering Design Patterns: Design Patterns Used in
Package java.util

Using the material on data structures and collections in Chapters 19, 20 and 21, we inves-
tigate pattern use in package java.util. We discuss how these classes use the Prototype
and Iterator design patterns. This section concludes the discussion on design patterns. After
finishing the Discovering Design Patterns material, you should be able to recognize and
use key design patterns and have a better understanding of the workings of the Java API.
After completing this material, we recommend that you move on to the gang-of-four book.

Well, there you have it! We have worked hard to create this book and its optional
Cyber Classroom version. The book is loaded with live-code examples, programming tips,
self-review exercises and answers, challenging exercises and projects, and numerous study
aids to help you master the material. Java is a powerful programming language that will
help you write programs quickly and effectively. And Java is a language that scales nicely
into the realm of enterprise-systems development to help organizations build their key
information systems. As you read the book, if something is not clear, or if you find an error,
please write to us at deitel@deitel . com. We will respond promptly, and we will post
corrections and clarifications on our Web site,

www.deitel.com

We hope you enjoy learning with Java How to Program: Fourth Edition as much as we
enjoyed writing it!

SUMMARY

» Software controls computers (often referred to as hardware).
* Java is one of today’s most popular software-development languages.

» Javawas developed by Sun Microsystems. Sun provides an implementation of the Java 2 Platform,
Standard Edition called the Java 2 Software Development Kit (J2SDK), version 1.3.1 that includes
the minimum set of tools you need to write software in Java.

 Javais a fully object-oriented language with strong support for proper software-engineering tech-
niques.

* A computer is a device capable of performing computations and making logical decisions at
speeds millions, even billions, of times faster than human beings can.

* Computers process data under the control of sets of instructions called computer programs. These
computer programs guide the computer through orderly sets of actions specified by people called
computer programmers.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 47

¢ The various devices that comprise a computer system (such as the keyboard, screen, disks, mem-
ory and processing units) are referred to as hardware.

e The computer programs that run on a computer are referred to as software.

* The input unit is the “receiving” section of the computer. It obtains information (data and comput-
er programs) from various input devices and places this information at the disposal of the other
units so that the information may be processed.

* The output unit is the “shipping” section of the computer. It takes information processed by the
computer and places it on output devices to make it available for use outside the computer.

* The memory unit is the rapid access, relatively low-capacity “warehouse” section of the computer.
It retains information that has been entered through the input unit so that the information may be
made immediately available for processing when it is needed and retains information that has al-
ready been processed until that information can be placed on output devices by the output unit.

* The arithmetic and logic unit (ALU) is the “manufacturing” section of the computer. It is respon-
sible for performing calculations such as addition, subtraction, multiplication and division and for
making decisions.

* The central processing unit (CPU) is the “administrative” section of the computer. It is the com-
puter’s coordinator and is responsible for supervising the operation of the other sections.

* The secondary storage unit is the long-term, high-capacity “warehousing” section of the computer.
Programs or data not being used by the other units are normally placed on secondary storage de-
vices (such as disks) until they are needed, possibly hours, days, months or even years later.

» Early computers were capable of performing only one job or task at a time. This form of computer
operation often is called single-user batch processing.

» Software systems called operating systems were developed to help make it more convenient to use
computers. Early operating systems managed the smooth transition between jobs and minimized
the time it took for computer operators to switch between jobs.

e Multiprogramming involves the “simultaneous” operation of many jobs on the computer—the
computer shares its resources among the jobs competing for its attention.

* Timesharing is a special case of multiprogramming in which dozens or even hundreds of users
share a computer through terminals. The computer runs a small portion of one user’s job, then
moves on to service the next user. The computer does this so quickly that it might provide service
to each user several times per second, so programs appear to run simultaneously.

* An advantage of timesharing is that the user receives almost immediate responses to requests rath-
er than having to wait long periods for results, as with previous modes of computing.

* In 1977, Apple Computer popularized the phenomenon of personal computing.

e In 1981, IBM introduced the IBM Personal Computer. Almost overnight, personal computing be-
came legitimate in business, industry and government organizations.

¢ Although early personal computers were not powerful enough to timeshare several users, these
machines could be linked together in computer networks, sometimes over telephone lines and
sometimes in local area networks (LANs) within an organization. This led to the phenomenon of
distributed computing, in which an organization’s computing is distributed over networks to the
sites at which the real work of the organization is performed.

* Today, information is shared easily across computer networks where some computers called file
servers offer a common store of programs and data that may be used by client computers distrib-
uted throughout the network—hence the term client/server computing.

* Java has become the language of choice for developing Internet-based applications (and for many
other purposes).

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

48

Infroduction to Computers, the Internet and the Web Chapter 1

Computer languages may be divided into three general types: machine languages, assembly lan-
guages and high-level languages.

Any computer can directly understand only its own machine language. Machine languages gener-
ally consist of strings of numbers (ultimately reduced to 1s and Os) that instruct computers to per-
form their most elementary operations one at a time. Machine languages are machine dependent.

English-like abbreviations formed the basis of assembly languages. Translator programs called as-
semblers convert assembly-language programs to machine language at computer speeds.

Compilers translate high-level language programs into machine-language programs. High-level
languages (like Java) contain English words and conventional mathematical notations.

Interpreter programs directly execute high-level language programs without the need for compil-
ing those programs into machine language.

Although compiled programs execute much faster than interpreted programs, interpreters are pop-
ular in program-development environments in which programs are recompiled frequently as new
features are added and errors are corrected.

Objects are essentially reusable software components that model items in the real world. Modular,
object-oriented design and implementation approaches make software-development groups more
productive than is possible with previous popular programming techniques such as structured pro-
gramming. Object-oriented programs are often easier to understand, correct and modify.

Java originated at Sun Microsystems as a project for intelligent consumer-electronic devices.

When the World Wide Web exploded in popularity in 1993, Sun people saw the immediate poten-
tial of using Java to create Web pages with so-called dynamic content.

Java is now used to create Web pages with dynamic and interactive content, to develop large-scale
enterprise applications, to enhance the functionality of Web servers, to provide applications for
consumer devices and so on.

Java programs consist of pieces called classes. Classes consist of pieces called methods that per-
form tasks and return information when they complete their tasks.

Most Java programmers use rich collections of existing classes in Java class libraries.

FORTRAN (FORmula TRANslator) was developed by IBM Corporation between 1954 and 1957
for scientific and engineering applications that require complex mathematical computations.

COBOL (COmmon Business Oriented Language) was developed in 1959 by a group of computer
manufacturers and government and industrial computer users. COBOL is used primarily for com-
mercial applications that require precise and efficient manipulation of large amounts of data.

Pascal was designed at about the same time as C. It was created by Professor Nicklaus Wirth and
was intended for academic use.

Basic was developed in 1965 at Dartmouth College as a simple language to help novices become
comfortable with programming.

Structured programming is a disciplined approach to writing programs that are clearer than un-
structured programs, easier to test and debug and easier to modity.

The Ada language was developed under the sponsorship of the United States Department of De-
fense (DOD) during the 1970s and early 1980s. One important capability of Ada is called multi-
tasking; this allows programmers to specify that many activities are to occur in parallel.

Most high-level languages—including C and C++—generally allow the programmer to write pro-
grams that perform only one activity at a time. Java, through a technique called multithreading,
enables programmers to write programs with parallel activities.

The Internet was developed more than three decades ago with funding supplied by the Department
of Defense. Originally designed to connect the main computer systems of about a dozen universi-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 49

ties and research organizations, the Internet today is accessible by hundreds of millions of com-
puters worldwide.

* The Web allows computer users to locate and view multimedia-intensive documents over the In-
ternet.

* Java systems generally consist of several parts: an environment, the language, the Java Applica-
tions Programming Interface (API) and various class libraries.

» Java programs normally go through five phases to be executed—edit, compile, load, verify and
execute.

 Java program file names end with the . java extension.

* The Java compiler (javac) translates a Java program into bytecodes—the language understood
by the Java interpreter. If a program compiles correctly, the compiler produces a file with the
.class extension. This is the file containing the bytecodes that are interpreted during the execu-
tion phase.

¢ A Java program must first be placed in memory before it can execute. This is done by the class
loader, which takes the . class file (or files) containing the bytecodes and transfers it to memory.
The .class file can be loaded from a disk on your system or over a network.

* An application is a program that is normally stored and executed on the user’s local computer.

* An applet is a small program that is normally stored on a remote computer that users connect to
via a Web browser. Applets are loaded from a remote computer into the browser, executed in the
browser and discarded when execution completes.

» Applications are loaded into memory, then executed by the java interpreter.

* Browsers are used to view HTML (Hypertext Markup Language) documents on the World Wide
Web.

* When the browser sees an applet in an HTML document, the browser launches the Java class load-
er to load the applet. The browsers that support Java each have a built-in Java interpreter. Once the
applet is loaded, the Java interpreter in the browser begins executing the applet.

* Applets can also be executed from the command line using the appletviewer command pro-
vided with the Java 2 Software Development Kit (J2SDK). The appletviewer is commonly
referred to as the minimum browser—it knows only how to interpret applets.

» Before the bytecodes in an applet are executed by the Java interpreter built into a browser or the
appletviewer, they are verified by the bytecode verifier to ensure that the bytecodes for down-
loaded classes are valid and that they do not violate Java’s security restrictions.

* An intermediate step between interpreters and compilers is a just-in-time (JIT) compiler that, as
the interpreter runs, produces compiled code for the programs and executes the programs in ma-
chine language rather than reinterpreting them. JIT compilers do not produce machine language
that is as efficient as a full compiler.

» For organizations wanting to do heavy-duty information-systems development, Integrated Devel-
opment Environments (IDEs) are available from the major software suppliers. The IDEs provide
many tools for supporting the software-development process.

* Object orientation is a natural way of thinking about the world and of writing computer programs.

* The Unified Modeling Language (UML) is a graphical language that allows people who build sys-
tems to represent their object-oriented designs in a common notation.

¢ Humans think in terms of objects. We possess the marvelous ability of abstraction, which enables
us to view screen images as people, planes, trees and mountains rather than as individual dots of
color (called pixels—for “picture elements”).

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

50

Infroduction to Computers, the Internet and the Web Chapter 1

Humans learn about objects by studying their attributes and observing their behaviors. Different
objects can have similar attributes and can exhibit similar behaviors.

Object-oriented design (OOD) models real-world objects. It takes advantage of class relationships,
where objects of a certain class—such as a class of vehicles—have the same characteristics. It
takes advantage of inheritance relationships, and even multiple-inheritance relationships, where
newly created classes of objects are derived by absorbing characteristics of existing classes and
adding unique characteristics of their own.

OOD encapsulates data (attributes) and functions (behavior) into objects; the data and functions
of an object are intimately tied together.

Objects have the property of information hiding. This means that, although objects may know how
to communicate with one another across well-defined interfaces, objects normally are not allowed
to know how other objects are implemented.

Languages such as Java are object-oriented—programming in such a language is called object-ori-
ented programming (OOP) and allows designers to implement the object-oriented design as a
working system.

In Java, the unit of programming is the class from which objects are eventually instantiated (a fan-
cy term for “created”). Java classes contain methods (which implement class behaviors) and at-
tributes (which implement class data).

Java programmers concentrate on creating their own user-defined types, called classes. Each class
contains data and the set of functions that manipulate that data. The data components of a Java
class are called attributes. The function components of a Java class are called methods.

An instance of a user-defined type (i.e., a class) is called an object.
Classes can also have relationships with other classes. These relationships are called associations.

With object technology, we can build much of the software we will need by combining “standard-
ized, interchangeable parts” called classes.

The process of analyzing and designing a system from an object-oriented point of view is called
object-oriented analysis and design (OOAD).

The Unified Modeling Language (the UML) is now the most widely used graphical representation
scheme for modeling object-oriented systems. Those who design systems use the language (in the
form of graphical diagrams) to model their systems.

Over the past decade, the software-engineering industry has made significant progress in the field
of design patterns—proven architectures for constructing flexible and maintainable object-orient-
ed software. Using design patterns can substantially reduce the complexity of the design process.
Design patterns benefit system developers by helping to construct reliable software using proven
architectures and accumulated industry expertise, promoting design reuse in future systems, iden-
tifying common mistakes and pitfalls that occur when building systems, helping to design systems
independently of the language in which they will be implemented, establishing a common design
vocabulary among developers and shortening the design phase in a software-development process.
Designers use design patterns to construct sets of classes and objects.

Creational design patterns describe techniques to instantiate objects (or groups of objects).
Structural design patterns allow designers to organize classes and objects into larger structures.

Behavioral design patterns assign responsibilities to objects.

TERMINOLOGY
abstraction ALU (arithmetic and logic unit)
Ada ANSIC

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1

applet

appletviewer command
application

arithmetic and logic unit (ALU)
array

assembly language
attribute

Basic

behavior

behavioral design pattern
bytecode

bytecode verifier

C

C standard library

C++

central processing unit (CPU)
class

.class file

class libraries

class loader

client/server computing
COBOL

collections

compile phase

compiler

compile-time error
computer

computer program
computer programmer
condition

CPU (central processing unit)
creational design pattern
design pattern

disk

distributed computing
dynamic content

edit phase

editor

encapsulation
event-driven programming
execute phase
execution-time error

fatal runtime error

file server

Fortran

freeware

hardware

high-level language
HotSpot compiler

HTML (Hypertext Markup Language)

Introduction to Computers, the Internet and the Web

IDE (Integrated Development Environment)
information hiding

inheritance

input device

input unit

input/output (I/O)

instance variable

Internet

interpreter

Java

. java extension

Java 2 Software Development Kit (J2SDK)
java interpreter

Java Virtual Machine

javac compiler

JIT (just-in-time) compiler

KIS (keep it simple)

legacy systems

live-code™ approach

load phase

logic error

machine dependent

machine independent

machine language

memory unit

method

Microsoft

Microsoft Internet Explorer Web browser
modeling

multiprocessor

multitasking

multithreading

Netscape Navigator Web browser
nonfatal run-time error

object

object

object-oriented analysis and design (OOAD)
object-oriented design (OOD)
object-oriented programming (OOP)
open source

output device

output unit

Pascal

personal computing

platforms

portability

primary memory

problem statement

procedural programming
programming language

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

52 Introduction to Computers, the Internet and the Web Chapter 1
reference Swing GUI components

requirements document syntax error

reusable componentry throughput

runtime error throw an exception

secondary storage unit timesharing

shareware translator programs

software Unified Modeling Language (UML)
software reuse verify phase

structural design pattern video

structured programming World Wide Web

Sun Microsystems

SELF-REVIEW EXERCISES

1.1

Fill in the blanks in each of the following statements:

a)
b)

)
d)

e)
f)

The company that popularized personal computing was
The computer that made personal computing legitimate in business and industry was the

Computers process data under the control of sets of instructions called

The six key logical units of the computer are the
and .

The three classes of languages discussed in the chapter are and

The programs that translate high-level language programs into machine language are
called

Fill in the blanks in each of the following sentences about the Java environment:

a)
b)
c)
d)
€)
f)

)

The command from the Java 2 Software Development Kit executes a Java
applet.

The command from the Java 2 Software Development Kit executes a Java
application

The command from the Java 2 Software Development Kit compiles a Java
program.

A(n) file is required to invoke a Java applet.

A Java program file must end with the file extension.

When a Java program is compiled, the file produced by the compiler ends with the
file extension.

The file produced by the Java compiler contains that are interpreted to exe-

cute a Java applet or application.

Fill in the blanks in each of the following statements:

a)
b)

9]
d)
€)
f)

The allows computer users to locate and view multimedia-based documents
on almost any subject over the Internet.
Java typically are stored on your computer and are designed to execute in-

dependent of a World Wide Web browsers.
Lists and tables of values are called .
The GUI components are written completely in Java.
allows an applet or application to perform multiple activities in parallel.
provide Java programmers with a standard set of data structures for storing
and retrieving data and a standard set of algorithms that allow programmers to manipu-
late the data.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 1 Introduction to Computers, the Internet and the Web 53

14 Fill in the blanks in each of the following statements (based on Sections 1.15 and 1.16):

a) Over the past decade, the software-engineering industry has made significant progress in
the field of —proven architectures for constructing flexible and maintainable
object-oriented software.

b) Objects have the property of

¢) Java programmers concentrate on creating their own user-defined types, called

d) Classes can also have relationships with other classes. These relationships are called

e) The process of analyzing and designing a system from an object-oriented point of view
is called

ANSWERS TO SELF-REVIEW EXERCISES

1.1 a) Apple. b) IBM Personal Computer. c) programs. d) input unit, output unit, memory unit,
arithmetic and logic unit, central processing unit, secondary storage unit. e) machine languages, as-
sembly languages, high-level languages. f) compilers.

1.2 a) appletviewer. b) java. c¢) javac. d) HTML. e) .java. f) .class. g) byte-
codes.

1.3 a) World Wide Web. b) applications. c) arrays. d) Swing. e) Multithreading. f) Collections.

14 a) design patterns. b) information hiding. c) classes. d) associations. e) object-oriented
analysis and design (OOAD).

EXERCISES

1.5 Categorize each of the following items as either hardware or software:
a) CPU
b) Java compiler
¢) ALU

d) Java interpreter
e) input unit
f) editor

1.6 Why might you want to write a program in a machine-independent language instead of a ma-
chine-dependent language? Why might a machine-dependent language be more appropriate for writ-
ing certain types of programs?

1.7 Fill in the blanks in each of the following statements:

a) Which logical unit of the computer receives information from outside the computer for
use by the computer?

b) The process of instructing the computer to solve specific problems is called

c¢) What type of computer language uses English-like abbreviations for machine language
instructions?

d) Which logical unit of the computer sends information that has already been processed by
the computer to various devices so that the information may be used outside the comput-
er? .

e) Which logical unit of the computer retains information?

f) Which logical unit of the computer performs calculations?

g) Which logical unit of the computer makes logical decisions?

h) The level of computer language most convenient to the programmer for wr1t1ng programs
quickly and easily is

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

54

1.8

1.9

1.10

i)

Infroduction to Computers, the Internet and the Web Chapter 1

The only language that a computer can directly understand is called that computer’s

j) Which logical unit of the computer coordinates the activities of all the other logical units?

Distinguish between the terms fatal error and nonfatal error. Why might you prefer to ex-
perience a fatal error rather than a nonfatal error?

Fill in the blanks in each of the following statements:

a)
b)

)
d)

e)
f)

Java are designed to be transported over the Internet and executed in World
Wide Web browsers.

programming causes a program to perform a task in response to user inter-
actions with graphical user interface (GUI) components.

Java’s graphics capabilities are and, hence portable.

The standard can be used to provide identical user interfaces across all com-
puter platforms.

Languages that cannot perform multiple activities in parallel are called lan-
guages or languages.

Aggregations of data such as linked lists, stacks, queues and trees are called

Fill in the blanks in each of the following statements (based on Sections 1.15 and 1.16):

a)
b)
)
d

€)

design patterns describe techniques to instantiate objects (or groups of ob-

jects).

The is now the most widely used graphical representation scheme for mod-
eling object-oriented systems.

Java classes contain (which implement class behaviors) and

(which implement class data).

design patterns allow designers to organize classes and objects into larger
structures.

design patterns assign responsibilities to objects.
In Java, the unit of programming is the , from which are eventu-
ally instantiated.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Introduction to Java
Applications

Objectives

* To be able to write simple Java applications.

* To be able to use input and output statements.

* To become familiar with primitive data types.

* To understand basic memory concepts.

* To be able to use arithmetic operators.

* To understand the precedence of arithmetic operators.
* To be able to write decision-making statements.

* To be able to use relational and equality operators.
Comment is free, but facts are sacred.

C. P. Scott

The creditor hath a better memory than the debtor.
James Howell

When faced with a decision, I always ask, “What would be
the most fun?”

Peggy Walker

He has left his body to science—

and science is contesting the will.

David Frost

Classes struggle, some classes triumph, others are
eliminated.

Mao Zedong

Equality, in a social sense, may be divided into that of
condition and that of rights.

James Fenimore Cooper

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

56 Introduction to Java Applications Chapter 2

Outline

2.1 Introduction
2.2 A First Program in Java: Printing a Line of Text
2.2.1 Compiling and Executing your First Java Application
23 Modifying Our First Java Program
2.3.1 Displaying a Single Line of Text with Multiple Statements
2.3.2 Displaying Muliiple Lines of Text with a Single Statement
2.4 Displaying Text in a Dialog Box
2.5 Another Java Application: Adding Integers
2.6 Memory Concepts
2.7 Arithmetic
2.8 Decision Making: Equality and Relational Operators

29 (Optional Case Study) Thinking About Objects: Examining the
Problem Statement

Summary ¢ Terminology ¢ Self-Review Exercises * Answers to Self-Review Exercises * Exercises

2.1 Introduction

The Java language facilitates a disciplined approach to computer program design. We now
introduce Java programming and present examples that illustrate several important features
of Java. Each example is analyzed one line at a time. In this chapter and Chapter 3, we
present two program types in Java—applications and applets. In Chapter 4 and Chapter 5,
we present a detailed treatment of program development and program control in Java.

2.2 A First Program in Java: Printing a Line of Text

Java uses notations that may appear strange to nonprogrammers. We begin by considering
a simple application that displays a line of text. An application is a program that executes
using the jawva interpreter (discussed later in this section). The program and its output are
shown in Fig. 2.1.

This program illustrates several important features of the Java language. We consider
each line of the program in detail. Each program we present in this book has line numbers
included for the reader’s convenience; line numbers are not part of actual Java programs.
Line 9 does the “real work” of the program, namely displaying the phrase Welcome to
Java Programming! on the screen. But let us consider each line in order. Line 1,

begins with //, indicating that the remainder of the line is a comment. Programmers insert
comments to document programs and improve program readability. Comments also help
other people read and understand a program. Comments do not cause the computer to per-
form any action when the program is run. The Java compiler ignores comments. We begin
every program with a comment indicating the figure number and file name (line 1).

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 57

1

2

3

4 public class Welcomel {

5

6

7 public static void main(String args[])
8 {

9 System.out.println()i
10

11 }

12

13

Welcome to Java Programming!

Fig. 2.1 A first program in Java.

Good Programming Practice 2.1
@ Use comments to clarify difficult concepts used in a program.

A comment that begins with // is called a single-line comment, because the comment
terminates at the end of the current line. A // comment can also begin in the middle of a
line and continue until the end of that line.

Multiple-line comments can be written in two other forms. For example,

is a comment that can spread over several lines. This type of comment begins with delimiter

/* and ends with delimiter */; this type of comment may be called a multiple-line com-

ment. All text between the delimiters of the comment is ignored by the compiler. A similar

form of comment called a documentation comment is delimited by /** and */.
Common Programming Error 2.1

@ Forgetting one of the delimiters of a multiple-line comment is a syntax error.

Java absorbed comments delimited with /* and * / from the C programming language
and single-line comments delimited with // from the C++ programming language. Java
programmers generally use C++-style single-line comments in preference to C-style com-
ments. Throughout this book, we use C++-style single-line comments. The documentation
comment syntax (/** and */) is special to Java. It enables programmers to embed docu-
mentation for their programs directly in the programs. The javadoe utility program (pro-
vided by Sun Microsystems with the Java 2 Software Development Kit) reads those
comments from the program and uses them to prepare your program’s documentation.
There are subtle issues to using javadoc-style comments properly. We do not use jav-
adoc-style comments in the programs presented in this book. However, javadoc-style
comments are explained thoroughly in Appendix F.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

58 Introduction to Java Applications Chapter 2

Line 2,

is a single-line comment that describes the purpose of the program.
Good Programming Practice 2.2
@ Every program should begin with a comment describing the purpose of the program.

Line 3 is simply a blank line. Programmers use blank lines and space characters to
make programs easier to read. Together, blank lines, space characters and tab characters are
known as white space. (Space characters and tabs are known specifically as white-space
characters.) Such characters are ignored by the compiler. We discuss conventions for using
white-space characters in this chapter and the next several chapters, as these spacing con-
ventions are needed in may Java programs.

Good Programming Practice 2.3
@ Use blank lines, space characters and tab characters to enhance program readability.

Line 4,
public class Welcomel {

begins a class definition for class Welcomel. Every program in Java consists of at least
one class definition that is defined by you—the programmer. These classes are known as
programmer-defined classes, or user-defined classes. The class keyword introduces a
class definition in Java and is immediately followed by the class name (Welcomel in this
program). Keywords (or reserved words) are reserved for use by Java (we discuss the var-
ious keywords throughout the text) and are always spelled with all lowercase letters. The
complete list of Java keywords is shown in Fig. 4.2.

By convention, all class names in Java begin with a capital letter and have a capital
letter for every word in the class name (e.g., SampleClassName). The name of the class
is called an identifier. An identifier is a series of characters consisting of letters, digits,
underscores (_) and dollar signs ($) that does not begin with a digit and does not contain
spaces. Some valid identifiers are Welcomel, $value, _value, m_inputFieldl
and button7. The name 7button is not a valid identifier, because it begins with a digit,
and the name input f£ield is not a valid identifier, because it contains a space. Java is
case sensitive—i.e., uppercase and lowercase letters are different, so al and Al are dif-
ferent identifiers.

- Common Programming Error 2.2

Java is case sensitive. Not using the proper uppercase and lowercase letters for an identifier
is normally a syntax error.

Good Programming Practice 2.4

By convention, you should always begin a class name with a capital letter.

Good Programming Practice 2.5

When reading a Java program, look for identifiers that start with capital letters. These iden-
tifiers normally represent Java classes.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

i

Chapter 2 Introduction to Java Applications 59

|

(1
El Avoid using identifiers that contain dollar signs ($), as the compiler often uses dollar signs
=*t0 create identifier names.

In Chapter 2 through Chapter 7, every class we define begins with the public key-
word. For now, we will simply require this keyword. The public keyword is discussed
in detail in Chapter 8. Also in that chapter, we discuss classes that do not begin with key-
word public. [Note: Several times early in this text, we ask you to mimic certain Java
features we introduce as you write your own Java programs. We specifically do this when
it is not yet important for you to know all of the details of a feature in order for you to use
that feature in Java. All programmers initially learn how to program by mimicking what
other programmers have done before them. For each detail we ask you to mimic, we indi-
cate where the full discussion will be presented later in the text.]

When you save your public class definition in a file, the file name must be the class
name followed by the “. jawva” file-name extension. For our application, the file name is
Welcomel. java. All Java class definitions are stored in files ending with the file-name
extension “.java.”

- Common Programming Error 2.3

g It is an error for a public class if the file name is not identical to the class name (plus the
. jJava extension) in terms of both spelling and capitalization. Therefore, it is also an error
for a file to contain two or more public classes.

- Common Programming Error 2.4

It is an error not to end a file name with the . java extension for a file containing an appli-
cation’s class definition. If the extension is missing, the Java compiler will not be able to
compile the class definition.

o

A left brace (at the end of line 4), {, begins the body of every class definition. A cor-
responding right brace (in line 13 in this program), }, must end each class definition.
Notice that lines 6-11 are indented. This indentation is one of the spacing conventions men-
tioned earlier. We define each spacing convention as a Good Programming Practice.

Good Programming Practice 2.6

@ Whenever you type an opening left brace, {, in your program, immediately type the closing
right brace, }, then reposition the cursor between the braces to begin typing the body. This

practice helps prevent errors due to missing braces.

Good Programming Practice 2.7

@ Indent the entire body of each class definition one “level” of indentation between the left
brace, {, and the right brace, }, that define the body of the class. This format emphasizes the
structure of the class definition and helps make the class definition easier to read.

Good Programming Practice 2.8

Set a convention for the indent size you prefer, and then uniformly apply that convention. The
Tab key may be used to create indents, but tab stops may vary between editors. We recom-
mend using three spaces to form a level of indent.

[

_ Common Programming Error 2.5

If braces do not occur in matching pairs, the compiler indicates an error.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

60 Introduction to Java Applications Chapter 2

Line 5 is a blank line, inserted for program readability. Line 6,

is a single-line comment indicating the purpose of lines 611 of the program.
Line 7,

public static void main(String argsl[])

is a part of every Java application. Java applications begin executing at main. The paren-
theses after main indicate that main is a program building block called a method. Java
class definitions normally contain one or more methods. For a Java application class, ex-
actly one of those methods must be called main and must be defined as shown on line 7;
otherwise, the java interpreter will not execute the application. Methods are able to per-
form tasks and return information when they complete their tasks. The void keyword in-
dicates that this method will perform a task (displaying a line of text, in this program), but
will not return any information when it completes its task. Later, we will see that many
methods return information when they complete their task. Methods are explained in detail
in Chapter 6. For now, simply mimic main’s first line in your Java applications.

The left brace, {, on line 8 begins the body of the method definition. A corresponding
right brace, }, must end the method definition’s body (line 11 of the program). Notice that
the line in the body of the method is indented between the braces.

Good Programming Practice 2.9

@ Indent the entire body of each method definition one “level” of indentation between the left
brace, {, and the right brace, }, that define the body of the method. This format makes the
structure of the method stand out and helps make the method definition easier to read.

Line 9,
System.out.println();:

instructs the computer to perform an action, namely to print the string of characters con-
tained between the double quotation marks. A string is sometimes called a character string,
a message or a string literal. We refer to characters between double quotation marks gener-
ically as strings. White-space characters in strings are not ignored by the compiler.

System.out is known as the standard output object. System.out allows Java
applications to display strings and other types of information in the command window from
which the Java application executes. In Microsoft Windows 95/98/ME, the command
window is the MS-DOS prompt. In Microsoft Windows N'T/2000, the command window is
the Command Prompt (cmd . exe). In UNIX, the command window is normally called a
command window, a command tool, a shell tool or a shell. On computers running an oper-
ating system that does not have a command window (such as a Macintosh), the java inter-
preter normally displays a window containing the information the program displays.

Method System.out.println displays (or prints) a line of text in the command
window. When System.out.println completes its task, it automatically positions
the output cursor (the location where the next character will be displayed) to the beginning
of the next line in the command window. (This move of the cursor is similar to you pressing
the Enter key when typing in a text editor—the cursor appears at the beginning of the next
line in your file.)

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 61

The entire line, including System.out .println, its argument in the parentheses
(the string) and the semicolon (3), is a statement. Every statement must end with a semi-
colon (also known as the statement terminator). When the statement on line 9 of our pro-
gram executes, it displays the message Welcome to Java Programming! in the
command window.

Common Programming Error 2.6

@ Omitting the semicolon at the end of a statement is a syntax error. A syntax error occurs when

the compiler cannot recognize a statement. The compiler normally issues an error message
to help the programmer identify and fix the incorrect statement. Syntax errors are violations
of the language rules. Syntax errors are also called compile errors, compile-time errors or
compilation errors, because the compiler detects them during the compilation phase. You will
be unable to execute your program until you correct all of the syntax errors in it.

% When the compiler reports a syntax error, the error may not be on the line number indicated
by the error message. First, check the line for which the error was reported. If that line does
not contain syntax errors, check the preceding several lines in the program.

Some programmers find it difficult when reading and/or writing a program to match
the left and right braces ({ and }) that delimit the body of a class definition or a method
definition. For this reason, some programmers prefer to include a single-line comment after
a closing right brace (}) that ends a method definition and after a closing right brace that
ends a class definition. For example, line 11,

}

specifies the closing right brace (}) of method main, and line 13,

}

specifies the closing right brace (}) of class Welcomel. Each comment indicates the
method or class that the right brace terminates. We use such comments through Chapter 6
to help beginning programmers determine where each program component terminates. Af-
ter Chapter 6, we use such comments when pairs of braces contain many statements, which
makes the closing braces difficult to identify.

Good Programming Practice 2.10

@ Some programmers prefer to follow the closing right brace (}) of a method body or class def-
inition with a single-line comment indicating the method or class definition to which the
brace belongs. This comment improves program readability.

2.2.1 Compiling and Executing your First Java Application

We are now ready to compile and execute our program. To compile the program, we open
a command window, change to the directory where the program is stored and type

javac Welcomel.java

If the program contains no syntax errors, the preceding command creates a new file called
Welcomel.class containing the Java bytecodes that represent our application. These
bytecodes will be interpreted by the java interpreter when we tell it to execute the pro-
gram, as shown in the Microsoft Windows 2000 Command Prompt of Fig. 2.2.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

62 Introduction to Java Applications Chapter 2

| CMD.EXE 10l =|

D:\books\2001\jhtp4\examples\ch02\Fig02_01l>java welcomel :’
elcome to Java Programming!

D:\books\2001\jhtp4\examples\ch02\Fig02_01>_

-

{4 | v 4

Fig. 2.2 Executfing Welcomel in a Microsoft Windows 2000 Command Prompt.
In the command prompt of Figure 2.2, we typed
java Welcomel

to launch the java interpreter and indicate that it should load the “. class” file for class
Welcomel. Note that the “.class” file-name extension is omitted from the preceding
command; otherwise the interpreter will not execute the program. The interpreter automat-
ically calls method main. Next, the statement on line 7 of main displays “Welcome to
Java Programming!”’

@ The Java compiler generates syntax error messages when the syntax of a program is incor-

rect. When you are learning how to program, sometimes it is helpful to “break” a working
program so you can see the error messages produced by the compiler. Then, when you en-
counter that error message again, you will have an idea of the error’s cause. Try removing
a semicolon or curly brace from the program of Fig. 2.1, then recompile the program to see
the error messages generated by the omission.

2.3 Modifying Our First Java Program

This section continues our introduction to Java programming with two examples that mod-
ify the example in Fig. 2.1 to print text on one line by using multiple statements and to print
text on several lines by using a single statement.

2.3.1 Displaying a Single Line of Text with Multiple Statements

Welcome to Java Programming! can be displayed using several methods. Class
Welcome2, shown in Fig. 2.3, uses two statements to produce the same output as that
shown in Fig. 2.1.

Most of the program is identical to that of Fig. 2.1, so we discuss only the changes here.
Line 2,

is a single-line comment stating the purpose of this program. Line 4 begins the definition
of class Welcome2.
Lines 9-10 of method main,

System.out.print ():
System.out.println();

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 63

1

2

3

4 public class Welcome2 {

5

6

7 public static void main(String args[])
8 {

9 System.out.print ();

10 System.out.println()
11

12 }

13

14

Welcome to Java Programming
Fig. 2.3 Printing a line of text with mulfiple statements.

display one line of text in the command window. The first statement uses System.out’s
method print to display a string. The difference between print and println is that,
after displaying its argument, print does not position the output cursor at the beginning
of the next line in the command window; the next character the program displays in the
command window will appear immediately after the last character that print displays.
Thus, line 10 positions the first character in its argument, “J,” immediately after the last
character that line 9 displays (the space character at the end of the string on line 9). Each
print or println statement resumes displaying characters from where the last print
or println statement stopped displaying characters.

2.3.2 Displaying Multiple Lines of Text with a Single Statement

A single statement can display multiple lines by using newline characters. Newline char-
acters are “special characters” that indicate to System.out’s print and println
methods when they should position the output cursor to the beginning of the next line in the
command window. Figure 2.4 outputs four lines of text, using newline characters to deter-
mine when to begin each new line.

Most of the program is identical to those of Fig. 2.1 and Fig. 2.3, so we discuss only
the changes here. Line 2,

is a single-line comment stating the purpose of this program. Line 4 begins the definition
of class Welcome3.
Line 9,

System.out.println();:

displays four separate lines of text in the command window. Normally, the characters in a
string are displayed exactly as they appear in the double quotes. Notice, however, that the

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

64 Introduction to Java Applications

Chapter 2

two characters \ and n are not printed on the screen. The backslash (\) is called an escape
character. It indicates that a “special character” is to be output. When a backslash appears
in a string of characters, Java combines the next character with the backslash to form an
escape sequence. The escape sequence \n is the newline character. When a newline char-
acter appears in a string being output with System. out, the newline character causes the
screen’s output cursor to move to the beginning of the next line in the command window.
Some other common escape sequences are listed in Fig. 2.5.

{

NVOONOCOTRAWN=—

Welcome

to

Java
Programming!

public class Welcome3 {

public static void main(String args[])

System.out.println()

Fig. 2.4 Printing multiple lines of text with a single statement.

Escape sequence

\n
\t
\r

A\
\Il

Description

Newline. Position the screen cursor to the beginning of the next line.
Horizontal tab. Move the screen cursor to the next tab stop.

Carriage return. Position the screen cursor to the beginning of the cur-
rent line; do not advance to the next line. Any characters output after
the carriage return overwrite the characters previously output on that
line.

Backslash. Used to print a backslash character.

Double quote. Used to print a double-quote character. For example,
System.out.println("\"in quotes\"");
displays

"in quotes"

Fig. 2.6 Some common escape sequences.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 65

2.4 Displaying Text in a Dialog Box

Although the first several programs presented in this chapter display output in the com-
mand window, many Java applications use windows or dialog boxes (also called dialogs)
to display output. For example, World Wide Web browsers such as Netscape Navigator or
Microsoft Internet Explorer display Web pages in their own windows. Email programs typ-
ically allow you to type and read messages in a window provided by the email program.
Typically, dialog boxes are windows in which programs display important messages to the
user of the program. Java’s class JOptionPane provides prepackaged dialog boxes that
enable programs to display messages to users. Figure 2.6 displays the same string as in
Fig. 2.4 in a predefined dialog box known as a message dialog.

One of the great strengths of Java is its rich set of predefined classes that programmers
can reuse rather than “reinventing the wheel.” We use many of these classes throughout the
book. Java’s numerous predefined classes are grouped into categories of related classes
called packages. The packages are referred to collectively as the Java class library, or the
Java applications programming interface (Java API). The packages of the Java API are
split into core packages and extension packages. The names of the packages begin with
either “jawva” (core packages) or “javax” (extension packages). Many of the core and
extension packages are included as part of the Java 2 Software Development Kit. We over-
view these included packages in Chapter 6. As Java continues to evolve, new packages are
developed as extension packages. These extensions often can be downloaded from
java.sun.com and used to enhance Java’s capabilities. In this example, we use class
JOptionPane, which Java defines for us in package javax. swing.

Line 4,

is a single-line comment indicating the section of the program in which we specify im-
port statements for classes in Java’s extension packages. In every program that specifies
import statements, we separate the import statements into the following groups: Java
core packages (for package names starting with jawva), Java extension packages (for pack-
age names starting with javax) and Deitel packages (for our own packages defined later
in the book).

Line 5,

import javax.swing.JOptionPane;

is an import statement. The compiler uses import statements to identify and load class-
es used in a Java program. When you use classes from the Java API, the compiler attempts
to ensure that you use them correctly. The import statements help the compiler locate the
classes you intend to use. For each new class we use from the Java API, we indicate the
package in which you can find that class. This package information is important. It helps
you locate descriptions of each package and class in the Java API documentation. A Web-
based version of this documentation can be found at

java.sun.com/j2se/1.3/docs/api/index.html
Also, you can download this documentation to your own computer from

java.sun.com/j2se/1l.3/docs.html

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

66 Introduction to Java Applications Chapter 2

1
2
3
4
5 import javax.swing.JOptionPane;
6
7 public class Welcomed {
8
9
10 public static void main(String argsl[])
11 {
12 JOptionPane.showMessageDialog (
13 null,);
14
15 System.exit ():
16
17 }
18
19
E‘%Message LI
(5] Welcome
/1 to
Java

Programming!

Fig. 2.6 Displaying mulfiple lines in a dialog box.

We will provide an overview of the use of this documentation with the downloads and re-
sources for Java How to Program, Fourth Edition on our Web site, www.deitel.com.
Packages are discussed in detail in Chapter 8, Object-Based Programming.

Common Programming Error 2.7

@ All import statements must appear before the class definition. Placing an import state-
ment inside a class definition’s body or after a class definition is a syntax error.

Line 5 tells the compiler to load the JOptionPane class from the javax. swing
package. This package contains many classes that help Java programmers define graphical
user interfaces (GUIs) for their application. GUI components facilitate data entry by the
user of your program and formatting or presentation of data outputs to the user of your pro-
gram. For example, Fig. 2.7 contains a Netscape Navigator window. In the window, there
is a bar containing menus (File, Edit, View, etc.), called a menu bar. Below the menu bar
is a set of buttons that each have a defined task in Netscape Navigator. Below the buttons
there is a text field in which the user can type the name of the World Wide Web site to visit.
The menus, buttons and text fields are part of Netscape Navigator’s GUI They enable you
to interact with the Navigator program. Java contains classes that implement the GUI com-
ponents described here and others that will be described in Chapter 12, Basic Graphical
User Interface Components, and Chapter 13, Advanced Graphical User Interface Compo-
nents.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 67

pbutton menu menu bar text field

- . Java™, C, C++, Wisual Bas\c®, Object Technalogy, and Internet and World Wide Web Programming Training
n-Site Seminars Delivered Worldwide {Contact Us For on-site seminars on any programming topic)

deitel@deitel. com
975.579.9911

& Associares Inc. 490E Boston Post Road, Suite 200, Sudbury, MA& 01776

iZorporate Training Curriculum

Publications/Book, Store _ : .
e s Full-time and Summer-Internship Job Opportunities
Publications

D”“L"—'Dad”w@ Available Immediately for Computer Science and/or Information
E:Z (ir::;zantly i Technology Graduates and Students at our Sudbury, MA location

Tech~ Funa Interacta |

Fig. 2.7 A sample Netscape Navigator window with GUI components.
In method main of Fig. 2.6, lines 12—-13,

JOptionPane. showMessageDialog (
null,):

indicate a call to method showMessageDialog of class JOptionPane. The method
requires two arguments. When a method requires multiple arguments, the arguments are
separated with commas (,). Until we discuss JOptionPane in detail in Chapter 13, the
first argument will always be the keyword null. The second argument is the string to dis-
play. The first argument helps the Java application determine where to position the dialog
box. When the first argument is null, the dialog box appears in the center of the computer
screen. Most applications you use on your computer execute in their own window (e.g.,
email programs, Web browsers and word processors). When such an application displays
a dialog box, it normally appears in the center of the application window, which is not nec-
essarily the center of the screen. Later in this book, you will see more elaborate applications
in which the first argument to method showMessageDialog will cause the dialog box
to appear in the center of the application window, rather than the center of the screen.

Good Programming Practice 2.11
@ Place a space after each comma (,) in an argument list, to make programs more readable.

Method JOpt ionPane . showMessageDialog is a special method of class JOp-
tionPane called a static method. Such methods are always called by using their class
name followed by a dot operator (.) and the method name, as in

ClassName . methodName (arguments)

Many of the predefined methods we introduce early in this book are static methods. We
ask you to mimic this syntax for calling static methods until we discuss them in detail
in Chapter 8, Object-Based Programming.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

68 Introduction to Java Applications Chapter 2

Executing the statement at lines 1213 displays the dialog box in Fig. 2.8. The title bar
of the dialog contains the string Message, to indicate that the dialog is presenting a mes-
sage to the user. The dialog box automatically includes an OK button that allows the user
to dismiss (hide) the dialog by pressing the button. This is accomplished by positioning the
mouse cursor (also called the mouse pointer) over the OK button and clicking the left
mouse button.

Remember that all statements in Java end with a semicolon (;). Therefore, lines 12—
13 represent one statement. Java allows large statements to be split over many lines. How-
ever, you cannot split a statement in the middle of an identifier or in the middle of a string.

—a- Common Programming Error 2.8
@ Splitting a statement in the middle of an identifier or a string is a syntax error.

Line 15,
System.exit ();

uses static method exit of class System to terminate the application. In any applica-
tion that displays a graphical user interface, this line is required in order to terminate the
application. Notice once again the syntax used to call the method—the class name (Sys-
tem), a dot (.) and the method name (exit). Remember that identifiers starting with cap-
ital letters normally represent class names. So, you can assume that System is a class.
Class System is part of the package java.lang. Notice that class System is not im-
ported with an import statement at the beginning of the program. By default, package
java.langisimported in every Java program. Package java. langis the only package
in the Java API for which you are not required to provide an import statement.

The argument 0 to method exit indicates that the application has terminated success-
fully. (A nonzero value normally indicates that an error has occurred.) This value is passed
to the command window that executed the program. The argument is useful if the program
is executed from a batch file (on Windows 95/98/ME/NT/2000 systems) or a shell script
(on UNIX/Linux systems). Batch files and shell scripts often execute several programs in
sequence. When the first program ends, the next program begins execution automatically.
It is possible to use the argument to method exit in a batch file or shell script to determine
whether other programs should execute. For more information on batch files or shell
scripts, see your operating system’s documentation.

Title bar ———— SRS x|
S Welcome The dialog box is
o to - automatically sized
The OK button Java to accommodate
allows the user. Programming! the string.
to dismiss the \
dialog box. Mouse cursor

Fig. 2.8 Message dialog box.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 69

Common Programming Error 2.9

@ Forgetting to call System. exit in an application that displays a graphical user interface

prevents the program from terminating properly. This omission normally results in the com-
mand window preventing you from typing any other commands. Chapter 14 discusses in
more detail the reason that System.exit is required in GUI-based applications.

2.5 Another Java Application: Adding Integers

Our next application inputs two integers (whole numbers, like —22, 7 and 1024) typed by a
user at the keyboard, computes the sum of the values and displays the result. This program
uses another predefined dialog box from class JOptionPane called an input dialog that
allows the user to input a value for use in the program. The program also uses a message
dialog to display the sum of the integers. Figure 2.9 shows the application and sample
screen captures.

1

2

3

4

5 import javax.swing.JOptionPane;

6

7 public class Addition {

8

9

10 public static void main(String args[])

11 {

12 String firstNumber;

13 String secondNumber;

14 int numberl;

15 int number2;

16 int sum;

17

18

19 firstNumber =

20 JOptionPane.showInputDialog ();
21

22

23 secondNumber =

24 JOptionPane.showInputDialog ();
25

26

27 numberl = Integer.parseInt(firstNumber);
28 number2 = Integer.parselInt(secondNumber);
29

30

31 sum = numberl + number2;

32

33

34 JOptionPane.showMessageDialog (

35 null, + sum,

36 JOptionPane.):

Fig. 2.9 An addition program “in action” (part 1 of 2).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

70 Infroduction to Java Applications Chapter 2

38 System.exit ()i

Ega Input E E;i Input E

E Enter first integer E Enter second integer
145 | L] |
Cancel Cancel

Ega Results E

The sum is 117

Fig. 2.9 An addition program “in action” (part 2 of 2).

Lines 1 and 2,

are single-line comments stating the figure number, file name and purpose of the program.
Line 4,

is a single-line comment specifying that the next line imports a class from the Java exten-
sion packages.
Line 5,

import javax.swing.JOptionPane;

indicates that the compiler should load class JOptionPane for use in this application.
As stated earlier, every Java program consists of at least one class definition. Line 7,

public class Addition {

begins the definition of class Addition. The file name for this public class must be
Addition.java.

Remember that all class definitions start with an opening left brace (at the end of line
7), {, and end with a closing right brace, } (in line 42).

As stated earlier, every application begins execution with method main (lines 10—40).
The left brace (line 11) marks the beginning of main’s body and the corresponding right
brace (line 36) marks the end of main’s body.

Lines 12-13,

String firstNumber;
String secondNumber;

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 71

are declarations. The words £irstNumber and secondNumber are the names of vari-
ables. A variable is a location in the computer’s memory where a value can be stored for
use by a program. All variables must be declared with a name and a data type before they
can be used in a program. This declaration specifies that the variables £irstNumber and
secondNumber are data of type String (located in package java.lang), which
means that the variables will hold strings. A variable name can be any valid identifier. Like
statements, declarations end with a semicolon (;). Notice the single-line comments at the
end of each line. This use and placement of the comments is a common practice used by
programmers to indicate the purpose of each variable in the program.

Good Programming Practice 2.12

Choosing meaningful variable names helps a program to be self-documenting (i.e., it be-
comes easier to understand the program simply by reading it rather than by reading manuals
or viewing an excessive number of comments).

Good Programming Practice 2.13

By convention, variable-name identifiers begin with a lowercase letter. As with class names,
every word in the name after the first word should begin with a capital letter. For example,
identifier £irstNumber has a capital Nin its second word, Number.

Good Programming Practice 2.14

Some programmers prefer to declare each variable on a separate line. This format allows for
easy insertion of a descriptive comment next to each declaration.

Java automatically imports classes from package java.lang, such as class String.
Therefore, import statements are not required for classes in package java.lang.

Declarations can be split over several lines, with each variable in the declaration sep-
arated by a comma (i.e., a comma-separated list of variable names). Several variables of
the same type may be declared in one declaration or in multiple declarations. Lines 12-13
can also be written as follows:

String firstNumber,
secondNumber;

Lines 14-16,

int numberl;
int number2;
int sum;

declare that variables number1, number2 and sum are data of type int, which means
that these variables will hold integer values (whole numbers such as 7, —11, 0 and 31,914).
We will soon discuss the data types £loat and double, for specifying real numbers
(numbers with decimal points, such as 3.4, 0.0 and —11.19), and variables of type char,
for specifying character data. A char variable may hold only a single lowercase letter, a
single uppercase letter, a single digit or a single special character (such as x, $, 7 and *)
and escape sequences (such as the newline character, \n). Java is capable of representing
characters from many other spoken languages. Types such as int, double and char are
often called primitive data types, or built-in data types. Primitive-type names are keywords;

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

72 Infroduction to Java Applications Chapter 2

thus, they must appear in all lowercase letters. Chapter 4 summarizes the eight primitive
types (boolean, char, byte, short, int, long, float and double).

Line 18 is a single-line comment indicating that the next statement reads the first
number from the user. Lines 19-20,

firstNumber =
JOptionPane.showInputDialog ():

reads from the user a String representing the first of the two integers to add. Method
JOptionPane.showInputDialog displays the input dialog in Fig. 2.10.

The argument to showInputDialog indicates what the user should type in the text
field. This message is called a prompt, because it directs the user to take a specific action.
The user types characters in the text field, and then clicks the OK button or presses the
Enter key to return the string to the program. (If you type and nothing appears in the text
field, position the mouse pointer in the text field and click the left mouse button to activate
the text field.) Unfortunately, Java does not provide a simple form of input that is analogous
to displaying output in the command window with System.out’s method print and
println. For this reason, we normally receive input from a user through a GUI compo-
nent (an input dialog box in this program).

Technically, the user can type anything in the text field of the input. Our program
assumes that the user follows directions and enters a valid integer value. In this program, if
the user either types a noninteger value or clicks the Cancel button in the input dialog, a
runtime logic error will occur. Chapter 14, Exception Handling, discusses how to make
your programs more robust by enabling them to handle such errors. This is also known as
making your program fault tolerant.

The result of JOptionPane method showInputDialog (a String containing
the characters typed by the user) is given to variable £irstNumber by using the assign-
ment operator, =. The statement (lines 19-20) is read as “firstNumber gets the value
of JOptionPane.showInputDialog("Enter first integer").” The =
operator is called a binary operator, because it has two operands: £irstNumber and the
result of the expression JOptionPane.showInputDialog("Enter first
integer"). This whole statement is called an assignment statement, because it assigns
a value to a variable. The expression to the right side of the assignment operator, =, is
always evaluated first. In this case, the program calls method showInputDialog, and
the value input by the user is assigned to £irstNumber.

Prompt to the user.

When the user clicks OK,

showInputDialog [Input Text field in which the
returns the 45 typed by Enter first integer user types a value.
the user fo the program E [45 - |

as a String. The \

program must convert Cancel
the String to an
integer.

Fig. 2.10 Input dialog box.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 73

Line 22 is a single-line comment indicating that the next statement reads the second
number from the user.
Lines 23-24,

secondNumber =
JOptionPane.showInputDialog ()i

display an input dialog in which the user types a String representing the second of the
two integers to add.
Lines 27-28,

numberl Integer.parseInt(firstNumber);
number2 = Integer.parselInt(secondNumber);

convert the two Strings input by the user to int values that the program can use in a
calculation. Method Integer.parseInt (a static method of class Integer) con-
verts its String argument to an integer. Class Integer is defined in package ja-
va.lang. Line 27 assigns the int (integer) value that Integer .parseInt returns to
variable number1. Line 28 assigns the int (integer) value that Integer .parseInt
returns to variable number2.

Line 31,

sum = numberl + number2;

is an assignment statement that calculates the sum of the variables numberl and
number2 and assigns the result to variable sum by using the assignment operator, =. The
statement is read as, “sum gets the value of numberl + number2.” Most calculations are
performed in assignment statements. When the program encounters the addition operation,
it uses the values stored in the variables number1 and number2 to perform the calcula-
tion. In the preceding statement, the addition operator is a binary operator: its two operands
are numberl and number2.

Good Programming Practice 2.15

@ Place spaces on either side of a binary operator. This format makes the operator stand out
and makes the program more readable.

After the calculation has been performed, lines 34-36,

JOptionPane.showMessageDialog (
null, + sum, v
JOptionPane.);:

use method JOptionPane.showMessageDialog to display the result of the addi-
tion. This new version of JOptionPane method showMessageDialog requires four
arguments. As in Fig. 2.6, the null first argument indicates that the message dialog will
appear in the center of the screen. The second argument is the message to display. In this
case, the second argument is the expression

+ sum

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

74 Infroduction to Java Applications Chapter 2

which uses the operator + to “add” a String (the literal "The sum is ") and the value
of variable sum (the int variable containing the result of the addition on line 31). Java has
a version of the + operator for string concatenation that concatenates a String and a val-
ue of another data type (including another String); the result of this operation is a new
(and normally longer) String. If we assume that sum contains the integer value 117, the
expression evaluates as follows:

1. Java determines that the two operands of the + operator (the string "The sum
is " and the integer sum) are of different types and one of them is a String.

2. Java converts sum to a String.

3. Java appends the String representation of sum to the end of "The sumis ",
resulting in the String "The sumis 117".

Method showMessageDialog displays the resulting String in the dialog box. Note
that the automatic conversion of integer sum occurs only because the addition operation
concatenates the String literal "The sum is " and sum. Also, note that the space be-
tween is and 117 is part of the string "The sum is ". String concatenation is discussed
in detail in Chapter 10, “Strings and Characters.”

Common Programming Error 2.10

@ Confusing the + operator used for string concatenation with the + operator used for addition

can lead to strange results. For example, assuming that integer variable y has the value 5,
the expression "y + 2 = " + y + 2 results in the string "y + 2 = 52", not "y + 2 =7",
because first the value of y is concatenated with the string "y + 2 = ", and then the value 2
is concatenated with the new larger string "y + 2 = 5". The expression "y +2 =" + (y +
2) produces the desired result.

The third and fourth arguments of method showMessageDialog in Fig. 2.9 repre-
sent the string that should appear in the dialog box’s title bar and the dialog box type,
respectively. The fourth argument—JOptionPane.PLAIN MESSAGE—is a value
indicating the type of message dialog to display. This type of message dialog does not dis-
play an icon to the left of the message. Figure 2.11 illustrates the second and third argu-
ments and shows that there is no icon in the window.

The message dialog types are shown in Fig. 2.12. All message dialog types except
PLAIN_MESSAGE dialogs display an icon to the user indicating the type of message.

Argument 3: The title bar string

&3 Results Argument 2: The

message to display

The sumis 117

=

The user clicks OK to
dismiss the dialog.

Fig. 2.11 Message dialog box customized with the four-argument version of
method showMessageDialog.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 75

Message dialog type Icon Description
JoptionPane.ERROR_MESSAGE Displays a dialog that indicates an error
e to the user.

JoptionPane.INFORMATION MESSAGE _g= Displays a dialog with an informational
1 message to the user. The user can sim-
o ply dismiss the dialog.

JOptionPane.WARNING MESSAGE Displays a dialog that warns the user of
g a potential problem.

JoptionPane.QUESTION MESSAGE Displays a dialog that poses a question
E to the user. This dialog normally
requires a response, such as clicking on
a'Yes or a No button.

JOptionPane.PLAIN MESSAGE noicon Displays a dialog that simply contains a
message, with no icon.

Fig. 2.12 JOptionPane constanfs for message dialogs.

2.6 Memory Concepts

Variable names such as number1, number2 and sum actually correspond to locations in
the computer's memory. Every variable has a name, a type, a size and a value.
In the addition program of Fig. 2.9, when the statement

numberl = Integer.parseInt(firstNumber);

executes, the string previously typed by the user in the input dialog and stored in £irst-
Number is converted to an int and placed into a memory location to which the name
number1 has been assigned by the compiler. Suppose that the user enters the string 45 as
the value for £irstNumber. The program converts f£irstNumber to an int, and the
computer places that integer value, 45, into location number1, as shown in Fig. 2.13.

Whenever a value is placed in a memory location, the value replaces the previous value
in that location. The previous value is destroyed (i.e., lost).

When the statement

number2 = Integer.parselInt(secondNumber);

executes, suppose that the user enters the string 72 as the value for secondNumber. The
program converts secondNumber to an int, and the computer places that integer value,
72, into location number2. The memory appears as shown in Fig. 2.14.

numberl 45

Fig. 2.13 Memory location showing the name and value of variable numberl.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

76 Infroduction to Java Applications Chapter 2

numberl 45

number2 72

Fig. 2.14 Memory locations after storing values for numberl and number2.

After the program of Fig. 2.9 obtains values for number1 and number2, it adds the
values and places the sum into variable sum. The statement

sum = numberl + number2;

performs the addition and also replaces sum’s previous value. After sum has been calcu-
lated, memory appears as shown in Fig. 2.15. Note that the values of numberl and
number2 appear exactly as they did before they were used in the calculation of sum.
These values were used, but not destroyed, as the computer performed the calculation.
Thus, when a value is read from a memory location, the process is nondestructive.

2.7 Arithmetic

Most programs perform arithmetic calculations. The arithmetic operators are summarized
in Fig. 2.16. Note the use of various special symbols not used in algebra. The asterisk (*)
indicates multiplication, and the percent sign (%) is the modulus operator, which is dis-
cussed shortly. The arithmetic operators in Fig. 2.16 are binary operators, because they
each operate on two operands. For example, the expression sum + value contains the bi-
nary operator + and the two operands sum and value.

Integer division yields an integer quotient; for example, the expression 7 / 4 evaluates
to 1, and the expression 17 / 5 evaluates to 3. Note that any fractional part in integer divi-
sion is simply discarded (i.e., truncated)—no rounding occurs. Java provides the modulus
operator, %, that yields the remainder after integer division. The expression x % y yields the
remainder after x is divided by y. Thus, 7 % 4 yields 3, and 17 % 5 yields 2. This operator
is most commonly used with integer operands, but also can be used with other arithmetic
types. In later chapters, we consider many interesting applications of the modulus operator,
such as determining if one number is a multiple of another. There is no arithmetic operator
for exponentiation in Java. Chapter 5 shows how to perform exponentiation in Java. [Note:
The modulus operator can be used with both integer and floating-point numbers.]

numberl 45
number2 72
sum 117

Fig. 2.15 Memory locations after calculating the sum of number1 and
number?2.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 77

Java operation Arithmetic operator Algebraic expression Java expression
Addition + f+7 £+ 7
Subtraction - p-c P -c¢c
Multiplication * bm b*m
Division / X x/y
xly or=orx<y
y
Modulus % rmod s r % s

Fig. 2.16 Arithmetic operators.

Arithmetic expressions in Java must be written in straight-line form to facilitate
entering programs into the computer. Thus, expressions such as “a divided by b” must be
written as a / b, so that all constants, variables and operators appear in a straight line. The
following algebraic notation is generally not acceptable to compilers:

a
b

Parentheses are used in Java expressions in the same manner as in algebraic expres-
sions. For example, to multiply a times the quantity b + ¢, we write

a* (b+c)

Java applies the operators in arithmetic expressions in a precise sequence determined
by the following rules of operator precedence, which are generally the same as those fol-
lowed in algebra:

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Thus, parentheses may be used to force the order of evaluation to occur in any se-
quence desired by the programmer. Parentheses are at the highest level of prece-
dence. In cases of nested or embedded parentheses, the operators in the innermost
pair of parentheses are applied first.

2. Multiplication, division and modulus operations are applied next. If an expression
contains several multiplication, division or modulus operations, the operators are
applied from left to right. Multiplication, division and modulus operators have the
same level of precedence.

3. Addition and subtraction operations are applied last. If an expression contains sev-
eral addition and subtraction operations, the operators are applied from left to
right. Addition and subtraction operators have the same level of precedence.

The rules of operator precedence enable Java to apply operators in the correct order. When
we say that operators are applied from left to right, we are referring to the associativity of
the operators. We will see that some operators associate from right to left. Figure 2.17 sum-
marizes these rules of operator precedence. This table will be expanded as additional Java
operators are introduced. A complete precedence chart is included in Appendix C.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

78 Infroduction to Java Applications Chapter 2

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses on the same
level (i.e., not nested), they are evaluated left to right.

* /and % Multiplication Evaluated second. If there are several of this type of
Division operator, they are evaluated from left to right.
Modulus

+or - Addition Evaluated last. If there are several of this type of oper-
Subtraction ator, they are evaluated from left to right.

Fig. 2.17 Precedence of arithmetic operators.

Now, let us consider several expressions in light of the rules of operator precedence.
Each example lists an algebraic expression and its Java equivalent.
The following is an example of an arithmetic mean (average) of five terms:

a+b+c+d+e

Algebra: m =
g 5
Java: m=(a+b+c+d+e) / 5;

The parentheses are required, because division has higher precedence than that of addition.
The entire quantity (a + b + ¢ + d + e) is to be divided by 5. If the parentheses are er-
roneously omitted, we obtain a + b + ¢ + d + e / 5, which evaluates as

a+b+c+d+*
5

The following is an example of the equation of a straight line:

Algebra: y=mx+b
Java: y =m* x + b;

No parentheses are required. The multiplication operator is applied first, because multipli-
cation has a higher precedence than that of addition. The assignment occurs last, because it
has a lower precedence than that of multiplication and division.

The following example contains modulus (%), multiplication, division, addition and
subtraction operations:

Algebra: z =prqg+wlx—y

fcxeoyoXoxcy

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Java:

Chapter 2 Introduction to Java Applications 79

The circled numbers under the statement indicate the order in which Java applies the oper-
ators. The multiplication, modulus and division operations are evaluated first in left-to-
right order (i.e., they associate from left to right), because they have higher precedence than
that of addition and subtraction. The addition and subtraction operations are evaluated next.
These operations are also applied from left to right.

Not all expressions with several pairs of parentheses contain nested parentheses. For
example, the expression

a*(b+c)+c* (4d+e)

does not contain nested parentheses. Rather, these parentheses are on the same level.
To develop a better understanding of the rules of operator precedence, consider the
evaluation of a second-degree polynomial (y = ax’ + bx + ¢):

y = a * x * x + b * x + ¢
The circled numbers under the preceding statement indicate the order in which Java applies
the operators. There is no arithmetic operator for exponentiation in Java; x“ is represented
asx * x.

Suppose that a, b, ¢ and x are initialized as follows: a=2,b=3,c=7 andx = 5.
Figure 2.18 illustrates the order in which the operators are applied in the preceding second-
degree polynomial.

As in algebra, it is acceptable to place unnecessary parentheses in an expression to
make the expression clearer. Such unnecessary parentheses are also called redundant

parentheses. For example, the preceding assignment statement might be parenthesized as
follows:

vyv=(a*x*x)+ (b*=x) +c;

Good Programming Practice 2.16

@ Using parentheses for complex arithmetic expressions, even when the parentheses are not
necessary, can make the arithmetic expressions easier to read.

2.8 Decision Making: Equality and Relational Operators

This section introduces a simple version of Java’s if structure that allows a program to
make a decision based on the truth or falsity of some condition. If the condition is met (i.e.,
the condition is true), the statement in the body of the i £ structure is executed. If the con-
dition is not met (i.e., the condition is false), the body statement does not execute. We will
see an example shortly.

Conditions in if structures can be formed by using the equality operators and rela-
tional operators summarized in Fig. 2.19. The relational operators all have the same level
of precedence and associate from left to right. The equality operators both have the same
level of precedence, which is lower than the precedence of the relational operators. The
equality operators also associate from left to right.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

80 Infroduction to Java Applications

Stepl. y =2 *5 *5 + 3 *5 4+ 7;

2*515!1

Step2. y =1 5+ 3 *5 + 7;
Step3. ¥y =5 3 *5 + 7;
3 * 5 is [15]

Step4. y = 50

50 + 15 is !
7;

Step5. y = 65 +

Step 6. y = 72;

+ 7 is [72]

Chapter 2

(Leftmost multiplication)

(Leftmost multiplication)

(Multiplication before addition)

(Leftmost addition)

(Last addition)

(Last operation—place 72 into y)

Fig. 2.18 Order in which a second-degree polynomial is evaluated.

Standard algebraic
equality or
relational operator

Equality operators

#

Relational operators

\YARAN

IN

Java equality
or relational
operator

Example

of Java Meaning of

condition Java condition

X ==y xisequal toy

x =y x is not equal to y

X >y X is greater than y

X <y x is less than y

X >= X is greater than or equal to y
x <= x is less than or equal to ¥

Fig. 2.19 Equality and relational operators.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 81

Common Programming Error 2.11

It is a syntax error if the operators ==, !=, >=and<= contain spaces between their symbols,
asin= =1 = > =and < =, respectively.

Common Programming Error 2.12

Reversing the operators =, >=and <=, as in =1, => and =<, is a syntax error.

Common Programming Error 2.13

Confusing the equality operator, ==, with the assignment operator, =, can be a logic error
or a syntax error. The equality operator should be read as “is equal to,” and the assignment
operator should be read as “gets” or “gets the value of.” Some people prefer to read the
equality operator as “double equals” or “equals equals.”

o s B

The next example uses six i £ structures to compare two numbers input into text fields
by the user. If the condition in any of these 1 £ statements is true, the assignment statement
associated with that 1 £ structure executes. The user inputs two values through input dia-
logs. Next, the program converts the input values to integers and stores them in variables
numberl and number2. Then, the program compares the numbers and displays the
results of the comparisons in an information dialog. The program and sample outputs are
shown in Fig. 2.20.

1

2

3

4

5

6 import javax.swing.JOptionPane;

7

8 public class Comparison {

9

10

11 public static void main(String args[])
12 {

13 String firstNumber;

14 String secondNumber;

15 String result;

16 int numberil;

17 int number2;

18

19

20 firstNumber =

21 JOptionPane.showInputDialog ():
22

23

24 secondNumber =

25 JOptionPane.showInputDialog ();
26

Fig. 2.20 Using equality and relational operators (part 1 of 3).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

82 Introduction to Java Applications Chapter 2

27

28 numberl = Integer.parseInt(firstNumber);

29 number2 = Integer.parseInt(secondNumber);

30

31

32 result = ;

33

34 if (numberl == number2)

35 result = numberl + + number2;

36

37 if (numberl != number2)

38 result = numberl + + number2;

39

40 if (numberl < number2)

41 result = result + + numberl + + number2;
42

43 if (numberl > number2)

44 result = result + + numberl + + number2;
45

46 if (numberl <= number2)

47 result = result + + numberl + + number2;
48

49 if (numberl >= number2)

50 result = result + + numberl + + number?2;
51

52

53 JOptionPane.showMessageDialog (

54 null, result, ,

55 JOptionPane.);:

56

57 System.exit ();

58

59 }

60

61

i Input x| i Input x|

E Enter first integer: E Enter first integer:
[777 | [777 |
Cancel Cancel

Egal:omparison Results ﬂ

@ FIT==TFF7

o FIT7 <=TFF

FI7 ==TFF

Fig. 2.20 Using equality and relational operators (part 2 of 3).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications

83

i Input x| [nput x|
E Enter first integer: E Enter second integer:
[1000 | [2000 |

Egal:omparison Results ll
JC_:i 1000 != 2000
= 1000 < 2000
1000 <= 2000

Egalnput Egalnput ﬂ
E Enter first integer: E Enter second integer:
[z000 | [1000 |

Egal:omparison Results ﬂ

@ 2000 = 1000
= 2000 = 1000
2000 == 1000

Fig. 2.20 Using equality and relational operators (part 3 of 3).

The definition of application class Comparison begins at line 8,

public class Comparison {

As discussed previously, method main (lines 11-59) begins the execution of every Java

application.
Lines 13-17,

String firstNumber;
String secondNumber;
String result;

int numberl;

int number2;

declare the variables used in method main. Note that there are three variables of type
String and two variables of type int. Remember that variables of the same type may be
declared in one declaration or in multiple declarations. If more than one name is declared

in a declaration, the names are separated by commas (,), as in

String firstNumber, secondNumber, result;

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

84 Introduction to Java Applications Chapter 2

or as in

String firstNumber,
secondNumber,
result;

This is set of names known as a comma-separated list. Once again, notice the comment at
the end of each declaration in lines 13—17, indicating the purpose of each variable in the

program.
Lines 20-21,

firstNumber =
JOptionPane.showInputDialog ()

use JOptionPane.showInputDialog to allow the user to input the first integer val-
ue as a string and store it in £irstNumber.
Lines 24-25,

secondNumber =
JOptionPane.showInputDialog ();

use JOptionPane.showInputDialog to allow the user to input the second integer
value as a string and store it in secondNumber.
Lines 28-29,

numberl = Integer.parseInt(firstNumber);
number2 = Integer.parselInt(secondNumber);

convert each string input by the user in the input dialogs to type int and assign the values
to int variables number1 and number2.
Line 32,

result = ;

assigns to result the empty string—a string containing no characters. Every variable de-
clared in a method (such as main) must be initialized (given a value) before it can be used
in an expression. Because we do not yet know what the final result string will be, we
assign to result the empty string as a temporary initial value.

Common Programming Error 2.14

@ Not initializing a variable defined in a method before that variable is used in the method’s
body is a syntax error.

Lines 34-35,

if (numberl == number2)
result = result + numberl + + number2;

define an if structure that compares the values of the variables numberl and number2
to determine if they are equal. The i f structure always begins with keyword i £, followed
by a condition in parentheses. The 1 £ structure expects one statement in its body. The in-
dentation shown here is not required, but it improves the readability of the program by em-
phasizing that the statement in line 35 is part of the i f structure that begins on line 34.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 85

Good Programming Practice 2.17

@ Indent the statement i7n the body of an if structure to make the body of the structure stand
out and to enhance program readability.

Good Programming Practice 2.18
@ Place only one statement per line in a program. This format enhances program readability

In the preceding if£ structure, if the values of variables number1 and number2 are
equal, line 35 assigns to result the value of result + numberl + "==" +
number2. As discussed in Fig. 2.9, the + operator in this expression performs string con-
catenation. For this discussion, we assume that each of the variables numberl and
number2 has the value 123. First, the expression converts numbexr1’s value to a string
and appends it to result (which currently contains the empty string) to produce the string
"123". Next, the expression appends " == " to "123" to produce the string "123 == ".
Finally, the expression appends number2 to "123 ==" to produce the string
"123 == 123". The String result becomes longer as the program proceeds through
the i £ structures and performs more concatenations. For example, given the value 123 for
both number1 and number2 in this discussion, the i £ conditions at lines 46-47 (<=) and
49-50 (>=) are also true. So, the program displays the result

123 == 123
123 <= 123
123 >= 123

in a message dialog.
Common Programming Error 2.15

@ Replacing operator == in the condition of an if structure, such as 1f (x == 1), with op-
erator =, asin if (x =1), is a syntax error.

Common Programming Error 2.16

@ Forgetting the left and right parentheses for the condition in an ifF structure is a syntax er-
ror. The parentheses are required.

Notice that there is no semicolon (;) at the end of the first line of each i £ structure.
Such a semicolon would result in a logic error at execution time. For example,

if (numberl == number2);
result = result + numberl + + number2;

would actually be interpreted by Java as

if (numberl == number2)

.
I

result = result + numberl + + number2;

where the semicolon on the line by itself—called the empty statement—is the statement to
execute if the condition in the 1 £ structure is true. When the empty statement executes, no
task is performed in the program. The program then continues with the assignment state-
ment, which executes regardless of whether the condition is true or false.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

86 Introduction to Java Applications Chapter 2

Common Programming Error 2.17

@ Placing a semicolon immediately after the right parenthesis of the condition in an i f struc-

ture is normally a logic error. The semicolon will cause the body of the if structure to be
empty, so the 1f structure itself will perform no action, regardless of whether its condition
is true. Worse yet, the intended body statement of the 1 F structure will now become a state-
ment in sequence with the if structure and will always be executed.

Notice the use of spacing in Fig. 2.20. Remember that white-space characters, such as
tabs, newlines and spaces, are normally ignored by the compiler. So, statements may be
split over several lines and may be spaced according to the programmer’s preferences
without affecting the meaning of a program. It is incorrect to split identifiers and string lit-
erals. Ideally, statements should be kept small, but it is not always possible to do so.

Good Programming Practice 2.19

@ A lengthy statement may be spread over several lines. If a single statement must be split

across lines, choose breaking points that make sense, such as after a comma in a comma-
separated list, or after an operator in a lengthy expression. If a statement is split across two
or more lines, indent all subsequent lines until the end of the statement.

The chart in Fig. 2.21 shows the precedence of the operators introduced in this chapter.
The operators are shown from top to bottom in decreasing order of precedence. Notice that
all of these operators, with the exception of the assignment operator, =, associate from left
to right. Addition is left associative, so an expression like x + y + z is evaluated as if it had
been written as (x +y) + z. The assignment operator, =, associates from right to left, so
an expression like x =y = 0 is evaluated as if it had been written as x = (y = 0), which,
as we will soon see, first assigns the value 0 to variable y and then assigns the result of that
assignment, 0, to x.

Good Programming Practice 2.20

@ Refer to the operator precedence chart (see the complete chart in Appendix C) when writing

expressions containing many operators. Confirm that the operations in the expression are
performed in the order you expect. If you are uncertain about the order of evaluation in a
complex expression, use parentheses to force the order, exactly as you would do in algebraic
expressions. Be sure to observe that some operators, such as assignment, =, associate from
right to left rather than from left to right.

Operators Associativity Type

() left to right parentheses

* /% left to right multiplicative
+ - left to right additive

< <= > >= left to right relational

== I= left to right equality

= right to left assignment

Fig. 2.21 Precedence and associativity of the operators discussed so far.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 87

We have introduced many important features of Java in this chapter, including dis-
playing data on the screen, inputting data from the keyboard, performing calculations and
making decisions. We should note that these applications are meant to introduce the reader
to basic programming concepts. As you will see in later chapters, more substantial Java
applications contain just a few lines of code in method main that creates the objects that
perform the work of the application. In Chapter 3, we demonstrate many similar techniques
as we introduce Java applet programming. In Chapter 4, we build on the techniques of
Chapter 2 and Chapter 3 as we introduce structured programming. Y ou will become more
familiar with indentation techniques. We will study how to specify and vary the order in
which statements are executed; this order is called flow of control.

2.9 (Optional Case Study) Thinking About Objects: Examining
the Problem Statement

Now we begin our optional, object-oriented design and implementation case study. The
“Thinking About Objects” sections at the ends of this and the next several chapters will ease
you into object orientation by examining an elevator simulation case study. This case study
will provide you with a substantial, carefully paced, complete design and implementation ex-
perience. In Chapters 3 through 13, Chapter 15 and Chapter 22, we will perform the various
steps of an object-oriented design (OOD) process using the UML while relating to the object-
oriented concepts discussed in the chapters. In Appendices G, H and I, we will implement the
elevator simulator using the techniques of object-oriented programming (OOP) in Java. We
present the complete case-study solution. This is not an exercise; rather, it is an end-to-end
learning experience that concludes with a detailed walkthrough of the actual Java code. We
have provided this case study so that you can become accustomed to the kinds of substantial
problems encountered in industry. We hope you enjoy this learning experience.

Problem Statement

A company intends to build a two-floor office building and equip it with an elevator. The
company wants you to develop an object-oriented software-simulator application in Java
that models the operation of the elevator to determine whether it will meet the company’s
needs. The company wants the simulation to contain an elevator system. The application
consists of three parts. The first and most substantial part is the simulator, which models the
operation of the elevator system. The second part is the display of this model on screen so
that the user may view it graphically. The final part is the graphical user interface, or GUI,
that allows the user to control the simulation. Our design and implementation will follow
the so-called Model-View-Controller architecture we will learn about in Section 13.17.

The elevator system consists of an elevator shaft and an elevator car. In our simulation,
we model people who ride the elevator car (referred to as “the elevator”) to travel between
the floors in the elevator shaft, as shown in Fig. 2.22, Fig. 2.23 and Fig. 2.24.

The elevator contains a door (called the “elevator door”) that opens upon the elevator’s
arrival at a floor and closes upon the elevator’s departure from that floor. The elevator door
is closed during the trips between floors to prevent the passenger from being injured by
brushing against the wall of the elevator shaft. In addition, the elevator shaft connects to a
door on each floor (referred to as the two “floor doors”), so people cannot fall down the
shaft when the elevator is not at a floor. Note that we do not display the floor doors in the
figures, because they would obscure the inside of the elevator (we use a mesh door to rep-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

88 Introduction to Java Applications Chapter 2

resent the elevator door because mesh allows us to see inside the elevator). The floor door
opens concurrently with the elevator door, so it appears as if both doors open at the same
time. A person sees only one door, depending on that person’s location. When the person
is inside the elevator, the person sees the elevator door and can exit the elevator when this
door opens; when the person is outside the elevator, the person sees the floor door and can
enter the elevator when that door opensl.

The elevator starts on the first floor with all the doors closed. To conserve energy, the
elevator moves only when necessary. For simplicity, the elevator and floors each have a
capacity of only one person.2

The user of our application should, at any time, be able to create a unique person in the
simulation and situate that person on either the first or second floor (Fig. 2.22). When cre-
ated, the person walks across the floor to the elevator. The person then presses a button on
the floor next to the elevator shaft (referred to as a “floor button”). When pressed, that floor
button illuminates, then requests the elevator. When summoned, the elevator travels to the
person’s floor. If the elevator is already on that person’ floor, the elevator does not travel.
Upon arrival, the elevator resets the button inside the elevator (called the “elevator
button”), sounds the bell inside the elevator, then opens the elevator door (which opens the
floor door on that floor). The elevator then signals the elevator shaft of the arrival. The ele-
vator shaft, upon receiving this message, resets the floor button and illuminates the light on
that floor.

Occasionally, a person requests the elevator when it is moving. If the request was gen-
erated at the floor from which the elevator just departed, the elevator must “remember” to
revisit that floor after carrying the current passenger to the other floor.

When the floor door opens, the person enters the elevator after the elevator passenger
(if there is one) exits. If a person neither enters nor requests the elevator, the elevator closes
its door and remains on that floor until the next person presses a floor button to summon
the elevator.

When a person enters the elevator, that person presses the elevator button, which also
illuminates when pressed. The elevator closes its door (which also closes the floor door on
that floor) and moves to the opposite floor. The elevator takes five seconds to travel
between floors. When the elevator arrives at the destination floor, the elevator door opens
(along with the floor door on that floor) and the person exits the elevator.

The application user introduces a person onto the first or second floor by pressing the
First Floor button or the Second Floor button, respectively. When the user presses the
First Floor button, a person should be created (by the elevator simulation) and positioned
on the first floor of the building. When the user presses the Second Floor button, a person
should be created and positioned on the second floor. Over time, the user can create any
number of people in the simulation, but the user cannot create a new person on an occupied
floor. For example, Fig. 2.22 shows that the First Floor button is disabled to prevent the
user from creating more than one person on the first floor. Figure 2.23 shows that this
button is reenabled when the person rides the elevator.

1. Most people do not consider this when riding an elevator—they really think of one “elevator
door,” when in reality, there is a door in the elevator and a door on the floor, and these doors open
and close in tandem.

2. After you have studied this case study, you may want to modify it to allow more than one person
to ride the elevator at once and more than one person to wait on each floor at once.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 89

Second floor Floor buttons Lights Elevator shaft

3% Deitel Elevator Simulation

=lolx]

/

/

pustiion || secondfioor |
Person walking GUl button Bell Elevator
to elevator
First floor (Disabled) GUI button Elevator door Elevator button

Fig. 2.22 Person moving towards elevator on the first floor.

[Deitel Elevator Simulation 4 =]

| First Fioor H EE[:undFluur ‘

Fig. 2.23 Person riding the elevator to the second floor.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

90 Introduction to Java Applications Chapter 2

The company requests that we display the results of the simulation graphically, as
shown in Fig. 2.22, Fig. 2.23 and Fig. 2.24. At various points in time, the screen should dis-
play a person walking to the elevator, pressing a button and entering, riding and exiting the
elevator. The display also should also show the elevator moving, the doors opening, the
lights turning on and off, the buttons illuminating when they are pressed and the buttons
darkening when they are reset.

The company requests that audio be integrated into the simulation. For example, as a
person walks, the application user should hear the footsteps. Each time a floor or elevator
button is pressed or reset, the user should hear a click. The bell should ring upon the ele-
vator’s arrival, and doors should creak when they open or close. Lastly, “elevator music”
should play as the elevator travels between floors.

Analyzing and Designing the Elevator System

We must analyze and design our system before we implement it as Java code. The output
of the analysis phase is intended to specify clearly in a requirements document what the
system is supposed to do. The requirements document for this case study is essentially the
description of what the elevator simulator is supposed to do—presented informally in the
last few pages. The output of the design phase should specify clearly how the system should
be constructed to do what is needed. In the next several “Thinking About Objects” sections,
we perform the steps of an object-oriented design (OOD) process on the elevator system.
The UML is designed for use with any OOD process—many such processes exist. One
popular method is the Rational Unified Process™ developed by Rational Software Corpo-
ration. For this case study, we present our own simplified design process. For many of our
readers, this will be their first OOD/UML experience.

Person exiting and walking Floor light lit when Elevator door open
away on floor elevator arrives
[Deitel Elevator Simulation e - ol x|

| rrsthioor || seconaFiaor

Fig. 2.24 Person walking away from elevator.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 91

We now begin the design phase of our elevator system, which will span Chapters 2
through 13, Chapter 15 and Chapter 22, in which we gradually develop the design.
Appendices G, H and I present the complete Java implementation.

A system is a set of components that interact to solve a problem. In our case study, the
elevator-simulator application represents the system. A system may contain “subsystems,”
which are “systems within a system.” Subsystems simplify the design process by managing
subsets of system responsibilities. System designers may allocate system responsibilities
among the subsystems, design the subsystems, then integrate the subsystems with the
overall system. Our elevator-simulation system contains three subsystems, which are
defined in the problem statement:

1. the simulator model (which represents the operation of the elevator system),
2. the display of this model on screen (so that the user may view it graphically), and
3. the graphical user interface (that allows the user to control the simulation).

We develop the simulator model gradually through Chapter 15 and present the imple-
mented model in Appendix H. We discuss the GUI components allowing the user to control
the model in Chapter 12 and introduce how the subsystems work together to form the
system in Chapter 13. Finally, we introduce how to display the simulator model on the
screen in Chapter 22 and conclude the display in Appendix I.

System structure describes the system’s objects and their inter-relationships. System
behavior describes how the system changes as its objects interact with each other. Every
system has both structure and behavior—we must design both. However, there are several
distinct types of system structures and behaviors. For example, the interaction among the
objects in the system differs from the interaction between the user and the system, yet both
are interactions that constitute the system behavior.

The UML specifies nine types of diagrams for modeling systems. Each diagram
models a distinct characteristic of a system’s structure or behavior—the first four diagrams
relate to system structure; the remaining five diagrams relate to system behavior:

1. Class diagram
Object diagram
Component diagram
Deployment diagram
Activity diagram
Statechart diagram

Collaboration diagram

® NN A BN

Sequence diagram
9. Use-Case diagram

Class diagrams, which we explain in “Thinking About Objects” Section 3.8, model
the classes, or “building blocks,” used to build a system. Each entity in the problem state-
ment is a candidate to be a class in the system (i.e., Person, Elevator, Floor, etc.).

Object diagrams, which we also explain in Section 3.8, model a “snapshot” of the
system by modeling a system’s objects and their relationships at a specific point in time.
Each object represents an instance of a class from the class diagram (e.g., the elevator

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

92 Infroduction to Java Applications Chapter 2

object is an instance of class Elevator), and there may be several objects created from
one class (e.g., both the first floor button object and the second floor button object are cre-
ated from class FloorButton).

Component diagrams, presented in Section 13.17, model the components—resources
(which include graphics and audio) and packages (which are groups of classes)—that make
up the system.

Deployment diagrams model the runtime requirements of the system (such as the com-
puter or computers on which the system will reside), memory requirements for the system,
or other devices the system requires during execution. We do not present deployment dia-
grams in this case study, because we are not designing a “hardware-specific” system—our
simulation requires only one computer containing the Java 2 runtime environment on
which to run.

Statechart diagrams, which we introduce in Section 5.11, model how an object
changes state (i.e., the condition of an object at a specific time). When an object changes
state, that object may behave differently in the system.

Activity diagrams, which we also introduce in Section 5.11, model an object’s
activity—that object’s workflow during program execution. An activity diagram is a flow-
chart that models the actions the object will perform and in what order.

Both collaboration diagrams and sequence diagrams model the interactions among
the objects in a system. Collaboration diagrams emphasize what interactions occur,
whereas sequence diagrams emphasize when interactions occur. We introduce these dia-
grams in Section 7.10 and Section 15.12, respectively.

Use-Case diagrams represent the interaction between the user and our system (i.e., all
actions the user may perform on the system). We introduce use-case diagrams in
Section 12.16, where we discuss user-interface issues.

In “Thinking About Objects” Section 3.17, we continue designing our elevator system
by identifying the classes in the problem statement. We accomplish this by extracting all
the nouns and noun clauses from the problem statement. Using these classes, we develop a
class diagram that models the structure of our elevator simulation system.

Internet and World-Wide-Web Resources
Listed below are URLSs and books on object-oriented design with the UML—you may find
these references helpful as you study the remaining sections of our case-study presentation.

www.omg .com/technology/uml/index.htm
This is the UML resourse page from the Object Management Group, which provides specifications
for various object-oriented technologies, such as the UML.

www.smartdraw.com/drawing/software/indexUML.asp
This site shows how to draw UML diagrams without the use of modeling tools.

www.rational.com/uml/index. jsp
This is the UML resource page for Rational Software Corporation—the company that created the
UML.

microgold.com/Stage/UML_FAQ.html
This site provides the UML FAQ maintained by Rational Software.

www.softdocwiz.com/Dictionary.htm
This site hosts the Unified Modeling Language Dictionary, which lists and defines all terms used in
the UML.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 93

www . embarcadero.com
This site provides a free 30-day license to download a trial-version of Describe " — the new UML
modeling tool from Embarcadero Technologies®.

www.ics.uci.edu/pub/arch/uml/uml_books_and tools.html
This site lists books on the UML and software tools that use the UML, such as Rational Rose" and
Embarcadero Describe .

www.ootips.org/ood-principles.html
This site provides answers to the question “what makes good OOD?”

wdvl.internet.com/Authoring/Scripting/Tutorial/oo_design.html
This site introduces OOD and provides OOD resources.

Bibliography
Booch, G., Object-Oriented Analysis and Design with Applications. Addison-Wesley. Massachu-
setts; 1994,

Folwer, M., and Scott, K., UML Distilled Second Edition; A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley. Massachusetts; 1999.

Larman, C., Applying UML and Patterns; An Introduction to Object-Oriented Analysis and Design.
Prentice Hall. New Jersey; 1998.

Page-Jones, M., Fundamentals of Object-Oriented Design in UML. Addison-Wesley. Massachusetts;
1999.

Rumbaugh, J.; Jacobson, 1.; and Booch, G., The Unified Modeling Language Reference Manual.
Addison-Wesley. Massachusetts; 1999.

Rumbaugh, J.; Jacobson, 1.; and Booch, G., The Unified Modeling Language User Guide. Addison-
Wesley. Massachusetts; 1999.

Rumbaugh, J.; Jacobson, I.; and Booch, G., The Complete UML Training Course. Prentice Hall.
New Jersey; 2000.

Rumbaugh, J.; Jacobson, 1.; and Booch, G., The Unified Software Development Process. Addison-
Wesley. Massachusetts; 1999.

Rosenburg, D., and Scott, K., Applying Use Case Driven Object Modeling with UML: An Annotated
e-Commerce Example. Addison-Wesley. Massachusetts; 2001.

Schach, S., Object-Oriented and Classical Software Engineering. McGraw Hill. New York; 2001.
Schneider, G., and Winters, J., Applying Use Cases. Addison-Wesley. Massachusetts; 1998.
Scott, K., UML Explained. Addison-Wesley. Massachusetts; 2001.

Stevens, P., and Pooley, R.J., Using UML: Software Engineering with Objects and Components
Revised Edition. Addison-Wesley; 2000.

SUMMARY

* An application is a program that executes using the java interpreter.

* A comment that begins with // is called a single-line comment. Programmers insert comments to
document programs and improve program readability.

* A string of characters contained between double quotation marks is called a string, a character
string, a message or a string literal.

* Blank lines, space characters, newline characters and tab characters are known as white-space
characters. White-space characters outside strings are ignored by the compiler.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

94 Infroduction to Java Applications Chapter 2

* Keyword class introduces a class definition and is immediately followed by the class name.

* Keywords (or reserved words) are reserved for use by Java. Keywords must appear in all lower-
case letters.

* By convention, all class names in Java begin with a capital letter. If a class name contains more
than one word, the first letter of each word should be capitalized.

* An identifier is a series of characters consisting of letters, digits, underscores (_) and dollar signs
($) that does not begin with a digit, does not contain any spaces and is not a keyword.

* Javais case sensitive—that is, uppercase and lowercase letters are different.

* Aleftbrace, {, begins the body of every class definition. A corresponding right brace, }, ends each
class definition.

 Java applications begin executing at method main.
* Methods are able to perform tasks and return information when they complete their tasks.

¢ The first line of method main must be defined as
public static void main(String argsl[])

e A left brace, {, begins the body of a method definition. A corresponding right brace, }, ends the
method definition’s body.

* System.out is known as the standard output object. System.out allows Java applications to
display strings and other types of information in the command window from which the Java appli-
cation executes.

» The escape sequence \n indicates a newline character. Other escape sequences include \t (tab),
\r (carriage return), \ \ (backslash) and \" (double quote).

* Method println of the System.out object displays (or prints) a line of information in the
command window. When print1ln completes its task, it automatically positions the output cur-
sor to the beginning of the next line in the command window.

* Every statement must end with a semicolon (also known as the statement terminator).

¢ The difference between System.out’s print and println methods is that print does not
position to the beginning of the next line in the command window when it finishes displaying its
argument. The next character displayed in the command window appears immediately after the
last character displayed with print.

» Java contains many predefined classes that are grouped into categories of related classes called
packages. The packages are referred to collectively as the Java class library or the Java applica-
tions programming interface (Java API).

* Class JoptionPane is defined in package javax.swing. Class JOptionPane contains
methods that display dialog boxes.

* The compiler uses import statements to locate classes required to compile a Java program.

* The javax.swing package contains many classes that help define a graphical user interface
(GUI) for an application. GUI components facilitate data entry by the user of a program and data
outputs by a program.

* Method showMessageDialog of class JOptionPane displays a dialog box containing a
message to the user.

* A static method is called by following its class name by a dot (.) and the name of the method.

* Method exit of class System terminates an application. Class System is in package ja-
va.lang. All Java programs import package java.lang by default.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 95

e A variable is a location in the computer’s memory where a value can be stored for use by a pro-
gram. The name of a variable is any valid identifier.

¢ All variables must be declared with a name and a data type before they can be used in a program.

* Declarations end with a semicolon (;) and can be split over several lines, with each variable in the
declaration separated by a comma (forming a comma-separated list of variable names).

* Variables of type int hold integer values (whole numbers such as 7, —11, 0 and 31,914).

* Typessuchas int, float, double and char are primitive data types. Names of primitive data
types are keywords of the Java programming language.

» A prompt directs the user to take a specific action.

* A variable is assigned a value by using an assignment statement, which uses the assignment oper-
ator, =. The = operator is called a binary operator, because it has two operands.

¢ Method Integer.parselInt (a static method of class Integer) converts its String ar-
gument to an int value.

» Java has a version of the + operator for string concatenation that enables a string and a value of
another data type (including another string) to be concatenated.

* Every variable has a name, a type, a size and a value.

* When a value is placed in a memory location, the value replaces the value previously in that loca-
tion. When a value is read out of a memory location, the variable’s value remains unchanged.

» The arithmetic operators are binary operators, because they operate on two operands.
* Integer division yields an integer result.

* Arithmetic expressions in Java must be written in straight-line form to facilitate entering programs
into the computer.

* Operators in arithmetic expressions are applied in a precise sequence determined by the rules of
operator precedence.

» Parentheses may be used to force the order of evaluation of operators.

¢ When we say that operators are applied from left to right, we are referring to the associativity of
the operators. Some operators associate from right to left.

* Java’s if structure allows a program to make a decision based on the truth or falsity of a condition.
If the condition is met (i.e., the condition is true), the statement in the body of the if structure ex-
ecutes. If the condition is not met (i.e., the condition is false), the body statement does not execute.

¢ Conditions in i £ structures can be formed by using the equality operators and relational operators.
* The empty string is a string containing no characters.

* Every variable declared in a method must be initialized before it can be used in an expression.

TERMINOLOGY

addition operator (+) body of a class definition
applet body of a method definition
application braces ({ and })
argument to a method case sensitive

arithmetic operators character string
assignment operator (=) class

assignment statement class definition
associativity of operators .class file extension
backslash (\) escape character class keyword

binary operator class name

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

96 Introduction to Java Applications

command tool
command window
comma-separated list
comment (//)
compilation error
compile error
compiler
compile-time error
condition
decision
declaration
dialog
dialog box
division operator (/)
document a program
empty string (" ")
equality operators
== “is equal to”
= “is not equal to”
escape sequence
exit method of System
false
graphical user interface (GUI)
identifier
if structure
import statement
input dialog
int primitive type
integer (int)
Integer class
integer division
interpreter
Java
Java 2 Software Development Kit (J2SDK)
Java applications programming interface (API)
Java class library
Java documentation comment
. java file extension
java interpreter
java.lang package
javax.swing package
JOptionPane class
JOptionPane.ERROR_MESSAGE
JOptionPane.INFORMATION MESSAGE
JOptionPane.PLAIN MESSAGE
JOptionPane.QUESTION_ MESSAGE
JOptionPane .WARNING MESSAGE
left brace, {, begins the body of a class
left brace, {, begins the body of a method
literal

Chapter 2

main method
memory
memory location
message
message dialog
method
Microsoft Internet Explorer browser
modulus operator (%)
mouse cursor
mouse pointer
MS-DOS Prompt
multiple-line comment
multiplication operator (*)
nested parentheses
Netscape Navigator browser
newline character (\n)
object
operand
operator
package
parentheses ()
parseInt method of class Integer
precedence
primitive data type
programmer-defined class
prompt
public keyword
relational operators
< “is less than”
<= “is less than or equal to”
> “is greater than
>= “is greater than or equal to”
reserved words
right brace, }, ends the body of a class
right brace, }, ends the body of a method
right-to-left associativity
rules of operator precedence
semicolon (;) statement terminator
shell tool
showInputDialog method of JOptionPane
showMessageDialog method of
JOptionPane
single-line comment
standard output object
statement
statement terminator (;)
static method
straight-line form
string
String class

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 97

string concatenation title bar of a dialog
string concatenation operator (+) true
subtraction operator (=) user-defined class
syntax error variable
System class variable name
System.out object variable value
System.out.print method void keyword
System.out.println method white-space characters
SELF-REVIEW EXERCISES
2.1 Fill in the blanks in each of the following statements:

a) The begins the body of every method, and the ends the body of

every method.
b) Every statement ends with a .

c¢) The structure is used to make decisions.

d) begins a single-line comment.

e) and are called white-space characters.
f) Class contains methods that display message dialogs and input dialogs.

2) are reserved for use by Java.

h) Java applications begin execution at method .

i) Methods and display information in the command window.

) A method is always called using its class name followed by a dot (.) and its

method name.

2.2 State whether each of the following is true or false. If false, explain why.
a) Comments cause the computer to print the text after the // on the screen when the pro-
gram is executed.
b) All variables must be given a type when they are declared.
¢) Java considers the variables number and NuMbEr to be identical.
d) The modulus operator (%) can be used only with integer operands.
e) The arithmetic operators *, /, %, + and - all have the same level of precedence.
f) Method Integer.parseInt converts an integer to a String.

23 Write Java statements to accomplish each of the following tasks:

a) Declare variables ¢, thisIsAvVariable, g76354 and number to be of type int.

b) Display a dialog asking the user to enter an integer.

c¢) Convert a String to an integer, and store the converted value in integer variable age.
Assume that the String is stored in value.

d) If the variable number is not equal to 7, display "The variable number is not
equal to 7" in a message dialog. [Hint: Use the version of the message dialog that re-
quires two arguments.]

e) Print the message "This is a Java program" on one line in the command window.

f) Print the message "This is a Java program" on two lines in the command window;
the first line should end with Jawva. Use only one statement.

24 Identify and correct the errors in each of the following statements:
a) if (¢ < 7);
JOptionPane.showMessageDialog(null,
)i
b) if (¢ => 7))
JOptionPane.showMessageDialog(null,
)i

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

98 Infroduction to Java Applications Chapter 2

25 Write a statement (or comment) to accomplish each of the following tasks:
a) State that a program will calculate the product of three integers.
b) Declare the variables %, ¥, z and result to be of type int.
c) Declare the variables xVal, yVal and zVal to be of type String.
d) Prompt the user to enter the first value, read the value from the user and store it in the
variable xval.
e) Prompt the user to enter the second value, read the value from the user and store it in the
variable yval.
f) Prompt the user to enter the third value, read the value from the user and store it in the
variable zvVal.
g) Convert xVal to an int, and store the result in the variable x.
h) Convert yVal to an int, and store the result in the variable y.
i) Convert zVal to an int, and store the result in the variable z.
j) Compute the product of the three integers contained in variables x, y and =z, and assign
the result to the variable result.
k) Display a dialog containing the message "The product is " followed by the value
of the variable result.
1) Return a value from the program indicating that the program terminated successfully.
2.6 Using the statements you wrote in Exercise 2.5, write a complete program that calculates and

prints the product of three integers.

ANSWERS TO SELF-REVIEW EXERCISES

2.1 a)

left brace ({), right brace (}). b) semicolon (;). ¢) if. d) //. e) Blank lines, space

characters, newline characters and tab characters. f) JOptionPane. g) Keywords. h)main.
i) System.out .print and System.out.println. j) static.

2.2 a)

b)
)
d)
e

f)
2.3 a)
b)
)
d)

e
f)

False. Comments do not cause any action to be performed when the program is executed.
They are used to document programs and improve their readability.

True.

False. Java is case sensitive, so these variables are distinct.

False. The modulus operator can also be used with noninteger operands in Java.

False. The operators *, / and % are on the same level of precedence, and the operators +
and - are on a lower level of precedence.

False. Integer.parseInt method converts a String to an integer (int) value.

int ¢, thisIsAvVariable, 76354, number;
value = JOptionPane.showInputDialog ();
age = Integer.parselInt(value);
if (number != 7)
JOptionPane.showMessageDialog(null,

System.out.println();
System.out.println()

24 The solutions to Self-Review Exercise 2.4 are as follows:

a)

Error: Semicolon after the right parenthesis of the condition in the i £ statement.
Correction: Remove the semicolon after the right parenthesis. [Note: The result of this
error is that the output statement will be executedregardless of whether the condition in
the i £ statement is true. The semicolon after the right parenthesis is considered an empty
statement—a statement that does nothing. We will learn more about the empty statement
in the next chapter.]

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 99
b) Error: The relational operator => is incorrect.
Correction: Change => to >=.
25 a)
b) int %, y, z, result;
c¢) String xVal, yVal, zVal;
d) xVal = JOptionPane.showInputDialog (
)i
e) yVal = JOptionPane.showInputDialog (
)i
f) zval = JOptionPane.showInputDialog (
)
g) X = Integer.parseInt(xVal);
h) y = Integer.parseInt(yVal);
i) z = Integer.parseInt(zVal);
j) result = x * y * z;
k) JOptionPane.showMessageDialog(null,
+ result);
1) System.exit()i
2.6 The solution to Exercise 2.6 is as follows:
1
2
3
4 import javax.swing.JOptionPane;
5
6 public class Product {
7
8 public static void main(String args[])
9 {
10 int %, y, z, result;
11 String xVal, yVal, zVal;
12
13 xVal = JOptionPane.showInputDialog (
14);
15 yVal = JOptionPane.showInputDialog (
16)i
17 zVal = JOptionPane.showInputDialog (
18):
19
20 X = Integer.parseInt(xVal);
21 y = Integer.parseInt(yvVal);
22 z = Integer.parseInt(zvVal);
23
24 result = x * y * z;
25 JOptionPane.showMessageDialog(null,
26):
27
28 System.exit ();
29 }
30 3

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

100

Introduction to Java Applications Chapter 2

Egalnput ﬂ Egalnput ﬂ

E Enter first integer: E Enter second integer:
2 | 14 |
Cancel Cancel

Egalnput ﬂ E‘%Message ﬂ

E |Enter third integer: | JQI. The product is 60
; [l

EXERCISES
2.7 Fill in the blanks in each of the following statements:
a) are used to document a program and improve its readability.
b) An input dialog capable of receiving input from the user is displayed with method
of class
¢) A decision can be made in a Java program with an .
d) Calculations are normally performed by statements.
e) A dialog capable of displaying a message to the user is displayed with method
of class

2.8

29

2.10

2.11

Write Java statements that accomplish each of the following tasks:

a) Display the message "Enter two numbers", using class JOptionPane.

b) Assign the product of variables b and ¢ to variable a.

c) State that a program performs a sample payroll calculation (i.e., use text that helps to doc-
ument a program).

State whether each of the following is true or false. If false, explain why.

a) Java operators are evaluated from left to right.

b) The following are all valid variable names: _under_bar , m928134, t5, j7,
her sales$, his_$account_total, a, b$, c, z, z2.

¢) A valid Java arithmetic expression with no parentheses is evaluated from left to right.

d) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.

Fill in the blanks in each of the following statements:

a) What arithmetic operations have the same precedence as multiplication?

b) When parentheses are nested, which set of parentheses is evaluated first in an arlthmetlc
expression?

¢) A location in the computer s memory that may contain different values at various times
throughout the execution of a program is called a

What displays in the message dialog when each of the given Java statements is performed?

Assume thatx = 2andy = 3.

a) JOptionPane.showMessageDialog(null, + x);
b) JOptionPane.showMessageDialog(null,
+ (x +x));
c) JOptionPane.showMessageDialog(null,);:
d) JOptionPane.showMessageDialog(null,
(x +y) + + (y+x));

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 101

2.12 Which of the following Java statements contain variables whose values are changed or re-
placed?

a) p=1i+3+k+7;

b) JOptionPane.showMessageDialog(null,

c) JOptionPane.showMessageDialog(null,);
d) stringVal = JOptionPane.showInputDialog ()

2.13 Given that y = ax® + 7, which of the following are correct Java statements for this equation?
a) y=a *x *x *x +7;

b)) y=a*x*x* (x+7);
) y=(a*x)*x* (x+7);
dy=(a*=x)*x*x+17;
e) y=a* (x*x*x)+17;
N y=a*x* (x*x+17);

2.14 State the order of evaluation of the operators in each of the following Java statements, and
show the value of x after each statement is performed:

a) x =7+ 3 *6 /2 -1;

b) x =2 %2 +2 *2 -2/ 2;

c) x=(3*9 * (3 + (9 *3/ (3)))):

2.15 Write an application that displays the numbers 1 to 4 on the same line, with each pair of ad-
jacent numbers separated by one space. Write the program using the following methods:

a) Using one System.out statement.

b) Using four System.out statements.

2.16 Write an application that asks the user to enter two numbers, obtains the numbers from the
user and prints the sum, product, difference and quotient (division) of the numbers. Use the tech-
niques shown in Fig. 2.9.

2.17 Write an application that asks the user to enter two integers, obtains the numbers from the
user and displays the larger number followed by the words “is larger” in an information message
dialog. If the numbers are equal, print the message “These numbers are equal.” Use the tech-
niques shown in Fig. 2.20.

2.18 Write an application that inputs three integers from the user and displays the sum, average,
product, smallest and largest of the numbers in an information message dialog. Use the GUI tech-
niques shown in Fig. 2.20. [Note: The calculation of the average in this exercise should result in an
integer representation of the average. So, if the sum of the values is 7, the average should be 2, not
2.3333...1]

2.19 Write an application that inputs from the user the radius of a circle and prints the circle’s di-
ameter, circumference and area. Use the value 3.14159 for w. Use the GUI techniques shown in
Fig. 2.9. [Note: You may also use the predefined constant Math. PI for the value of 7. This constant
is more precise than the value 3.14159. Class Math is defined in the java.lang package, so you
do not need to import it.] Use the following formulas (r is the radius):

diameter = 2r
circumference = 27r

area = ‘I'CJ.’2

2.20 Write an application that displays in the command window a box, an oval, an arrow and a
diamond using asterisks (*), as follows:

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

102 Introduction to Java Applications Chapter 2

kkkkkkkkk * %%k * *

* * * * * %k %k * *

* * * * *kkk*x * *

* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *

* * * * * * *
*hkkkkkkkk * %%k * *

2.21 Modify the program you created in Exercise 2.20 to display the shapes in a JOption-
Pane.PLAIN_ MESSAGE dialog. Does the program display the shapes exactly as in Exercise 2.20?

2.22 What does the following code print?
System.out.println():

2.23 What does the following code print?

System.out .println/():
System.out.println();:
System.out.println();
System.out.println();
System.out .println():

2.24 What does the following code print?

System.out.print ();
System.out.print ();
System.out .print (
System.out.print (
System.out.println(

2.25 What does the following code print?

System.out .print ():
System.out.println();
System.out.println();
System.out.print ();
System.out .println():

2.26 Write an application that reads five integers and determines and prints the largest and the
smallest integers in the group. Use only the programming techniques you learned in this chapter.

2.27 Write an application that reads an integer and determines and prints whether it is odd or even.
[Hint: Use the modulus operator. An even number is a multiple of 2. Any multiple of 2 leaves a re-
mainder of 0 when divided by 2.]

2.28 Write an application that reads in two integers and determines and prints if the first is a multi-
ple of the second. [Hint: Use the modulus operator.]

2.29 Write an application that displays in the command window a checkerboard pattern as fol-
lows:

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 2 Introduction to Java Applications 103

* * * %k k * * %
* % % % * * %k *
* * * % %k * * %
* * % * * % % *
* % *k * * %k *k *
* % % % * * % *
* * * % * * * %
* * % * * * % *

2.30 Modify the program you wrote in Exercise 2.29 to display the checkerboard pattern in a
JOptionPane.PLAIN MESSAGE dialog. Does the program display the shapes exactly as in
Exercise 2.29?7

2.31 Here’s a peek ahead. In this chapter, you have learned about integers and the data type int.
Java can also represent uppercase letters, lowercase letters and a considerable variety of special sym-
bols. Every character has a corresponding integer representation. The set of characters a computer
uses and the corresponding integer representations for those characters is called that computer’s char-
acter set. You can indicate a character value in a program simply by enclosing that character in single
quotes, as in "A".

You can determine the integer equivalent of a character by preceding that character with
(int). This form is called a cast (we will say more about casts in Chapter 4) as in:

(int) 'aA"
The following statement outputs a character and its integer equivalent:

System.out.println/(+ +
+ (int)):

When the preceding statement executes, it displays the character A and the value 65 (from the so-
called Unicode character set) as part of the string.

Write an application that displays the integer equivalents of some uppercase letters, lowercase
letters, digits and special symbols. At a minimum, display the integer equivalents of the following: A
BCabcO1l2$ * + / andtheblank character.

2.32 Write an application that inputs one number consisting of five digits from the user, separates
the number into its individual digits and prints the digits separated from one another by three spaces
each. For example, if the user types in the number 42339, the program should print

[Hint: It is possible to do this exercise with the techniques you learned in this chapter. You will
need to use both division and modulus operations to “pick off”” each digit.]

Assume that the user enters the correct number of digits. What happens when you execute the
program and type a number with more than five digits? What happens when you execute the pro-
gram and type a number with fewer than five digits?

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

104 Introduction to Java Applications Chapter 2

2.33 Using only the programming techniques you learned in this chapter, write an application that
calculates the squares and cubes of the numbers from O to 10 and prints the resulting values in table
format as follows:

number square cube
0 0 0

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

[Note: This program does not require any input from the user.]

2.34 Write a program that reads a first name and a last name from the user as two separate inputs
and concatenates the first name and last name, separating them by a space. Display in a message di-
alog the concatenated name.

2.35 Write a program that inputs five numbers and determines and prints the number of negative
numbers input, the number of positive numbers input and the number of zeros input.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Introduction to Java
Applets

Objectives

* To observe some of Java’s exciting capabilities
through the Java 2 Software Development Kit’s
demonstration applets.

* To differentiate between applets and applications.

* To be able to write simple Java applets.

* To be able to write simple Hypertext Markup
Language (HTML) files to load an applet into the
appletviewer or a World Wide Web browser.

* To understand the difference between variables and
references.

* To execute applets in World Wide Web browsers.

He would answer to “Hi!” or to any loud cry

Such as “Fry me!” or “Fritter my wig!”

To “What-you-may-call-um!” or “What-was-his-name!”
But especially “Thing-um-a-jig!”

Lewis Carroll

Fainting is only a bridge linking the painter's mind with that
of the viewer.

Eugene Delacroix

My method is to take the utmost trouble to find the right thing
to say, and then to say it with the utmost levity.

George Bernard Shaw

Though this be madness, yet there is method in 't.

William Shakespeare

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

106 Infroduction to Java Applets Chapter 3

Outline

3.1 Introduction
3.2 Sample Applets from the Java 2 Software Development Kit
3.2.1 The TicTacToe Applet
3.2.2 The DrawTest Applet
3.2.3 The Java2D Applet
3.3 A Simple Java Applet: Drawing a String
3.3.1 Compiling and Executing welcomeapplet
3.4 Two More Simple Applets: Drawing Strings and Lines
3.5 Another Java Applet: Adding Floating-Point Numbers
3.6 Viewing Applets in a Web Browser
3.6.1 Viewing Applets in Netscape Navigator 6
3.6.2 Viewing Applets in Other Browsers Using the Java Plug-In
3.7 Java Applet Internet and World Wide Web Resources

3.8 (Optional Case Study) Thinking About Objects: Identifying the
Classes in a Problem Statement

Summary ¢ Terminology * Self-Review Exercises ® Answers to Self-Review Exercises * Exercises

3.1 Introduction

In Chapter 2, we introduced Java application programming and several important aspects
of Java applications. This chapter introduces another type of Java program called a Java ap-
plet. Applets are Java programs that can be embedded in Hypertext Markup Language (HT-
ML) documents (i.e., Web pages). When a browser loads a Web page containing an applet,
the applet downloads into the Web browser and begins execution.

The browser that executes an applet is generically known as the applet container. The
Java 2 Software Development Kit (J2SDK) includes an applet container (called the
appletviewer) for testing applets before you embed them in a Web page. Most Web
browsers in use today do not support Java 2 directly. For this reason, we normally demon-
strate our applets using the appletviewer. One browser that does support Java 2 is
Netscape Navigator 6. To execute applets in other Web browsers such as Microsoft Internet
Explorer or earlier versions of Netscape Navigator requires the Java Plug-in, which we dis-
cuss in Section 3.6.2 of this chapter.

@ Most Web browsers in use today do not support applets written in Java 2. To execute applets
in such browsers, you must use the Java Plug-in (see Section 3.6.2).

) Test your applets in the appletviewer applet container before executing them in a Web
browser. This enables you to see error messages that may occur. Also, once an applet is ex-
ecuting in a browser, it is sometimes difficult to reload the applet after making changes to
the applet’s class definition.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 107

% Test your applets in every Web browser in which the applets will execute to ensure that they
operate correctly in each browser.

One of our goals in this chapter is to mimic several features presented in Chapter 2.
This provides positive reinforcement of previous concepts. Another goal of this chapter is
to begin using the object-oriented programming terminology introduced in Section 1.15.

As in Chapter 2, there are a few cases where we do not as yet provide all the details
necessary to create complex applications and applets in Java. It is important to build your
knowledge of fundamental programming concepts first. In Chapter 4 and Chapter 5, we
present a detailed treatment of program development and program control in Java. As we
proceed through the text, we present many substantial applications and applets.

3.2 Sample Applets from the Java 2 Software Development Kit

We begin by considering several sample applets provided with the Java 2 Software Devel-
opment Kit (J2SDK) version 1.3. The applets we demonstrate give you a sense of Java’s
capabilities. Each of the sample programs provided with the J2SDK also comes with source
code (the . java files containing the Java applet programs). This source code is helpful as
you enhance your Java knowledge—you can read the source code provided to learn new
and exciting features of Java. Remember, all programmers initially learn new features by
mimicking their use in existing programs. The J2SDK comes with many such programs and
there are a tremendous number of Java resources on the Internet and World Wide Web that
include Java source code.

The demonstration programs provided with the J2SDK are located in your J2SDK
install directory in a subdirectory called demo. For the Java 2 Software Development Kit
version 1.3, the default location of the demo directory on Windows is

c:\jdkl.3\demo

On UNIX/Linux it is the directory in which you install the J2SDK followed by jdk1.3/
demo—for example

/usr/local/jdkl.3/demo

For other platforms, there will be a similar directory (or folder) structure. For the purpose
of this chapter, we assume on Windows that the J2SDK is installed in ¢ : \jdk1. 3 and on
UNIX that the J2SDK is installed in your home directory in ~/jdk1. 3. [Note: You may
need to update these locations to reflect your chosen install directory and/or disk drive, or
a newer version of the J2SDK.]

If you are using a Java Development tool that does not come with the Sun Java demos,
you can download the J2SDK (with the demos) from the Sun Microsystems Java Web site

java.sun.com/j2se/1.3/

3.2.1 The TicTacToe Applet

The first applet we demonstrate from the J2SDK demos is the TicTacToe applet, which
allows you to play Tic-Tac-Toe against the computer. To execute this applet, open a com-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

108 Introduction to Java Applets Chapter 3

mand window (MS-DOS Prompt on Windows 95/98/ME, Command Prompt on Windows
NT/2000 or a command tool/shell tool on UNIX) and change directories to the J2SDK’s
demo directory. Both Windows and UNIX use command ed to change directories. For
example, the command

cd c:\jdkl.3\demo
changes to the demo directory on Windows and the command
cd ~/jdkl.3/demo

changes to the demo directory on UNIX.

The demo directory contains four subdirectories—applets, jfc, jpda and sound
(you can see these directories by issuing in the command window the dir command on
Windows or the 1s command on UNIX). The applets directory contains many demon-
stration applets. The j £c (Java Foundation Classes) directory contains many examples of
Java’s newest graphics and GUI features (some of these examples are also applets). The
jdpa directory contains examples of the Java Platform Debugging Architecture (beyond
the scope of this book). The sound directory contains examples of the Java Sound API (cov-
ered in Chapter 18). For the demonstrations in this section, change directories to the
applets directory by issuing the command

cd applets

on either Windows or UNIX.

Listing the contents of the applets directory (with the dir command on Windows
or the 1s command on UNIX) indicates that there are many examples. Figure 3.1 shows
the subdirectories and provides a brief description of the examples in each subdirectory.

Example Description

Animator Performs one of four separate animations.

ArcTest Demonstrates drawing arcs. You can interact with the applet to change
attributes of the arc that is displayed.

BarChart Draws a simple bar chart.

Blink Displays blinking text in different colors.

CardTest Demonstrates several GUI components and a variety of ways in which GUI

components can be arranged on the screen (the arrangement of GUI com-
ponents is also known as the layout of the GUI components).

Clock Draws a clock with rotating “hands,” the current date and the current time.
The clock is updated once per second.

DitherTest Demonstrates drawing with a graphics technique known as dithering that
allows gradual transformation from one color to another.

Fig. 3.1 The examples from the applets directory (part 1 of 2).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3

Introduction to Java Applets 109

Example Description

DrawTest Allows the user to drag the mouse to draw lines and points on the applet in
different colors.

Fractal Draws a fractal. Fractals typically require complex calculations to deter-
mine how they are displayed.

GraphicsTest Draws a variety of shapes to illustrate graphics capabilities.

GraphLayout Draws a graph consisting of many nodes (represented as rectangles) con-
nected by lines. Drag a node to see the other nodes in the graph adjust on
the screen and demonstrate complex graphical interactions.

ImageMap Demonstrates an image with hot spots. Positioning the mouse pointer over
certain areas of the image highlights the area and a message is displayed in
the lower-left corner of the appletviewer window. Position over the
mouth in the image to hear the applet say “hi.”

JumpingBox Moves a rectangle randomly around the screen. Try to catch it by clicking it
with the mouse!

MoleculeViewer Presents a three-dimensional view of several different chemical molecules.
Drag the mouse to view the molecule from different angles.

NervousText Draws text that jumps around the screen.

SimpleGraph Draws a complex curve.

SortDemo Compares three sorting techniques. Sorting (described in Chapter 7)
arranges information in order—Ilike alphabetizing words. When you exe-
cute the applet, three appletviewer windows appear. Click in each one
to start the sort. Notice that the sorts all operate at different speeds.

Spreadsheet Demonstrates a simple spreadsheet of rows and columns.

SymbolTest Draws characters from the Java character set.

TicTacToe Allows the user to play Tic-Tac-Toe against the computer.

WireFrame Draws a three-dimensional shape as a wire frame. Drag the mouse to view
the shape from different angles.

Fig. 3.1 The examples from the applets directory (part 2 of 2).

Change directories to subdirectory TicTacToe. In that directory you will find the

HTML file examplel.html thatis used to execute the applet. In the command window,
type the command

appletviewer examplel.html

and press the Enter key. This executes the appletviewer. The appletviewer loads
the HTML file specified as its command-line argument (examplel.html), determines
from the file which applet to load (we discuss the details of HTML files in Section 3.3) and
begins executing the applet. Figure 3.2 shows several screen captures of playing Tic-Tac-
Toe with this applet.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

110 Introduction to Java Applets Chapter 3

Ix

55 noptet S =111 IO £ optct S =131 I £ ot =13 < pictaT=1] IO < et

Applet Applet Applet Applet Applet

X XO% XOX XOX XO
o o8 of8 &

O O
OX | OXIX,

Applet started. Applet started. Applet started. Applet started. Applet started.

KOK

Fig. 3.2 Sample execution of the TicTacToe applet.

@ If the appletviewer command does not work and/or the system indicates that the ap-

pletviewer command cannot be found, the PATH environment variable may not be de-
fined properly on your computer. Review the installation directions for the Java 2 Software
Development Kit to ensure that the PATH environment variable is defined correctly for your
system (on some computers, you may need to restart your computer after modifying the PATH
environment variable).

You are player X. To interact with the applet, point the mouse at the square where you
want to place an X and click the mouse button (normally, the left mouse button). The applet
plays a sound (assuming your computer supports audio playback) and places an X in the
square if the square is open. If the square is occupied, this is an invalid move and the applet
plays a different sound indicating that you cannot make the specified move. After you make
a valid move, the applet responds by making its own move (this happens quickly).

To play again, re-execute the applet by clicking the appletviewer’s Applet menu
and selecting the Reload menu item (Fig. 3.3). To terminate the appletviewer, click
the appletviewer’s Applet menu and select the Quit menu item.

Reload the applet to
execute it again.

Infa...
Eciit

Character Encocding

Prirt...
Select Quit to terminate

Properties... the appletviewer.
Close :
Gt

Fig. 3.3 Selecting Reload from the appletviewer’s Applet menu.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 111

3.2.2 The DrawTest Applet

The next applet we demonstrate allows you to draw lines and points in different colors. To
draw, you simply drag the mouse on the applet by pressing a mouse button and holding it
while you drag the mouse. For this example, change directories to directory applets,
then to subdirectory DrawTest. In that directory is the examplel . html file that is used
to execute the applet. In the command window, type the command

appletviewer examplel.html

and press the Enter key. This executes the appletviewer. The appletviewer loads
the HTML file specified as its command-line argument (examplel.html again), deter-
mines from the file which applet to load and begins execution of the applet. Figure 3.4
shows a screen capture of this applet after drawing some lines and points.

The default shape to draw is a line and the default color is black, so you can draw black
lines by dragging the mouse across the applet. To drag the mouse, press and hold the mouse
button and move the mouse. Notice that the line follows the mouse pointer around the
applet. The line is not permanent until you release the mouse button. You can then start a
new line by repeating the process.

Select a color by clicking the circle inside one of the colored rectangles at the bottom
of the applet. You can select from red, green, blue, pink, orange and black. The GUI com-
ponents used to present these options are commonly known as radio buttons. If you think
of a car radio, only one radio station can be selected at a time. Similarly, only one drawing
color can be selected at a time.

Eganpplet Yiewer: DrawTest.class =l
Drag the mouse Applet
pointer here to [
draw. \
64 G
S~ T
Selectthe shape to
draw by clicking
the down arrow,
Select the then clicking Lines
drawing color by or Points. This GUI
clicking the circle component is
for the color you commonly known
want. These GUI as a combo box,
components are choice or drop-
commonly known e down list.
as radio buttons. ‘ F'UimS =
Applet started.

Fig. 3.4 Sample execution of applet DrawTest.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

112 Introduction to Java Applets Chapter 3

Try changing the shape to draw from Lines to Points by clicking the down arrow to
the right of the word Lines at the bottom of the applet. A list drops down from the GUI
component containing the two choices—Lines and Points. To select Points, click the
word Points in the list. The GUI component closes the list and the current shape type is
now Points. This GUI component is commonly known as a choice, combo box or drop-
down list.

To start a new drawing, select Reload from the appletviewer’s Applet menu. To
terminate the applet, select Quit from the appletviewer’s Applet menu.

3.2.3 The Java2bD Applet

The last applet we demonstrate before defining applets of our own shows many of the com-
plex new two-dimensional drawing capabilities built into Java 2—known as the Java2D
API. For this example, change directories to the j £c directory in the J2SDK’s demo direc-
tory, then change to the Jawva2D directory (you can move up the directory tree toward
demo using the command “ed ..” in both Windows and UNIX/Linux). In that directory
is an HTML file (Java2Demo . html) that is used to execute the applet. In the command
window, type the command

appletviewer Java2Demo.html

and press the Enter key. This executes the appletviewer. The appletviewer loads
the HTML file specified as its command-line argument (Java2Demo . html), determines
from the file which applet to load and begins execution of the applet. This particular demo
takes some time to load as it is quite large. Figure 3.5 shows a screen capture of one of this
applet’s many demonstrations of Java’s two-dimensional graphics capabilities.

At the top of this demo you see tabs that look like file folders in a filing cabinet. This
demo provides 12 different tabs with several different features on each tab. To change to a
different part of the demo, simply click one of the tabs. Also, try changing the options in
the upper-right corner of the applet. Some of these affect the speed with which the applet
draws the graphics. For example, click the small box with a check in it (a GUI component
known as a checkbox) to the left of the word Anti-Aliasing to turn off anti-aliasing (a
graphics technique for producing smoother on-screen graphics in which the edges of the
graphic are blurred). When this feature is turned off (i.e., its checkbox is unchecked), the
animation speed increases for the animated shapes at the bottom of the demo shown in
Fig. 3.5. This occurs because an animated shape displayed with anti-aliasing takes longer
to draw than an animated shape without anti-aliasing.

3.3 A Simple Java Applet: Drawing a String

Now, let’s get started with some applets of our own. Remember, we are just getting start-
ed—we have many more topics to learn before we can write applets similar to those dem-
onstrated in Section 3.2. However, we will cover many of the same techniques in this book.

We begin by considering a simple applet that mimics the program of Fig. 2.1 by dis-
playing the string "Welcome to Java Programming!". The applet and its screen
output are shown in Fig. 3.6. The HTML document to load the applet into the applet-
viewer is shown and discussed in Fig. 3.7.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 113

Click a tab to select a Try changing the options to see their
two-dimensional graphics demo. effect on the demonstration.
\\
Eganpplet Yiewer: JavaZzDemoApplet.class - |EI|1|
Applet
Options N\
ColorConvertOp RGB->GRAY (Global Controls
(R NI e
» o m i [Rendering Quality
. ,I ! ,I D Texbme
[C] AfphaComposite

Ve b=

Texture Chooser

iz

rMemory Monitor

rPerformance

Applet started.

Fig. 3.5 Sample execution of applet Java2D.

1

2

3

4

5 import java.awt.Graphics;

6

7

8 import javax.swing.JApplet;

9

10 public class WelcomeApplet extends JApplet {
11

12

13 public void paint(Graphics g)
14 {

15

16 super.paint(g);

Fig. 3.6 Afirst applet in Java and the applet’s screen output (part 1 of 2).

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

114 Introduction to Java Applets Chapter 3

17
18
19 g.drawString (o o)
20
21 }
22
23
X-QXis > .
y-Qaxis Eganpplet Yiewer: Welcomed =l appletviewer window
Applet menu Applet

Upper-left corner of Welcome to Java Programming! The status bar mimics
drawing area is location what would be
(0, 0). Drawing area ends Applet started. — displayed in the
just above the status bar. | rowser’s status bar as
X-coordinates increase Pixel coordinate (25, 25), the applet loads and
from left to right. where the string is displayed. begins execufing.

Y-coordinates increase
from top to bottom.

Fig. 3.6 Afirst applet in Java and the applet’s screen output (part 2 of 2).

This program illustrates several important Java features. We consider each line of the
program in detail. Line 19 does the “real work” of the program, namely drawing the string
Welcome to Java Programming! on the screen. But let us consider each line of the
program in order. Lines 1-2

begin with //, indicating that the remainder of each line is a comment. The comment on
line 1 indicates the figure number and file name for the applet source code. The comment
on line 2 simply describes the purpose of the program.

As stated in Chapter 2, Java contains many predefined components called classes that
are grouped into packages in the Java API. Line 5

import java.awt.Graphics;

is an import statement that tells the compiler load class Graphiecs from package ja-
va.awt for use in this Java applet. Class Graphics enables a Java applet to draw graph-
ics such as lines, rectangles, ovals and strings of characters. Later in the book, you will see
that class Graphics also enables applications to draw.

Line 8

import javax.swing.JApplet;

is an import statement that tells the compiler load class JApplet from package jav-
ax.swing. When you create an applet in Java, you normally import the JApplet class.
[Note: There is an older class called Applet from package java.applet that is not
used with Java’s newest GUI components from the javax . swing package. In this book,
we use only class JApplet with applets.]

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 115

As with applications, every Java applet you create contains at least one class definition.
One key feature of class definitions that was not mentioned in Chapter 2 is that program-
mers rarely create class definitions “from scratch.” In fact, when you create a class defini-
tion, you normally use pieces of an existing class definition. Java uses inheritance
(introduced in Section 1.15 and discussed in detail in Chapter 9, “Object-Oriented Pro-
gramming”) to create new classes from existing class definitions. Line 10

public class WelcomeApplet extends JApplet {

begins a class definition for class WelcomeApplet. At the end of line 10, the left
brace, {, begins the body of the class definition. The corresponding right brace, }, on line
23 ends the class definition. Keyword class introduces the class definition. Welcome-
Applet is the class name. Keyword extends indicates that class WelcomeApplet in-
herits existing pieces from another class. The class from which WelcomeApplet inherits
(JApplet) appears to the right of extends. In this inheritance relationship, JApplet
is called the superclass or base class and WelcomeApplet is called the subclass or de-
rived class. Using inheritance here results in a WelcomeApplet class definition that has
the attributes (data) and behaviors (methods) of class JApplet as well as the new features
we are adding in our WelcomeApplet class definition (specifically, the ability to draw
Welcome to Java Programming! on the applet).

A key benefit of extending class JApplet is that someone else previously defined
“what it means to be an applet.” The appletviewer and World Wide Web browsers that
support applets expect every Java applet to have certain capabilities (attributes and behav-
iors). Class JApplet already provides all those capabilities—programmers do not need to
“reinvent the wheel” and define all these capabilities on their own. In fact, applet containers
expect applets to have over 200 different methods. In our programs to this point, we defined
one method in each program. If we had to define over 200 methods just to display
Welcome to Java Programming!, we would never create an applet, because it would
take too long to define one! Using extends to inherit from class JApplet enables applet
programmers to create new applets quickly.

The inheritance mechanism is easy to use; the programmer does not need to know
every detail of class JApplet or any other superclass from which a new class inherits. The
programmer needs to know only that class JApplet defines the capabilities required to
create the minimum applet. However, to make the best use of any class, programmers
should study all the capabilities of the superclass.

Good Programming Practice 3.1

@ Investigate the capabilities of any class in the Java API documentation (java.sun.com/

j2se/1.3/docs/api/index.html) carefully before inheriting a subclass from it.
This helps ensure that the programmer does not unintentionally “reinvent the wheel” by re-
defining a capability that the superclass already provides.

Classes are used as “templates” or “blueprints” to instantiate (or create) objects for use
in a program. An object (or instance) resides in the computer’s memory and contains infor-
mation used by the program. The term object normally implies that attributes (data) and
behaviors (methods) are associated with the object. The object’s methods use the attributes
to provide useful services to the client of the object (i.e., the code in a program that calls the
methods).

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

116 Introduction to Java Applets Chapter 3

When an applet container (the appletviewer or browser in which the applet exe-
cutes) loads our WelcomeApplet class, the applet container creates an object (instance)
of class WelcomeApplet that implements the applet’s attributes and behaviors. [Note:
The terms instance and object are often used interchangeably.] Applet containers can create
only objects of classes that are public and extend JApplet. Thus, applet containers
require applet class definitions to begin with the keyword public (line 10). Otherwise,
the applet container cannot load and execute the applet. The public keyword and related
keywords (such as private and protected) are discussed in detail in Chapter 8§,
“Object-Based Programming.” For now, we ask you simply to start all class definitions
with the public keyword until the discussion of public in Chapter 8.

When you save a public class in a file, the file name must be the class name followed
by the .java file name extension. For our applet, the file name must be WelcomeAp-
plet.java. Please note that the class name part of the file name must use the same
spelling as the class name, including identical use of uppercase and lowercase letters. For
reinforcement, we repeat two Common Programming Errors from Chapter 2.

Common Programming Error 3.1

@ It is an error for a public class if the file name is not identical to the class name (plus the
. Java extension) in both spelling and capitalization. Therefore, it is also an error for a file
to contain two or more public classes.

Common Programming Error 3.2

@ It is an error not to end a file name with the . java extension for a file containing an appli-
cation’s class definition. The Java compiler will not be able to compile the class definition.

% The compiler error message “Public class ClassName must be defined in a file called Class-
Name.java” indicates either that the file name does not exactly match the name of the pub-
lic class in the file (including all uppercase and lowercase letters) or that you typed the
class name incorrectly when compiling the class (the name must be spelled with the proper
uppercase and lowercase letters).

Line 13
public void paint(Graphics g)

begins the definition of the applet’s paint method—one of three methods (behaviors) that
the applet container calls for an applet when the container begins executing the applet. In
order, these three methods are ini t (discussed later in this chapter), start (discussed in
Chapter 6) and paint. Your applet class gets a “free” version of each of these methods
from class JApplet when you specify extends JApplet in the first line of your ap-
plet’s class definition. If you do not define these methods in your own applet, the applet
container calls the versions inherited from JApplet. The inherited versions of methods
init and start have empty bodies (i.e., their bodies do not contain statements, so they
do not perform a task) and the inherited version of method paint does not draw anything
on the applet. [Note: There are several other methods that an applet container calls during
an applet’s execution. We discuss these methods in Chapter 6, “Methods.”]

To enable our applet to draw, class WelcomeApplet overrides (replaces or rede-
fines) the default version of paint by placing statements in the body of paint that draw

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 117

a message on the screen. When the applet container tells the applet to “draw itself” on the
screen by calling method paint, our message Welcome to Java Programming!
appears rather than a blank screen.

Lines 13-21 are the definition of paint. The task of method paint is to draw
graphics (such as lines, ovals and strings of characters) on the screen. Keyword void indi-
cates that this method does not return any results when it completes its task. The set of
parentheses after paint defines the method’s parameter list. The parameter list is where
methods receive data required to perform their tasks. Normally, this data is passed by the
programmer to the method through a method call (also known as invoking a method or
sending a message). For example, in Chapter 2 we passed data to JOptionPane’s
showMessageDialog method such as the message to display or the type of dialog box.
However, when writing applets, the programmer does not call method paint explicitly.
Rather, the applet container calls paint to tell the applet to draw and the applet container
passes to the paint method the information paint requires to perform its task, namely
a Graphics object (called g). It is the applet container’s responsibility to create the
Graphics object to which g refers. Method paint uses the Graphics object to draw
graphics on the applet. The public keyword at the beginning of line 13 is required so the
applet container can call your paint method. For now, all method definitions should
begin with the public keyword. We introduce other alternatives in Chapter 8.

The left brace, {, on line 14 begins method paint’s body. The corresponding right
brace, }, on line 21 ends paint’s body.

Line 16

super.paint(g);

calls the version of method paint inherited from superclass JApplet.1
Line 19

g.drawString(’ ’):

instructs the computer to perform an action (or task), namely to draw the characters of the
string Welcome to Java Programming! on the applet. This statement uses method
drawString defined by class Graphics (this class defines all the drawing capabilities
of a Java program, including strings of characters and shapes such as rectangles, ovals and
lines). The statement calls method drawString using the Graphics object g (in
paint’s parameter list) followed by a dot operator (.) followed by the method name
drawsString. The method name is followed by a set of parentheses containing the argu-
ment list drawString needs to perform its task.

The first argument to drawString is the String to draw on the applet. The last
two arguments in the list—25 and 25—are the x-y coordinates (or position) at which the
bottom-left corner of the string should be drawn on the applet. Drawing methods from class
Graphics require coordinates to specify where to draw on the applet (later in the text we

1. For reasons that will become clear later in the text, this statement should be the first statement in
every applet’s paint method. Although the early examples of applets will work without this
statement, omitting this statement causes subtle errors in more elaborate applets that combine
drawing and GUI components. Including this statement now will get you in the habit of using it
and will save time and effort as you build more substantial applets later.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

118 Introduction to Java Applets Chapter 3

demonstrate drawing in applications). The first coordinate is the x-coordinate (the number
of pixels from the left side of the applet), and the second coordinate is the y-coordinate
(representing the number of pixels from the top of the applet). Coordinates are measured
from the upper-left corner of the applet in pixels (just below the Applet menu in the sample
output window of Fig. 3.6). A pixel (“picture element”) is the unit of display for your com-
puter’s screen. On a color screen, a pixel appears as one colored dot on the screen. Many
personal computers have 800 pixels for the width of the screen and 600 pixels for the height
of the screen, for a total of 800 times 600 or 480,000 displayable pixels. Many computers
today have screens with higher screen resolutions, i.e., they have more pixels for the width
and height of the screen. The size of an applet on the screen depends on the size and reso-
lution of the screen. For screens with the same size, the applet will appear smaller on the
screen with the higher resolution. Note that some older computers have screen resolutions
lower than 800 by 600. The most common lower resolution is 640 by 480.

When line 19 executes, it draws the message Welcome to Java Programming!
on the applet at the coordinates 25 and 25. Note that the quotation marks enclosing the
string are not displayed on the screen.

As an aside, why would you want free copies of methods init, start and paint
if they do not perform a task? The predefined start-up sequence of method calls made by
the appletviewer or browser for every applet is always init, start and paint—
this provides an applet programmer a guarantee that these methods will be called as every
applet begins execution. Every applet does not need all three of these methods. However,
the appletviewer or browser expects each of these methods to be defined so it can pro-
vide a consistent start-up sequence for an applet. [Note: This is similar to applications
always starting execution with main.] Inheriting the default versions of these methods
guarantees the browser that it can treat each applet uniformly by calling init, start and
paint as applet execution begins. Also, the programmer can concentrate on defining only
the methods required for a particular applet.

3.3.1 Compiling and Executing WelcomeApplet

As with application classes, you must compile applet classes before they can execute. After
defining class WelcomeApplet and saving it in WelcomeApplet . java, open a com-
mand window, change to the directory in which you saved the applet class definition and
type the command

javac WelcomeApplet.java

to compile class WelcomeApplet. If there are no syntax errors, the resulting bytecodes
are stored in the file WelcomeApplet.class.

Before you can execute the applet you must create an HTML (Hypertext Markup Lan-
guage) file to load the applet into the applet container (appletviewer or a browser).
Typically, an HTML file ends with the “. htm1” or ““. htm” file name extension. Browsers
display the contents of documents that contain text (also known as text files). To execute a
Java applet, an HTML text file must indicate which applet the applet container should load
and execute. Figure 3.7 shows a simple HTML file—WelcomeApplet .html—that
loads into the applet defined in Fig. 3.6 into an applet container. [Note: For the early part
of this book, we always demonstrate applets with the appletviewer applet container.]

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 119

<html>

<applet code = width = height =
</applet>

</html>

BWN—

Fig. 3.7 WelcomeApplet.html loads class WelcomeApplet of Fig. 3.6 info
the appletviewer.

Good Programming Practice 3.2

@ Always test a Java applet in the appletviewer and ensure that it is executing correctly

before loading the applet into a World Wide Web browser. Browsers often save a copy of an
applet in memory until the current browsing session terminates (i.e., all browser windows
are closed). Thus, if you change an applet, recompile the applet, then reload the applet in the
browser, you may not see the changes because the browser may still be executing the original
version of the applet. Close all your browser windows to remove the old version of the applet
from memory. Open a new browser window and load the applet to see your changes.

If your World Wide Web browser does not support Java 2, most of the applets in this book
will not execute in your browser. This is because most of the applets in this book use features
that are specific to Java 2 or are not provided by browsers that support Java 1.1.
Section 3.6.2 discusses how to use the Java Plug-in to view applets in Web browsers that do
not support Java 2.

Many HTML codes (or fags) come in pairs. For example, lines 1 and 4 of Fig. 3.7 indi-
cate the beginning and the end, respectively, of the HTML tags in the file. All HTML tags
begin with a left angle bracket, <, and end with a right angle bracket, >. Lines 2 and 3 are
special HTML tags for Java applets. They tell the applet container to load a specific applet
and define the size of the applet’s display area (its width and height in pixels) in the
appletviewer (or browser). Normally, the applet and its corresponding HTML file are
stored in the same directory on disk. Typically, a browser loads an HTML file from a com-
puter (other than your own) connected to the Internet. However, HTML files also can reside
on your computer (as we demonstrated in Section 3.2). When an applet container encoun-
ters an HTML file that specifies an applet to execute, the applet container automatically
loads the applet’s . class file (or files) from the same directory on the computer in which
the HTML file resides.

The <applet> tag has several attributes. The first attribute of the <applet> tag on
line 2 (code = "WelcomeApplet.class") indicates that the file WelcomeAp-
plet.class contains the compiled applet class. Remember, when you compile your
Java programs, every class is compiled into a separate file that has the same name as the
class and ends with the .class extension. The second and third attributes of the
<applet> tag indicate the width and the height of the applet in pixels. The upper-left
corner of the applet’s display area is always at x-coordinate 0 and y-coordinate 0. The width
of this applet is 300 pixels and its height is 45 pixels. You may want (or need) to use larger
width and height values to define a larger drawing area for your applets. The </
applet> tag (line 3) terminates the <applet> tag that began on line 2. The </html>
tag (line 4) specifies the end of the HTML tags that began on line 1 with <html>.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

120 Introduction to Java Applets Chapter 3

Generally, each applet should be less than 800 pixels wide and 600 pixels tall (most comput-
er screens support these dimensions as the minimum width and height).

Common Programming Error 3.3

@ Placing additional characters such as commas (,) between the attributes in the <applet>
tag may cause the appletviewer or browser to produce an error message indicating a
MissingResourceException when loading the applet.

Common Programming Error 3.4

@ Forgetting the ending </applet> tag prevents the applet from loading into the applet-
viewer or browser properly.

If you receive a MissingResourceException error message when loading an applet
into the appletviewer or a browser, check the <applet> tag in the HTML file carefully
for syntax errors. Compare your HTML file to the file in Fig. 3.7 to confirm proper syntax.

The appletviewer understands only the <applet> and </applet> HTML
tags, so it is sometimes referred to as the “minimal browser” (it ignores all other HTML
tags). The appletviewer is an ideal place to test an applet and ensure that it executes
properly. Once the applet’s execution is verified, you can add the applet’s HTML tags to
an HTML file that will be viewed by people browsing the Internet.

To execute the WelcomeApplet in the appletviewer open a command window,
change to the directory containing your applet and HTML file and type the command

appletviewer WelcomeApplet.html

Note that the appletviewer requires an HTML file to load an applet. This is different
from the java interpreter for applications which requires only the class name of the appli-
cation class. Also, the preceding command must be issued from the directory in which the
HTML file and the applet’s . class file are located.

Common Programming Error 3.5

@ Running the appletviewer with a file name that does not end with .html or . htmis an
error that prevents the appletviewer from loading your applet for execution.

@ Test your applets in every browser used by people who view your applet. This will help en-
sure that people who view your applet experience the functionality you expect. [Note: A goal

of the Java Plug-In (discussed later in the book) is to provide consistent applet execution
across many different browsers. |

3.4 Two More Simple Applets: Drawing Strings and Lines

Let us consider another applet. An applet can draw Welcome to Java Programming!
several ways. For example, an applet can use two drawString statements in method
paint to print multiple lines of text as in Fig. 3.8. The HTML file to load the applet into
an applet container is shown in Fig. 3.9.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 121

1

2

3

4

5 import java.awt.Graphics;

6

7

8 import javax.swing.JApplet;

9

10 public class WelcomeApplet2 extends JApplet {
11

12

13 public void paint(Graphics g)

14 {

15

16 super.paint(g);

17

18

19 g.drawString(o g)
20 g.drawString (’ ’);
21

22 }

23

24

Pixel coordinate (25, 25), where Eganpplet viewer: WelcomeApplh 10l =|

Welcome to is displayed \\Ta
Welcome to

Pixel coordinate (25, 40), where _—p-Java Programming!
Java Programming! is displayed

Applet started.

Fig. 3.8 Applet that displays mulfiple strings.

<html>

<applet code = width = height =
</applet>

</html>

BOWN —

Fig. 3.9 WelcomeApplet2.html loads class WelcomeApplet2 of Fig. 3.8
into the appletviewer.

Note that each call to method drawString can draw at any pixel location on the
applet. The reason the two output lines appear left aligned as shown in Fig. 3.8 is that both
use the same x coordinate (25). Also, each drawString method call uses different y
coordinates (25 on line 19 and 40 on line 20), so the strings appear at different vertical
locations on the applet. If we reverse lines 19 and 20 in the program, the output window
will still appear as shown because the pixel coordinates specified in each drawString
statement are independent of the coordinates specified in all other drawString state-
ments (and all other drawing operations). When drawing graphics, lines of text are not sep-
arated by newline characters (as shown with methods System.out’s method println
and JOoptionPane’s method showMessageDialog in Chapter 2). In fact, if you try

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

122 Introduction to Java Applets Chapter 3

to output a string containing a newline character (\n), you will simply see a small black
box at that position in the string.

To make drawing more interesting, the applet of Fig. 3.10 draws two lines and a string.
The HTML file to load the applet into an applet container is shown in Fig. 3.11.

1

2

3

4

5 import java.awt.Graphics;

6

7

8 import javax.swing.JApplet;

9
10 public class WelcomeLines extends JApplet {
11
12
13 public void paint(Graphics g)
14 {
15
16 super.paint(g);
17
18
19 g.drawLine (o o o):
20
21
22 g.drawLine (’ ’ 0):
23
24
25 g.drawString(o g)i
26
27 }
28
29)

[E5 Applet Yiewer: WelcomeLine =10]x]
Coordinate (15, 10)— 2o Coordinate (210, 10)
Welcome ta Java Pragramming!
Coordinate (15, 30)//:pplet ctarted Coordinate (210, 30)

Fig. 3.10 Drawing strings and lines.

<html>

<applet code = width = height = >
</applet>

</html>

AOWN—

Fig. 3.11 The WelcomeLines.html file, which loads class WelcomeLines of
Fig. 3.10 info the appletviewer.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 123

Lines 19 and 22 of method paint

g.drawLine (’ ’ ’);
g.drawLine (' v ’)i

use method drawLine of class Graphics to indicate that the Graphics object that g
refers to should draw lines. Method drawLine requires four arguments that represent the
two end points of the line on the applet—the x-coordinate and y-coordinate of the first end
point in the line and the x-coordinate and y-coordinate of the second end point in the line.
All coordinate values are specified with respect to the upper-left corner (0, 0) coordinate of
the applet. Method drawLine draws a straight line between the two end points.

3.5 Another Java Applet: Adding Floating-Point Numbers

Our next applet (Fig. 3.12) mimics the application of Fig. 2.9 for adding two integers. How-
ever, this applet requests that the user enter two floating-point numbers (i.e., numbers with
a decimal point such as 7.33, 0.0975 and 1000.12345). To store floating-point numbers in
memory we introduce primitive data type double, which represents double-precision
floating-point numbers. There is also primitive data type £loat for storing single-preci-
sion floating-point numbers. A double requires more memory to store a floating-point
value, but stores it with approximately twice the precision of a £1oat (15 significant digits
for double vs. seven significant digits for £1loat).

Once again, we use JOpt ionPane.showInputDialog to request input from the
user. The applet computes the sum of the input values and displays the result by drawing a
string inside a rectangle on the applet. The HTML file to load this applet into the applet-
viewer is shown in Fig. 3.13.

import java.awt.Graphics;
import javax.swing.*;
public class AdditionApplet extends JApplet {

double sum;

public void init ()

{

String firstNumber;

String secondNumber;

double numberl;

double number2;
21
22 firstNumber = JOptionPane.showInputDialog(
23);

Fig. 3.12 An addition program “in action” (part 1 of 2).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

124 Introduction to Java Applets Chapter 3

26 secondNumber = JOptionPane.showInputDialog (
27):

30 numberl
31 number2

Double.parseDouble(firstNumber);
Double.parseDouble(secondNumber);

34 sum = numberl + number2;

38 public void paint(Graphics g)
39 {

41 super.paint(g);

45 g.drawRect (0 v v):

48 g.drawString(+ sum, 0)i

Eganpplet Yiewer: Add 10l =| Egalnput E x|
E Enter first floating-point value
455 |

Applet loaded. el

|Java Applet Window

Eganpplet Yiewer: Add 10l =| Egalnput x|
E Enter second floating-point value
[72.37 |

Applet loaded. el

Java Applet Window

Eganpplet Yiewer: Additionnpplet.:i 10l =|
Applet

[The sumis 117.87 |

Applet started.

Fig. 3.12 An addition program “in action” (part 2 of 2).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 125

<html>

<applet code = width = height =
</applet>

</html>

BAOWN=—

Fig. 3.13 AdditionApplet.html loads class AdditionApplet of Fig. 3.12
into the appletviewer.

Lines 1-2

are single-line comments stating the figure number, file name and purpose of the program.
Line 5

import java.awt.Graphics;

imports class Graphics (package java.awt) for use in this applet. Actually, the im-
port statement at line 5 is not required if we always use the complete name of class
Graphics—java.awt.Graphics—which includes the full package name and class
name. For example, the first line of method paint can be defined as

public void paint(java.awt.Graphics g)

The Java compiler does not require import statements in a Java source code file if the com-
plete class name—the full package name and class name (e.g., java.awt.Graphics)—
is specified every time a class name is used in the source code.

Line 8
import javax.swing.*;

specifies to the compiler that several classes from package javax.swing are used in this
applet. The asterisk (*) indicates that all classes in the javax.swing package (such as
JApplet and JOptionPane) should be available to the compiler so the compiler can
ensure that we use the classes correctly. This allows programmers to use the shorthand
name (the class name by itself) of any class from the javax.swing package in the pro-
gram. Remember that our last two programs imported only class JApplet from package
javax.swing. In this program, we use classes JApplet and JOpt ionPane from that
package. Importing an entire package into a program is also a shorthand notation so the pro-
grammer is not required to provide a separate import statement for every class used from
that package. Remember that you can always use the complete name of every class, i.e.,
javax.swing.JApplet and javax.swing.JOptionPane rather than import
statements.

The compiler does not load every class in a package when it encounters an import state-
ment that uses the * (e.g., javax.swing. *) notation. The compiler loads from the pack-
age only those classes the program uses.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

126 Introduction to Java Applets Chapter 3

Many packages have subpackages. For example, the java.awt package has subpackage
event for the package java.awt.event. When the compiler encounters an import
statement that uses the * (e.g., java.awt . *) notation to indicate that a program uses mul-
tiple classes from a package, the compiler does not load classes from the subpackage
event. Thus, you cannot define an import of java. * to search for classes from all Java
core packages.

When using import statements, separate import statements must be specified for each
== package used in a program.

Common Programming Error 3.6

@ Assuming that an import statement for an entire package (e.g., java.awt. *) also im-

ports classes from subpackages in that package (e.g., java.awt.event. *) results in
syntax errors for the classes from the subpackages. There must be separate import statements
for every package from which classes are used.

Remember that applets inherit from the JApplet class, so they have all the methods
that an applet container requires to execute the applet. Line 10

public class AdditionApplet extends JApplet {

begins class AdditionApplet’s definition and indicates that it inherits from JApplet.
All class definitions start with an opening left brace (end of line 10), {, and end with
a closing right brace, } (line 52).

—- Common Programming Error 3.7
@ If braces do not occur in matching pairs, the compiler indicates a syntax error.

Line 11
double sum;

is an instance variable declaration—every instance (object) of the class contains one copy
of each instance variable. For example, if there are 10 instances of this applet executing,
each instance has its own copy of sum. Thus, there would be 10 separate copies of sum
(one per applet). Programmers declare instance variables in the body of the class definition,
but outside the bodies of all the class’s method definitions. The preceding declaration states
that sum is a variable of primitive type double.

A benefit of instance variables is that all the methods of the class can use the instance
variables. Until now, we declared all variables in an application’s main method. Variables
defined in the body of a method are known as local variables and can be used only in the
body of the method in which they are defined. Another distinction between instance vari-
ables and local variables is that instance variables have default values and local variables
do not. The default value of variable sum is 0.0, because sum is an instance variable.

Good Programming Practice 3.3

@ Explicitly initializing instance variables rather than relying on automatic initialization im-
proves program readability.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 127

The applet of Fig. 3.12 contains two methods—init (lines 14-35) and paint (lines
38-50). When an applet container loads an applet, the container creates an instance of the
applet class and calls its init method. The applet container calls method init only once
during an applet’s execution. Method init normally initializes the applet’s instance vari-
ables (if they need to be initialized to a value other than their default value) and performs
tasks that should occur only once when the applet begins execution. As we will see in later
chapters, the applet’s init method typically creates the applet’s graphical user interface.

The order in which methods are defined in a class definition has no effect on when those
methods are called at execution time. However, following conventions for the order in which
methods are defined improves program readability and maintainability.

The first line of the init method always appears as
public void init()

indicating that init is a public method that returns no information (void) when it
completes and receives no arguments (empty parentheses after init) to perform its task.

The left brace (line 15) marks the beginning of init’s body, and the corresponding
right brace (line 35) marks the end of init. Lines 16—17

String firstNumber;
String secondNumber;

declare local String variables firstNumber and secondNumber in which the pro-
gram stores the Strings input by the user.
Lines 18-19

double numberl;
double number2;

declare local variables number1 and number2 of primitive data type double—these
variables hold floating-point values. Unlike sum, numberl and number2 are not in-
stance variables, so they are not initialized to 0.0 (the default value of double instance
variables).

As an important aside, there are actually two types of variables in Java—primitive data
type variables (normally called variables) and reference variables (normally called refer-
ences). The identifiers £irstNumber and secondNumber are actually references—
names that are used to refer to objects in the program. Such references actually contain the
location of an object in the computer’s memory. In our preceding applets, method paint
actually receives a reference called g that refers to a Graphics object. Statements in
method paint use that reference to send messages to the Graphics object. These mes-
sages are calls to methods (like drawString, drawLine and drawRect) that enable
the program to draw. For example, the statement

g.drawString(s 25, 25);

sends the drawString message to the Graphics object to which g refers. As part of
the message, which is simply a method call, we provide the data that drawString re-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

128 Introduction to Java Applets Chapter 3

quires to do its task. The Graphics object uses this data to draw the String at the spec-
ified location.

The identifiers numberl, number2 and sum are the names of variables. A variable
is similar to an object. The primary difference between a variable and an object is that an
object is defined by a class definition that can contain both data (instance variables) and
methods, whereas a variable is defined by a primitive (or built-in) data type (one of char,
byte, short, int, long, float, double or boolean) that can contain only data. A
variable can store exactly one value at a time, whereas one object may contain many indi-
vidual pieces of data. The distinction between a variable and a reference is based on the data
type of the identifier, which is stated in a declaration. If the data type is a class name, the
identifier is a reference to an object and that reference can be used to send messages to (call
methods on) that object. If the data type is one of the primitive data types, the identifier is
a variable that can be used to store in memory or retrieve from memory a single value of
the declared primitive type.

A hint to help you determine if an identifier is a variable or a reference is the variable’s data
type. By convention all class names in Java start with a capital letter. Therefore, if the data
type starts with a capital letter, normally you can assume that the identifier is a reference to
an object of the declared type (e.g., Graphics g indicates that g is a reference to a
Graphics object).

Lines 22-23

firstNumber = JOptionPane.showInputDialog (
)i

read the first floating-point number from the user. JOpt ionPane method showInput-
Dialog displays an input dialog that prompts the user to enter a value. The user types a
value in the input dialog’s text field, then clicks the OK button to return the string the user
typed to the program. If you type and nothing appears in the text field, position the mouse
pointer in the text field and click the mouse to make the text field active. Variable first-
Number is assigned the result of the call to JOptionPane.showInputDialog oper-
ation with an assignment statement. The statement is read as “firstNumber gets the
value of JOptionPane.showInputDialog("Enter first floating-point
value").”

In lines 22-23, notice the method call syntax. At this point, we have seen two different
ways to call methods. This statement uses the static method call syntax introduced in
Chapter 2. All static methods are called with the syntax

ClassName . methodName (arguments)

Also in this chapter, we have called methods of class Graphics with a similar syntax that
started with a reference to a Graphics object. Generically, this syntax is

referenceName . methodName (- arguments)

This syntax is used for most methods calls in Java. In fact, the applet container uses this
syntax to call methods init, start and paint on your applets.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 129

Lines 26-27

secondNumber = JOptionPane.showInputDialog (
)i

read the second floating-point value from the user by displaying an input dialog.
Lines 30-31

numberl
number2

Double.parseDouble(firstNumber);
Double.parseDouble(secondNumber) ;

convert the two strings input by the user to double values for use in a calculation. Method
Double.parseDouble (a static method of class Double) converts its String ar-
gument to a double floating-point value. Class Double is in package java.lang. The
floating-point value returned by parseDouble in line 30 is assigned to variable
numberl. The floating-point value returned by parseDouble in line 31 is assigned to
variable number2.

Each primitive data type (such as int or double) has a corresponding class (such as In-
teger or Double) in package java.lang. These classes (commonly known as type-
wrapper classes) provide methods for processing primitive data type values (such as convert-
ing a String to a primitive data type value or converting a primitive data type value to a
String). Primitive data types do not have methods. Therefore, methods related to a primi-
tive data type are located in the corresponding type-wrapper class (e.g., method parseDou-
ble that converts a Stringto a double value is located in class Double). See the online
API documentation for the complete details of the methods in the type-wrapper classes.

The assignment statement at line 34
sum = numberl + number2;

calculates the sum of the values stored in variables number1 and number2 and assigns
the result to variable sum using the assignment operator =. The statement is read as “sum
gets the value of numberl + number2.” Notice that instance variable sum is used in
method init even though sum was not defined in method init. We can use sum in
init (and all other methods of the class), because sum is an instance variable.

At this point the applet’s init method returns and the applet container calls the
applet’s start method. We did not define start in this applet, so the one inherited from
class JApplet is called here. Normally, the start method is used with an advanced con-
cept called multithreading. See Chapter 15 and Chapter 18 for typical uses of start.

Next, the applet container calls the applet’s paint method. In this example, method
paint draws a rectangle in which the result of the addition will appear. Line 45

g.drawRect (’ ’ ’):

sends the drawRect message to the Graphics object to which g refers (calls the
Graphics object’s drawRect method). Method drawRect draws a rectangle based on
its four arguments. The first two integer values represent the upper-left x-coordinate and
upper-left y-coordinate where the Graphics object begins drawing the rectangle. The
third and fourth arguments are non-negative integers that represent the width of the rectan-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

130 Introduction to Java Applets Chapter 3

gle in pixels and the height of the rectangle in pixels, respectively. This particular statement
draws a rectangle starting at coordinate (15, 10) that is 270 pixels wide and 20 pixels tall.

Common Programming Error 3.8

@ Itis a logic error to supply a negative width or negative height as an argument to Graphics
method drawRect. The rectangle will not be displayed and no error will be indicated.

Common Programming Error 3.9

@ It is a logic error to supply two points (i.e., pairs of x- and y-coordinates) as the arguments
to Graphics method drawRect. The third argument must be the width in pixels and the
Sfourth argument must be the height in pixels of the rectangle to draw.

Common Programming Error 3.10

@ It is normally a logic error to supply arguments to Graphics method drawRect that

cause the rectangle to draw outside the applet’s viewable area (i.e., the width and height of
the applet as specified in the HTML document that references the applet). Either increase the
applet’s width and height in the HTML document or pass arguments to method drawRect
that cause the rectangle to draw inside the applet’s viewable area.

Line 48
g.drawString (+ sum, ’)i

sends the drawString message to the Graphics object to which g refers (calls the
Graphics object’s drawString method). The expression

+ sum

from the preceding statement uses the string concatenation operator + to concatenate the
string "The sum is " and sum (converted to a string) to create the string drawString
displays. Notice again that the preceding statement uses the instance variable sum even
though method paint does not define sum as a local variable.

The benefit of defining sum as an instance variable is that we were able to assign sum
a value in init and use sum’s value in the paint method later in the program. All
methods of a class are capable of using the instance variables in the class definition.

The only statements that should be placed in an applet’s init method are those that are di-
rectly related to the one-time initialization of an applet’s instance variables. The applet’s re-
sults should be displayed from other methods of the applet class. Results that involve drawing
should be displayed from the applet’s paint method.

%The only statements that should be placed in an applet’s paint method are those that are
directly related to drawing (i.e., calls to methods of class Graphics) and the logic of draw-
ing. Generally, dialog boxes should not be displayed from an applet’s paint method.

3.6 Viewing Applets in a Web Browser

We demonstrated several applets in this chapter using the appletviewer applet contain-
er. As we mentioned, applets also can execute in Java-enabled Web browsers. Unfortunate-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 131

ly, there are many different browser versions being used worldwide. Some support only
Java 1.0 and many support Java 1.1. However, few support the Java 2 Platform. Also, even
the browsers that support Java 1.1 do so inconsistently. In Section 3.6.1, we demonstrate
an applet executing in Netscape Navigator 6, which supports Java 2. In Section 3.6.2, we
demonstrate how to use the Java Plug-in to execute Java 2 applets in other Web browsers
such as Microsoft Internet Explorer or earlier versions of Netscape Navigator.

@ Not all Web browsers support Java. Those that do often support different versions and are
not always consistent across all platforms.

3.6.1 Viewing Applets in Netscape Navigator 6

When you install Netscape Navigator 6, one of the browser components in the default in-
stallation is Java 2. Once installed, you can simply load an applet’s HTML file into the
browser to execute the applet. You can download and install Netscape 6 from

www.netscape.com

by clicking the Download button at the top of the Web page.

After installing the browser, open the program. On Windows, Netscape 6 typically
places an icon on your desktop during the install process. In the File menu, click Open
File... to select an HTML document from your local computer’s hard disk. In the Open
File dialog, navigate to the location of the HTML file of Fig. 3.11. Select the file name
WelcomeLines.html by clicking it, then click the Open button to open the file in the
browser. In a few moments, you should see the applet of Fig. 3.10 appear in the browser
window as shown in Fig. 3.14.

3.6.2 Viewing Applets in Other Browsers Using the Java Plug-In

If you would like to use the features of the Java 2 platform in an applet and execute that
applet in a browser that does not support Java 2, Sun provides the Java Plug-in to bypass a
browser’s Java support and use a complete version of the Java 2 Runtime Environment
(J2RE) that is installed on the user’s local computer. If the J2RE does not already exist on
the client machine, it can be downloaded and installed dynamically.

__—‘@ Because of the size of the Java Plug-in, it is difficult and inefficient to download the Plug-in

") for users with slower Internet connections. For this reason, the Plug-in is ideal for corporate
intranets where users are connected to a high-speed network. Once the Plug-in is download-
ed, it does not need to be downloaded again.

You must indicate in the HTML file containing an applet that the browser should use
the Java Plug-in to execute the applet. To do so, requires that you convert the <applet>
and </applet> tags into tags that load the Java Plug-in and execute the applet. Sun pro-
vides a conversion utility called the Java Plug-in 1.3 HTML Converter? that performs the
conversion for you. Complete information on downloading and using the Java Plug-in and
the HTML Converter are available at the Web site

java.sun.com/products/plugin/

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

132 Introduction to Java Applets Chapter 3

applet’s upper-left corner HTML file loaded into browser

|| 4 Home % My Netscape | ™ Net2Phone ™ Instant e % WebMsil % Racio ™ People ™ Yellow Pages ™ Download

Welcome to Java Programming!

Applet WelcomeLines

Bu sa Techa Fun= Interact= |

status bar

Fig. 3.14 Applet of Fig. 3.10 executing in Netscape Navigator 6.

Once you have downloaded and installed the Java Plug-in HTML converter, you can
execute it via the batch file HTMLConverter.bat on Windows or the shell script
HTMLConverter. sh on Linux/UNIX. These files are located in the converter direc-
tory’s classes subdirectory. Figure 3.15 shows the Java Plug in HTML Converter
window.

The Java P|ug-in i'é]ava(TM) Plug-in HTML Converter i] 5
HTML Converter File Edit Help
allows you to
convert all the All Files in Folder:
HTML fllgs \|D:Iconvenenclasses | | Browse...
containing applets
in one directory. Matching File Names:
Click the Browse... |*.htm|,*.htm,*.asp |
button to select the
) [Vl Include Subfolders
directory
containing the files
to convert, Backup Files to Folder:

|D:Iconve nenclasses_BAK | | Browse...
v

Also, you can / Template File:

SPeCify Thle . |Standard (IE & Mavigatar) for Windows & Solaris Only j
directory in which
the original HTML Comvert...

files are saved.

Fig. 3.15 Java Plug-in HTML Converter window.

2. As of Java 2 Software Development Kit version 1.3.1, a command-line version of the Java Plug-
in HTML converter is one of the tools in the J2SDK. To use the command-line version, open a
command window and change directories to the location that contains the HTML file to convert.
In that directory type HTMLConverter fileName, where fileName is the HTML file to convert.
Visit java.sun.com/products/plugin/1l.3/docs/htmlconv.html for more de-
tails on the command-line HTML converter.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Introduction to Java Applets 133

To perform the conversion, you must select the directory containing the HTML files
to convert. You can either type the directory name in the text field below All Files in
Folder, or you can select the directory by clicking the Browse... button to the right of
that text field. We clicked the Browse... button to display the Open dialog in Fig. 3.16.

After selecting the directory containing files to convert, the Java Plug in HTML
Converter window appears as in Fig. 3.17. The converter provides several conversion
templates to support different combinations of browsers. The default template supports
Netscape Navigator and Microsoft Internet Explorer. Figure 3.17 shows the expanded
Template File drop-down list containing the pre-defined conversion templates. We
selected the default template that enables Microsoft Internet Explorer and Netscape Navi-
gator to use the plug-in to execute an applet.

After selecting the appropriate template file, click the Convert... button at the bottom
of the Java Plug in HTML Converter window. Figure 3.18 shows the dialog box that
appears containing the status and results of the conversion. At this point the applet’s HTML
file can be loaded into Netscape Navigator or Microsoft Internet Explorer to execute the
applet. If the Java 2 Runtime Environment does not already exist on the user’s computer,
the converted HTML file contains information that enables the browser to prompt users to
determine if they would like to download the plug-in.

In this chapter and Chapter 2, we have introduced many important features of Java,
including applications, applets, displaying data on the screen, inputting data from the key-
board, performing calculations and making decisions. In Chapter 4, we build on these tech-
niques as we introduce structured programming. Here, you will become more familiar with
indentation techniques. We also study how to specify and vary the order in which a program
executes statements—this order is called flow of control.

x|
The Open dialog

box allows you to Lookin: | []cho3 ~| =] [#&] [=)

select the directory

L) figl3_06
containing the files =3 103
3 figna_oa
to convert.
I figna_10
I figna_12

File name: |ﬂg03_1 0 | Open

Files of type: | Al Files () v|| cancel |

Fig. 3.16 Selecting the directory containing HTML files to convert.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

134 Introduction to Java Applets Chapter 3

The Java Plug-in HTML i'é]ava(TM) Plug-in HTML Converter : i] 5
Converter window after File Edit Help

selecting the directory
containing files to All Files in Folder:
convert. .
[Dibooksiz0015htp Siexamplesich03igd3_10 | | .
Matching File Names:
|*.htm|, *htm, *.asp |
[¥] Include Subfolders
Backup Files to Folder:
The Template File [Dibooksiz001ijhtp fexamplesich03ign3_10_BAK | | Browse...
drop-down list allows
you to choose the R
browsers in whichto
use the plug-in to
let Extended (Standard + All BrowsersiPlatforms)
execure applets. Internet Explorer for Windows & Solaris Only
—Mavigator for Windows Only

Other Template...

Fig. 3.17 Selecting the template used to convert the HTML files.

The confirmation [EiProgress.. _[ol x|
dialog showing that

Processing...Done
the converter found

and converted one RIILIE

applet in an HTML e

file in the specified Total Files Processed:1
directory. Total Applets Found: 1

Total Errors: 1]

Fig. 3.18 Confirmation dialog after conversion completes.

3.7 Java Applet Internet and World Wide Web Resources

If you have access to the Internet and the World Wide Web, there are a large number of
Java applet resources available to you. The best place to start is at the source—the Sun Mi-
crosystems, Inc. Java Web site java.sun.com. In the upper-left corner of the Web page
is an Applets hyperlink that takes you to the Web page

java.sun.com/applets

This page contains a variety of Java applet resources, including free applets you can use on
your own World Wide Web site, the demonstration applets from the J2SDK and a variety
of other applets (many of which can be downloaded and used on your own computer).

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Introduction to Java Applets 135

There is also a section entitled “Applets at Work™ where you can read about uses of applets
in industry.
On the Sun Microsystems Java Web site, visit the Java Developer Connection

developer.java.sun.com/developer

This free site includes technical support, discussion forums, on-line training courses, tech-
nical articles, resources, announcements of new Java features, early access to new Java
technologies, and links to other important Java Web sites. Even though the site is free, you
must register to use it.

Another useful Web site is JARS—originally called the Java Applet Rating Service.
The JARS site

www.Jjars.com

calls itself the “#1 Java Review Service.” This site originally was a large Java repository
for applets. Its benefit was that it rated every applet registered at the site as top 1%, top 5%
and top 25%, so you could view the best applets on the Web. Early in the development of
the Java language, having your applet rated here was a great way to demonstrate your Java
programming abilities. JARS is now all-around resource for Java programmers.

The resources listed in this section provide hyperlinks to many other Java-related Web
sites. If you have Internet access, spend some time browsing these sites, executing applets
and reading the source code for the applets when it is available. This will help you rapidly
expand your Java expertise. Appendix B contains many other Web-based Java resources.

3.8 (Optional Case Study) Thinking About Objects: Identifying
the Classes in a Problem Statement

Now we begin the substantial task of designing the elevator simulator model, which repre-
sents the workings of the elevator system. We will design the user interaction and display
of this model in Section 12.16 and Section 22.9, respectively.

Identifying the Classes in a System

The first step of our OOD process is to identify the classes in our model. We will eventually
describe these classes in a formal way and implement them in Java. First, we review the
problem statement and locate all the nouns; it is likely that these include most of the classes
(or instances of classes) necessary to implement the elevator simulation. Figure 3.19 is a
list of these nouns (and noun phrases) in the order of their appearance.

Nouns (and noun phrases) in the problem statement

company elevator system graphical user interface (GUI)
office building elevator shaft elevator car

elevator display person

software-simulator application model floor (first floor; second floor)

Fig. 3.19 Nouns (and noun phrases) in problem statement (part 1 of 2).

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

136 Introduction to Java Applets Chapter 3

Nouns (and noun phrases) in the problem statement

passenger bell inside the elevator First Floor GUI button
floor door light on that floor Second Floor GUI button
user of our application energy audio

floor button capacity elevator music

elevator button

Fig. 3.19 Nouns (and noun phrases) in problem statement (part 2 of 2).

We choose only the nouns that perform important duties in our model. For this reason
we omit several nouns (the next paragraph explains why each is omitted):

e company
* office building

e display

e graphical user interface (GUI)

* user of our application

* energy

e capacity

* First Floor and Second Floor GUI buttons
e audio

e elevator music

We do not need to model “company,” as a class, because the company is not part of
the simulation; the company simply wants us to model the elevator. We do not model the
office building, or the actual place the elevator is situated, because the building does not
affect how our elevator simulation operates. The phrases “display,” “audio” and “elevator
music” pertain to the presentation of the model, but do not pertain to the model itself. We
use these phrases when we construct the presentation in Section 22.9 and Appendix I. The
phrases “graphical user interface,” “user of our application” and “First Floor and Second
Floor GUI buttons” pertain to how the user controls the model, but they do not represent
the model. We use these phrases when we construct the user interface in Section 12.16.
“Capacity” is a property of the elevator and of the floor—not a separate entity itself. Lastly,
although we’ll be saving energy with the policy of not moving the elevator until requested,
we do not model “energy.”

We determine the classes for our system by grouping the remaining nouns into catego-
ries. We discard “elevator system” for the time being—we focus on designing only the
system’s model and disregard how this model relates to the system as a whole. (We discuss
the system as a whole in Section 13.17.) Using this logic, we discard “simulation,” because
the simulation is the system in our case study. Lastly, we combine “elevator” and “elevator
car” into “elevator,” because the problem statement uses the two words interchangeably.
Each remaining noun from Fig. 3.19 refers to one or more of the following categories:

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 137

e model

* elevator shaft
e elevator

e person

e floor (first floor, second floor)
* elevator door

e floor door

e elevator button
e floor button

e bel

e light

These categories are likely to be classes we will need to implement our system. Notice
that we create one category for the buttons on the floors and one category for the button on
the elevator. The two types of buttons perform different duties in our simulation—the but-
tons on the floors summon the elevator, and the button in the elevator informs the elevator
to move to the other floor.

We can now model the classes in our system based on the categories we created. By
convention, we capitalize class names in the design process (as we will do when we write
the actual Java program that implements our design). If the name of a class contains more
than one word, we run the words together and capitalize each word (e.g., Multiple-
WordName). Using this convention, we create classes ElevatorModel,3 Elevator-
Shaft, Elevator, Person, Floor, ElevatorDoor, FloorDoor,
ElevatorButton, FloorButton, Bell and Light. We construct our system using
all of these classes as building blocks. Before we begin building the system, however, we
must gain a better understanding of how the classes relate to one another.

Class Diagrams

The UML enables us to model, via the class diagram, the classes in the elevator system and
their interrelationships. Class diagrams model the structure of the system by providing the
classes, or “building blocks,” of the system. Figure 3.20 represents class Elevator using
the UML. In a class diagram, each class is modeled as a rectangle. We then divide this rect-
angle into three parts. The top part contains the name of the class. The middle part contains
the class’ attributes. (We discuss attributes in “Thinking About Objects” Section 4.14 and
Section 5.11.) The bottom part of the rectangle contains the class’ operations (discussed in
“Thinking About Objects,” Section 6.17).

3. When we refer to the “elevator model,” we imply all classes composing the model describing the
operation of our elevator system—in other words, in our simulation, several classes comprise the
model. We will see in Section 13.17 that our system requires a single class to represent the mod-
el—we create class ElevatorModel to act as the “representative” for the model, because, as
we will see in Fig. 3.23, ElevatorModel is the class that aggregates all other classes compris-
ing the model.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

138 Introduction to Java Applets Chapter 3

Elevator

Fig. 3.20 Representing a class in the UML.

Classes relate to one another via associations. Figure 3.21 shows how our classes
ElevatorShaft, Elevator and FloorButton relate to one another. Notice that the
rectangles in this diagram are not subdivided into three sections. The UML allows the sup-
pression of class attributes and operations in this manner to create more readable diagrams.
Such a diagram is said to be an elided diagram, (i.e., some information, such as the contents
for the second and bottom compartments), is not modeled. We place information in these
compartments in Section 4.14 and Section 6.17, respectively.

In this class diagram, a solid line that connects classes represents an association. An
association is a relationship between classes. The numbers near the lines express multi-
plicity values. Multiplicity values indicate how many objects of a class participate in the
association. From the diagram, we see that two objects of class FloorButton participate
in the association with one object of class ElevatorShaft, because the two Floor-
Buttons are located on the ElevatorShaft. Therefore, class FloorButton has a
two-to-one relationship with class ElevatorShaft; we can also say that class Eleva-
torshaft has a one-fo-two relationship with class FloorButton. We also see that
class ElevatorShaft has a one-to-one relationship with class Elevator and vice
versa. Using the UML, we can model many types of multiplicity. Figure 3.22 shows the
multiplicity types and how to represent them.

An association can be named. For example, the word Requests above the line con-
necting classes FloorButton and Elevator indicates the name of that association—
the arrow shows the direction of the association. This part of the diagram reads “one object
of class FloorButton requests one object of class Elevator.” Note that associations
are directional with the direction indicated by the arrowhead next to the association name—
so it would be improper, for example, to read the preceding association as “one object of
class Elevator requests one object of class FloorButton.” In addition, the word
Resets indicates that “one object of class ElevatorsShaft resets two objects of class
FloorButton.” Lastly, the phrase Signals arrival indicates that “one object of
class Elevator signals the Elevator object’s arrival to one object of class Eleva-
torshaft.”

The diamond attached to the association lines of class ElevatorsShaft indicates
that class ElevatorShaft has an aggregation relationship with classes FloorButton
and Elevator. Aggregation implies a whole/part relationship. The class that has the
aggregation symbol (the hollow diamond) on its end of an association line is the whole (in
this case, ElevatorsShaft), and the class on the other end of the association line is the
part (in this case, classes FloorButton and Elevator). In this example, the elevator
shaft “has an” elevator and two floor buttons. The “has a/has an” relationship defines aggre-
gation (we will see in Section 9.23 that the “is a/is an” relationship defines inheritance).

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 139

R ElevatorShaft KO>—

1 1
Resets A
Signals
Y .
arrival
2 1

2 Requestsp |
FloorButton 9 > Elevator

Fig. 3.21 Class diagram showing associations among classes.

Symbol Meaning

0 None.

1 One.

m An integer value.

0..1 Zero or one.

m, n morn

m..n At least m, but not more than n.
* Zero or more.

0..*% Zero or more

1..* One or more

Fig. 3.22 Mulfiplicity types.

Figure 3.23 shows the complete class diagram for the elevator model. We model all
classes that we created, as well as the associations between these classes. [Note: In Chapter
9, we expand our class diagram by using the object-oriented concept of inheritance.]

Class ElevatorModel is represented near the top of the diagram and aggregates one
object of class ElevatorShaft and two objects of class Floor. The Elevator-
shaft class is an aggregation of one object of class Elevator and two objects each of
classes Light, FloorDoor and FloorButton. (Notice the two-to-one relationships
between each of these classes and Elevatorshaft.) Class Elevator is an aggregation
of classes ElevatorDoor, ElevatorButton and Bell. Class Person has associa-
tions with both FloorButton and ElevatorButton (and other classes, as we will
soon see). The association name Presses and the name-direction arrowheads indicate
that the object of class Person presses these buttons. The object of class Person also
rides the object of class Elevator and walks across the object of class Floor. The name
Requests indicates that an object of class FloorButton requests the object of class
Elevator. The name Signals tomove indicates that the object of class Elevator-
Button signals the object of class Elevator to move to the other floor. The diagram
indicates many other associations, as well.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

140 Introduction to Java Applets Chapter 3

Creates p
1
: 2 1
Light ElevatorModel | Floor
1 2
1
A
Turns
on/off A
Walks
Qacross
] 1
ElevatorShaft Resets p-
FloorDoor ——— —51 FloorButton
2 1] 1 2
1 1 1
'I ”*
A) A <aPresses 1 0
3 S|grwols -1 Requests Person
pens arrival -aPresses
1
1 1 1 Signalsto 1
ElevatorDoor ﬂ Elevator _amove | ElevatorButton
]] 1 Resetfsm-1
1 1
Rings
\J - Rides
1
Bell

Fig. 3.23 Class diagram for the elevator model.

Object Diagrams

The UML also defines object diagrams, which are similar to class diagrams in that both di-
agrams model the structure of the system. However, object diagrams model objects (in-
stances of classes) at a specific time in program execution. Object diagrams present a
snapshot of the structure while the system is running, providing information about which
objects are participating in the system at a definite point in time. Object diagrams represent
relationships between objects as solid lines—these relationship are called links.

Figure 3.24 models a snapshot of the system when no people are in the building (i.e., no
objects of class Person exist in the system at this point in time). Objects usually are written
in the form objectName : ClassName—objectName refers to the name of the object,
and ClassName refers to the class to which that object belongs. All names in an object dia-
gram are underlined. The UML permits us to omit the object names for objects in the diagram
where there exists only one object of that class (e.g., one object of class Bell at the bottom
of the diagram). In large systems, object diagrams can contain many objects. This can result
in cluttered, hard-to-read diagrams. If the name of a particular object is unknown, or if it is
not necessary to include the name (i.e., we care only about the object type), we can disregard
the object name and display only the colon and the class name.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 141

. ElevatorModel

firstFloorLight : Light firstFloor : Floor
secondFloorlight : Light secondFloor : Floor

. ElevatorShaft

—i firstFloorDoor : FloorDoor firstFloorButton: FloorButton
secondFloorDoor : FloorDoor secondFloorButton : FloorButton
L : ElevatorDoor . Elevator . ElevatorButton
. Bell

Fig. 3.24 Object diagram of an empty building in our elevator model.

Now we have identified the classes for our system (although we may discover others
in later phases of the design process). In “Thinking About Objects,” Section 4.14, we deter-
mine the attributes for each of these classes, and in “Thinking About Objects,”
Section 5.11, we use these attributes to examine how the system changes over time and to
introduce its behavioral aspects. As we expand our knowledge, we will discover new infor-
mation that will enable us to describe our classes more completely. Because the real world
is inherently object oriented, it will be quite natural for you to pursue this project, even
though you might have just begun your study of object orientation.

Questions
1. Why might it be more complicated to implement a three-story (or taller) building?

2. It is common for large buildings to have many elevators. We will see in Chapter
9 that once we have created one elevator object, it is easy to create as many as we
like. What problems or opportunities do you foresee in having several elevators,

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

142 Introduction to Java Applets Chapter 3

each of which may pick up and discharge passengers at every floor in a large
building?

3. For simplicity, we have given our elevator and each floor a capacity of one pas-
senger. What problems and opportunities do you foresee in being able to increase
these capacities?

SUMMARY

Applets are Java programs that can be embedded in Hypertext Markup Language (HTML) docu-
ments (i.e., Web pages). When a browser loads a Web page containing an applet, the applet down-
loads into the Web browser and begins execution.

In the appletviewer, you can execute an applet again by clicking the appletviewer’s Applet
menu and selecting the Reload option from the menu. To terminate an applet, click the applet -
viewer’s Applet menu and select the Quit option.

Class Graphics is located in package java.awt. Import the Graphics class so the program
can draw graphics.

Class JApplet is located in package javax.swing. When you create an applet in Java, you
must import the JApplet class.

Java uses inheritance to create new classes from existing class definitions. Keyword extends
followed by a class name indicates the class from which a new class inherits.

In the inheritance relationship, the class following extends is called the superclass or base class
and the new class is called the subclass or derived class. Using inheritance results in a new class
definition that has the attributes (data) and behaviors (methods) of the superclass as well as the
new features added in the subclass definition.

A benefit of extending class JApplet is that someone else already has defined “what it means to
be an applet.” The appletviewer and World Wide Web browsers that support applets expect
every Java applet to have certain capabilities (attributes and behaviors), and class JApplet al-
ready provides those capabilities.

Classes are used as “templates” or “blueprints” to instantiate (or create) objects in memory for use
in a program. An object (or instance) is a region in the computer’s memory in which information
is stored for use by the program. The term object normally implies that attributes (data) and be-
haviors (methods) are associated with the object and that those behaviors perform operations on
the attributes of the object.

Method paint is one of three methods (behaviors) that an applet container calls when any applet
begins execution. These three methods are init, start and paint, and they are guaranteed to
be called in that order.

The parameter list is where methods receive data required to complete their tasks. Normally, this
data is passed by the programmer to the method through a method call (also known as invoking a
method). In the case of method paint, the applet container calls the method and passes the
Graphics argument.

Method drawString of class Graphics draws a string at the specified location on the applet.
The first argument to drawString is the String to draw. The last two arguments in the list are
the coordinates (or position) at which the string should be drawn. Coordinates are measured from
the upper-left (0, 0) coordinate of the applet in pixels.

You must create an HTML (Hypertext Markup Language) file to load an applet into an applet con-
tainer, so the applet container can execute the applet.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 143

¢ Many HTML codes (referred to as tags) come in pairs. HTML tags begin with a left angle bracket
< and end with a right angle bracket >.

* Normally, the applet and its corresponding HTML file are stored in the same directory on disk.

» The first component of the <applet> tag indicates the file containing the compiled applet class.
The second and third components of the <applet> tag indicate the width and the height of
the applet in pixels. Generally, each applet should be less than 800 pixels wide and 600 pixels tall.

¢ The appletviewer only understands the <applet> and </applet> HTML tags, so it is
sometimes referred to as the “minimal browser.” It ignores all other HTML tags.

¢ Method drawLine of class Graphics draws lines. The method requires four arguments repre-
senting the two end points of the line on the applet—the x-coordinate and y-coordinate of the first
end point in the line and the x-coordinate and y-coordinate of the second end point in the line. All
coordinate values are specified with respect to the upper-left corner (0, 0) coordinate of the applet.

» Primitive data type double stores double-precision floating-point numbers. Primitive data type
float stores single-precision floating-point numbers. A double requires more memory to store
a floating-point value, but stores it with approximately twice the precision of a £loat (15 signif-
icant digits for double vs. seven significant digits for £1loat).

* The import statements are not required if you always use the complete name of a class, including
the full package name and class name (e.g., java.awt .Graphics).

* The asterisk (*) notation after a package name in an import indicates that all classes in the pack-
age should be available to the compiler so the compiler can ensure that the classes are used cor-
rectly. This allows programmers to use the shorthand name (the class name by itself) of any class
from the package in the program.

» Every instance (object) of a class contains one copy of each of that class’s instance variables. In-
stance variables are declared in the body of a class definition, but not in the body of any method
of that class definition. An important benefit of instance variables is that their identifiers can be
used in all methods of the class.

* Variables defined in the body of a method are known as local variables and can be used only in
the body of the method in which they are defined.

 Instance variables are always assigned a default value, and local variables are not.

¢ Method init normally initializes the applet’s instance variables (if they need to be initialized to
a value other than their default value) and performs any tasks that should occur only once when
the applet begins execution

» There are actually two types of variables in Java—primitive data type variables and references.

* References refer to objects in a program. References actually contain the location in the comput-
er’s memory of an object. A reference is used to send messages to (i.e., call methods on) the object
in memory. As part of the message (method call), we provide the data (arguments) that the method
requires to do its task.

* A variable is similar to an object. The primary difference between a variable and an object is that
an object is defined by a class definition that can contain both data (instance variables) and meth-
ods, whereas a variable is defined by a primitive (or built-in) data type (one of char, byte,
short, int, long, £loat, double or boolean) that can contain only data.

* A variable can store exactly one value at a time, whereas one object can contain many individual
data members.

« If the data type used to declare a variable is a class name, the identifier is a reference to an object
and that reference can be used to send messages to (call methods on) that object. If the data type
used to declare a variable is one of the primitive data types, the identifier is a variable that can be
used to store in memory or retrieve from memory a single value of the declared primitive type.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

144 Introduction to Java Applets

Chapter 3

Method Double.parseDouble (a static method of class Double) converts its String
argument to a double floating-point value. Class Double is part of the package java.lang.

Method drawRect draws a rectangle based on its four arguments. The first two integer values
represent the upper-left x-coordinate and upper-left y-coordinate where the Graphics object be-
gins drawing the rectangle. The third and fourth arguments are non-negative integers that represent
the width of the rectangle in pixels and the height of the rectangle in pixels, respectively.

To use the features of Java 2 in an applet, Sun provides the Java Plug-in to bypass a browser’s Java
support and use a complete version of the Java 2 Runtime Environment (J2RE) that is installed on
the user’s local computer.

To specify that an applet should use the Java Plug-in rather than the browser’s Java support, use

the HTML Converter to convert the applet’s <applet> and </applet> tags in the HTML file
to indicate that the applet container should use the Plug-in to execute the applet. Sun provides the

Java Plug-in 1.3 HTML Converter to perform the conversion for you.

TERMINOLOGY

applet

applet container

<applet> tag

Applet menu

appletviewer

boolean primitive type

browser

built-in data type

byte primitive type

char primitive type

command-line argument

coordinate

create an object

derived class

double primitive data type
Double.parseDouble method
double-precision floating-point number
drawLine method of class Graphics
drawRect method of class Graphics
drawString method of class Graphics
extends keyword

float primitive type

floating-point number

Graphics class

height of an applet

HTML Converter

HTML tag

Hypertext Markup Language (HTML)
import statement

information hiding

init method of class JApplet
instance variable

instantiate an object

int primitive type

interface

invoke a method

JApplet class

java.awt package

Java Plug-in

Java 2 Runtime Environment (J2RE)
javax.swing package

local variable

logic error

long primitive type

message

method call

Microsoft Internet Explorer
Netscape Communicator

object

paint method of class JApplet
parameter list

pixel (picture element)

primitive data type

Quit menu item

references

Reload menu item

short primitive type
single-precision floating-point number
source code

start method of class JApplet
subclass

superclass

text file

width of an applet

World Wide Web

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 145

SELF-REVIEW EXERCISES

3.1 Fill in the blanks in each of the following.
a) Class provides methods for drawing.
b) Java applets begin execution with a series of three method calls: s
and .
¢) Methods and display lines and rectangles.
d) Keyword indicates that a new class is a subclass of an existing class.
e) Every Java applet should extend either class or class
f) Java’seight primitive data types are

and

3.2 State whether each of the following is true or false. If false, explain why.

a) To draw arectangle, method drawRect requires four arguments that specify two points
on the applet.

b) Method drawLine requires four arguments that specify two points on the applet to
draw a line.

c¢) Type Double is a primitive data type.

d) Data type int is used to declare a floating-point number.

e) Method Double.parseDouble converts a String to a primitive double value.

3.3 Write Java statements to accomplish each of the following:

a) Display a dialog asking the user to enter a floating-point number.

b) Convert a String to a floating-point number and store the converted value in double
variable age. Assume that the String is stored in stringValue.

¢) Draw the message "This is a Java program" on one line on an applet (assume
you are defining this statement in the applet’s paint method) at position (10, 10).

d) Draw the message "This is a Java program" ontwo lines on an applet (assume
these statements are defined in applet method paint) starting at position (0, 10) and
where the first line ends with Java. Make the two lines start at the same x coordinate.

ANSWERS TO SELF-REVIEW EXERCISES

3.1 a) Graphics. b)init, start, paint. c)drawLine, drawRect. d)extends.
e) JApplet, Applet. f) byte, short, int, long, float, double, char and boolean.

3.2 a) False. Method drawRect requires four arguments—two that specify the upper-left cor-
ner of the rectangle and two that specify the width and height of the rectangle. b) True. c) False. Type
Double is a class in the java . lang package. Remember that names that start with a capital letter
are normally class names. d) False. Data type double or data type £1loat can be used to declare a
floating-point number. Data type int is used to declare integers. e) True.

3.3 a) stringValue = JOptionPane.showInputDialog (

)i
b) age = Double.parseDouble(stringValue);
¢) g.drawString(’ ’):
d) g.drawString(’ ’)i
g.drawString(’ ’):
EXERCISES
34 Fill in the blanks in each of the following:
a) Data type declares a single-precision floating-point variable.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

146 Introduction to Java Applets Chapter 3

b) If class Double provides method parseDouble to convert a String to a double
and class Integer provides method parseInt to converta String to an int, then
class Float probably provides method to convert a String to a float.

¢) Data type declares a double-precision floating-point variable.

d) The or a browser can be used to execute a Java applet.

e) To load an applet into a browser you must first define a(n) file.

f) The and HTML tags specity that an applet should be loaded into
an applet container and executed.

3.5 State whether each of the following is true or false. If false, explain why.
a) All browsers support Java 2.
b) When using an import of the form javax.swing. *, all classes in the package are
imported.
¢) Youdo not need import statements if the full package name and class name are specified
each time you refer to a class in a program.

3.6 Write an applet that asks the user to enter two floating-point numbers, obtains the two num-
bers from the user and draws the sum, product (multiplication), difference and quotient (division) of
the two numbers. Use the techniques shown in Fig. 3.12.

3.7 Write an applet that asks the user to enter two floating-point numbers, obtains the numbers
from the user and displays the larger number followed by the words “is larger” as a string on the
applet. If the numbers are equal, print the message “These numbers are equal.” Use the tech-
niques shown in Fig. 3.12.

3.8 Write an applet that inputs three floating-point numbers from the user and displays the sum,
average, product, smallest and largest of these numbers as strings on the applet. Use the techniques
shown in Fig. 3.12.

3.9 Write an applet that inputs from the user the radius of a circle as a floating-point number and
draws the circle’s diameter, circumference and area. Use the value 3.14159 for &t. Use the techniques
shown in Fig. 3.12. [Note: You may also use the predefined constant Math.PTI for the value of m.
This constant is more precise than the value 3.14159. Class Math is defined in the java.lang
package, so you do not need to import it.] Use the following formulas (r is the radius):

diameter = 2r
circumference = 27r

area = 7Z7’2

3.10 Write an applet that draws a box, an oval, an arrow and a diamond using asterisks (*) as fol-
lows:

*khkkhkkkkkk * %%k * *

* * * * * %% * *

* * * * *kkk*k * *

* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *

* * * * * * *
khkkkkkkkk * %%k * *

3.11 Write an applet that reads five integers and determines and prints the largest and smallest in-
tegers in the group. Use only the programming techniques you learned in this chapter and Chapter 2.
Draw the results on the applet.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 3 Infroduction to Java Applets 147

3.12 Write an applet that reads in two floating-point numbers and determines and prints if the first
is a multiple of the second. (Hint: Use the modulus operator.) Use only the programming techniques
you learned in this chapter and Chapter 2. Draw the results on the applet.

3.13 Write an applet that draws a checkerboard pattern as follows:

* * * % %k * * %
* % % % * % % *
* % *k * * %k *k *
* * % * * * * *
* * * * % * * %
* % % % * % % *
* % %k * * % *k *
* % % % * * %k *

3.14 Write an applet that draws a variety of rectangles of different sizes and locations.

3.15 Write an applet that allows the user to input the four arguments required by method draw-
Rect, then draws a rectangle using the four input values.

3.16 The Graphics class contains a drawOval method that takes the same four arguments as
method drawRect. However, the arguments for method drawOval specify the “bounding box” for
the oval. The sides of the bounding box are the boundaries of the oval. Write a Java applet that draws
an oval and a rectangle with the same four arguments. You will see that the oval touches the rectangle
at the center of each side.

3.17 Modify the solution to Exercise 3.16 to output a variety of ovals of different shapes and sizes.

3.18 Write an applet that allows the user to input the four arguments required by method draw-
Oval, then draws an oval using the four input values.

3.19 What does the following code print?

g.drawString(’ ’);
g.drawString (’ ’);
g.drawString (v ')i
g.drawString (’ ’)i
g.drawString (’ ’):

3.20 Using only programming techniques from Chapter 2 and Chapter 3, write an applet that cal-
culates the squares and cubes of the numbers from 0 to 10 and draws the resulting values in table for-
mat as follows:

number square cube
0 0 0

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

[Note: This program does not require any input from the user.]
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Control Structures:
Part 1

Objectives

* To understand basic problem-solving techniques.

* To be able to develop algorithms through the process
of top-down, stepwise refinement.

* To be able to use the i f and i f/else selection ‘é
structures to choose among alternative actions.

* To be able to use the while repetition structure to
execute statements in a program repeatedly.

* To understand counter-controlled repetition and
sentinel-controlled repetition.

* To be able to use the increment, decrement and
assignment operators.

Let’s all move one place on.
Lewis Carroll

The wheel is come full circle.

William Shakespeare, King Lear

How many apples fell on Newton’s head before he took the
hint!

Robert Frost, comment

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 149

Outline

4.1 Introduction

4.2 Algorithms

4.3 Pseudocode

4.4 Control Structures

4.5 The if Selection Structure

4.6 The if/else Selection Structure

4.7 The while Repetition Structure

4.8 Formulating Algorithms: Case Study 1 (Counter-Controlled
Repetition)

4.9 Formulating Algorithms with Top-Down, Stepwise Refinement: Case
Study 2 (Sentinel-Controlled Repetition)

4.10 Formulating Algorithms with Top-Down, Stepwise Refinement: Case
Study 3 (Nested Control Structures)

4.11 Assignment Operators
4.12 Increment and Decrement Operators
4.13 Primitive Data Types

4.14 (Optional Case Study) Thinking About Objects: Identifying Class
Attributes

Summary ¢ Terminology * Self-Review Exercises ® Answers to Self-Review Exercises * Exercises

4.1 Introduction

Before writing a program to solve a problem, it is essential to have a thorough understanding
of the problem and a carefully planned approach to solving the problem. When writing a
program, it is equally essential to understand the types of building blocks that are available
and to employ proven program construction principles. In this chapter and in Chapter 5, we
discuss these issues in our presentation of the theory and principles of structured program-
ming. The techniques you learn here are applicable to most high-level languages, including
Java. When we study object-based programming in more depth in Chapter 8, we will see
that control structures are helpful in building and manipulating objects.

4.2 Algorithms

Any computing problem can be solved by executing a series of actions in a specific order.
A procedure for solving a problem in terms of

1. the actions to be executed and
2. the order in which the actions are to be executed

is called an algorithm. The following example demonstrates that correctly specifying the
order in which the actions are to be executed is important.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

150 Control Structures: Part 1 Chapter 4

Consider the “rise-and-shine algorithm” followed by one junior executive for getting
out of bed and going to work: (1) Get out of bed, (2) take off pajamas, (3) take a shower,
(4) get dressed, (5) eat breakfast, (6) carpool to work.

This routine gets the executive to work well prepared to make critical decisions. Sup-
pose, however, that the same steps are performed in a slightly different order: (1) Get out
of bed, (2) take off pajamas, (3) get dressed, (4) take a shower, (5) eat breakfast, (6) carpool
to work.

In this case, our junior executive shows up for work soaking wet. Specifying the order
in which statements are to be executed in a computer program is called program control.
In this chapter and Chapter 5, we investigate the program control capabilities of Java.

4.3 Pseudocode

Pseudocode is an artificial and informal language that helps programmers develop algo-
rithms. The pseudocode we present here is particularly useful for developing algorithms
that will be converted to structured portions of Java programs. Pseudocode is similar to
everyday English; it is convenient and user friendly, although it is not an actual computer
programming language.

Pseudocode programs are not actually executed on computers. Rather, they help the
programmer “think out” a program before attempting to write it in a programming lan-
guage, such as Java. In this chapter, we give several examples of pseudocode programs.

Pseudocode is often used to “think out” a program during the program design process. Then
the pseudocode program is converted to Java.

The style of pseudocode we present consists purely of characters, so programmers may
conveniently type pseudocode programs using an editor program. The computer can pro-
duce a freshly printed copy of a pseudocode program on demand. A carefully prepared
pseudocode program may be converted easily to a corresponding Java program. This con-
version is done in many cases simply by replacing pseudocode statements with their Java
equivalents.

Pseudocode normally describes only executable statements—the actions that are per-
formed when the program is converted from pseudocode to Java and is run. Declarations
are not executable statements. For example, the declaration

int i;

tells the compiler the type of variable i and instructs the compiler to reserve space in mem-
ory for the variable. This declaration does not cause any action—such as input, output or a
calculation—to occur when the program is executed. Some programmers choose to list
variables and mention the purpose of each at the beginning of a pseudocode program.

4.4 Control Structures

Normally, statements in a program are executed one after the other in the order in which
they are written. This process is called sequential execution. Various Java statements we
will soon discuss enable the programmer to specify that the next statement to be executed
may be other than the next one in sequence. This is called transfer of control.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 151

During the 1960s, it became clear that the indiscriminate use of transfers of control was
the root of much difficulty experienced by software development groups. The finger of
blame was pointed at the goto statement (used in several programming languages,
including C and Basic), which allows the programmer to specify a transfer of control to one
of a very wide range of possible destinations in a program. The notion of so-called struc-
tured programming became almost synonymous with “goto elimination.” Java does not
have a goto statement; however, goto is a reserved word and should not be used in a Java
program.

The research of Bohm and J acopini1 had demonstrated that programs could be written
without any goto statements. The challenge of the era for programmers was to shift their
styles to “goto-less programming.” It was not until the 1970s that programmers started
taking structured programming seriously. The results have been impressive, as software
development groups have reported reduced development times, more frequent on-time
delivery of systems and more frequent within-budget completion of software projects. The
key to these successes is that structured programs are clearer, easier to debug and modify
and more likely to be bug free in the first place.

Bohm and Jacopini’s work demonstrated that all programs could be written in terms of
only three control structures—namely, the sequence structure, the selection structure and
the repetition structure. The sequence structure is built into Java. Unless directed other-
wise, the computer executes Java statements one after the other in the order in which they
are written. The flowchart segment in Fig. 4.1 illustrates a typical sequence structure in
which two calculations are performed in order.

A flowchart is a graphical representation of an algorithm or a portion of an algorithm.
Flowcharts are drawn using certain special-purpose symbols, such as rectangles, diamonds,
ovals and small circles; these symbols are connected by arrows called flowlines, which indi-
cate the order in which the actions of the algorithm execute.

Like pseudocode, flowcharts are often useful for developing and representing algo-
rithms, although pseudocode is strongly preferred by many programmers. Flowcharts show
clearly how control structures operate; that is all we use them for in this text. The reader
should carefully compare the pseudocode and flowchart representations of each control
structure.

!

add grade to total total = total + grade;

'

add 1 to counter counter = counter + 1;

:

Fig. 4.1 Flowcharting Java’s sequence structure.

1. Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two
Formation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336-371.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

152 Control Structures: Part 1 Chapter 4

Consider the flowchart segment for the sequence structure in Fig. 4.1. We use the rect-
angle symbol, also called the action symbol, to indicate any type of action, including a cal-
culation or an input/output operation. The flowlines in the figure indicate the order in
which the actions are to be performed; first, grade is to be added to total, and then 1
is to be added to counter. Java allows us to have as many actions as we want in a
sequence structure. As we will soon see, anywhere a single action may be placed, we may
instead place several actions in sequence.

When drawing a flowchart that represents a complete algorithm, an oval symbol con-
taining the word “Begin” is the first symbol used in the flowchart; an oval symbol con-
taining the word “End” indicates where the algorithm ends. When drawing only a portion
of an algorithm, as in Fig. 4.1, the oval symbols are omitted in favor of small circle sym-
bols, also called connector symbols.

Perhaps the most important flowcharting symbol is the diamond symbol, also called
the decision symbol, which indicates that a decision is to be made. We will discuss the dia-
mond symbol in the next section.

Java provides three types of selection structures; we discuss each in this chapter and in
Chapter 5. The i £ selection structure either performs (selects) an action, if a condition is
true, or skips the action, if the condition is false. The if/else selection structure per-
forms an action if a condition is true and performs a different action if the condition is false.
The switch selection structure (Chapter 5) performs one of many different actions,
depending on the value of an expression.

The if structure is called a single-selection structure, because it selects or ignores a
single action (or, as we will soon see, a single group of actions). The 1f/else structure
is called a double-selection structure, because it selects between two different actions (or
groups of actions). The switch structure is called a multiple-selection structure, because
it selects among many different actions (or groups of actions).

Java provides three types of repetition structures—namely, while, do/while and
for. (do/while and for are covered in Chapter 5.) Each of the words if, else,
switch, while, do and for are Java keywords. These words are reserved by the lan-
guage to implement various features, such as Java’s control structures. Keywords cannot
be used as identifiers, such as for variable names. A complete list of Java keywords is
shown in Fig. 4.2.

Java Keywords

abstract boolean break byte case
catch char class continue default
do double else extends false
final finally float for if
implements import instanceof int interface
long native new null package
private protected public return short

Fig. 4.2 Javakeywords (part 1 of 2).

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 153

Java Keywords

static super switch synchronized this
throw throws transient true try
void volatile while

Keywords that are reserved, but not used, by Java

const goto

Fig. 4.2 Java keywords (part 2 of 2).

—9- Common Programming Error 4.1
@ Using a keyword as an identifier is a syntax error.

Well, that is all there is. Java has only seven control structures: the sequence structure,
three types of selection structures and three types of repetition structures. Each program is
formed by combining as many of each type of control structure as is appropriate for the
algorithm the program implements. As with the sequence structure in Fig. 4.1, we will see
that each control structure is flowcharted with two small circle symbols, one at the entry
point to the control structure and one at the exit point.

Single-entry/single-exit control structures make it easy to build programs; the control
structures are attached to one another by connecting the exit point of one control structure
to the entry point of the next. This procedure is similar to the way in which a child stacks
building blocks, so we call it control-structure stacking. We will learn that there is only one
other way in which control structures may be connected: control-structure nesting. Thus,
algorithms in Java programs are constructed from only seven different types of control
structures, combined in only two ways.

4.5 The 1if Selection Structure

A selection structure is used to choose among alternative courses of action in a program.
For example, suppose that the passing grade on an examination is 60 (out of 100). Then the
pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

determines if the condition “student’s grade is greater than or equal to 60” is true or false.
If the condition is true, then “Passed” is printed, and the next pseudocode statement in order
is “performed.” (Remember that pseudocode is not a real programming language.) If the
condition is false, the Print statement is ignored, and the next pseudocode statement in order
is performed. Note that the second line of this selection structure is indented. Such inden-
tation is optional, but it is highly recommended, because it emphasizes the inherent struc-
ture of structured programs. The Java compiler ignores white-space characters, like blanks,
tabs and newlines, used for indentation and vertical spacing. Programmers insert these
white-space characters to enhance program clarity.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

154 Control Structures: Part 1 Chapter 4

Good Programming Practice 4.1

@ Consistently applying reasonable indentation conventions throughout your programs im-
proves program readability. We suggest a fixed-size tab of about Y4 inch or three spaces per
indent.

The preceding pseudocode if statement may be written in Java as

if (studentGrade >=)
System.out.println();

Notice that the Java code corresponds closely to the pseudocode. This attribute is a
property of pseudocode that makes it a useful program development tool. The statement in
the body of the 1f structure outputs the character string "Passed" in the command
window.

The flowchart in Fig. 4.3 illustrates the single-selection if structure. This flowchart
contains what is perhaps the most important flowcharting symbol—the diamond symbol,
also called the decision symbol, which indicates that a decision is to be made. The decision
symbol contains an expression, such as a condition, that can be either true or false. The
decision symbol has two flowlines emerging from it. One indicates the direction to be taken
when the expression in the symbol is true; the other indicates the direction to be taken when
the expression is false. A decision can be made on any expression that evaluates to a value
of Java’s boolean type (i.e., any expression that evaluates to txrue or false).

Note that the i £ structure is a single-entry/single-exit structure. We will soon learn
that the flowcharts for the remaining control structures also contain (besides small circle
symbols and flowlines) only rectangle symbols, to indicate the actions to be performed, and
diamond symbols, to indicate decisions to be made. This factor is indicative of the action/
decision model of programming we have been emphasizing throughout this chapter.

We can envision seven bins, each containing only control structures of one of the seven
types. These control structures are empty; nothing is written in the rectangles or in the dia-
monds. The programmer’s task, then, is to assemble a program from as many of each type
of control structure as the algorithm demands, combining the control structures in only two
possible ways (stacking or nesting) and then filling in the actions and decisions in a manner
appropriate for the algorithm. In this chapter we discuss the variety of ways in which
actions and decisions may be written.

grade >= 60 print “Passed”

fa Ise({

Fig. 4.3 Flowcharting the single-selection 1 £ structure.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 155

4.6 The 1f/else Selection Structure

The if selection structure performs an indicated action only when the given condition
evaluates to true; otherwise, the action is skipped. The if/else selection structure al-
lows the programmer to specify that a different action is to be performed when the condi-
tion is true rather than when the condition is false. For example, the pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

else
Print “Failed”

prints Passed if the student’s grade is greater than or equal to 60 and prints Failed if the

student’s grade is less than 60. In either case, after printing occurs, the next pseudocode

statement in sequence is “performed.” Note that the body of the else is also indented.
Good Programming Practice 4.2

@ Indent both body statements of an if/else structure.

The indentation convention you choose should be carefully applied throughout your
programs. It is difficult to read programs that do not use uniform spacing conventions.
The preceding pseudocode [f/else structure may be written in Java as

if (studentGrade >=)
System.out.println():
else
System.out.println();

The flowchart in Fig. 4.4 nicely illustrates the flow of control in an i f£/else structure.
Once again, note that, besides small circles and arrows, the only symbols in the flowchart
are rectangles (for actions) and a diamond (for a decision). We continue to emphasize this
action/decision model of computing. Imagine again a deep bin containing as many empty
double-selection structures as might be needed to build a Java algorithm. The pro-
grammer’s job is to assemble the selection structures (by stacking and nesting) with other
control structures required by the algorithm and to fill in the empty rectangles and empty
diamonds with actions and decisions appropriate to the algorithm being implemented.

I

grade >= 60

A\ A\

print “Failed” print “Passed”

Fig. 4.4 Flowcharting the double-selection 1 £/else structure.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

156 Control Structures: Part 1 Chapter 4

The conditional operator (?) is related to the if/else structure. ? : is Java’s only
ternary operator—it takes three operands. The operands together with ? : form a condi-
tional expression. The first operand is a boolean expression, the second is the value for
the conditional expression if the condition evaluates to true and the third is the value for
the conditional expression if the condition evaluates to false. For example, the statement

System.out.println(studentGrade >= ? :);

contains a conditional expression that evaluates to the string "Passed™" if the condition
studentGrade >= 60 is true and to the string "Failed" if the condition is false. Thus,
this statement with the conditional operator performs essentially the same function as the
if/else statement given previously. The precedence of the conditional operator is low,
so the entire conditional expression is normally placed in parentheses. We will see that con-
ditional operators can be used in some situations where i f/else statements cannot.

Good Programming Practice 4.3

@ In general, conditional expressions are more difficult to read than i f/else structures. Such
expressions should be used with discretion when they help improve a program’s readability.

Nested if/else structures test for multiple cases by placing if/else structures
inside if/else structures. For example, the following pseudocode statement prints A for
exam grades greater than or equal to 90, B for grades in the range 80 to 89, C for grades in
the range 70 to 79, D for grades in the range 60 to 69 and F for all other grades:

If student’s grade is greater than or equal to 90
Print “A”
else
If student’s grade is greater than or equal to 80
Print “B”
else
If student’s grade is greater than or equal to 70
Print “C”
else
If student’s grade is greater than or equal to 60
Print “D”
else
Print “F”

This pseudocode may be written in Java as

if (studentGrade >=)
System.out.println();
else
if (studentGrade >=)
System.out .println/():
else
if (studentGrade >=)
System.out.println():
else
if (studentGrade >=)
System.out.println();
else
System.out.println():

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 157

If studentGrade is greater than or equal to 90, the first four conditions will be true, but
only the System.out .println statement after the first test will be executed. After that
particular System.out.println is executed, the else part of the “outer” 1f£/else
statement is skipped.

Good Programming Practice 4.4

@ If there are several levels of indentation, each level should be indented by the same addi-
tional amount of space.

Most Java programmers prefer to write the preceding i £ structure as

if (grade >=)
System.out.println();
else if (grade >=)
System.out.println():
else if (grade >=)
System.out.println():
else if (grade >=)
System.out.println():
else
System.out.println/():

Both forms are equivalent. The latter form is popular because it avoids the deep indentation
of the code to the right. Such deep indentation often leaves little room on a line, forcing
lines to be split and decreasing program readability.

It is important to note that the Java compiler always associates an else with the pre-
vious if unless told to do otherwise by the placement of braces ({}). This attribute is
referred to as the dangling-else problem. For example,

if (x>)
if (y >)
System.out.println();
else
System.out.println():

appears to indicate that if x is greater than 5, the 1 £ structure in its body determines if y
is also greater than 5. If so, the string "x and y are > 5" is output. Otherwise, it appears
that if x is not greater than 5, the else part of the i £/else structure outputs the string
"xig<=5".

Beware! The preceding nested i £ structure does not execute as it would appear to. The
compiler actually interprets the preceding structure as

if (x>)
if (y >)
System.out.println()i
else
System.out.println()i

in which the body of the first 1 £ structure is an if/else structure. This structure tests if
x is greater than 5. If so, execution continues by testing if y is also greater than 5. If the
second condition is true, the proper string—"x and y are > 5"—is displayed. However,
if the second condition is false, the string "x is <= 5" is displayed, even though we know
that x is greater than 5.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

158 Control Structures: Part 1 Chapter 4

To force the preceding nested i £ structure to execute as it was originally intended, the
structure must be written as follows:

if (% >) {
if (y >)
System.out.println():
}

else
System.out.println()

The braces ({}) indicate to the compiler that the second 1 £ structure is in the body of the
first 1 £ structure and that the else is matched with the first 1 £ structure. In Exercise 4.21
and Exercise 4.22, you will investigate the dangling-else problem further.

The i£ selection structure normally expects only one statement in its body. To include
several statements in the body of an 1f structure, enclose the statements in braces ({ and
}). A set of statements contained within a pair of braces is called a block.

A block can be placed anywhere in a program that a single statement can be placed.

The following example includes a block in the else part of an if/else structure:

if (grade >=)

System.out.println();
else {

System.out.println():

System.out.println():
}

In this case, if grade is less than 60, the program executes both statements in the body of
the else and prints

Failed.
You must take this course again.

Notice the braces surrounding the two statements in the else clause. These braces are im-
portant. Without the braces, the statement

System.out.println()

would be outside the body of the else part of the i £ structure and would execute regard-
less of whether the grade is less than 60.

—a9- Common Programming Error 4.2
@ Forgetting one or both of the braces that delimit a block can lead to syntax or logic errors.

Syntax errors (such as when one brace in a block is left out of the program) are caught
by the compiler. A logic error (such as when both braces in a block are left out of the pro-
gram) has its effect at execution time. A fatal logic error causes a program to fail and ter-
minate prematurely. A nonfatal logic error allows a program to continue executing, but the
program produces incorrect results.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 159

Just as a block can be placed anywhere a single statement can be placed, it is also possible
f—“ to have no statement at all (i.e., the empty statement in such places). The empty statement is
represented by placing a semicolon (;) where a statement would normally be.

Common Programming Error 4.3

@ Placing a semicolon after the condition in an if structure leads to a logic error in single-
selection if structures and a syntax error in double-selection if structures (if the i £ part
contains a nonempty body statement).

Good Programming Practice 4.5

@ Some programmers prefer to type the beginning and ending braces of blocks before typing
the individual statements within the braces. This practice helps avoid omitting one or both of
the braces.

In this section, we have introduced the notion of a block. A block may contain decla-
rations (as does the body of main, for example). The declarations in a block commonly are
placed first in the block before any action statements occur, but declarations may also be
intermixed with action statements.

4.7 The while Repetition Structure

A repetition structure allows the programmer to specify that an action is to be repeated
while some condition remains true. The pseudocode statement

While there are more items on my shopping list
Purchase next item and cross it off my list

describes the repetition that occurs during a shopping trip. The condition “there are more
items on my shopping list” may be true or false. If it is true, then the action “Purchase next
item and cross it off my list” is performed. This action will be performed repeatedly while
the condition remains true. The statement(s) contained in the while repetition structure con-
stitute the body of the while structure. The body of the while structure may be a single state-
ment or a block. Eventually, the condition will become false (when the last item on the
shopping list has been purchased and crossed off the list). At this point, the repetition ter-
minates, and the first pseudocode statement after the repetition structure is executed.

- Common Programming Error 4.4

ﬁ Not providing in the body of a while structure an action that eventually causes the con-
dition in the while to become false is a logic error. Normally, such a repetition structure
will never terminate—an error called an infinite loop.

Common Programming Error 4.5

Spelling the keyword while with an uppercase W, as in While, is a syntax error. (Remem-
ber that Java is a case-sensitive language.) All of Java’s reserved keywords, such as while,
if and else, contain only lowercase letters.

)

As an example of a while structure, consider a program segment designed to find the
first power of 2 larger than 1000. Suppose that the int variable product has been ini-
tialized to 2. When the following while structure finishes executing, product contains
the result:

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

160 Control Structures: Part 1 Chapter 4

int product = 2;
while (product <=)
product = * product;

The flowchart in Fig. 4.5 illustrates the flow of control of the preceding while repe-
tition structure. Once again, note that, besides small circles and arrows, the flowchart con-
tains only a rectangle symbol and a diamond symbol.

Imagine, again, a deep bin of empty while structures that may be stacked and nested
with other control structures to form a structured implementation of an algorithm’s flow of
control. The empty rectangles and diamonds are then filled in with appropriate actions and
decisions. The flowchart clearly shows the repetition. The flowline emerging from the rect-
angle wraps back to the decision, which is tested each time through the loop until the deci-
sion eventually becomes false. At this point, the while structure is exited, and control
passes to the next statement in the program.

When the while structure is entered, product is 2. Variable product is repeat-
edly multiplied by 2, taking on the values 4, 8, 16, 32, 64, 128, 256, 512 and 1024 succes-
sively. When product becomes 1024, the condition product <= 1000 in the while
structure becomes false. This result terminates the repetition, with 1024 as product’s
final value. Execution continues with the next statement after the while. [Note: If a
while structure’s condition is initially £alse, the body statement(s) will never be per-
formed.]

4.8 Formulating Algorithms: Case Study 1 (Counter-Controlled
Repetition)

To illustrate how algorithms are developed, we solve several variations of a class-averaging
problem. Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 to 100) for this quiz
are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each of the grades, perform
the averaging calculation and print the result.

product <= 1000 product = 2 * product

Fig. 4.5 Flowcharting the while repetition structure.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 161

Let us use pseudocode to list the actions to be executed and specify the order in which
these actions should be executed. We use counter-controlled repetition to input the grades
one at a time. This technique uses a variable called a counter to control the number of
times a set of statements will execute. In this example, repetition terminates when the
counter exceeds 10. In this section, we present a pseudocode algorithm (Fig. 4.6) and the
corresponding program (Fig. 4.7) to solve this probem using counter-controlled repetition.
In the next section, we show how pseudocode algorithms are developed. Counter-con-
trolled repetition is often called definite repetition, because the number of repetitions is
known before the loop begins executing.

Note the references in the algorithm to a total and a counter. A tofal is a variable used
to accumulate the sum of a series of values. A counter is a variable used to count—in this
case, to count the number of grades entered. Variables used to store totals should normally
be initialized to zero before being used in a program; otherwise, the sum would include the
previous value stored in the total’s memory location.

Set total to zero
Set grade counter to one

While grade counter is less than or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

Fig. 4.6 Pseudocode algorithm that uses counter-controlled repetition to solve
the class-average problem.

1

2

3

4

5 import javax.swing.JOptionPane;
6

7 public class Averagel {

8

9

10 public static void main(String args[])
11 {

12 int total,

13 gradeCounter,

14 gradeValue,

15 average;

16 String grade;

17

Fig. 4.7 Class-average program with counter-conftrolled repetition (part 1 of 3).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

162

Control Structures: Part 1

Chapter 4

total = 0;
gradeCounter = 1;

while (gradeCounter <=) {

grade = JOptionPane.showInputDialog (
)i

gradeValue = Integer.parselInt(grade);

total = total + gradeValue;

gradeCounter = gradeCounter + 1;

average = total / ;

JOptionPane.showMessageDialog(null,
+ average,
JOptionPane.):

System.exit ():

Egalnput ﬂ Egalnput

E Enter integer grade: E Enter integer grade:
[100 | [z8

Egalnput E ﬂ Egalnput

E Enter integer grade: E Enter integer grade:
FE | |55

Fig. 4.7

Class-average program with counter-controlled repetition (part 2 of 3).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4

Control Structures: Part 1

163

Egalnput ﬂ Egalnput ﬂ
E Enter integer grade: E Enter integer grade:
|68 | [77 |
Cancel Cancel
Egalnput ﬂ Egalnput ﬂ
E Enter integer grade: E Enter integer grade:
[z3 | |95 |
Cancel Cancel
ﬂ Egalnput ﬂ

Egalnput

E Enter integer grade:
[73

E Enter integer grade:
62

Egal:lass Average

@ Class average is 79

x|

s

Fig. 4.7

Good Programming Practice 4.6

Class-average program with counter-conftrolled repetition (part 3 of 3).

@ Initialize counters and totals.

Line 5,

import javax.swing.JOptionPane;

imports class JOptionPane to enable the program to read data from the keyboard and
output data to the screen using the input dialog and message dialog shown in Chapter 2.

Line 7 begins the definition of application class Averagel. Remember that the defi-
nition of an application class must contain a main method (lines 10-49) in order for the

application to be executed.
Lines 12-16,

int total,
gradeCounter,
gradeValue,
average;

String grade;

declare variables total, gradeCounter, gradeValue and average to be of type
int and variable grade to be of type String. Variable grade stores the String the

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

164 Control Structures: Part 1 Chapter 4

user types in the input dialog. Variable gradeValue stores the integer value of grade
after the program converts it from a String to an int.

Notice that the preceding declarations appear in the body of method main. Remember
that variables declared in a method definition’s body are local variables and can be used
only from the line of their declaration in the method to the closing right brace (}) of the
method definition. A local variable’s declaration must appear before the variable is used in
that method. A local variable declared in one method of a class cannot be accessed directly
by other methods of a class.

Good Programming Practice 4.7

@ Always place a blank line before a declaration that appears between executable statements.
This format makes the declarations stand out in the program and contributes to program
clarity.

Good Programming Practice 4.8

g If you prefer to place declarations at the beginning of a method, separate the declarations
from the executable statements in that method with one blank line, to highlight where the dec-
larations end and the executable statements begin.

- Common Programming Error 4.6

Attempting to use a local variable’s value before initializing the variable (normally with an
assignment statement) results in a compile error indicating that the variable may not have
been initialized. The value of a local variable cannot be used until the variable is initialized.
The program will not compile properly until the variable receives an initial value.

Lines 19-20,
total = 0;
gradeCounter = 1;

are assignment statements that initialize total to 0 and gradeCounter to 1. Note that
these statements initialize variables total and gradeCounter before they are used in
calculations.

Line 23,

while (gradeCounter <=) {

indicates that the while structure should continue looping (also called iterating) as long
as the value of gradeCounter is less than or equal to 10.
Lines 26-27,

grade = JOptionPane.showInputDialog(
)

correspond to the pseudocode statement “Input the next grade.” The statement displays an
input dialog with the prompt “Enter integer grade:” on the screen.

After the user enters the grade, the program converts it from a String to an int at
line 30,

gradeValue = Integer.parseInt(grade);

Remember that class Integer is from package java . lang that the compiler imports in
every Java program. The pseudocode for the class-average problem does not reflect the pre-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 165

ceding statement. The pseudocode statement “Input the next grade” requires the program-
mer to implement the process of obtaining the value from the user and converting it to a
type that can be used in calculating the average. As you learn to program, you will find that
you require fewer pseudocode statements to help you implement a program.

Next, the program updates the total with the new gradevValue entered by the
user. Line 33,

total = total + gradeValue;

adds gradeValue to the previous value of total and assigns the result to total.
Line 36,

gradeCounter = gradeCounter + 1;

adds 1 to gradeCounter to indicate that the program hasprocessed a grade and is ready

to input the next grade from the user. Incrementing gradeCounter is necessary for the

condition in the while structure to become false eventually and terminate the loop.
Line 41,

average = total / H
assigns the results of the average calculation to variable average. Lines 4446,

JOptionPane.showMessageDialog (
null, + average, ’
JOptionPane.)i

display an information message dialog containing the string "Class average is " fol-
lowed by the value of variable average. The string “Class Average” (the third argu-
ment) is the title of the message dialog.

Line 48,

System.exit ();

terminates the application.
After compiling the class definition with javac, execute the application from the
command window with the command

java Averagel

This command executes the Java interpreter and tells it that the main method for this ap-
plication is defined in class Averagel.

Note that the averaging calculation in the program produced an integer result. Actu-
ally, the sum of the grade-point values in this example is 794, which, when divided by 10,
should yield 79.4 (i.e., a number with a decimal point). We will see how to deal with such
numbers (called floating-point numbers) in the next section.

4.9 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 2 (Sentinel-Controlled Repetition)

Let us generalize the class-average problem. Consider the following problem:

Develop a class-averaging program that processes an arbitrary number of grades each time
the program executes.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

166 Control Structures: Part 1 Chapter 4

In the first class-average example, the number of grades (10) was known in advance. In this
example, no indication is given of how many grades the user will input. The program must
process an arbitrary number of grades. How can the program determine when to stop the
input of grades? How will it know when to calculate and print the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value or a flag value) to indicate the end of data entry. The
user types grades in until all legitimate grades have been entered. The user then types the
sentinel value to indicate that the last grade has been entered. Sentinel-controlled repetition
is often called indefinite repetition, because the number of repetitions is not known before
the loop begins executing.

Clearly, the sentinel value must be chosen so that it cannot be confused with an accept-
able input value. Because grades on a quiz are normally nonnegative integers, —1 is an
acceptable sentinel value for this problem. Thus, an execution of the class-average program
might process a stream of inputs such as 95, 96, 75, 74, 89 and —1. In this case, the program
would compute and print the class average for the grades 95, 96, 75, 74 and 89. (-1 is the
sentinel value, so it should not enter into the averaging calculation.)

Common Programming Error 4.7

@ Choosing a sentinel value that is also a legitimate data value results in a logic error and may
prevent a sentinel-controlled loop from terminating properly.

We approach the class-average program with a technique called top-down, stepwise
refinement, a method that is essential to the development of well-structured algorithms. We
begin with a pseudocode representation of the top:

Determine the class average for the quiz

The top is a single statement that conveys the overall function of the program. As such, the
top is, in effect, a complete representation of a program. Unfortunately, the top rarely con-
veys a sufficient amount of detail from which to write the Java algorithm. So we now begin
the refinement process. We divide the top into a series of smaller tasks and list these tasks
in the order in which they need to be performed. This procedure results in the following
first refinement:

Initialize variables
Input, sum up and count the quiz grades

Calculate and print the class average

This pseudocode uses only the sequence structure—the steps listed occur in order, one after
the other.

Each refinement, as well as the top itself, is a complete specification of the algorithm; only
the level of detail varies.

To proceed to the next level of refinement (i.e., the second refinement), we commit to
specific variables. We need a running total of the grades, a count of how many grades have
been processed, a variable to receive the value of each grade as it is input and a variable to
store the calculated average. The pseudocode statement

Initialize variables

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 167

may be refined as follows:

Initialize total to zero
Initialize counter to zero

Notice that only the variables fotal and counter are initialized before they are used; the vari-
ables average and grade (for the calculated average and the user input, respectively) need
not be initialized, because their values are replaced as they are calculated or input.

The pseudocode statement

Input, sum up and count the quiz grades

requires a repetition structure (i.e., a loop) that successively inputs each grade. We do not
know how many grades the user will input, so the program will use sentinel-controlled rep-
etition. The user at the keyboard inputs legitimate grades one at a time. After inputting the
last legitimate grade, the user types the sentinel value. The program tests for the sentinel
value after each grade is input and terminates the loop when the user inputs the sentinel val-
ue. The second refinement of the preceding pseudocode statement is then

Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel

Add this grade into the running total

Add one to the grade counter

Input the next grade (possibly the sentinel)
Notice that in pseudocode, we do not use braces around the pseudocode that forms the body
of the while structure. We simply indent the pseudocode under the while, to show that it
belongs to the while. Again, pseudocode is only an informal program development aid.

The pseudocode statement

Calculate and print the class average
may be refined as follows:

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average
else
Print “No grades were entered”
Notice that we are testing for the possibility of division by zero—a logic error that, if un-

detected, would cause the program to produce invalid output. The complete second refine-
ment of the pseudocode algorithm for the class-average problem is shown in Fig. 4.8.

@ When performing division by an expression whose value could be zero, explicitly test for this
case and handle it appropriately in your program (such as by printing an error message)
rather than allowing the division by zero to occur.

Good Programming Practice 4.9

@ Include completely blank lines in pseudocode programs to make the pseudocode more read-
able. The blank lines separate pseudocode control structures, as well as the phases of the
programs.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

168 Control Structures: Part 1 Chapter 4

Initialize total to zero
Initialize counter to zero

Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

Fig. 4.8 Pseudocode algorithm that uses sentinel-controlled repetition fo solve
the class-average problem.

Va

51 Many algorithms can be divided logically into three phases: an initialization phase that ini-

= tializes the program variables; a processing phase that inputs data values and adjusts pro-
gram variables accordingly and a termination phase that calculates and displays the
results.

The pseudocode algorithm in Fig. 4.8 solves the more general class-averaging
problem. This algorithm was developed after only two levels of refinement. Sometimes
more levels are necessary.

The programmer terminates the top-down, stepwise refinement process when the pseudocode
algorithm is specified in sufficient detail for the programmer to be able to convert the
pseudocode to a Java applet or application. Normally, implementing the Java applet or ap-
plication is then straightforward.

The Java application and a sample execution are shown in Fig. 4.9. Although each
grade is an integer, the averaging calculation is likely to produce a number with a decimal
point (i.e., a real number). The type int cannot represent real numbers (i.e., numbers with
decimal points), so this program uses data type double to handle floating-point numbers.
The program introduces a special operator called a cast operator to handle the type conver-
sion we will need for the averaging calculation. These features are explained in detail in the
discussion of the application.

In this example, we see that control structures may be stacked on top of one another
(in sequence) just as a child stacks building blocks. The while structure (lines 33—47) is
followed by an if/else structure (lines 52-63) in sequence. Much of the code in this pro-
gram is identical to the code in Fig. 4.7, so we concentrate in this example on the new fea-
tures and issues.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4

Control Structures: Part 1

169

import java.text.DecimalFormat;

import javax.swing.JOptionPane;

public class Average2 {

{
int gradeCounter,
gradeValue,
total;
double average;
String input;

22 total = 0;
23 gradeCounter = 0;

public static void main(String argsl[])

27 input = JOptionPane.showInputDialog(

31 gradeValue = Integer.parseInt(input);

33 while (gradeValue !=)

36 total = total + gradeValue;

39 gradeCounter = gradeCounter +

.
7

42 input = JOptionPane.showInputDialog (

46 gradeValue = Integer.parseInt(input);

50 DecimalFormat twoDigits =

52 if (gradeCounter !=) {

new DecimalFormat (

53 average = (double) total / gradeCounter;

Fig. 4.9 Class-average program with sentinel-controlled repetition (part 1 of 2).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

170 Control Structures: Part 1 Chapter 4

54
55
56 JOptionPane.showMessageDialog(null,
57 + twoDigits.format(average),
58 , JOptionPane.)i
59 }
60 else
61 JOptionPane.showMessageDialog(null,
62 ’ ’
63 JOptionPane.);
64
65 System.exit ()
66
67 }
68
69 1
Egalnput ﬂ Egalnput ﬂ
E Enter Integer Grade, -1 to Quit: E Enter Integer Grade, -1 to Quit:
lo7 | les |
Cancel Cancel
Egalnput ﬂ Egalnput ﬂ
E Enter Integer Grade, -1 to Quit: E Enter Integer Grade, -1 to Quit:
lr2 | H |
Cancel Cancel

Egal:lass Average x|

JQ|_ Class average is 85.67

Fig. 4.9 Class-average program with sentfinel-controlled repetition (part 2 of 2).

Line 18 declares double variable average. This change allows us to store the class
average as a floating-point number. Line 23 initializes gradeCounter to 0, because no
grades have been entered yet. Remember that this program uses sentinel-controlled repeti-
tion. To keep an accurate record of the number of grades entered, variable grade-
Counter is incremented only when the user inputs a valid grade value.

Notice the difference in program logic for sentinel-controlled repetition as compared
with the counter-controlled repetition in Fig. 4.7. In counter-controlled repetition, each iter-
ation (loop) of the while structure reads a value from the user, for the specified number
of iterations. In sentinel-controlled repetition, the program reads and converts one value
(lines 27-31) before reaching the while structure. This value determines whether the pro-
gram’s flow of control should enter the body of the while structure. If the condition of the
while structure is f£alse, the user entered the sentinel, so the body of the while struc-
ture does not execute (i.e., no grades were entered). If, on the other hand, the condition is
true, the body begins execution, and the loop adds the value input by the user to the

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 171

total. After the value has been processed, lines 42—46 in the loop’s body input the next
value from the user before program control reaches the end of the while structure’s body.
As program control reaches the closing right brace (}) of the body at line 47, execution con-
tinues with the next test of the condition of the while structure (line 33). The condition
uses the new value just input by the user to determine if the while structure’s body should
execute again. Notice that the next value always is input from the user immediately before
the program tests the condition of the while structure. This structure allows the program
to determine if the value just input by the user is the sentinel value before the program pro-
cesses that value (i.e., adds it to the total). If the value input is the sentinel value, the
while structure terminates, and the program does not add the value to the total.

Notice the block in the while loop in Fig. 4.9. Without the braces, the last four state-
ments in the body of the loop would fall outside the loop, causing the computer to interpret
the code incorrectly as follows:

while (gradeValue != -1)
total = total + gradeValue;
gradeCounter = gradeCounter + 1;

input = JOptionPane.showInputDialog(

gradeValue = Integer.parselInt(input);
This code would cause an infinite loop in the program if the user does not input the sentinel
-1 as the input value at lines 27-28 (before the while structure) in the program.
Common Programming Error 4.8

@ Omitting the curly braces that are needed to delineate a block can lead to logic errors such
as infinite loops. To prevent this problem, some programmers enclose the body of every con-
trol structure in braces.

Good Programming Practice 4.10

@ In a sentinel-controlled loop, the prompts requesting data entry should explicitly remind the
user of the value that represents the sentinel.

Line 50,
DecimalFormat twoDigits = new DecimalFormat ();:

declares twoDigits as a reference to an object of class DecimalFormat (package ja-
va.text). DecimalFormat objects format numbers. In this example, we want to output
the class average with two digits to the right of the decimal point (i.e., rounded to the nearest
hundredth). The preceding line creates a DecimalFormat object that is initialized with the
string "0.00". Each 0 is a format flag that specifies a required digit position in the formatted
floating-point number. This particular format indicates that every number formatted with
twoDigits will have at least one digit to the left of the decimal point and exactly two digits
to the right of the decimal point. If the number does not meet the formatting requirements, 0s
are inserted in the formatted number at the required positions. The new operator creates an

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

172 Control Structures: Part 1 Chapter 4

object as the program executes by obtaining enough memory to store an object of the type
specified to the right of new. The process of creating new objects is also known as creating
an instance, or instantiating an object. Operator new is known as the dynamic memory allo-
cation operator. The value in parentheses after the type in a new operation is used to initialize
(i.e., give a value to) the new object. Reference twoDigits is assigned the result of the new
operation by using the assignment operator, =. The statement is read as “twoDigits gets
the value of new DecimalFormat ("0.00").”

Normally, objects are created with operator new. One exception to this is a string literal that
is contained in quotes, such as "hello™". String literals are treated as objects of class
String and are instantiated automatically.

Averages do not always evaluate to integer values. Often, an average is a value that
contains a fractional part, such as 3.333 or 2.7. These values are referred to as floating-point
numbers and are represented by the data type double. The variable average is declared
to be of type double to capture the fractional result of our calculation. However, the result
of the calculation total / gradeCounter is an integer, because total and grade-
Counter are both integer variables. Dividing two integers results in integer division—any
fractional part of the calculation is lost (i.e., truncated). The fractional part of the calcula-
tion is lost before the result can be assigned to average, because the calculation is per-
formed before the assignment occurs.

To perform a floating-point calculation with integer values, we must create temporary
values that are floating-point numbers for the calculation. Java provides the unary cast
operator to accomplish this task. Line 53,

average = (double) total / gradeCounter;

uses the cast operator (double) to create a temporary floating-point copy of its oper-
and—total. Using a cast operator in this manner is called explicit conversion. The value
stored in total is still an integer. The calculation now consists of a floating-point value
(the temporary double version of total) divided by the integer gradeCounter. Java
knows how to evaluate only arithmetic expressions in which the operands’ data types are
identical. To ensure that the operands are of the same type, Java performs an operation
called promotion (or implicit conversion) on selected operands. For example, in an expres-
sion containing the data types int and double, the values of int operands are promoted
to double values for use in the expression. In this example, Java promotes the value of
gradeCounter to type double, and then the program performs the calculation and as-
signs the result of the floating-point division to average. Later in this chapter, we discuss
all of the standard data types and their order of promotion.

Common Programming Error 4.9

@ The cast operator can be used to convert between primitive numeric types and to convert be-
tween related class types (as we discuss in Chapter 9). Casting a variable to the wrong type
may cause compilation errors or runtime errors.

Cast operators are available for any data type. The cast operator is formed by placing
parentheses around the name of a data type. The operator is a unary operator (i.e., an
operator that takes only one operand). In Chapter 2, we studied the binary arithmetic oper-
ators. Java also supports unary versions of the plus (+) and minus (-) operators, so the pro-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 173

grammer can write expressions like -7 or +5. Cast operators associate from right to left
and have the same precedence as other unary operators, such as unary + and unary -. This
precedence is one level higher than that of the multiplicative operators *, / and % and one
level lower than that of parentheses. (See the operator precedence chart in Appendix C.)
We indicate the cast operator with the notation (fype) in our precedence charts, to indicate
that any type name can be used to form a cast operator.

- Common Programming Error 4.10

% Using floating-point numbers in a manner that assumes they are represented precisely can lead
to incorrect results. Floating-point numbers are represented approximately by computers.

Common Programming Error 4.11

Assuming that integer division rounds (rather than truncates) can lead to incorrect results.

Good Programming Practice 4.11

Do not compare floating-point values for equality or inequality. Rather, test for whether the
absolute value of the difference between two floating-point numbers is less than a specified
small value.

&

Despite the fact that floating-point numbers are not always 100% precise, they have
numerous applications. For example, when we speak of a “normal” body temperature of
98.6, we do not need to be precise to a large number of digits. When we view the temper-
ature on a thermometer and read it as 98.6, it may actually be 98.5999473210643. The point
here is that calling this number simply 98.6 is fine for most applications.

Another way in which floating-point numbers develop is through division. When we
divide 10 by 3, the result is 3.3333333..., with the sequence of 3s repeating infinitely. The
computer allocates only a fixed amount of space to hold such a value, so clearly the stored
floating-point value can be only an approximation.

4.10 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 3 (Nested Control Structures)

Let us work through another complete problem. We once again formulate the algorithm us-
ing pseudocode and top-down, stepwise refinement, and we develop a corresponding Java
program. Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real estate
brokers. Last year, several of the students who completed this course took the licensing
examination. Naturally, the college wants to know how well its students did on the exam. You
have been asked to write a program to summarize the results. You have been given a list of
these 10 students. Next to each name is written a 1 if the student passed the exam and a 2 if
the student failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the message “Enter result” on the
screen each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who passed
and the number of students who failed.

4. If more than 8 students passed the exam, print the message “Raise tuition.”
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

174 Control Structures: Part 1 Chapter 4

After reading the problem statement carefully, we make the following observations
about the problem:

1. The program must process test results for 10 students. A counter-controlled loop
will be used.

2. Each test result is a number—either a 1 or a 2. Each time the program reads a test
result, the program must determine if the number is a 1 or a 2. We test for a 1 in
our algorithm. If the number is not a 1, we assume that it is a 2. (An exercise at the
end of the chapter considers the consequences of this assumption.)

3. Two counters are used to keep track of the exam results—one to count the number
of students who passed the exam and one to count the number of students who
failed the exam.

4. After the program has processed all the results, it must decide if more than eight
students passed the exam.

Let us proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Analyze exam results and decide if tuition should be raised

Once again, it is important to emphasize that the top is a complete representation of the pro-
gram, but several refinements are likely before the pseudocode can evolve naturally into a
Java program. Our first refinement is

Initialize variables
Input the ten exam grades and count passes and failures
Print a summary of the exam results and decide if tuition should be raised

Here, too, even though we have a complete representation of the entire program, further re-
finement is necessary. We now commit to specific variables. We need counters to record
the passes and failures, a counter to control the looping process and a variable to store the
user input. The pseudocode statement

Initialize variables
may be refined as follows:

Initialize passes to zero
Initialize failures to zero
Initialize student to one

Notice that only the counters for the number of passes, number of failures and number of
students are initialized. The pseudocode statement

Input the ten quiz grades and count passes and failures

requires a loop that successively inputs the result of each exam. Here it is known in advance
that there are precisely ten exam results, so counter-controlled looping is appropriate. In-
side the loop (i.e., nested within the loop) a double-selection structure determines whether
each exam result is a pass or a failure and increments the appropriate counter accordingly.
The refinement of the preceding pseudocode statement is:

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 175

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes
else
Add one to failures
Add one to student counter
Notice the use of blank lines to set off the if/else control structure to improve program read-
ability. The pseudocode statement
Print a summary of the exam results and decide if tuition should be raised

may be refined as follows:

Print the number of passes
Print the number of failures

If more than eight students passed
Print “Raise tuition”

The complete second refinement appears in Fig. 4.10. Notice that the pseudocode also uses
blank lines to set off the while structure for program readability.

Initialize passes to zero
Initialize failures to zero
Initialize student to one

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes
else
Add one to failures

Add one to student counter

Print the number of passes
Print the number of failures

If more than eight students passed
Print “Raise tuition”

Fig. 4.10 Pseudocode for examination-results problem.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

176 Control Structures: Part 1 Chapter 4

This pseudocode is now sufficiently refined for conversion to Java. The Java program
and two sample executions are shown in Fig. 4.11.

1

2

3

4 // Java extension packages

5 import javax.swing.JOptionPane;

6

7 public class Analysis {

8

9

10 public static void main(String args[])
11 {

12

13 int passes = 0,

14 failures = 0,

15 student = 1,

16 result;

17 String input,

18 output;

19

20

21 while (student <=) {

22

23

24 input = JOptionPane.showInputDialog (
25):
26

27

28 result = Integer.parseInt(input);
29

30

31 if (result ==)

32 passes = passes + 1;

33 else

34 failures = failures + 1;

35

36 student = student + 1;

37 }

38

39

40 output = + passes +

41 + failures;

42

43 if (passes >)

44 output = output + ;
45

46 JOptionPane.showMessageDialog(null, output,
47

48 JOptionPane.);:
49

50 System.exit ();

Fig. 4.11 Java program for examination-results problem (part 1 of 2).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1
ol
52
53
54
i Input B S 1nput . x|
E Enter result {1=pass,2=fail) E Enter result {1=pass,2=fail)
I | 12 |
m Cancel Cancel
i Input B = 1nput . x|
E Enter result {1=pass,2=fail) E Enter result {1=pass,2=fail)
I | I |
Cancel Cancel
Egalnput __ ﬂ Egalnput i ﬂ
E Enter result {1=pass,2=fail) E Enter result {1=pass,2=fail)
I | I |
Cancel Cancel
i Input B = 1nput . x|
E Enter result {1=pass,2=fail) E Enter result {1=pass,2=fail)
I | I |
Cancel Cancel
Egalnput x| Egalnput E x|
E Enter result {1=pass,2=fail) E Enter result {1=pass,2=fail)
I | I |
Cancel Cancel
[E5 Analysis of Examination Res x|
@ Passed: 9
Failed: 1
Raise Tuition
|!
Fig. 4.11 Java program for examination-results problem (part 2 of 2).

Lines 13-18,

int passes = 0,
failures = 0,
student = 1,
result;

String input,

output;

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

178 Control Structures: Part 1 Chapter 4

declare the variables used in main to process the examination results. Note that we have
taken advantage of a feature of Java that incorporates variable initialization into dec-
larations (passes is assigned 0, failures is assigned 0 and student is assigned 1).
Looping programs may require initialization at the beginning of each repetition; such ini-
tialization would normally occur in assignment statements.

Notice the nested if/else structure at lines 31-34 of the while structure’s body.
Also, notice the use of String reference output in lines 40, 41 and 44 to build the string
that lines 4648 display in a message dialog.

Good Programming Practice 4.12

@ Initializing local variables when they are declared in methods helps the programmer avoid
compiler messages warning of uninitialized data.

Experience has shown that the most difficult part of solving a problem on a computer is de-
veloping the algorithm for the solution. Once a correct algorithm has been specified, the pro-
cess of producing a working Java program from the algorithm is normally straightforward.

%Many experienced programmers write programs without ever using program development
tools like pseudocode. These programmers feel that their ultimate goal is to solve the prob-

lem on a computer and that writing pseudocode merely delays the production of final outputs.
Although this method may work for simple and familiar problems, it can lead to serious er-
rors in large, complex projects.

4.11 Assignment Operators

Java provides several assignment operators for abbreviating assignment expressions. For
example, you can abbreviate the statement

with the addition assignment operator, +=, as
c += 3;

The += operator adds the value of the expression on the right of the operator to the value
of the variable on the left of the operator and stores the result in the variable on the left of
the operator. Any statement of the form

variable = variable operator expression;

where operator is one of the binary operators +, =, *, / or % (or others we discuss later in
the text), can be written in the form

variable operator= expression;

Thus, the assignment expression ¢ += 3 adds 3 to c. Figure 4.12 shows the arithmetic as-
signment operators, sample expressions using the operators and explanations of what the
operators do.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 179

Assignment operator Sample expression Explanation Assigns
Assume:int ¢ = 3, d =5, e =4, £ =6, g = 12;

+= c += 7 c=c+ 7 10toc
- d -=4 d=4 - 4 1tod
*= e *= 5 e =e *5 20toe
/= £ /=3 £f=f£f/3 2to £
%= g %= 9 g=9%9 3tog

Fig. 4.12 Arithmetic assignment operators.

Performance Tip 4.1

__—@ Programmers can write programs a bit faster and compilers can compile programs a bit fast-
" er when the abbreviated assignment operators are used. Some compilers generate code that
runs faster when abbreviated assignment operators are used.

Performance Tip 4.2

e Many of the performance tips we mention in this text result in nominal improvements, so the

" reader may be tempted to ignore them. Significant performance improvement is often real-

ized when a supposedly nominal improvement is placed in a loop that may repeat a large
number of times.

4.12 Increment and Decrement Operators

Java provides the unary increment operator, ++, and the unary decrement operator, --,
which are summarized in Fig. 4.13. A program can increment the value of a variable called
c by 1 using the increment operator, ++, rather than the expressionc=c + 1orc += 1. If
an increment or decrement operator is placed before a variable, it is referred to as the pre-
increment or predecrement operator, respectively. If an increment or decrement operator
is placed after a variable, it is referred to as the postincrement or postdecrement operator,
respectively.

Operator Called Sample expression Explanation

++ preincrement ++a Increment a by 1, then use the new value of
a in the expression in which a resides.

++ postincrement a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

-- predecrement --b Decrement b by 1, then use the new value
of b in the expression in which b resides.

- postdecrement b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. 4.13 The increment and decrement operators .
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

180 Control Structures: Part 1 Chapter 4

Preincrementing (predecrementing) a variable causes the variable to be incremented
(decremented) by 1, and then the new value of the variable is used in the expression in
which it appears. Postincrementing (postdecrementing) the variable causes the current
value of the variable to be used in the expression in which it appears, and then the variable
value is incremented (decremented) by 1.

The application in Fig. 4.14 demonstrates the difference between the preincrementing
version and the postincrementing version of the ++ increment operator. Postincrementing
the variable ¢ causes it to be incremented after it is used in the System.out .println
method call (line 13). Preincrementing the variable ¢ causes it to be incremented before it
is used in the System.out .println method call (line 20).

The program displays the value of ¢ before and after the ++ operator is used. The dec-
rement operator (--) works similarly.

Good Programming Practice 4.13
@ Unary operators should be placed next to their operands, with no intervening spaces.

1

2

3

4 public class Increment {

5

6

7 public static void main(String args[])
8 {

9 int ¢;
10
11 c =5;
12 System.out.println(c);
13 System.out.println(c++);
14 System.out.println(c);
15

16 System.out.println();

17

18 c =5;

19 System.out.println(c);
20 System.out.println(++c);
21 System.out.println(c);
22
23 }
24
25

5

5

6

5

6

6

Fig. 4.14 The difference between preincrementing and postincrementing.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 181

Line 16,

System.out.println();

uses System.out .printlnto outputa blank line. If printlnreceives no arguments,
it simply outputs a newline character.

The arithmetic assignment operators and the increment and decrement operators can
be used to simplify program statements. For example, the three assignment statements in
Fig. 4.11 (lines 32, 34 and 36),

passes = passes + 1;
failures = failures + 1;
student = student + 1;

can be written more concisely with assignment operators as

passes += 1;
failures += 1;
student += 1;

with preincrement operators as

++passes;
++failures;
++student;

or with postincrement operators as

passes++;
failures++;
student++;

It is important to note here that when incrementing or decrementing a variable in a
statement by itself, the preincrement and postincrement forms have the same effect, and the
predecrement and postdecrement forms have the same effect. It is only when a variable
appears in the context of a larger expression that preincrementing and post-incrementing
the variable have different effects (and similarly for predecrementing and postdecre-
menting).

Common Programming Error 4.12

@ Attempting to use the increment or decrement operator on an expression other than an lvalue

is a syntax error. An lvalue is a variable or expression that can appear on the left side of an
assignment operation. For example, writing ++ (x + 1) is a syntax error, because (x + 1)
is not an lvalue.

The chart in Fig. 4.15 shows the precedence and associativity of the operators that have
been introduced up to this point. The operators are shown from top to bottom in decreasing
order of precedence. The second column describes the associativity of the operators at each
level of precedence. Notice that the conditional operator (? :), the unary operators incre-
ment (++), decrement (--), plus (+), minus (-) and casts and the assignment operators =,
+=, ==, *=, /= and %= associate from right to left. All other operators in the operator pre-
cedence chart in Fig. 4.15 associate from left to right. The third column names the groups
of operators.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

182 Control Structures: Part 1 Chapter 4

Operators Associativity Type

() left to right parentheses
++ -- right to left unary postfix
++ -- + - (type) right to left unary

* /% left to right multiplicative
+ - left to right additive

< <= > >= left to right relational

== I= left to right equality

?: right to left conditional

= 4= -= *= [= %= right to left assignment

Fig. 4.156 Precedence and associativity of the operators discussed so far.

4.13 Primitive Data Types

The table in Fig. 4.16 lists the primitive data types in Java. The primitive types are the
building blocks for more complicated types. Like its predecessor languages C and C++,
Java requires all variables to have a type before they can be used in a program. For this rea-
son, Java is referred to as a strongly typed language.

In C and C++ programs, programmers frequently had to write separate versions of pro-
grams to support different computer platforms, because the primitive data types were not
guaranteed to be identical from computer to computer. For example, an int value on one
machine might be represented by 16 bits (2 bytes) of memory, while an int value on
another machine might be represented by 32 bits (4 bytes) of memory. In Java, int values
are always 32 bits (4 bytes).

@ Unlike in the programming languages C and C++, the primitive types in Java are portable

across all computer platforms that support Java. This and many other portability features of
Java enable programmers to write programs once, without knowing which computer plat-
Sformwill execute the program. This attribute is sometimes referred to as WORA (Write Once
Run Anywhere).

Each data type in Fig. 4.16 is listed with its size in bits (there are eight bits to a byte)
and its range of values. Because the designers of Java want it to be maximally portable, they
chose to use internationally recognized standards for both character formats (Unicode) and
floating-point numbers (IEEE 754).

When instance variables of the primitive data types are declared in a class, they are
automatically assigned default values unless specified otherwise by the programmer.
Instance variables of types char, byte, short, int, long, float and double are
all given the value 0 by default. Variables of type boolean are given the value false
by default.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 183

Type Size in bits Values Standard
boolean § true or false
char 16 \u0000’ to ' \uFFFF’ (ISO Unicode character set)
(0 to 65535)
byte 8 —128 to +127
(2"t027-1)
short 16 -32,768 to +32,767
2B w2B-1
int 32 —2,147,483,648 to +2,147,483,647
2023 -
long 64 -9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807
(291029 1)
float 32 Negative range: (IEEE 754 floating point)
—3.4028234663852886E+38 to
—1.40129846432481707e—-45
Positive range:
1.40129846432481707e—45 to
3.4028234663852886E+38

double 64 Negative range: (IEEE 754 floating point)
—1.7976931348623157E+308 to
—4.94065645841246544e-324
Positive range:
4.94065645841246544e-324 to
1.7976931348623157E+308

Fig. 4.16 The Java primitive data types.

4.14 (Optional Case Study) Thinking About Objects: Identifying
Class Attributes

In “Thinking About Objects,” Section 3.8, we began the first phase of an object-oriented
design (OOD) for our elevator simulator—identifying the classes needed to implement
the simulator. We began by listing the nouns in the problem statement and then created
a separate class for each category of noun and noun phrase that perform an important duty
in the elevator simulation. We then represented the classes and their relationships in a
UML class diagram (Fig. 3.23). Classes have attributes (data) and operations (behav-
iors). Class attributes are implemented in Java programs as variables; class behaviors are
implemented as methods. In this section, we determine many of the class attributes need-
ed to implement the elevator simulator. In Chapter 5, we examine how these attributes
represent an object’s state, or condition. In Chapter 6, we determine class behavior. In
Chapter 7, we concentrate on the interactions, often called collaborations, between the
objects in the elevator simulator.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

184 Control Structures: Part 1 Chapter 4

Consider the attributes of some real-world objects: A person’s attributes include height
and weight, for example. A radio’s attributes include its station setting, its volume setting
and whether it is set to AM or FM. A car’s attributes include its speedometer and odometer
readings, the amount of gas in its tank, what gear it is in, etc. A personal computer’s
attributes include its manufacturer (e.g., Sun, Apple, IBM or Compagq), type of screen (e.g.,
monochrome or color), main memory size (in megabytes), hard disk size (in gigabytes), etc.

We can identify the attributes of the classes in our system by looking for descriptive
words and phrases in the problem statement. For each descriptive word or phrase we find,
we create an attribute and assign that attribute to a class. We also create attributes to repre-
sent any additional data that a class may need (as the need for this data becomes clear
throughout the design process).

We begin examining the problem statement looking for attributes distinct to each class.
Figure 4.17 lists the words or phrases from the problem statement that describe each class.
The sentence “The user can create any number of people in the simulation” implies that the
model will introduce several Person objects during execution. We require an integer
value representing the number of people in the simulation at any given time, because we
may wish to track, or identify, the people in our model. As mentioned in Section 2.9, the
ElevatorModel object acts as the “representative” for the model (even though the
model consists of several classes) for interactions with other parts of the system (in this
case, the user is a part of the system), so we assign the numberOfPeople attribute to
class ElevatorModel.

Class Elevator contains several attributes. The phrases “is moving” and “is sum-
moned” describe possible states of Elevator (we introduce states in the next “Thinking
About Objects” section), so we include moving and summoned as boolean attributes.
Elevator also arrives at a “destination floor,” so we include the attribute destina-
tionFloor, representing the Floor at which the Elevator will arrive. Although the
problem statement does not mention explicitly that the Elevator leaves from a current
Floor, we may assume another attribute called currentFloor representing on which
Floor the Elevator is resting. The problem statement specifies that “both the elevator
and each floor have capacity for only one person,” so we include the capacity attribute for
class Elevator (and class Floor) and set the value to 1. Lastly, the problem statement
specifies that the elevator “takes five seconds to travel between floors,” so we introduce the
travelTime attribute and set the value to 5.

Class Person contains several attributes. The user must be able to “create a unique
person,” which implies that each Person object should have a unique identifier. We
assign integer attribute ID to the Person object. The ID attribute helps to identify that
Person object. In addition, the problem statement specifies that the Person can be
“waiting on that floor to enter the elevator.” Therefore, “waiting” is a state that Person
object may enter. Though not mentioned explicitly, if the Person is not waiting for the
Elevator, the Person is moving to (or away from) the Elevator. We assign the
boolean attribute moving to class Person. When this attribute is set to £alse, the
Person is “waiting.” Lastly, the phrase “on that floor” implies that the Person occupies
a floor. We cannot assign a Floor reference to class Person, because we are interested
only in attributes. However, we want to include the location of the Person object in the
model, so we include the currentFloor attribute, which may have a value of either 1
or 2.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 185

Class Floor has a capacity attribute. The problem statement specified that the
user could situate the person on either “the first or second floor”—therefore, a Floor
object requires a value that distinguishes that Floor object as the first or second floor, so
we include the £1loorNumber attribute.

According to the problem statement, the ElevatorButton and FloorButton are
“pressed” by a Person. The buttons may be “reset” as well. The state of each button is
either “pressed” or “reset.” We include the boolean attribute pressed in both button
classes. When pressed is true, the button object is pressed; when pressed is false,
the button object is reset. Classes ElevatorDoor and FloorDoor exhibit similar char-
acteristics. Both objects are either “open” or “closed,” so we include the boolean
attribute open in both door classes. Class Light also falls into this category—the light is
either “illuminated” (turned on) or “turned off,” so we include the boolean attribute on
in class Light. Note that although the problem statement mentions that the bell rings,
there is no mention of when the bell “is ringing,” so we do not include a separate ring
attribute for class Bell. As we progress through this case study, we will continue to add,
modify and delete information about the classes in our system.

Class Descriptive words and phrases
ElevatorModel number of people in the simulation
Elevatorshaft [no descriptive words or phrases]
Elevator moving

summoned

current floor

destination floor

capacity of only one person

five seconds to travel between floors

Person unique
waiting / moving
current floor

Floor first or second; capacity for only one person
FloorButton pressed / reset

ElevatorButton pressed / reset

FloorDoor door closed / door open

ElevatorDoor door closed / door open

Bell [no descriptive words or phrases]

Light illuminated / turned off

Fig. 4.17 Descriptive words and phrases from problem statement.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

186 Control Structures: Part 1 Chapter 4

Figure 4.18 is a class diagram that lists some of the attributes for each class in our
system—the descriptive words and phrases in Fig. 4.17 help us generate these attributes. Note
that Fig. 4.18 does not show associations among objects—we showed these associations in
Fig. 3.23. In the UML class diagram, a class’s attributes are placed in the middle compart-
ment of the class’s rectangle. Consider the open attribute of class ELevatorDoor:

open : Boolean = false

This listing contains three pieces of information about the attribute. The attribute name
is open. The attribute type is Boolean.” The type depends on the language used to
write the software system. In Java, for example, the value can be a primitive type, such
as boolean or f£loat, as well as a user-defined type like a class—we begin our study
of classes in Chapter 8, where we will see that each new class is a new data type.

We can also indicate an initial value for each attribute. The open attribute in class
ElevatorDoor has an initial value of £alse. If a particular attribute has no initial
value specified, only its name and type (separated by a colon) are shown. For example,
the ID attribute of class Person is an integer—in Java, the ID attribute is of type int.
Here we show no initial value, because the value of this attribute is a number that we do
not yet know; this number will be determined by ElevatorModel at execution time.
Integer attribute currentFloor for class Person is not determined until program
execution as well—this attribute is determined when the simulation user decides on
which Floor to place the Person. For now we do not concern ourselves with the types
or initial values of the attributes. We include only the information we can glean easily
from the problem statement.

Note that Fig. 4.18 does not include attributes for class ElevatorShaft. Actu-
ally, class ElevatorsShaft contains seven attributes that we can determine from the
class diagram of Fig. 3.23—references to the Elevator object, two FloorButton
objects, two FloorDoor objects and two Light objects. Class ElevatorModel
contains three user-defined attributes—two references to Floor objects and a reference
to the ElevatorsShaft object. Class Elevator also contains three user-defined
attributes—reference to the ElevatorButton object, the ElevatorDoor object
and the Bell object. To save space, we will not show these additional attributes in our
class diagrams—we will, however, include them in the code in the appendices.

The class diagram of Fig. 4.18 provides a good basis for the structure of our model
but the diagram is not fully complete. For example, the attribute currentFloor in
class Person represents the floor on which a person is currently located. However, on
what floor is the person when that person rides the elevator? These attributes do not yet
sufficiently represent the structure of the model. As we present more of the UML and
object-oriented design through Chapter 22, we will continue to strengthen the structure
of our model.

2. Note that the attribute types in Fig. 4.18 are in UML notation. We will associate the attribute
types Boolean and Integer in the UML diagram with the attribute types boolean and int
in Java, respectively. We described in Chapter 3 that Java provides a “type-wrapper class” for each
primitive data type. The Java type-wrapper classes have the same notation as the UML notation
for attribute types; however, when we implement our design in Java starting in Chapter 8, we use
primitive data types for simplification. Deciding whether to use primitive data types or type-wrap-
per classes is an implementation-specific issue that should not be mentioned in the UML.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4

Control Structures: Part 1

187

moving : Boolean = frue
currentFloor : Infeger

capacity : Integer = 1

ElevatorModel ElevatorShaft ElevatorDoor
numberOfPeople : Integer=0| |<none yet> open : Boolean = false
Person Floor ;
Light
ID : Infeger floorNumber : Integer

lightOn : Boolean = false

capacity : Integer = 1
fravellime : Integer = 5

Elovator ElevatorButton Bell
e TN RS pressed : Boolean = false <none yet>
summoned : Boolean = false
currentFloor : Infeger = 1
destinationFloor : Integer = 2 FloorButfon FloorDoor

pressed : Boolean = false

open : Boolean = false

Fig. 4.18
SUMMARY

Classes with aftributes.

¢ A procedure for solving a problem in terms of the actions to be executed and the order in which

the actions should be executed is called an algorithm.
Specifying the order in which statements execute in a computer program is called program control.

Pseudocode helps the programmer “think out” a program before attempting to write it in a pro-
gramming language, such as Java.

Top-down, stepwise refinement is a process for refining pseudocode by maintaining a complete
representation of the program during each refinement.

Declarations are messages to the compiler telling it the names and attributes of variables and tell-
ing it to reserve space for variables.

A selection structure chooses among alternative courses of action.
The if selection structure executes an indicated action only when the condition is true.

The if/else selection structure specifies separate actions to execute when the condition is true
and when the condition is false.

When more than one statement should execute where normally only a single statement appears,
the statements must be enclosed in braces, forming a block. A block can be placed anywhere a sin-
gle statement can be placed.

An empty statement, indicating that no action is to be taken, is indicated by placing a semicolon
(#) where a statement would normally be.

A repetition structure specifies that an action is to be repeated while some condition remains true.

The format for the while repetition structure is

while (condition)
statement

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

188 Control Structures: Part 1 Chapter 4

A value that contains a fractional part is referred to as a floating-point number and is represented
by the data type £loat or double.

Unary cast operator (double) creates a temporary floating-point copy of its operand.

Java provides the arithmetic assignment operators +=, ==, *=, /= and %=, which help abbreviate
certain common types of expressions.

The increment operator, ++, and the decrement operator, ==, increment or decrement a variable
by 1, respectively. If the operator is prefixed to the variable, the variable is incremented or decre-
mented by 1 first, and then used in its expression. If the operator is postfixed to the variable, the
variable is used in its expression, and then incremented or decremented by 1.

The primitive types (boolean, char, byte, short, int, long, £loat and double) are the
building blocks for more complicated types in Java.

Java requires all variables to have a type before they can be used in a program. For this reason,
Java is referred to as a strongly typed language.

Primitive types in Java are portable across all computer platforms that support Java.

Java uses internationally recognized standards for both character formats (Unicode) and floating-
point numbers (IEEE 754).

Instance variables of types char, byte, short, int, long, £loat and double are all given
the value 0 by default. Variables of type boolean are given the value false by default.

TERMINOLOGY
- = operator
? s operator
++ operator

action

action/decision model

algorithm

arithmetic assignment operators:
+=, -=, *=, /=and %=

block

body of a loop

cast operator, (fype)
conditional operator (?:)
control structure
counter-controlled repetition
decision

decrement operator (--)
definite repetition

double

double-selection structure
empty statement ()

if selection structure
if/else selection structure
implicit conversion
increment operator (++)
indefinite repetition

infinite loop

initialization

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

integer division

ISO Unicode character set
logic error

loop counter
loop-continuation condition
nested control structures
postdecrement operator
postincrement operator
predecrement operator
preincrement operator
promotion

pseudocode

repetition

repetition structures
selection

sentinel value

sequential execution

single-entry/single-exit control structures

single-selection structure
stacked control structures
structured programming
syntax error

top-down, stepwise refinement
unary operator

while repetition structure
white-space characters

Chapter 4 Control Structures: Part 1 189

SELF-REVIEW EXERCISES

4.1 Fill in the blanks in each of the following statements:
a) All programs can be written in terms of three types of control structures: R
and .
b) The selection structure is used to execute one action when a condition is true
and another action when that condition is false.
¢) Repeating a set of instructions a specific number of times is called repetition.

d) When it is not known in advance how many times a set of statements will be repeated, a
value can be used to terminate the repetition.

4.2 Write four different Java statements that each add 1 to integer variable x.

4.3 Write Java statements to accomplish each of the following tasks:

a) Assign the sum of x and ¥ to z, and increment the value of x by 1 after the calculation.
Use only one statement.

b) Test if the value of the variable count is greater than 10. If it is, print "Count is
greater than 10".

c) Decrement the variable x by 1, and then subtract it from the variable total. Use only
one statement.

d) Calculate the remainder after q is divided by divisor, and assign the result to g. Write
this statement in two different ways.

4.4 Write a Java statement to accomplish each of the following tasks:
a) Declare variables sum and x to be of type int.
b) Assign 1 to variable x.
c) Assign 0 to variable sum.
d) Add variable x to variable sum, and assign the result to variable sum.
e) Print "The sum is: ", followed by the value of variable sum.

4.5 Combine the statements that you wrote in Exercise 4.4 into a Java application that calculates
and prints the sum of the integers from 1 to 10. Use the while structure to loop through the calcula-
tion and increment statements. The loop should terminate when the value of x becomes 11.

4.6 Determine the value of each variable after the calculation is performed. Assume that when
each statement begins executing, all variables have the integer value 5.

a) product *= x++;

b) quotient /= ++x;

4.7 Identify and correct the errors in each of the following sets of code:

a) while (¢ <=) {
product *= c;
++C;
b) if (gender ==)
System.out.println():
else;
System.out.println()i

4.8 What is wrong with the following while repetition structure?
while (z >= 0)

sum += z;

ANSWERS TO SELF-REVIEW EXERCISES

4.1 a) sequence, selection, repetition. b) if/else. c) counter-controlled, or definite. d) Senti-
nel, signal, flag or dummy.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

190 Control Structures: Part 1 Chapter 4

4.2 x =x + 1;
x += 1;
+43x;
X++;
4.3) Z = X++ + Vi
b) if (count > 10)
System.out.println()
c) total -= --x;
d) g %= divisor;
g =g % divisor;
4.4 a) int sum, x;
b x =1;
c) sum = 0;
d) sum += x; or sum = sum + X;
e) System.out.println("The sum is: " + sum);
4.5 The program is as follows:
1
2 public class Calculate {
3 public static void main(String argsl[])
4 {
5 int sum, x;
6
7 x = 1;
8 sum = 0;
9
10 while (x <=) {
11 sum += X;
12 ++X;
13 }
14
15 System.out.println(+ sum);
16 }
17 3}
4.6 a) product = 25, x = 6
b) quotient = 0, x = 6
4.7 a) Error: Missing the closing right brace of the while structure’s body.
Correction: Add a closing right brace after the statement ++c;.
b) Error: Semicolon after else results in a logic error. The second output statement will
always be executed.
Correction: Remove the semicolon after else.
4.8 The value of the variable z is never changed in the while structure. Therefore, if the loop-

continuation condition (z >= 0) is true, an infinite loop is created. To prevent an infinite loop from
occurring, z must be decremented so that it eventually becomes less than 0.

EXERCISES

4.9 Identify and correct the errors in each of the following sets of code. [Note: There may be more
than one error in each piece of code]:

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 191

a) if (age >=);
System.out.println();
else
System.out.println(;
b) int % = 1, total;
while (x <=) {
total += x;
++X;
}
¢) While (x <=)
total += x;
++X;

d) while (y >) {
System.out.println(v);
++y;

4.10 What does the following program print?

1 public class Mystery {

2

3 public static void main(String args[])
4 {

5 int y, x = 1, total = 0;

6

7 while (x <=) {

8 Yy = x * x;

9 System.out.println(y);

10 total += y;

11 ++X;

12 }

13

14 System.out.println(+ total);
15 }

16 3}

For Exercise 4.11 through Exercise 4.14, perform each of the following steps:
a) Read the problem statement.
b) Formulate the algorithm using pseudocode and top-down, stepwise refinement.
¢) Write a Java program.
d) Test, debug and execute the Java program.
e) Process three complete sets of data.

4.11 Drivers are concerned with the mileage obtained by their automobiles. One driver has kept
track of several tankfuls of gasoline by recording miles driven and gallons used for each tankful. De-
velop a Java application that will input the miles driven and gallons used (both as integers) for each
tankful. The program should calculate and display the miles per gallon obtained for each tankful and
print the combined miles per gallon obtained for all tankfuls up to this point. All averaging calcula-
tions should produce floating-point results. Use input dialogs to obtain the data from the user.

4.12 Develop a Java application that will determine if a department-store customer has exceeded
the credit limit on a charge account. For each customer, the following facts are available:

a) account number,

b) balance at the beginning of the month,

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

192 Control Structures: Part 1 Chapter 4

c) total of all items charged by the customer this month,
d) total of all credits applied to the customer's account this month, and
e) allowed credit limit.

The program should input each of these facts from input dialogs as integers, calculate the new bal-
ance (= beginning balance + charges — credits), display the new balance and determine if the new
balance exceeds the customer's credit limit. For those customers whose credit limit is exceeded, the
program should display the message “Credit limit exceeded.”

4.13 A large company pays its salespeople on a commission basis. The salespeople receive $200
per week, plus 9% of their gross sales for that week. For example, a salesperson who sells $5000
worth of merchandise in a week receives $200 plus 9% of $5000, or a total of $650. You have been
supplied with a list of items sold by each salesperson. The values of these items are as follows:

Item Value

1 239.99
2 129.75
3 99.95
4 350.89

Develop a Java application that inputs one salesperson's items sold for last week and calculates and
displays that salesperson's earnings. There is no limit to the number of items that can be sold by a
salesperson.

4.14 Develop a Java application that will determine the gross pay for each of three employees. The
company pays “straight time” for the first 40 hours worked by each employee and pays “time and a
half” for all hours worked in excess of 40 hours. You are given a list of the employees of the company,
the number of hours each employee worked last week and the hourly rate of each employee. Your
program should input this information for each employee and should determine and display the em-
ployee's gross pay. Use input dialogs to input the data.

4.15 The process of finding the largest value (i.e., the maximum of a group of values) is used fre-
quently in computer applications. For example, a program that determines the winner of a sales con-
test would input the number of units sold by each salesperson. The salesperson who sells the most
units wins the contest. Write a pseudocode program and then a Java application that inputs a series of
10 single-digit numbers as characters and determines and prints the largest of the numbers. Hint: Your
program should use the following three variables:

a) counter: A counter to count to 10 (i.e., to keep track of how many numbers have been

input and to determine when all 10 numbers have been processed);
b) number: The current digit input to the program;
c¢) largest: The largest number found so far.

4.16 Write a Java application that uses looping to print the following table of values:

N 10*N 100*N 1000*N
1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000

4.17 Using an approach similar to that for Exercise 4.15, find the rwo largest values of the 10 digits
entered. [Note: You may input each number only once.]

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 193

4.18 Modify the program in Fig. 4.11 to validate its inputs. For any input, if the value entered is
other than 1 or 2, keep looping until the user enters a correct value.

4.19 What does the following program print?

1 public class Mystery2 {

2

3 public static void main(String args[])
4 {

5 int count = 1;

6

7 while (count <=) {

8 System.out.println(

9 count % == ? :);
10 ++count;

11 }

12 }

13 3

4.20 What does the following program print?

public class Mystery3 {

public static void main(String argsl[])
{

int row = , column;

while (row >=) {
column = 1;

while (column <=) {
System.out.print(row % =

1
2
3
4
5
6
7
8
9
10
11
12 ++column;
13
14
15
16
17
18
19

]
Y
.
~
~

--row;
System.out.println();

}

4.21 (Dangling-Else Problem) Determine the output for each of the given sets of code when x is
9 and y is 11 and when x is 11 and y is 9. Note that the compiler ignores the indentation in a Java
program. Also, the Java compiler always associates an else with the previous 1 £ unless told to do
otherwise by the placement of braces ({}). On first glance, the programmer may not be sure which
if an else matches; this situation is referred to as the “dangling-else problem.” We have eliminated
the indentation from the following code to make the problem more challenging. [Hint: Apply inden-
tation conventions you have learned.]

a) if (% <)
if (y >)
System.out .println():
else
System.out.println()i
System.out.println()i

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

194 Control Structures: Part 1 Chapter 4

b) if (x <) {

if (y >)
System.out.println();
}

else {

System.out.println();
System.out.println();
}

4.22 (Another Dangling-Else Problem) Modify the given code to produce the output shown in
each part of the problem. Use proper indentation techniques. You may not make any changes other
than inserting braces and changing the indentation of the code. The compiler ignores indentation in a
Java program. We have eliminated the indentation from the given code to make the problem more
challenging. [Note: It is possible that no modification is necessary for some of the parts.]

if (y ==)

if (x ==)
System.out.println();
else

System.out .println();
System.out.println/();
System.out.println():

a) Assuming thatx = 5 and y = 8, the following output is produced:

eeeee

$S8%%
&&&ES

b) Assuming thatx =5 and y = 8, the following output is produced:

eeeee

¢) Assuming thatx = 5 and y = 8, the following output is produced:

eeeee
&8 &&&

d) Assuming that x = 5 and y = 7, the following output is produced [Note: The last three
output statements after the else are all part of a block]:]

#it

$985%
&&&ES

4.23 Write an applet that reads in the size of the side of a square and displays a hollow square of
that size out of asterisks, by using the drawString method inside your applet’s paint method.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 4 Control Structures: Part 1 195

Use an input dialog to read the size from the user. Your program should work for squares of all lengths
of side between 1 and 20.

4.24 A palindrome is a number or a text phrase that reads the same backward as forward. For ex-
ample, each of the following five-digit integers are palindromes: 12321, 55555, 45554 and 11611.
Write an application that reads in a five-digit integer and determines whether or not it is a palindrome.
If the number is not five digits long, display an error message dialog indicating the problem to the
user. When the user dismisses the error dialog, allow the user to enter a new value.

4.25 Write an application that inputs an integer containing only Os and 1s (i.e., a “binary” integer)
and prints its decimal equivalent. [Hint: Use the modulus and division operators to pick off the “bi-
nary number’s” digits one at a time, from right to left. Just as in the decimal number system, where
the rightmost digit has a positional value of 1 and the next digit to the left has a positional value of
10, then 100, then 1000, etc., in the binary number system the rightmost digit has a positional value
of 1, the next digit to the left has a positional value of 2, then 4, then 8, etc. Thus, the decimal number
234 can be interpreted as 4 * 1 + 3 * 10 + 2 * 100. The decimal equivalent of binary 1101 is 1 * 1 +
0*2+1*4+1%8,0or1+0+4+8or, 13.]

4.26 Write an application that displays the following checkerboard pattern:

* * * % * * * %
* * * % % * * %
* % %k * * %k *k *
* % %k * * %k *k *
* * * * * * * %
* * * * % * * %
* * * % %k * * %
* % *k * * %k *k *

Your program may use only three output statements, one of the form
System.out .print ():

one of the form
System.out.print ()i

and one of the form
System.out.println();

Note that the preceding statement indicates that the program should output a single newline charac-
ter to drop to the next line of the output. [Hint: Repetition structures are required in this exercise.]

4.27 Write an application that keeps displaying in the command window the multiples of the in-
teger 2, namely 2, 4, 8, 16, 32, 64, etc. Your loop should not terminate (i.e., you should create an in-
finite loop). What happens when you run this program?

4.28 What is wrong with the following statement? Provide the correct statement to add one to the
sum of x and y.

System.out.println(++(x + y));

4.29 Write an application that reads three nonzero values entered by the user in input dialogs and
determines and prints if they could represent the sides of a triangle.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

196 Control Structures: Part 1 Chapter 4

4.30 Write an application that reads three nonzero integers and determines and prints if they could
represent the sides of a right triangle.

4.31 A company wants to transmit data over the telephone, but it is concerned that its phones may
be tapped. All of its data are transmitted as four-digit integers. It has asked you to write a program
that will encrypt its data so that the data may be transmitted more securely. Your application should
read a four-digit integer entered by the user in an input dialog and encrypt it as follows: Replace each
digit by (the sum of that digit plus 7) modulus 10. Then swap the first digit with the third, and swap
the second digit with the fourth. Then print the encrypted integer. Write a separate application that
inputs an encrypted four-digit integer and decrypts it to form the original number.

4.32 The factorial of a nonnegative integer n is written as n! (pronounced “n factorial”) and is de-
fined as follows:
nl=n-(m-1)-(m-2)-...-1 (for values of n greater than or equal to 1)
and
n!=1 (forn=0).
For example, 5! =5-4-3 -2 - 1, which is 120.
a) Write an application that reads a nonnegative integer from an input dialog and computes
and prints its factorial.
b) Write an application that estimates the value of the mathematical constant e by using the
formula

e = 1+l+l+l+...
1 2t 3!

¢) Write an application that computes the value of ¢ by using the formula:

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Control Structures:
Part 2

Objectives

* To be able to use the for and do/while repetition
structures to execute statements in a program
repeatedly.

* To understand multiple selection using the switch
selection structure.

* To be able to use the break and continue
program control statements.

* To be able to use the logical operators.

Who can control his fate?

William Shakespeare, Othello

The used key is always bright.

Benjamin Franklin

Man is a tool-making animal.

Benjamin Franklin

Intelligence ... is the faculty of making artificial objects,
especially tools to make tools.

Henri Bergson

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

198 Control Structures: Part 2 Chapter 5

Outline

5.1 Introduction

5.2 Essentials of Counter-Controlled Repetition
5.3 The for Repetition Structure

54 Examples Using the for Structure

5.5 The switch Multiple-Selection Structure
5.6 The do/while Repetition Structure

5.7 Statements break and continue

5.8 Labeled break and continue Statements
5.9 Logical Operators

5.10 Structured Programming Summary

5.11 (Optional Case Study) Thinking About Objects: Identifying Objects’
States and Activities

Summary ¢ Terminology * Self-Review Exercises * Answers to Self-Review Exercises * Exercises

5.1 Introduction

Chapter 4 began our introduction to the types of building blocks that are available for prob-
lem solving and used those building blocks to employ proven program construction princi-
ples. In this chapter, we continue our presentation of the theory and principles of structured
programming by introducing Java’s remaining control structures. As in Chapter 4, the Java
techniques you learn here are applicable to most high-level languages. When we begin our
formal treatment of object-based programming in Java in Chapter 8, we will see that the
control structures we study in this chapter and Chapter 4 are helpful in building and manip-
ulating objects.

5.2 Essentials of Counter-Controlled Repetition
Counter-controlled repetition requires the following:

1. the name of a control variable (or loop counter),

2. the initial value of the control variable,

3. the amount of increment (or decrement) by which the control variable is modified
each time through the loop (also known as each iteration of the loop), and

4. the condition that tests for the final value of the control variable (i.e., whether
looping should continue).

To see the four elements of counter-controlled repetition, consider the applet shown in
Fig. 5.1, which draws 10 lines from the applet’s paint method. Remember that an applet
requires a separate HTML document to load the applet into the appletviewer or a
browser. For the purpose of this applet, the <applet> tag specifies a width of 275 pixels
and a height of 110 pixels.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2 199

1

2

3

4

5 import java.awt.Graphics;

6

7

8 import javax.swing.JApplet;

9

10 public class WhileCounter extends JApplet {

11

12

13 public void paint(Graphics g)

14 {

15

16 super.paint(g);

17

18 int counter = 1;

19

20 while (counter <=) {

21 g.drawLine (o 0 , counter *);

22 ++counter;

23

24 }

25

26 }

27

28)
[E3 applet Viewer: whilel:ou: =1ox]
Applet
Applet started.

Fig. 6.1 Counter-controlled repetition.

The applet’s paint method (that the applet container calls when it executes the
applet) operates as follows: The declaration on line 18 names the control variable
(counter), declares it to be an integer, reserves space for it in memory and sets it to an
initial value of 1. Declarations that include initialization are, in effect, executable state-
ments. The declaration and initialization of counter could also have been accomplished
with the declaration and statement

int counter;
counter = 1;

The declaration is not executable, but the assignment statement is. We use both methods of
initializing variables throughout this book.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

200 Control Structures: Part 2 Chapter 5

Line 21 in the while structure uses Graphics reference g, which refers to the
applet’s Graphics object, to send the drawLine message to the Graphics object,
asking it to draw a line. Remember that “sending a message to an object” actually means
calling a method to perform a task. One of the Graphics object’s many services is to
draw lines. In previous chapters, we also saw that the Graphics object’s other services
include drawing rectangles, strings and ovals. Graphics method drawLine requires
four arguments, representing the line’s first x-coordinate, first y-coordinate, second x-coor-
dinate and second y-coordinate. In this example, the second y-coordinate changes value
during each iteration of the loop with the calculation counter * 10. This change causes
the second point (the end point of the line) in each call to drawLine to move 10 pixels
down the applet’s display area.

Line 22 in the while structure increments the control variable by 1 for each iteration
of the loop. The loop-continuation condition in the while structure tests whether the value
of the control variable is less than or equal to 10 (the final value for which the condition is
true). Note that the program performs the body of this while structure even when the
control variable is 10. The loop terminates when the control variable exceeds 10 (i.e.,
counter becomes 11).

The program in Fig. 5.1 can be made more concise by initializing counter to 0 and
preincrementing counter in the while structure condition as follows:

while (++counter <=)
g.drawLine (, , , counter *):

This code saves a statement (and eliminates the need for braces around the loop’s body),
because the while condition performs the increment before testing the condition. (Re-
member that the precedence of ++ is higher than that of <=.) Coding in such a condensed
fashion takes practice.

Good Programming Practice 5.1

Programs should control counting loops with integer values.

Common Programming Error 5.1

Because floating-point values may be approximate, controlling the counting of loops with
floating-point variables may result in imprecise counter values and inaccurate tests for ter-
mination.

Good Programming Practice 5.2

Indent the statements in the body of each control structure.

Good Programming Practice 5.3

Put a blank line before and after each major control structure to make it stand out in the pro-
gram.

Good Programming Practice 5.4

Too many levels of nesting can make a program difficult to understand. As a general rule, try
to avoid using more than three levels of nesting.

T

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2 201

Good Programming Practice 5.5

@ Vertical spacing above and below control structures, and indentation of the bodies of control
structures within the control structures’ headers, gives programs a two-dimensional appear-
ance that enhances readability

5.3 The for Repetition Structure

The for repetition structure handles all of the details of counter-controlled repetition. To
illustrate the power of the for structure, let us rewrite the applet of Fig. 5.1. The result is
shown in Fig. 5.2. Remember that this program requires a separate HTML document to
load the applet into the appletviewer. For the purpose of this applet, the <applet>
tag specifies a width of 275 pixels and a height of 110 pixels.

import java.awt.Graphics;

import javax.swing.JApplet;

public class ForCounter extends JApplet {

public void paint(Graphics g)

{
super.paint(g);
for (int counter = 1; counter <= ; counter++)
21 g.drawLine (, , , counter *);
22
23 }
24
25 3}
EganppletViewer:ForEounteEﬁ % _|EI|1|
Applet
Applet started.

Fig. 5.2 Counter-controlled repefition with the £or structure.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

202 Control Structures: Part 2 Chapter 5

The applet’s paint method operates as follows: When the for structure (lines 20—
21) begins executing, the control variable counter is initialized to 1. (The first two ele-
ments of counter-controlled repetition and the name of the control variable and its initial
value.) Next, the program checks the loop-continuation condition, counter <= 10. The
condition contains the final value (10) of the control variable. Because the initial value of
counter is 1, the condition is satisfied (true), so the body statement (line 21) draws a
line. After executing the body of the loop, the program increments variable counter in
the expression counter++. Then, the program performs the loop-continuation test again
to determine whether the program should continue with the next iteration of the loop or
whether it should terminate the loop. At this point, the control variable value is 2, so the
condition is true (i.e., the final value is not exceeded), and thus the program performs the
body statement again (i.e., the next iteration of the loop). This process continues until the
counter’s value becomes 11, causing the loop-continuation test to fail and repetition to
terminate. Then, the program performs the first statement after the £or structure. (In this
case, method paint terminates, because the program reaches the end of paint.)

Notice that Fig. 5.2 uses the loop-continuation condition counter <= 10. If the pro-
grammer incorrectly specified counter < 10 as the condition, the loop would be exe-
cuted only nine times. This mistake is a common logic error called an off-by-one error.

—a- Common Programming Error 5.2
ﬁ Using an incorrect relational operator or using an incorrect final value of a loop counter in

the condition of a while, for or do/while structure can cause an off-by-one error.

Good Programming Practice 5.6

Using the final value in the condition of a while or for structure and using the <= rela-
tional operator will help avoid off-by-one errors. For a loop that prints the values I to 10,
the loop-continuation condition should be counter <= 10 rather than counter < 10
(which causes an off-by-one error) or counter < 11 (which is correct). Many program-
mers prefer so-called zero-based counting, in which to count 10 times, counter would be
initialized to zero and the loop-continuation test would be counter < 10.

Figure 5.3 takes a closer look at the for structure of Fig. 5.2. The £or structure’s first
line (including the keyword for and everything in parentheses after £or) is sometimes
called the for structure header. Notice that the for structure “does it all”: It specifies
each of the items needed for counter-controlled repetition with a control variable. If there
is more than one statement in the body of the £or structures, braces ({ and }) are required
to define the body of the loop.

for keyword Control variable name Final value of control variable
for (int counter = ; counter <= ; counter++)
Initial value of control variable T Increment of control variable

Loop-continuation condition

Fig. 5.3 Components of a typical £or structure header.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2 203

The general format of the £or structure is

for (expressionl; expression2; expression3)
statement

where expressionl names the loop’s control variable and provides its initial value,
expression2 is the loop-continuation condition (containing the control variable’s final val-
ue) and expression3 modifies the value of the control variable, so that the loop-continuation
condition eventually becomes £alse. In most cases, the £or structure can be represented
with an equivalent while structure, with expressionl, expression2 and expression3 placed
as follows:

expressionl ;

while (expression2) {
statement
expression3;

}

In Section 5.7, we show a case in which a for structure cannot be represented with an
equivalent while structure.

If expressionl (the initialization section) declares the control variable inside the paren-
theses of the header of the £or structure (i.e., the control variable’s type is specified before
the name of the variable), the control variable can be used only in the for structure. This
restricted use of the name of the control variable is known as the variable’s scope. The
scope of a variable defines where the program can use the variable. For example, we men-
tioned previously that a program can use a local variable only in the method that declares
the variable. Scope is discussed in detail in Chapter 6, “Methods.”

Common Programming Error 5.3

@ When the control variable of a for structure is initially defined in the initialization section
of the header of the for structure, using the control variable after the body of the structure
is a syntax error.

Sometimes, expressionl and expression3 in a £or structure are comma-separated lists
of expressions that enable the programmer to use multiple initialization expressions and/or
multiple increment expressions. For example, there may be several control variables in a
single for structure that must be initialized and incremented.

Good Programming Practice 5.7

@ Place only expressions involving the control variables in the initialization and increment sec-

tions of a for structure. Manipulations of other variables should appear either before the
loop (if they execute only once, like initialization statements) or in the body of the loop (if
they execute once per iteration of the loop, like incrementing or decrementing statements).

The three expressions in the £or structure are optional. If expression2 is omitted, Java
assumes that the loop-continuation condition is txrue, thus creating an infinite loop. One
might omit expressionl if the program initializes the control variable before the loop. One
might omit expression3 if the program calculates the increment with statements in the
loop’s body or if the loop does not require an increment. The increment expression in the
for structure acts as a stand-alone statement at the end of the body of the for structure,
so the expressions

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

204 Control Structures: Part 2 Chapter 5

counter = counter + 1
counter += 1
++counter

counter++

are equivalent in the increment portion of the £or structure. Many programmers prefer the
form counter++, because a for structure increments its control variable after the body
of the loop executes and placing ++ after the variable name increments the variable after
the program uses its value. Therefore, the postincrementing form seems more natural. Pre-
incrementing and postincrementing have the same effect in the increment expression, be-
cause the increment does not appear in a larger expression. The two semicolons in the for
structure are required.

—a- Common Programming Error 5.4
@ Using commas instead of the two required semicolons in a for header is a syntax error.

Common Programming Error 5.5

@ Placing a semicolon immediately to the right of the right parenthesis of a for header makes
the body of that for structure an empty statement. This is normally a logic error.

The initialization, loop-continuation condition and increment portions of a for struc-
ture can contain arithmetic expressions. For example, assume that x = 2 and y = 10. If x
and y are not modified in the body of the loop, the statement

for (int j = x; j <= *x *y:, j4=y / x)
is equivalent to the statement
for (int j = 2; j <= i 3 +=)

The increment of a £or structure may also be negative, in which case it is really a dec-
rement, and the loop actually counts downward.

If the loop-continuation condition is initially £alse, the program does not perform
the body of the £or structure. Instead, execution proceeds with the statement following the
for structure.

Programs frequently display the control variable value or use it in calculations in loop
body. However, this use is not required. It is common to use the control variable for control-
ling repetition while never mentioning it in the body of the for structure.

Although the value of the control variable can be changed in the body of a for loop, avoid
doing so, because this practice can lead to subtle errors.

We flowchart the for structure much as we do the while structure. For example, the
flowchart of the for statement

for (int counter = 1; counter <= ; counter++)
g.drawLine (y y , counter *);

is shown in Fig. 5.4. This flowchart makes it clear that the initialization occurs only once
and that the increment occurs each time after the program performs the body statement.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2 205

Note that, besides small circles and arrows, the flowchart contains only rectangle symbols
and a diamond symbol. The programmer fills the rectangles and diamonds with actions and
decisions appropriate to the algorithm.

5.4 Examples Using the for Structure

The examples given next show methods of varying the control variable in a for structure.
In each case, we write the appropriate for structure header. Note the change in the rela-
tional operator for loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.
for (int i = 1; i <= ; i++)

b) Vary the control variable from 100 to 1 in increments of -1 (i.e., decrements of
1).

for (int i = ;3 0i>= 1; i--)

¢) Vary the control variable from 7 to 77 in steps of 7.
for (int i = 7; i <= ; i +=)

d) Vary the control variable from 20 to 2 in steps of -2.
for (int i = ;3 1>=2; 1 -=)

e) Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14,
17, 20.

for (int j = 2; j <= ;3 +=)

f) Vary the control variable over the following sequence of values: 99, 88,77, 66,
55,44,33,22,11, 0.

for (int j = ;7 J >=0; § -=)

y
int counter = 1‘

Establish initial value
of control variable.

/

Determine if final g.drawLine (
value of control true 10, 10, 250,
: counter <= 10 > I | counter++
variable hasbeen counter 10
reached.); Increment
the control
false Boqu of loop i Ry
4 (this may be many
O statements)

Fig. 5.4 Flowcharting a typical £or repetition structure.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

206 Control Structures: Part 2 Chapter 5

Common Programming Error 5.6

@ Not using the proper relational operator in the loop-continuation condition of a loop that
counts downward (such as using i <= 1 in a loop counting down to 1) is usually a logic error
and will yield incorrect results when the program runs.

The next two sample programs demonstrate simple applications of the £or repetition
structure. The application in Fig. 5.5 uses the £or structure to sum all the even integers
from 2 to 100. Remember that the java interpreter is used to execute an application from
the command window.

Note that the body of the for structure in Fig. 5.5 could actually be merged into the
rightmost portion of the for header by using a comma as follows:

for (int number = 2;
number <= ;
sum += number, number +=)

~e

1

2

3

4

5 import javax.swing.JOptionPane;

6

7 public class Sum {

8

9

10 public static void main(String args[])
11 {

12 int sum = 0;

13

14

15 for (int number = 2; number <= ; number +=)
16 sum += number;

17

18

19 JOptionPane.showMessageDialog(null, + sum,
20

21 JOptionPane.):
22

23 System.exit ()

24

25 }

26

27

E‘%Sum Even Integers from 2 I: x|

[l The sumis 2550

Fig. 5.5 Summation with the for structure.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2 207

Similarly, the initialization sum = 0 could be merged into the initialization section of the
for structure.
Good Programming Practice 5.8

@ Although statements preceding a for structure and statements in the body of a for struc-
ture can often be merged into the header of the for structure, avoid doing so, because it
makes the program more difficult to read.

Good Programming Practice 5.9
@ Limit the size of control structure headers to a single line. if possible.

The next example uses the £or structure to compute compound interest. Consider the
following problem:
A person invests $1000.00 in a savings account yielding 5% interest. Assuming that all

interest is left on deposit, calculate and print the amount of money in the account at the end
of each year for 10 years. Use the following formula to determine the amounts:

a=p(+n"
where

p is the original amount invested (i.e., the principal)
r is the annual interest rate

n is the number of years

a is the amount on deposit at the end of the nth year.

This problem involves a loop that performs the indicated calculation for each of the 10
years the money remains on deposit. The solution is the application shown in Fig. 5.6.

import java.text.NumberFormat;
import java.util.Locale;

NVOONOCOTRARWN—

import javax.swing.JOptionPane;
10 import javax.swing.JTextArea;

12 public class Interest {
15 public static void main(String args[])

16 {

17 double amount, principal = , rate =

~

21 NumberFormat moneyFormat =
22 NumberFormat .getCurrencyInstance(Locale.);

Fig. 5.6 Calculating compound interest with the £ox structure (part 1 of 2).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

208 Control Structures: Part 2 Chapter 5

24
25 JTextArea outputTextArea = new JTextArea();
26
27
28 outputTextArea.setText ()i
29
30
31 for (int year = 1; year <= ; year++) {
32
33
34 amount = principal * Math.pow(+ rate, year);
35
36
37 outputTextArea.append(year + "\t" +
38 moneyFormat.format (amount) + "\n");
39
40 }
41
42
43 JOptionPane.showMessageDialog(null, outputTextArea,
44 , JOptionPane.);:
45
46 System.exit ();
47
48 }
49
50
Egal:ompound Interest x|
(5] h’ear Amount an deposit
L §1,050.00

2 §1,102.50

3 §1,157 .63

4 §1,215.51

5 §1,276.28

& §1,340.10

7 §1,407.10

] §1,477 46

] §1,551.33

10 §1,628.89

=

Fig. 5.6 Calculating compound interest with the £ox structure (part 2 of 2).

Line 17 in method main declares three double variables and initializes two of
them—principal to 1000.0 and rate to .05. Java treats floating-point constants,
like 1000.0 and .05 in Fig. 5.6, as type double. Similarly, Java treats whole number
constants, like 7 and =22, as type int. Lines 21-22 declare NumberFormat reference
moneyFormat and initialize it by calling static method getCurrencyInstance
of class NumberFormat. This method returns a NumberFormat object that can format
numeric values as currency (e.g., in the United States, currency values normally are pre-
ceded with a dollar sign, $). The argument to the method—Locale.US—indicates that

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2 209

the currency values should be displayed starting with a dollar sign ($), use a decimal point
to separate dollars and cents and use a comma to delineate thousands (e.g., $1,234.56).
Class Locale provides constants that can be used to customize this program to represent
currency values for other countries, so that currency formats are displayed properly for each
locale (i.e., each country’s local-currency format). Class NumberFormat (imported at
line 5) is located in package java . text, and class Locale (imported at line 6) is located
in package java.util.

Line 25 declares JTextArea reference outputTextArea and initializes it with a
new object of class JTextArea (from package javax.swing). A JTextArea is a
GUI component that can display many lines of text. The message dialog that displays the
JTextArea determines the width and height of the JTextArea, based on the String
it contains. We introduce this GUI component now because we will see many examples
throughout the text in which the program outputs contain too many lines to display on the
screen. This GUI component allows us to scroll through the lines of text so we can see all
the program output. The methods for placing text in a JTextArea include setText and
append.

Line 28 uses JTextArea method setText to place a String in the JTextArea
to which outputTextArea refers. Initially, a JTextArea contains an empty String
(i.e., a String with no characters in it). The preceding statement replaces the empty
String with one containing the column heads for our two columns of output—*“Year”
and “Amount on Deposit.” The column heads are separated with a tab character (escape
sequence \t). Also, the string contains the newline character (escape sequence \n), indi-
cating that any additional text appended to the JTextArea should begin on the next line.

The for structure (lines 31-40) executes its body 10 times, varying control variable
year from 1 to 10 in increments of 1. (Note that year represents # in the statement of the
problem.) Java does not include an exponentiation operator. Instead, we use static
method pow of class Math for this purpose. Math.pow (%, y) calculates the value of x
raised to the yth power. Method pow takes two arguments of type double and returns a
double value. Line 34 performs the calculation from the statement of the problem,

a=p(1+n"

where a is amount, p is principal, ris rate and n is year.

Lines 37-38 append more text to the end of the outputTextArea. The text
includes the current value of year, a tab character (to position to the second column), the
result of the method call moneyFormat.format (amount)—which formats the
amount as U. S. currency—and a newline character (to position the cursor in the JTex-
tArea at the beginning of the next line).

Lines 43-44 display the results in a message dialog. Until now, the message displayed
has always been a String. In this example, the second argument is outputText-
Area—a GUI component. An interesting feature of class JOptionPane is that the mes-
sage it displays with showMessageDialog can be a String or a GUI component, such
as a JTextArea. In this example, the message dialog sizes itself to accommodate the
JTextArea. We use this technique several times early in this chapter to display large text-
based outputs. Later in this chapter, we demonstrate how to add a scrolling capability to the
JTextArea, so the user can view a program’s output that is too large to display in full on
the screen.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

210 Control Structures: Part 2 Chapter 5

Notice that the variables amount, principal and rate are of type double. We
did this for simplicity, because we are dealing with fractional parts of dollars and thus need
a type that allows decimal points in its values. Unfortunately, this setting can cause trouble.
Here is a simple explanation of what can go wrong when using £1loat or double to rep-
resent dollar amounts (assuming that dollar amounts are displayed with two digits to the
right of the decimal point): Two double dollar amounts stored in the machine could be
14.234 (which would normally be rounded to 14.23 for display purposes) and 18.673
(which would normally be rounded to 18.67 for display purposes). When these amounts are
added, they produce the internal sum 32.907, which would normally be rounded to 32.91
for display purposes. Thus, your printout could appear as

14.23
+ 18.67

but a person adding the individual numbers as printed would expect the sum to be 32.90.
You have been warned!

Good Programming Practice 5.10

@ Do not use variables of type £loat or double to perform precise monetary calculations.

The imprecision of floating-point numbers can cause errors that will result in incorrect mon-
etary values. In the exercises, we explore the use of integers to perform monetary calcula-
tions. [Note: Some third-party vendors provide for-sale class libraries that perform precise
monetary calculations.]

Note that the body of the £or structure contains the calculation 1.0 + rate, which
appears as an argument to the Math.pow method. In fact, this calculation produces the
same result each time through the loop, so repeating the calculation every iteration of the
loop is wasteful.

Performance Tip 5.1

__—@ Avoid placing expressions whose values do not change inside loops. But even if you do, many
“ of today’s sophisticated optimizing compilers will place such expressions outside loops in the
generated compiled code.

Performance Tip 5.2

e Many compilers contain optimization features that improve the code that you write, but it is
" still better to write good code from the start.

5.5 The switch Muliliple-Selection Structure

We have discussed the 1if single-selection structure and the if/else double-selection
structure. Occasionally, an algorithm contains a series of decisions in which the algorithm
tests a variable or expression separately for each of the constant integral values (i.e., values
of types byte, short, int and char) the variable or expression may assume and takes
different actions based on those values. Java provides the switch multiple-selection
structure to handle such decision making. The applet of Fig. 5.7 demonstrates drawing
lines, rectangles or ovals, based on an integer the user inputs via an input dialog.

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2

211

import java.awt.Graphics;

import javax.swing.*;

public class SwitchTest extends JApplet {

int choice;

public void init ()
{
String input;

input = JOptionPane.showInputDialog(
+

);

choice = Integer.parseInt(input);

public void paint(Graphics g)
{

super.paint(g);

for (int 1 = 0; i < ; i++) {

switch (choice) {

case 1:
g.drawLine (o , , + i *);
break;

case 2:
g.drawRect (+ i * + i * '
+ i * o + i *)i
break;

~

case 3:
g.drawOval (+ i * + i * o
+ i * o + i *);:
break;

~

An example using switch (part 1 of 3).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

212 Control Structures: Part 2 Chapter 5

54 default:
55 g.drawString(’
56 0 + i *):

Egalnput x| Eganpplet Yiewer: SwitchT 10l =|

. Applet
E Enter 1 to draw lines
Enter 2 to draw rectangles

Enter 3 to draw ovals

1

Java Applet Window

Applet started.

Egalnput x| Eganpplet Yiewer: SwitchT 10l =|

o Applet
E Enter 1 to draw lines
Enter 2 to draw rectangles

Enter 3 to draw ovals

[z

Java Applet Window

Applet started.

Fig. 5.7 Anexample using switch (part 2 of 3).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2 213

o Applet
E Enter 1 to draw lines
Enter 2 to draw rectangles
Enter 3 to draw ovals
3

Java Applet Window

Applet started.

Fig. 5.7 Anexample using switch (part 3 of 3).

Line 11 in applet SwitchTest defines instance variable choice of type int. This
variable stores the user’s input that determines which type of shape to draw in paint.

Method init (lines 14-26) declares local variable input of type String in line 16.
This variable stores the String the user types in the input dialog. Lines 19-22 display the
input dialog with static method JOptionPane.showInputDialog and prompt the
user to enter 1 to draw lines, 2 to draw rectangles or 3 to draw ovals. Line 25 converts input
from a String to an int and assigns the result to choice.

Method paint (lines 29-62) contains a for structure (lines 35-60) that loops 10
times. In this example, the £or structure’s header, in line 35, uses zero-based counting. The
values of i for the 10 iterations of the loop are 0, 1, 2, 3,4, 5, 6, 7, 8 and 9, and the loop
terminates when 1i’s value becomes 10. [Note: As you know, the applet container calls
method paint after methods init and start. The applet container also calls method
paint whenever the applet’s screen area must be refreshed—e.g., after another window
that covered the applet’s area is moved to a different location on the screen.]

Nested in the for structure’s body is a switch structure (lines 38-58) that draws
shapes based on the integer value input by the user in method init. The switch structure
consists of a series of case labels and an optional default case.

When the flow of control reaches the switch structure, the program evaluates the
controlling expression (choice) in the parentheses following keyword switch. The pro-
gram compares the value of the controlling expression (which must evaluate to an integral
value of type byte, char, short or int) with each case label. Assume that the user
entered the integer 2 as his or her choice. The program compares 2 with each case in the
switch. If a match occurs (case 2:), the program executes the statements for that case.
For the integer 2, lines 44-47 draw a rectangle, using four arguments, representing the
upper left x-coordinate, upper left y-coordinate, width and height of the rectangle, and the
switch structure exits immediately with the break statement. Then, the program incre-
ments the counter variable in the for structure and reevaluates the loop-continuation con-
dition to determine whether to perform another iteration of the loop.

The break statement causes program control to proceed with the first statement after
the switch structure. (In this case, we reach the end of the £or structure’s body, so con-

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

214 Control Structures: Part 2 Chapter 5

trol flows to the control variable’s increment expression in the header of the for structure.)
Without break, the cases in a switch statement would run together. Each time a match
occurs in the structure, the statements for all the remaining cases will execute. (This fea-
ture is perfect for programming the iterative song “The Twelve Days of Christmas.”) If no
match occurs between the controlling expression’s value and a case label, the default
case executes, and the program draws an error message on the applet.

Each case can have multiple actions. The switch structure differs from other struc-
tures in that it does not require braces around multiple actions in each case. Figure 5.8
shows the general switch structure flowchart (using a break in each case). [Note: As
an exercise, make a flowchart of the general switch structure without breaks.]

The flowchart makes it clear that each break statement at the end of a case causes
control to exit the switch structure immediately. The break statement is not required
for the last case in the switch structure (or the default case, when it appears last),
because the program continues with the next statement after the switch.

Again, note that, besides small circles and arrows, the flowchart contains only rect-
angle and diamond symbols. It is the programmer’s responsibility to fill the rectangles and
diamonds with actions and decisions appropriate to the algorithm. Although nested control
structures are common, it is rare to find nested switch structures in a program.

O

fr i
Y€ ,.[case a action(s) |—] break F—

break |—>

case b action(s)

case z action(s) — break —

[default action(s) |

y
O

Fig. 5.8 The switch multiple-selection structure.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2 215

—o- Common Programming Error 5.7

Forgetting a break statement when one is needed in a switch structure is a logic error.

Good Programming Practice 5.11

Provide a default case in switch statements. Cases not explicitly tested in a switch
statement without a default case are ignored. Including a default case focuses the pro-
grammer on the need to process exceptional conditions. There are situations in which no
default processing is needed.

Good Programming Practice 5.12

Although the cases and the default case in a switch structure can occur in any order,
it is considered a good programming practice to place the default clause last.

Good Programming Practice 5.13

In a switch structure, when the default clause is listed last, the break for that case
statement is not required. Some programmers include this break for clarity and symmetry
with other cases.

PRI

Note that listing case labels together (such as case 1: case 2: with no statements
between the cases) performs the same set of actions for each case.

When using the switch structure, remember that the expression after each case can
be only a constant integral expression (i.e., any combination of character constants and
integer constants that evaluates to a constant integer value). A character constant is repre-
sented as the specific character in single quotes, such as 'A". An integer constant is simply
an integer value. The expression after each case also can be a constant variable—i.e., a
variable that contains a value which does not change for the entire program. Such a variable
is declared with keyword £inal (discussed in Chapter 6). When we discuss object-ori-
ented programming in Chapter 9, we present a more elegant way to implement switch
logic. We use a technique called polymorphism to create programs that are often clearer,
easier to maintain and easier to extend than programs using switch logic.

5.6 The do/while Repetition Structure

The do/while repetition structure is similar to the while structure. In the while struc-
ture, the program tests the loop-continuation condition at the beginning of the loop, before
performing the body of the loop. The do/while structure tests the loop-continuation con-
dition after performing the body of the loop; therefore, the loop body always executes at
least once. When a do/while structure terminates, execution continues with the statement
after the while clause. Note that it is not necessary to use braces in the do/while struc-
ture if there is only one statement in the body. However, most programmers include the
braces, to avoid confusion between the while and do/while structures. For example,

while (condition)

normally is the first line of a while structure. A do/while structure with no braces
around a single-statement body appears as
do

statement
while (condition);

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

216

which can be confusing. Reader may misinterpret the last line—while (condition) ;

Control Structures: Part 2 Chapter 5

as a while structure containing an empty statement (the semicolon by itself). Thus, to
avoid confusion, the do/while structure with one statement often is written as follows:

=
o

do {
statement
} while (condition);

Good Programming Practice 5.14

Some programmers always include braces in a do/while structure, even if the braces are
not necessary. This helps eliminate ambiguity between the while structure and the do/
while structure containing only one statement.

Common Programming Error 5.8

Infinite loops occur when the loop-continuation condition in a while, for or do/while
structure never becomes false. To prevent this situation, make sure that there is not a semi-
colon immediately after the header of a while or for structure. In a counter-controlled
loop, ensure that the control variable is incremented (or decremented) in the body of the
loop. In a sentinel-controlled loop, ensure that the sentinel value is eventually input.

The applet in Fig. 5.9 uses a do/while structure to draw 10 nested circles, using
Graphics method drawOval.

import java.awt.Graphics;

import javax.swing.JApplet;

public class DoWhileTest extends JApplet {

public void paint(Graphics g)

{

super.paint(g);

int counter = 1;

do {
21 g.drawOval (- counter * , - counter * ,
22 counter * , counter *);
23 ++counter;
24 } while (counter <=):
25
26 }
27
28
Fig. 5.9 Using the do/while repetition structure (part 1 of 2).

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2 217

[E3 applet Viewer: DowhiIeTest.fz 10l =|
Applet

Applet started.

Fig. 5.9 Using the do/while repetition structure (part 2 of 2).

In method paint (lines 13-26), line 18 declares control variable counter and ini-
tializes it to 1. Upon entering the do/while structure, lines 21-22 send the drawOval
message to the Graphics object to which g refers. The four arguments that represent the
upper left x-coordinate, upper left y-coordinate, width and height of the oval’s bounding
box (an imaginary rectangle in which the oval touches the center of all four sides of the rect-
angle) are calculated based on the value of counter. The program draws the innermost
oval first. The bounding box’s upper left corner for each subsequent oval moves closer to
the upper left corner of the applet. At the same time, the width and height of the bounding
box are increased, to ensure that each new oval contains all the previous ovals. Line 23
increments counter. Then, the program evaluates the loop-continuation test at the
bottom of the loop. The do/while flowchart in Fig. 5.10 makes it clear that the program
does not evaluate the loop-continuation condition until after the action executes once.

R

false

Fig. 5.10 Flowcharting the do/while repetition structure.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

218 Control Structures: Part 2 Chapter 5

5.7 Statements break and continue

The break and continue statements alter the flow of control. The break statement,
when executed in awhile, for, do/while or switch structure, causes immediate exit
from that structure. Execution continues with the first statement after the structure. Com-
mon uses of the break statement are to escape early from a loop or skip the remainder of
a switch structure (as in Fig. 5.7). Figure 5.11 demonstrates the break statement in a
for repetition structure.

1

2

3

4

5 import javax.swing.JOptionPane;

6

7 public class BreakTest {

8

9

10 public static void main(String args[])
11 {

12 String output = ;

13 int count;

14

15

16 for (count = 1; count <= ; count++) {
17

18

19 if (count ==)
20 break;
21
22 output += count + ;
23
24 }
25
26 output += + count;
27 JOptionPane.showMessageDialog(null, output);
28

29 System.exit ();

30

31 }

32

33

E‘%Message ﬂ

(5] 1234
= Broke out of loop at count = 5

Fig. 5.11 Using the break statement in a £or structure.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2 219

When the if structure at line 19 in the £or structure detects that count is 5, the
break statement at line 20 executes. This statement terminates the £oxr structure, and the
program proceeds to line 26 (immediately after the £or). Line 26 completes the string to
display in a message dialog at line 27. The loop fully executes its body only four times.

The continue statement, when executed in a while, for or do/while structure,
skips the remaining statements in the loop body and proceeds with the next iteration of the
loop. In while and do/while structures, the program evaluates the loop-continuation
test immediately after the cont inue statement executes. In £or structures, the increment
expression executes, then the program evaluates the loop-continuation test. Earlier, we
stated that the while structure could be used in most cases to represent the for structure.
The one exception occurs when the increment expression in the while structure follows
the continue statement. In this case, the increment does not execute before the program
evaluates the repetition-continuation condition, so the while structure does not execute in
the same manner as does the for structure. Figure 5.12 uses the continue statement in
a for structure to skip the string concatenation statement (line 22) when the i £ structure
(line 18) determines that the value of count is 5. When the continue statement exe-
cutes, program control continues with the increment of the control variable in the for
structure.

Good Programming Practice 5.15

@ Some programmers feel that break and continue violate structured programming. Be-
cause the effects of these statements are achievable with structured programming techniques,
these programmers do not use break and continue.

1

2

3

4

5 import javax.swing.JOptionPane;
6

7 public class ContinueTest {

8

9

10 public static void main(String argsl[])
11 {

12 String output = ;

13

14

15 for (int count = 1; count <= ; count++) {
16

17

18 if (count ==)

19 continue;

20

21

22 output += count + ;
23

24 }

25

Fig. 5.12 Using the continue statement in a £or structure (part 1 of 2).

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

220 Control Structures: Part 2 Chapter 5

26 output += ;
27 JOptionPane.showMessageDialog(null, output);

29 System.exit ()

E‘%Message LI

@ 1234678910

Used continue to skip printing 5

Fig. 5.12 Using the continue statement in a £or structure (part 2 of 2).

Performance Tip 5.3

__—‘@ The break and continue statements, when used properly, perform faster than the cor-
responding structured techniques.

There is a tension between achieving quality software engineering and achieving the best
performing software. Often, one of these goals is achieved at the expense of the other. For
all but the most performance-intensive situations, apply the following rule of thumb: First,
make your code simple and correct; then make it fast and small, but only if necessary.

5.8 Labeled break and continue Statements

The break statement can break out of only an immediately enclosing while, for, do/
while or switch structure. To break out of a nested set of structures, you can use the
labeled break statement. This statement, when executed in a while, for, do/while or
switch structure, causes immediate exit from that structure and any number of enclosing
repetition structures; program execution resumes with the first statement after the enclosing
labeled block (i.e., a set of statements enclosed in curly braces and preceded by a label).
The block can be either a repetition structure (the body would be the block) or a block in
which the repetition structure is the first executable code. Labeled break statements are
commonly used to terminate nested looping structures containing while, for, do/
while or switch structures. Figure 5.13 demonstrates the labeled break statement in
anested for structure.

The block (lines 14-37) begins with a label (an identifier followed by a colon) at line
14; here, we use the label “stop:.” The block is enclosed in braces at the end of line 14
and line 37 and includes the nested £or structure (lines 17-32) and the string-concatena-
tion statement at line 35. When the i £ structure at line 23 detects that row is equal to 5,
the break statement at line 24 executes. This statement terminates both the £or structure
at line 20 and its enclosing £or structure at line 17. The program proceeds immediately to

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2 221

line 39—the first statement after the labeled block. The outer for structure fully executes
its body only four times. Notice that the string-concatenation statement at line 35 never exe-
cutes, because it is in the labeled block’s body, and the outer for structure never com-
pletes.

import javax.swing.JOptionPane;

public class BreakLabelTest {

NVONOCOTRAWN—

10 public static void main(String args[])
11 {
12 String output = ;

14 stop: {

17 for (int row = 1; row <= ; row++) {

20 for (int column = 1; column <= ; column++) {
23 if (row ==)

24 break stop;

26 output += ;

28 }

30 output += :

35 output += H
37 }

39 JOptionPane.showMessageDialog (

40 null, output, ’
41 JOptionPane.):

43 System.exit ();:

Fig. 5.13 Using a labeled break statement in a nested £or structure (part 1 of 2).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

222 Control Structures: Part 2 Chapter 5

E‘%Testing break with a labe x|

ok k0% %

==

ok k0% %
ok k0% %

ok k0% %

Fig. 5.13 Using a labeled break statement in a nested £or structure (part 2 of 2).

The continue statement proceeds with the next iteration (repetition) of the immedi-
ately enclosing while, for or do/while structure. The labeled continue statement,
when executed in a repetition structure (while, for or do/while), skips the remaining
statements in that structure’s body and any number of enclosing repetition structures and
proceeds with the next iteration of the enclosing labeled repetition structure (i.e., a repeti-
tion structure preceded by a label). In labeled while and do/while structures, the pro-
gram evaluates the loop-continuation test immediately after the continue statement
executes. In a labeled for structure, the increment expression is executed, and then the
loop-continuation test is evaluated. Figure 5.14 uses the labeled continue statement in a
nested for structure to enable execution to continue with the next iteration of the outer
for structure.

The labeled f£or structure (lines 14-32) starts at the nextRow label. When the if
structure at line 24 in the inner £or structure detects that column is greater than row, the
continue statement at line 25 executes, and program control continues with the incre-
ment of the control variable of the outer £or loop. Even though the inner for structure
counts from 1 to 10, the number of * characters output on a row never exceeds the value of
row.

Performance Tip 5.4

__—@ The program in Fig. 5.14 can be made simpler and more efficient by replacing the condition
" in the for structure at line 21 with column <= row and removing the if structure at lines
24-25 from the program.

5.9 Logical Operators

So far, we have studied only simple conditions, such as count <= 10, total > 1000
and number != sentinelValue. These conditions were expressed in terms of the re-
lational operators >, <, >= and <= and the equality operators == and !=. Each decision
tested one condition. To test multiple conditions in the process of making a decision, we
performed these tests in separate statements or in nested i £ or 1f/else structures.

Java provides logical operators to enable programmers to form more complex condi-
tions by combining simple conditions. The logical operators are && (logical AND), &
(boolean logical AND), | | (logical OR), | (boolean logical inclusive OR), » (boolean log-
ical exclusive OR) and ! (logical NOT, also called logical negation).

© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2 223

import javax.swing.JOptionPane;

public class ContinueLabelTest {

NVONOCORARWN—

10 public static void main(String args[])
11 {
12 String output = ;

14 nextRow:

17 for (int row = row <= 5; row++) {

7
18 output += ;
21 for (int column = 1; column <= ; column++) {

24 if (column > row)
25 continue nextRow;

28 output +=

~e

32 }

34 JOptionPane.showMessageDialog (

35 null, output, ,
36 JOptionPane.);

38 System.exit ():

E‘%Testing continue with a lab x|

==

s %
PR
P

ok k0% %

Fig. 5.14 Using a labeled continue statement in a nested £or structure .
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

224 Control Structures: Part 2 Chapter 5

Suppose we wish to ensure at some point in a program that two conditions are both
true before we choose a certain path of execution. In this case, we can use the logical &&
operator, as follows:

if (gender == && age >=)
++seniorFemales;

This 1 £ statement contains two simple conditions. The condition gender == 1 might be
evaluated, for example, to determine if a person is a female. The condition age >= 65 is
evaluated to determine if a person is a senior citizen. The two simple conditions are evalu-
ated first, because the precedences of == and >= are both higher than the precedence of &&.
The if statement then considers the combined condition

gender == && age >=

This condition is true if and only if both of the simple conditions are true. If this com-
bined condition is indeed true, the if structure’s body statement increments variable
seniorFemales by 1. If either or both of the simple conditions are £alse, the program
skips the increment and proceeds to the statement following the if structure. The preced-
ing combined condition can be made more readable by adding redundant parentheses:

(gender ==) & (age >=)

The table in Fig. 5.15 summarizes the && operator. The table shows all four possible
combinations of £alse and txrue values for expressionl and expression2. Such tables are
often called rruth tables. Java evaluates to £alse or true all expressions that include
relational operators, equality operators and/or logical operators.

Now let us consider the || (logical OR) operator. Suppose we wish to ensure that
either or both of two conditions are true before we choose a certain path of execution. In
this case, we use the | | operator, as in the following program segment:

if (semesterAverage >= || finalExam >=)
System.out.println ()i

This statement also contains two simple conditions. The condition semesterAverage
>= 90 evaluates to determine if the student deserves an “A” in the course because of a solid
performance throughout the semester. The condition £inalExam >= 90 evaluates to de-
termine if the student deserves an “A” in the course because of an outstanding performance
on the final exam. The i £ statement then considers the combined condition

expression| expression2 expression1 && expression2
false false false
false true false
true false false
true true true

Fig. 5.15 Truth table for the && (logical AND) operator.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2 225

semesterAverage >= || finalExam >=

and awards the student an “A” if either or both of the simple conditions are true. Note that
the only time the message “Student grade is A” is not printed is when both of the sim-
ple conditions are false. Figure 5.16 is a truth table for the logical OR operator (| |).

The && operator has a higher precedence than the | | operator. Both operators asso-
ciate from left to right. An expression containing && or | | operators is evaluated only until
truth or falsity is known. Thus, evaluation of the expression

gender == && age >=

stops immediately if gender is not equal to 1 (i.e., the entire expression is false) and
continues if gender is equal to 1 (i.e., the entire expression could still be true if the con-
dition age >= 65 is true). This performance feature for evaluation of logical AND and
logical OR expressions is called short-circuit evaluation.

Common Programming Error 5.9

@ In expressions using operator &&, it is possible that a condition—we will call this the depen-

dent condition—may require another condition to be txrue for it to be meaningful to evalu-
ate the dependent condition. In this case, the dependent condition should be placed after the
other condition, or an error might occur.

Performance Tip 5.5

__—‘@ In expressions using operator &&, if the separate conditions are independent of one another,
"l make the condition that is most likely to be £alse the leftmost condition. In expressions us-
ing operator | |, make the condition that is most likely to be true the leftmost condition.
This can reduce a program’s execution time.

The boolean logical AND (&) and boolean logical inclusive OR (|) operators work
identically to the regular logical AND and logical OR operators, with one exception: The
boolean logical operators always evaluate both of their operands (i.e., there is no short-cir-
cuit evaluation). Therefore, the expression

gender == & age >=

evaluates age >= 65 regardless of whether gender is equal to 1. This method is useful
if the right operand of the boolean logical AND or boolean logical inclusive OR operator
has a required side effect—a modification of a variable’s value. For example, the expres-
sion

expression| expression2 expressionl | | expression2
false false false
false true true
true false true
true true true

Fig. 5.16 Truth table for the | | (logical OR) operator.
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

226 Control Structures: Part 2 Chapter 5

birthday == true | ++age >=

guarantees that the condition ++age >= 65 will be evaluated. Thus, the variable age is
incremented in the preceding expression, regardless of whether the overall expression is
true or false.

Good Programming Practice 5.16

@ For clarity, avoid expressions with side effects in conditions. The side effects may look clever,
but they are often more trouble than they are worth.

A condition containing the boolean logical exclusive OR (4) operator is txrue if and
only if one of its operands results in a txrue value and one results in a £false value. If
both operands are true or both are £alse, the result of the entire condition is false.
Figure 5.17 is a truth table for the boolean logical exclusive OR operator (#). This operator
is also guaranteed to evaluate both of its operands (i.e., there is no short-circuit evaluation).

Java provides the ! (logical negation) operator to enable a programmer to “reverse”
the meaning of a condition. Unlike the logical operators &&, &, | |, | and 4, which combine
two conditions (i.e., they are binary operators), the logical negation operator has only a
single condition as an operand (i.e., they are unary operator). The logical negation operator
is placed before a condition to choose a path of execution if the original condition (without
the logical negation operator) is £alse, such as in the following program segment:

if (! (grade == sentinelvValue))
System.out.println(+ grade);

The parentheses around the condition grade == sentinelValue are needed, because
the logical negation operator has a higher precedence than the equality operator.
Figure 5.18 is a truth table for the logical negation operator.

In most cases, the programmer can avoid using logical negation by expressing the con-
dition differently with an appropriate relational or equality operator. For example, the pre-
vious statement may also be written as follows:

expressionl expression2 expression1 4 expression2
false false false
false true true
true false true
true true false

Fig. 5.17 Truth table for the boolean logical exclusive OR (*) operator .

expression 1 expression
false true
true false

Fig. 5.18 Truth table for operator ! (logical negation, or logical NOT).
© Copyright 1992-2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Chapter 5 Control Structures: Part 2 227

if (grade != sentinelValue)
System.out.println(+ grade);

This flexibility can help a programmer express a condition in a more convenient manner.

The application in Fig. 5.19 demonstrates all of the logical operators and boolean log-
ical operators by producing their truth tables. The program uses string concatenation to
create the string that is displayed in a JTextArea.

1

2

3

4

5 import javax.swing.*;

6

7 public class LogicalOperators {

8

9

10 public static void main(String args[])

11 {

12

13 JTextArea outputArea = new JTextArea (,);
14

15

16

17 JScrollPane scroller = new JScrollPane(outputArea);
18

19 String output;
20
21
22 output = +
23 + (false && false) +
24 + (false && true) +
25 + (true && false) +
26 + (true && true);
27
28

29 output += +

30 + (false || false) +
31 + (false || true) +
32 + (true || false) +
33 + (true || true);

34

35

36 output +=

37 + (false & false) +
38 + (false & true) +

39 + (true & false) +
40 + (