
© Copyright 2002 by Prentice Hall. All Rights Reserved.

Contents

Preface xxxv

1 Introduction to Computers, the Internet and the Web 1
1.1 Introduction 2
1.2 What Is a Computer? 7
1.3 Computer Organization 7
1.4 Evolution of Operating Systems 8
1.5 Personal, Distributed and Client/Server Computing 9
1.6 Machine Languages, Assembly Languages and High-Level Languages 10
1.7 History of C++ 11
1.8 History of Java 12
1.9 Java Class Libraries 13
1.10 Other High-Level Languages 14
1.11 Structured Programming 14
1.12 The Internet and the World Wide Web 15
1.13 Basics of a Typical Java Environment 16
1.14 General Notes about Java and This Book 19
1.15 Thinking About Objects: Introduction to Object Technology and the Unified

Modeling Language 22
1.16 Discovering Design Patterns: Introduction 26
1.17 Tour of the Book 28
1.18 (Optional) A Tour of the Case Study on Object-Oriented Design with the UML 41
1.19 (Optional) A Tour of the “Discovering Design Patterns” Sections 45

2 Introduction to Java Applications 55
2.1 Introduction 56
2.2 A First Program in Java: Printing a Line of Text 56

2.2.1 Compiling and Executing your First Java Application 61

jhtp4TOC.fm Page vii Friday, January 11, 2002 12:01 PM

VIII Contents

© Copyright 2002 by Prentice Hall. All Rights Reserved.

2.3 Modifying Our First Java Program 62
2.3.1 Displaying a Single Line of Text with Multiple Statements 62
2.3.2 Displaying Multiple Lines of Text with a Single Statement 63

2.4 Displaying Text in a Dialog Box 65
2.5 Another Java Application: Adding Integers 69
2.6 Memory Concepts 75
2.7 Arithmetic 76
2.8 Decision Making: Equality and Relational Operators 79
2.9 (Optional Case Study) Thinking About Objects: Examining the

Problem Statement 87

3 Introduction to Java Applets 105
3.1 Introduction 106
3.2 Sample Applets from the Java 2 Software Development Kit 107

3.2.1 The TicTacToe Applet 107
3.2.2 The DrawTest Applet 111
3.2.3 The Java2D Applet 112

3.3 A Simple Java Applet: Drawing a String 112
3.3.1 Compiling and Executing WelcomeApplet 118

3.4 Two More Simple Applets: Drawing Strings and Lines 120
3.5 Another Java Applet: Adding Floating-Point Numbers 123
3.6 Viewing Applets in a Web Browser 130

3.6.1 Viewing Applets in Netscape Navigator 6 131
3.6.2 Viewing Applets in Other Browsers Using the Java Plug-In 131

3.7 Java Applet Internet and World Wide Web Resources 134
3.8 (Optional Case Study) Thinking About Objects: Identifying the Classes in a

Problem Statement135

4 Control Structures: Part 1 148
4.1 Introduction 149
4.2 Algorithms 149
4.3 Pseudocode 150
4.4 Control Structures 150
4.5 The if Selection Structure 153
4.6 The if/else Selection Structure 155
4.7 The while Repetition Structure 159
4.8 Formulating Algorithms: Case Study 1 (Counter-Controlled Repetition) 160
4.9 Formulating Algorithms with Top-Down, Stepwise Refinement:

Case Study 2 (Sentinel-Controlled Repetition) 165
4.10 Formulating Algorithms with Top-Down, Stepwise Refinement:

Case Study 3 (Nested Control Structures) 173
4.11 Assignment Operators 178
4.12 Increment and Decrement Operators 179
4.13 Primitive Data Types 182
4.14 (Optional Case Study) Thinking About Objects: Identifying Class Attributes 183

jhtp4TOC.fm Page viii Friday, January 11, 2002 12:01 PM

 Contents IX

© Copyright 2002 by Prentice Hall. All Rights Reserved.

5 Control Structures: Part 2 197
5.1 Introduction 198
5.2 Essentials of Counter-Controlled Repetition 198
5.3 The for Repetition Structure 201
5.4 Examples Using the for Structure 205
5.5 The switch Multiple-Selection Structure 210
5.6 The do/while Repetition Structure 215
5.7 Statements break and continue 218
5.8 Labeled break and continue Statements 220
5.9 Logical Operators 222
5.10 Structured Programming Summary 229
5.11 (Optional Case Study) Thinking About Objects: Identifying

Objects’ States and Activities 234

6 Methods 246
6.1 Introduction 247
6.2 Program Modules in Java 247
6.3 Math Class Methods 249
6.4 Methods 249
6.5 Method Definitions 251
6.6 Argument Promotion 258
6.7 Java API Packages 259
6.8 Random-Number Generation 261
6.9 Example: A Game of Chance 265
6.10 Duration of Identifiers 274
6.11 Scope Rules 275
6.12 Recursion 278
6.13 Example Using Recursion: The Fibonacci Series 281
6.14 Recursion vs. Iteration 286
6.15 Method Overloading 288
6.16 Methods of Class JApplet 291
6.17 (Optional Case Study) Thinking About Objects: Identifying

Class Operations 293

7 Arrays 313
7.1 Introduction 314
7.2 Arrays 315
7.3 Declaring and Allocating Arrays 317
7.4 Examples Using Arrays 317

7.4.1 Allocating an Array and Initializing Its Elements 318
7.4.2 Using an Initializer List to Initialize Elements of an Array 319
7.4.3 Calculating the Value to Store in Each Array Element 320
7.4.4 Summing the Elements of an Array 322
7.4.5 Using Histograms to Display Array Data Graphically 323
7.4.6 Using the Elements of an Array as Counters 324
7.4.7 Using Arrays to Analyze Survey Results 326

jhtp4TOC.fm Page ix Friday, January 11, 2002 12:01 PM

X Contents

© Copyright 2002 by Prentice Hall. All Rights Reserved.

7.5 References and Reference Parameters 329
7.6 Passing Arrays to Methods 329
7.7 Sorting Arrays 332
7.8 Searching Arrays: Linear Search and Binary Search 335

7.8.1 Searching an Array with Linear Search 335
7.8.2 Searching a Sorted Array with Binary Search 338

7.9 Multiple-Subscripted Arrays 343
7.10 (Optional Case Study) Thinking About Objects: Collaboration

Among Objects 350

8 Object-Based Programming 378
8.1 Introduction 379
8.2 Implementing a Time Abstract Data Type with a Class 380
8.3 Class Scope 388
8.4 Controlling Access to Members 388
8.5 Creating Packages 390
8.6 Initializing Class Objects: Constructors 394
8.7 Using Overloaded Constructors 395
8.8 Using Set and Get Methods 400

8.8.1 Executing an Applet that Uses Programmer-Defined Packages 409
8.9 Software Reusability 411
8.10 Final Instance Variables 412
8.11 Composition: Objects as Instance Variables of Other Classes 414
8.12 Package Access 417
8.13 Using the this Reference 419
8.14 Finalizers 426
8.15 Static Class Members 427
8.16 Data Abstraction and Encapsulation 432

8.16.1 Example: Queue Abstract Data Type 433
8.17 (Optional Case Study) Thinking About Objects: Starting to Program

the Classes for the Elevator Simulation 434

9 Object-Oriented Programming 445
9.1 Introduction 446
9.2 Superclasses and Subclasses 449
9.3 protected Members 451
9.4 Relationship between Superclass Objects and Subclass Objects 452
9.5 Constructors and Finalizers in Subclasses 459
9.6 Implicit Subclass-Object-to-Superclass-Object Conversion 463
9.7 Software Engineering with Inheritance 464
9.8 Composition vs. Inheritance 465
9.9 Case Study: Point, Circle, Cylinder 465
9.10 Introduction to Polymorphism 472
9.11 Type Fields and switch Statements 473
9.12 Dynamic Method Binding 473
9.13 final Methods and Classes 474
9.14 Abstract Superclasses and Concrete Classes 474

jhtp4TOC.fm Page x Friday, January 11, 2002 12:01 PM

 Contents XI

© Copyright 2002 by Prentice Hall. All Rights Reserved.

9.15 Polymorphism Examples 475
9.16 Case Study: A Payroll System Using Polymorphism 477
9.17 New Classes and Dynamic Binding 485
9.18 Case Study: Inheriting Interface and Implementation 486
9.19 Case Study: Creating and Using Interfaces 494
9.20 Inner Class Definitions 501
9.21 Notes on Inner Class Definitions 512
9.22 Type-Wrapper Classes for Primitive Types 513
9.23 (Optional Case Study) Thinking About Objects: Incorporating

Inheritance into the Elevator Simulation 513
9.24 (Optional) Discovering Design Patterns: Introducing Creational,

Structural and Behavioral Design Patterns 520
9.24.1 Creational Design Patterns 521
9.24.2 Structural Design Patterns 523
9.24.3 Behavioral Design Patterns 524
9.24.4 Conclusion 526
9.24.5 Internet and World-Wide-Web Resources 526

10 Strings and Characters 536
10.1 Introduction 537
10.2 Fundamentals of Characters and Strings 538
10.3 String Constructors 538
10.4 String Methods length, charAt and getChars 540
10.5 Comparing Strings 542
10.6 String Method hashCode 547
10.7 Locating Characters and Substrings in Strings 549
10.8 Extracting Substrings from Strings 551
10.9 Concatenating Strings 552
10.10 Miscellaneous String Methods 553
10.11 Using String Method valueOf 555
10.12 String Method intern 557
10.13 StringBuffer Class 559
10.14 StringBuffer Constructors 560
10.15 StringBuffer Methods length, capacity, setLength

and ensureCapacity 561
10.16 StringBuffer Methods charAt, setCharAt, getChars

and reverse 563
10.17 StringBuffer append Methods 564
10.18 StringBuffer Insertion and Deletion Methods 566
10.19 Character Class Examples 568
10.20 Class StringTokenizer 576
10.21 Card Shuffling and Dealing Simulation 579
10.22 (Optional Case Study) Thinking About Objects: Event Handling 583

11 Graphics and Java2D 601
11.1 Introduction 602
11.2 Graphics Contexts and Graphics Objects 604

jhtp4TOC.fm Page xi Friday, January 11, 2002 12:01 PM

XII Contents

© Copyright 2002 by Prentice Hall. All Rights Reserved.

11.3 Color Control 605
11.4 Font Control 612
11.5 Drawing Lines, Rectangles and Ovals 618
11.6 Drawing Arcs 622
11.7 Drawing Polygons and Polylines 625
11.8 The Java2D API 628
11.9 Java2D Shapes 628
11.10 (Optional Case Study) Thinking About Objects: Designing

Interfaces with the UML 635

12 Graphical User Interface Components: Part 1 646
12.1 Introduction 647
12.2 Swing Overview 649
12.3 JLabel 651
12.4 Event-Handling Model 654
12.5 JTextField and JPasswordField 656

12.5.1 How Event Handling Works 660
12.6 JButton 662
12.7 JCheckBox and JRadioButton 665
12.8 JComboBox 671
12.9 JList 673
12.10 Multiple-Selection Lists 676
12.11 Mouse Event Handling 678
12.12 Adapter Classes 683
12.13 Keyboard Event Handling 689
12.14 Layout Managers 692

12.14.1 FlowLayout 693
12.14.2 BorderLayout 696
12.14.3 GridLayout 699

12.15 Panels 701
12.16 (Optional Case Study) Thinking About Objects: Use Cases 703

13 Graphical User Interface Components: Part 2 720
13.1 Introduction 721
13.2 JTextArea 722
13.3 Creating a Customized Subclass of JPanel 725
13.4 Creating a Self-Contained Subclass of JPanel 730
13.5 JSlider 735
13.6 Windows 739
13.7 Designing Programs that Execute as Applets or Applications 741
13.8 Using Menus with Frames 747
13.9 Using JPopupMenus 755
13.10 Pluggable Look-and-Feel 758
13.11 Using JDesktopPane and JInternalFrame 762
13.12 Layout Managers 766
13.13 BoxLayout Layout Manager 767
13.14 CardLayout Layout Manager 770

jhtp4TOC.fm Page xii Friday, January 11, 2002 12:01 PM

 Contents XIII

© Copyright 2002 by Prentice Hall. All Rights Reserved.

13.15 GridBagLayout Layout Manager 774
13.16 GridBagConstraints Constants RELATIVE and REMAINDER 780
13.17 (Optional Case Study) Thinking About Objects: Model-View-Controller 783
13.18 (Optional) Discovering Design Patterns: Design Patterns Used in

Packages java.awt and javax.swing 788
13.18.1 Creational Design Patterns 789
13.18.2 Structural Design Patterns 789
13.18.3 Behavioral Design Patterns 792
13.18.4 Conclusion 795

14 Exception Handling 804
14.1 Introduction 805
14.2 When Exception Handling Should Be Used 807
14.3 Other Error-Handling Techniques 807
14.4 Basics of Java Exception Handling 808
14.5 try Blocks 809
14.6 Throwing an Exception 809
14.7 Catching an Exception 810
14.8 Exception-Handling Example: Divide by Zero 812
14.9 Rethrowing an Exception 818
14.10 throws Clause 818
14.11 Constructors, Finalizers and Exception Handling 824
14.12 Exceptions and Inheritance 824
14.13 finally Block 825
14.14 Using printStackTrace and getMessage 830

15 Multithreading 837
15.1 Introduction 838
15.2 Class Thread: An Overview of the Thread Methods 840
15.3 Thread States: Life Cycle of a Thread 841
15.4 Thread Priorities and Thread Scheduling 842
15.5 Thread Synchronization 848
15.6 Producer/Consumer Relationship without Thread Synchronization 849
15.7 Producer/Consumer Relationship with Thread Synchronization 854
15.8 Producer/Consumer Relationship: The Circular Buffer 860
15.9 Daemon Threads 869
15.10 Runnable Interface 870
15.11 Thread Groups 876
15.12 (Optional Case Study) Thinking About Objects: Multithreading 877
15.13 (Optional) Discovering Design Patterns: Concurrent Design Patterns 886

16 Files and Streams 894
16.1 Introduction 895
16.2 Data Hierarchy 895
16.3 Files and Streams 897
16.4 Creating a Sequential-Access File 903
16.5 Reading Data from a Sequential-Access File 915

jhtp4TOC.fm Page xiii Friday, January 11, 2002 12:01 PM

XIV Contents

© Copyright 2002 by Prentice Hall. All Rights Reserved.

16.6 Updating Sequential-Access Files 927
16.7 Random-Access Files 928
16.8 Creating a Random-Access File 928
16.9 Writing Data Randomly to a Random-Access File 933
16.10 Reading Data Sequentially from a Random-Access File 939
16.11 Example: A Transaction-Processing Program 944
16.12 Class File 961

17 Networking 978
17.1 Introduction 979
17.2 Manipulating URIs 981
17.3 Reading a File on a Web Server 986
17.4 Establishing a Simple Server Using Stream Sockets 990
17.5 Establishing a Simple Client Using Stream Sockets 991
17.6 Client/Server Interaction with Stream Socket Connections 992
17.7 Connectionless Client/Server Interaction with Datagrams 1003
17.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server 1011
17.9 Security and the Network 1026
17.10 DeitelMessenger Chat Server and Client 1026

17.10.1 DeitelMessengerServer and Supporting Classes 1027
17.10.2 DeitelMessenger Client and Supporting Classes 1036

17.11 (Optional) Discovering Design Patterns: Design Patterns Used in
Packages java.io and java.net 1056
17.11.1 Creational Design Patterns 1056
17.11.2 Structural Design Patterns 1057
17.11.3 Architectural Patterns 1058
17.11.4 Conclusion 1060

18 Multimedia: Images, Animation, Audio and Video 1068
18.1 Introduction 1069
18.2 Loading, Displaying and Scaling Images 1070
18.3 Animating a Series of Images 1073
18.4 Customizing LogoAnimator via Applet Parameters 1077
18.5 Image Maps 1081
18.6 Loading and Playing Audio Clips 1084
18.7 Internet and World Wide Web Resources 1087

19 Data Structures 1094
19.1 Introduction 1095
19.2 Self-Referential Classes 1096
19.3 Dynamic Memory Allocation 1096
19.4 Linked Lists 1097
19.5 Stacks 1108
19.6 Queues 1113
19.7 Trees 1116

jhtp4TOC.fm Page xiv Friday, January 11, 2002 12:01 PM

 Contents XV

© Copyright 2002 by Prentice Hall. All Rights Reserved.

20 Java Utilities Package and Bit Manipulation 1147
20.1 Introduction 1148
20.2 Vector Class and Enumeration Interface 1148
20.3 Stack Class 1156
20.4 Dictionary Class 1160
20.5 Hashtable Class 1161
20.6 Properties Class 1168
20.7 Random Class 1174
20.8 Bit Manipulation and the Bitwise Operators 1175
20.9 BitSet Class 1190

21 Collections 1201
21.1 Introduction 1202
21.2 Collections Overview 1203
21.3 Class Arrays 1203
21.4 Interface Collection and Class Collections 1208
21.5 Lists 1208
21.6 Algorithms 1215

21.6.1 Algorithm sort 1215
21.6.2 Algorithm shuffle 1217
21.6.3 Algorithms reverse, fill, copy, max and min 1219
21.6.4 Algorithm binarySearch 1221

21.7 Sets 1223
21.8 Maps 1226
21.9 Synchronization Wrappers 1228
21.10 Unmodifiable Wrappers 1228
21.11 Abstract Implementations 1229
21.12 (Optional) Discovering Design Patterns: Design Patterns Used in

Package java.util 1229
21.12.1 Creational Design Patterns 1229
21.12.2 Behavioral Design Patterns 1230
21.12.3 Conclusion 1230

22 Java Media Framework and Java Sound (on CD) 1236
22.1 Introduction 1237
22.2 Playing Media 1238
22.3 Formatting and Saving Captured Media 1249
22.4 RTP Streaming 1263
22.5 Java Sound 1277
22.6 Playing Sampled Audio 1278
22.7 Musical Instrument Digital Interface (MIDI) 1285

22.7.1 MIDI Playback 1286
22.7.2 MIDI Recording 1291
22.7.3 MIDI Synthesis 1295
22.7.4 Class MidiDemo 1299

22.8 Internet and World Wide Web Resources 1316

jhtp4TOC.fm Page xv Friday, January 11, 2002 12:01 PM

XVI Contents

© Copyright 2002 by Prentice Hall. All Rights Reserved.

22.9 (Optional Case Study) Thinking About Objects: Animation and
Sound in the View 1317

A Java Demos 1346
A.1 Introduction 1346
A.2 The Sites 1346

B Java Resources 1348
B.1 Resources 1348
B.2 Products 1349
B.3 FAQs 1350
B.4 Tutorials 1350
B.5 Magazines 1350
B.6 Java Applets 1350
B.7 Multimedia 1351
B.8 Newsgroups 1351

C Operator Precedence Chart 1353

D ASCII Character Set 1355

E Number Systems (on CD) 1356
E.1 Introduction 1357
E.2 Abbreviating Binary Numbers as Octal Numbers and Hexadecimal Numbers 1360
E.3 Converting Octal Numbers and Hexadecimal Numbers to Binary Numbers 1361
E.4 Converting from Binary, Octal, or Hexadecimal to Decimal 1361
E.5 Converting from Decimal to Binary, Octal, or Hexadecimal 1362
E.6 Negative Binary Numbers: Two’s Complement Notation 1364

F Creating HTML Documentation with javadoc (on CD) 1369
F.1 Introduction 1370
F.2 Documentation Comments 1370
F.3 Documenting Java Source Code 1370
F.4 javadoc 1379
F.5 Files Produced by javadoc 1379

G Elevator Events and Listener Interfaces (on CD) 1384
G.1 Introduction 1384
G.2 Events 1384
G.3 Listeners 1388
G.4 Component Diagrams Revisited 1391

H Elevator Model (on CD) 1393
H.1 Introduction 1393
H.2 Class ElevatorModel 1393
H.3 Classes Location and Floor 1401
H.4 Class Door 1404
H.5 Class Button 1408

jhtp4TOC.fm Page xvi Friday, January 11, 2002 12:01 PM

 Contents XVII

© Copyright 2002 by Prentice Hall. All Rights Reserved.

H.6 Class ElevatorShaft 1409
H.7 Classes Light and Bell 1416
H.8 Class Elevator 1420
H.9 Class Person 1429
H.10 Component Diagrams Revisited 1436
H.11 Conclusion 1436

I Elevator View (on CD) 1438
I.1 Introduction 1438
I.2 Class Objects 1455
I.3 Class Constants 1457
I.4 Class constructor 1458
I.5 Event Handling 1460

I.5.1 ElevatorMoveEvent types 1461
I.5.2 PersonMoveEvent types 1461
I.5.3 DoorEvent types 1462
I.5.4 ButtonEvent types 1462
I.5.5 BellEvent types 1463
I.5.6 LightEvent types 1463

I.6 Component Diagrams Revisited 1463
I.7 Conclusion 1463

J Career Opportunities (on CD) 1465
J.1 Introduction 1466
J.2 Resources for the Job Seeker 1467
J.3 Online Opportunities for Employers 1468

J.3.1 Posting Jobs Online 1470
J.3.2 Problems with Recruiting on the Web 1472
J.3.3 Diversity in the Workplace 1472

J.4 Recruiting Services 1473
J.4.1 Testing Potential Employees Online 1474

J.5 Career Sites 1475
J.5.1 Comprehensive Career Sites 1475
J.5.2 Technical Positions 1476
J.5.3 Wireless Positions 1477
J.5.4 Contracting Online 1477
J.5.5 Executive Positions 1478
J.5.6 Students and Young Professionals 1479
J.5.7 Other Online Career Services 1480

J.6 Internet and World Wide Web Resources 1481

K Unicode® (on CD) 1489
K.1 Introduction 1490
K.2 Unicode Transformation Formats 1491
K.3 Characters and Glyphs 1492
K.4 Advantages/Disadvantages of Unicode 1493
K.5 Unicode Consortium’s Web Site 1493

jhtp4TOC.fm Page xvii Friday, January 11, 2002 12:01 PM

XVIII Contents

© Copyright 2002 by Prentice Hall. All Rights Reserved.

K.6 Using Unicode 1494
K.7 Character Ranges 1497

Bibliography 1501

Index 1506

jhtp4TOC.fm Page xviii Friday, January 11, 2002 12:01 PM

Preface

Live in fragments no longer. Only connect.
Edward Morgan Forster

Welcome to Java How to Program, Fourth Edition and the exciting world of programming
with the Java™ 2 Platform, Standard Edition. This book is by an old guy and a young guy.
The old guy (HMD; Massachusetts Institute of Technology 1967) has been programming
and/or teaching programming for 40 years. The young guy (PJD; MIT 1991) has been pro-
gramming and/or teaching programming for 22 years, and is both a Sun Certified Java Pro-
grammer and a Sun Certified Java Developer. The old guy programs and teaches from
experience; the young guy does so from an inexhaustible reserve of energy. The old guy
wants clarity; the young guy wants performance. The old guy seeks elegance and beauty;
the young guy wants results. We got together to produce a book we hope you will find in-
formative, challenging and entertaining.

In November 1995, we attended an Internet/World Wide Web conference in Boston to
hear about Java. A Sun Microsystems representative spoke on Java in a packed convention
ballroom. During that presentation, we saw the future of programming unfold. The first edi-
tion of Java How to Program was born at that moment and was published as the world’s
first Java computer science textbook.

The world of Java is evolving so rapidly that Java How to Program: Fourth Edition is
being published less than five years after the first edition. This creates tremendous chal-
lenges and opportunities for us as authors, for our publisher—Prentice Hall, for instructors,
for students and for professional people.

Before Java appeared, we were convinced that C++ would replace C as the dominant
application development language and systems programming language for the next decade.
However, the combination of the World Wide Web and Java now increases the prominence
of the Internet in information systems strategic planning and implementation. Organiza-
tions want to integrate the Internet “seamlessly” into their information systems. Java is
more appropriate than C++ for this purpose.

XXXVI Preface Appendix

New Features in Java How to Program: Fourth Edition
This edition contains many new features and enhancements including:

• Full-Color Presentation. The book is now in full color. In the book’s earlier two-
color editions, the programs were displayed in black and the screen captures ap-
peared in the second color. Full color enables readers to see sample outputs as they
would appear on a color monitor. Also, we now syntax color all the Java code, as
many of today’s Java development environments do. Our syntax-coloring conven-
tions are as follows:

comments appear in green
keywords appear in dark blue
constants and literal values appear in light blue
class, method and variable names appear in black

• “Code Washing.” This is our own term for the process we used to convert all the
programs in the book to a more open layout with enhanced commenting. We have
grouped program code into small, well-documented pieces. This greatly improves
code readability—an especially important goal for us given that this new edition
contains more than 25,000 lines of code.

• Tune-Up. We performed a substantial tune-up of the book’s contents based on our
own notes from extensive teaching in our professional Java seminars. In addition,
a distinguished team of reviewers read the third edition book and provided us with
their comments and criticisms. There are literally thousands of fine-tuning im-
provements over the third edition.

• Thinking About Objects. This optional 180-page case study introduces object-
oriented design (OOD) with the Unified Modeling Language (the UML). Many
chapters in this edition end with a “Thinking About Objects” section in which we
present a carefully paced introduction to object orientation. Our goal in these sec-
tions is to help you develop an object-oriented way of thinking to be able to design
and implement more substantial systems. These sections also introduce you to the
Unified Modeling Language (UML). The UML is a graphical language that allows
people who build systems (e.g., software architects, systems engineers and pro-
grammers) to represent their object-oriented designs using a common notation.
The “Thinking About Objects” section in Chapter 1 introduces basic concepts and
terminology. Chapters 2–13, 15 and 22 (22 is on the CD) and Appendices G, H
and I (also on the CD) include optional “Thinking About Objects” sections that
present a substantial object-oriented elevator case study that applies the tech-
niques of object-oriented design (OOD). Appendices G, H and I fully implement
the case study design in Java code. This case study will help prepare you for the
kinds of substantial projects you are likely to encounter in industry. If you are a
student and your instructor does not plan to include this case study in your course,
you may want to read the case study on your own. We believe it will be well worth
your effort to walk through this large and challenging project. The material pre-
sented in the case-study sections reinforces the material covered in the corre-
sponding chapters. You will experience a solid introduction to object-oriented
design with the UML. Also, you will sharpen your code-reading skills by touring

Appendix Preface XXXVII

a carefully written and well-documented 3,465-line Java program that completely
solves the problem presented in the case study.

• Discovering Design Patterns. These optional sections introduce popular object-
oriented design patterns in use today. Most of the examples provided in this book
contain fewer than 150 lines of code. Such small examples normally do not require
an extensive design process. However, some programs, such as our optional ele-
vator-simulation case study, are more complex—they can require thousands of
lines of code. Larger systems, such as automated teller machines or air-traffic con-
trol systems, could contain millions, or even hundreds of millions, of lines of code.
Effective design is crucial to the proper construction of such complex systems.
Over the past decade, the software engineering industry has made significant
progress in the field of design patterns—proven architectures for constructing
flexible and maintainable object-oriented software.1 Using design patterns can
substantially reduce the complexity of the design process. We present several de-
sign patterns in Java, but these design patterns can be implemented in any object-
oriented language, such as C++, C# or Visual Basic. We describe several design
patterns used by Sun Microsystems in the Java API. We use design patterns in
many programs in this book, which we will identify in our “Discovering Design
Patterns” sections. These programs provide examples of using design patterns to
construct reliable, robust object-oriented software.

• Chapter 22 (on the CD), Java Media Framework (JMF) and JavaSound. This
chapter introduces to Java’s audio and video capabilities, enhancing our Chapter
18 multimedia coverage. With the Java Media Framework, a Java program can
play audio and video media, and capture audio and video media from devices such
as microphones and video cameras. The JMF enables Java developers to create
streaming media applications, in which a Java program sends live or recorded au-
dio or video feeds across the Internet to other computers, then applications on
those other computers play the media as it arrives over the network. The Java-
Sound APIs enable programs to manipulate MIDI (Musical Instrument Digital In-
terface) sounds and captured media (i.e., media from a device such as a
microphone). The chapter concludes with a substantial MIDI-processing applica-
tion that enables users to record MIDI files or select MIDI files to play. Users can
create their own MIDI music by interacting with the application’s simulated syn-
thesizer keyboard. The application can synchronize playing the notes in a MIDI
file with pressing the keys on the simulated synthesizer keyboard—similar to a
player piano. [Note: Chapters 18 and 22 both provide substantial sets of exercises.
Each chapter also has a special section containing additional interesting and chal-
lenging multimedia projects. These are intended only as suggestions for major
projects. Solutions are not provided for these additional exercises in either the In-
structor’s Manual or the Java 2 Multimedia Cyber Classroom.]

• Enhanced TCP/IP-Based Networking. We include a new capstone example in
Chapter 17 that introduces multicasting for sending information to groups of net-
work clients. This Deitel Messenger case study emulates many of today’s popular

1. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns; Elements of
Reusable Object-Oriented Software. (Massachusetts: Addison-Wesley, 1995).

XXXVIII Preface Appendix

instant-messaging applications that enable computer users to communicate with
friends, relatives and co-workers over the Internet. This 1130-line, multithreaded,
client/server Java program uses most of the techniques presented to this point in
the book.

• Appendix J (on the CD), Career Opportunities. This detailed appendix introduces
career services on the Internet. We explore online career services from the employer
and employee’s perspective. We suggest sites on which you can submit applica-
tions, search for jobs and review applicants (if you are interested in hiring someone).
We also review services that build recruiting pages directly into e-businesses. One
of our reviewers told us that he had just gone through a job search largely using the
Internet and this chapter would have really expanded his search dramatically.

• Appendix K (on the CD), Unicode. This appendix overviews the Unicode Stan-
dard. As computer systems evolved worldwide, computer vendors developed nu-
meric representations of character sets and special symbols for the local languages
spoken in different countries. In some cases, different representations were devel-
oped for the same languages. Such disparate character sets made communication
between computer systems difficult. Java supports the Unicode Standard (main-
tained by a non-profit organization called the Unicode Consortium), which de-
fines a single character set with unique numeric values for characters and special
symbols in most spoken languages. This appendix discusses the Unicode Stan-
dard, overviews the Unicode Consortium Web site (unicode.org) and shows
a Java example that displays “Welcome” in eight different languages!

• Java 2 Plug-In Moved to Chapter 3, Introduction to Applets. Students enjoy see-
ing immediate results as they execute their Java programs. This is difficult if those
programs are Java applets that execute in Web browsers. Most of today’s Web
browsers (with the exception of Netscape Navigator 6) do not support Java 2 ap-
plets directly, so students must test their applet programs with the appletview-
er utility. Sun Microsystems provides the Java 2 Plug-in to enable Java 2 applets
to execute in a Web browser that does not support Java 2. The discussion of the
Java Plug-in walks the student through the steps necessary to execute an applet in
today’s Web browsers.

• Chapter 22 and Appendices E-K on the CD. There are so many topics covered in
this new edition that we could not fit them all in the book! On the CD that accom-
panies this book, you will find the following chapter and appendices: Chapter 22,
Java Media Framework (JMF) and Java Sound; Appendix E, Number Systems;
Appendix F, Creating HTML Documentation with javadoc; Appendix G, Ele-
vator Events and Listener Interfaces; Appendix H, Elevator Model; Appendix I,
Elevator View; Appendix J, Career Opportunities; and Appendix K, Unicode.

• Chapters Moved to Advanced Java™ 2 Platform How to Program. Four chap-
ters from Java How to Program, Third Edition have been moved to our new book
Advanced Java 2 Platform How to Program and greatly enhanced. These chapters
are: Java Database Connectivity (JDBC), Servlets, Remote Method Invocation
and JavaBeans. Advanced Java 2 Platform How to Program covers each of these
topics in more depth. We present the Table of Contents of Advanced Java 2 Plat-
form How to Program shortly.

Appendix Preface XXXIX

Some Notes to Instructors

A World of Object Orientation
When we wrote the first edition of Java How to Program, universities were still emphasiz-
ing procedural programming in languages like Pascal and C. The leading-edge courses
were using object-oriented C++, but these courses were generally mixing a substantial
amount of procedural programming with object-oriented programming—something that
C++ lets you do, but Java does not. By the third edition of Java How to Program, many
universities were switching from C++ to Java in their introductory curricula, and instructors
were emphasizing a pure object-oriented programming approach. In parallel with this ac-
tivity, the software engineering community was standardizing its approach to modeling ob-
ject-oriented systems with the UML, and the design-patterns movement was taking shape.
Java How to Program has many audiences, so we designed the book to be customizable.
In particular, we included more than 200 pages of optional material that introduces object-
oriented design, the UML and design patterns, and presents a substantial case study in ob-
ject-oriented design and programming. This material is carefully distributed throughout the
book to enable instructors to emphasize “industrial-strength” object-oriented design in their
courses.

Students Like Java
Students are highly motivated by the fact that they are learning a leading-edge language (Ja-
va) and a leading-edge programming paradigm (object-oriented programming) that will be
immediately useful to them while in the university environment and when they head into a
world in which the Internet and the World Wide Web have a massive prominence. Students
quickly discover that they can do great things with Java, so they are willing to put in the
extra effort. Java helps programmers unleash their creativity. We see this in the Java cours-
es Deitel & Associates, Inc. teaches. Once our students enter lab, we can’t hold them back.
They eagerly experiment and explore portions of the Java class libraries that we haven’t as
yet covered in class. They produce applications that go well beyond anything we’ve ever
tried in our introductory C and C++ courses. And they tell us about projects they “can’t
wait” to try after the course.

Focus of the Book
Our goal was clear—produce a Java textbook for introductory university-level courses in
computer programming for students with little or no programming experience, yet offer the
depth and the rigorous treatment of theory and practice demanded by traditional, upper-lev-
el courses and that satisfies professionals’ needs. To meet these goals, we produced a com-
prehensive book, because our text patiently teaches the basics of computer programming
and of the Java language (i.e., data types, control structures, methods, arrays, recursion and
other “traditional” programming topics); presents key programming paradigms, including
object-based programming, object-oriented programming, event-driven programming and
concurrent programming; and provides an extensive treatment of the Java class libraries.

Evolution of Java How to Program
Java How to Program (first edition) was the world’s first university computer science text-
book on Java. We wrote it fresh on the heels of C How to Program, Second Edition and
C++ How to Program. Hundreds of thousands of university students and professional peo-

XL Preface Appendix

ple worldwide have learned C, C++ and Java from these texts. Upon publication in August,
2001 Java How to Program, Fourth Edition will be used in hundreds of universities and
thousands of corporations and government organizations worldwide. Deitel & Associates,
Inc. taught Java courses internationally to thousands of students as we were writing the var-
ious editions of Java How to Program. We carefully monitored the effectiveness of these
courses and tuned the material accordingly.

Conceptualization of Java
We believe in Java. Its conceptualization (and public release in 1995) by Sun Microsys-
tems, the creators of Java, was brilliant. Sun based the new language on two of the world’s
most widely used implementation languages, C and C++. This immediately gave Java a
huge pool of highly skilled programmers who were implementing most of the world’s new
operating systems, communications systems, database systems, personal computer appli-
cations and systems software. Sun removed the messier, more complex and error-prone C/
C++ features (such as pointers, operator overloading and multiple inheritance, among oth-
ers). They kept the language concise by removing special-purpose features that were used
by only small segments of the programming community. They made the language truly por-
table to be appropriate for implementing Internet-based and World-Wide-Web-based ap-
plications, and they built in the features people really need such as strings, graphics,
graphical user interface components, exception handling, multithreading, multimedia (au-
dio, images, animation and video), file processing, database processing, Internet and World
Wide Web-based client/server networking and distributed computing, and prepackaged
data structures. Then they made the language available at no charge to millions of potential
programmers worldwide.

2.5 Million Java Developers
Java was promoted in 1995 as a means of adding “dynamic content” to World-Wide-Web
pages. Instead of Web pages with only text and static graphics, people’s Web pages could
now “come alive” with audios, videos, animations, interactivity—and soon, three-dimen-
sional imaging. But we saw much more in Java than this. Java’s features are precisely what
businesses and organizations need to meet today’s information-processing requirements.
So we immediately viewed Java as having the potential to become one of the world’s key
general-purpose programming languages. In fact, Java has revolutionized software devel-
opment with multimedia-intensive, platform-independent, object-oriented code for con-
ventional, Internet-, Intranet- and Extranet-based applications and applets. Java now has
2.5 million developers worldwide—a stunning accomplishment given that it has only been
available publicly for six years. No other programming language has ever acquired such a
large developer base so quickly.

Enabling Multimedia-Based Applications and Communications
The computer field has never seen anything like the Internet/World Wide Web/Java “ex-
plosion” occurring today. People want to communicate. People need to communicate. Sure
they have been doing that since the dawn of civilization, but computer communications
have been mostly limited to digits, alphabetic characters and special characters. Today, we
are in the midst of a multimedia revolution. People want to transmit pictures and they want
those pictures to be in color. They want to transmit voices, sounds, audio clips and full-mo-
tion color video (and they want nothing less than DVD quality). Eventually, people will in-

Appendix Preface XLI

sist on three-dimensional, moving-image transmission. Our current flat, two-dimensional
televisions will eventually be replaced with three-dimensional versions that turn our living
rooms into “theaters-in-the-round.” Actors will perform their roles as if we were watching
live theater. Our living rooms will be turned into miniature sports stadiums. Our business
offices will enable video conferencing among colleagues half a world apart as if they were
sitting around one conference table. The possibilities are intriguing and Java is playing a
key role in turning many of them into reality.

Teaching Approach
Java How to Program, Fourth Edition contains a rich collection of examples, exercises,
and projects drawn from many fields to provide the student with a chance to solve interest-
ing real-world problems. The book concentrates on the principles of good software engi-
neering and stresses program clarity. We avoid arcane terminology and syntax
specifications in favor of teaching by example. Our code examples have been tested on
popular Java platforms. We are educators who teach edge-of-the-practice topics in industry
classrooms worldwide. The text emphasizes good pedagogy.

Learning Java via the Live-Code™ Approach
The book is loaded with live-code™ examples. This is the focus of the way we teach and
write about programming, and the focus of each of our multimedia Cyber Classrooms and
Web-based training courses as well. Each new concept is presented in the context of a com-
plete, working Java program (application or applet) immediately followed by one or more
screen captures showing the program’s output. We call this style of teaching and writing
our live-code™ approach. We use the language to teach the language. Reading these pro-
grams (25,000+ lines of code) is much like entering and running them on a computer.

Java and Swing from Chapter Two!
Java How to Program, Fourth Edition “jumps right in” with object-oriented programming,
applications and the Swing-style GUI components from Chapter 2! People tell us this is a
“gutsy” move, but Java students really want to “cut to the chase.” There is great stuff to be
done in Java so let’s get right to it! Java is not trivial by any means, but it’s fun to program
with and students can see immediate results. Students can get graphical, animated, multi-
media-based, audio-intensive, multithreaded, database-intensive, network-based programs
running quickly through Java’s extensive class libraries of “reusable components.” They
can implement impressive projects. They are typically more creative and productive in a
one- or two-semester course than in C and C++ introductory courses.

World Wide Web Access
All of the code for Java How to Program is on the CD that accompanies this book and is
available on the Internet at the Deitel & Associates, Inc. Web site www.deitel.com.
Please run each program as you read the text. Make changes to the code examples and see
what happens. See how the Java compiler “complains” when you make various kinds of
errors. Immediately see the effects of making changes to the code. It’s a great way to learn
programming by doing programming. [This is copyrighted material. Feel free to use it as
you study Java, but you may not republish any portion of it without explicit permission
from the authors and Prentice Hall.]

XLII Preface Appendix

Objectives
Each chapter begins with a statement of objectives. This tells the student what to expect and
gives the student an opportunity, after reading the chapter, to determine if he or she has met
these objectives. It is a confidence builder and a source of positive reinforcement.

Quotations
The learning objectives are followed by quotations. Some are humorous, some are philo-
sophical, and some offer interesting insights. Our students enjoy relating the quotations to
the chapter material. The quotations are worth a “second look” after you read each chapter.

Outline
The chapter Outline helps the student approach the material in top-down fashion. This, too,
helps students anticipate what is to come and set a comfortable and effective learning pace.

25,576 Lines of Code in 197 Example Programs (with Program Outputs)
We present Java features in the context of complete, working Java programs. The programs
range from just a few lines of code to substantial examples with several hundred lines of
code (and 3,465 lines of code for the optional object-oriented elevator simulator example).
Students should use the program code from the CD that accompanies the book or download
the code from our Web site (www.deitel.com) and run each program while studying that
program in the text.

545 Illustrations/Figures
An abundance of charts, line drawings and program outputs is included. The discussion of
control structures, for example, features carefully drawn flowcharts. [Note: We do not teach
flowcharting as a program development tool, but we do use a brief, flowchart-oriented pre-
sentation to specify the precise operation of each of Java’s control structures.]

605 Programming Tips
We have included programming tips to help students focus on important aspects of program
development. We highlight hundreds of these tips in the form of Good Programming Prac-
tices, Common Programming Errors, Testing and Debugging Tips, Performance Tips,
Portability Tips, Software Engineering Observations and Look-and-Feel Observations.
These tips and practices represent the best we have gleaned from a combined six decades
of programming and teaching experience. One of our students—a mathematics major—
told us that she feels this approach is like the highlighting of axioms, theorems, and corol-
laries in mathematics books; it provides a basis on which to build good software.

97 Good Programming Practices
When we teach introductory courses, we state that the “buzzword” of each course is “clar-
ity,” and we highlight as Good Programming Practices techniques for writing programs that
are clearer, more understandable, more debuggable, and more maintainable. 0.0

199 Common Programming Errors
Students learning a language tend to make certain errors frequently. Focusing on these
Common Programming Errors helps students avoid making the same errors and shortens
lines outside instructors’ offices during office hours! 0.0

Appendix Preface XLIII

46 Testing and Debugging Tips
When we first designed this “tip type,” we thought we would use it strictly to tell people how
to test and debug Java programs. In fact, many of the tips describe aspects of Java that re-
duce the likelihood of “bugs” and thus simplify the testing and debugging process. 0.0

67 Performance Tips
In our experience, teaching students to write clear and understandable programs is by far
the most important goal for a first programming course. But students want to write the pro-
grams that run the fastest, use the least memory, require the smallest number of keystrokes,
or dazzle in other nifty ways. Students really care about performance. They want to know
what they can do to “turbo charge” their programs. So we have included 67 Performance
Tips that highlight opportunities for improving program performance—making programs
run faster or minimizing the amount of memory that they occupy. 0.0

24 Portability Tips
One of Java’s “claims to fame” is “universal” portability, so some programmers assume that
if they implement an application in Java, the application will automatically be “perfectly”
portable across all Java platforms. Unfortunately, this is not always the case. We include Port-
ability Tips to help students write portable code and to provide insights on how Java achieves
its high degree of portability. We had many more portability tips in our books, C How to Pro-
gram and C++ How to Program. We needed fewer Portability Tips in Java How to Program
because Java is designed to be portable top-to-bottom (for the most part)—much less effort is
required on the Java programmer’s part to achieve portability than with C or C++. 0.0

134 Software Engineering Observations
The object-oriented programming paradigm requires a complete rethinking about the way
we build software systems. Java is an effective language for performing good software engi-
neering. The Software Engineering Observations highlight architectural and design issues
that affect the construction of software systems, especially large-scale systems. Much of what
the student learns here will be useful in upper-level courses and in industry as the student
begins to work with large, complex real-world systems. 0.0

38 Look-and-Feel Observations
We provide Look-and-Feel Observations to highlight graphical user interface conventions.
These observations help students design their own graphical user interfaces in conformance
with industry norms. 0.0

Summary (983 Summary bullets)
Each chapter ends with additional pedagogical devices. We present a thorough, bullet-list-
style summary of the chapter. On average, there are 42 summary bullets per chapter. This
helps the students review and reinforce key concepts.

Terminology (2171 Terms)
We include in a Terminology section an alphabetized list of the important terms defined in
the chapter—again, further reinforcement. On average, there are 95 terms per chapter.

397 Self-Review Exercises and Answers (Count Includes Separate Parts)
Extensive self-review exercises and answers are included for self-study. This gives the stu-
dent a chance to build confidence with the material and prepare for the regular exercises.
Students should be encouraged to do all the self-review exercises and check their answers.

XLIV Preface Appendix

779 Exercises (Count Includes Separate Parts)
Each chapter concludes with a set of exercises including simple recall of important termi-
nology and concepts; writing individual Java statements; writing small portions of Java
methods and classes; writing complete Java methods, classes, applications and applets; and
writing major term projects. The large number of exercises across a wide variety of areas
enables instructors to tailor their courses to the unique needs of their audiences and to vary
course assignments each semester. Instructors can use these exercises to form homework
assignments, short quizzes and major examinations. The solutions for most of the exercises
are included on the Instructor’s Manual CD that is available only to instructors through
their Prentice-Hall representatives. [NOTE: Please do not write to us requesting the in-
structor’s manual. Distribution of this publication is strictly limited to college profes-
sors teaching from the book. Instructors may obtain the solutions manual only from
their regular Prentice Hall representatives. We regret that we cannot provide the so-
lutions to professionals.] Solutions to approximately half of the exercises are included on
the Java Multimedia Cyber Classroom, Fourth Edition CD, which also is part of The Com-
plete Java 2 Training Course. For ordering instructions, please see the last few pages of this
book or visit www.deitel.com.

Approximately 5300 Index Entries (with approximately 9500 Page References)
We have included an extensive index at the back of the book. This helps the student find
any term or concept by keyword. The index is useful to people reading the book for the first
time and is especially useful to practicing programmers who use the book as a reference.
The terms in the Terminology sections generally appear in the index (along with many
more index items from each chapter). Students can use the index with the Terminology sec-
tions to be sure they have covered the key material of each chapter.

“Double Indexing” of Java Live-Code™ Examples and Exercises
Java How to Program has 197 live-code™ examples and 1176 exercises (including parts).
Many of the exercises are challenging problems or projects requiring substantial effort. We
have “double indexed” the live-code™ examples. For every Java source-code program in
the book, we took the file name with the .java extension, such as LoadAudioAnd-
Play.java and indexed it both alphabetically (in this case under “L”) and as a subindex
item under “Examples.” This makes it easier to find examples using particular features. The
more substantial exercises, such as “Maze Generator and Walker,” are indexed both alpha-
betically (in this case under “M”) and as subindex items under “Exercises.”

Bibliography
An extensive bibliography of books, articles and Sun Microsystems Java 2 documentation
is included to encourage further reading.

Software Included with Java How to Program, Fourth Edition
There are a number of for-sale Java products available. However, you do not need them to
get started with Java. We wrote Java How to Program, Fourth Edition using only the Java
2 Software Development Kit (J2SDK). For your convenience, Sun’s J2SDK version 1.3.1
is included on the CD that accompanies this book. The J2SDK also can be downloaded
from the Sun Microsystems Java Web site java.sun.com. With Sun’s cooperation, we

Appendix Preface XLV

also were able to include on the CD a powerful Java integrated development environment
(IDE)—Sun Microsystem’s Forté for Java Community Edition.

Forté for Java Community Edition is a professional IDE written in Java that includes
a graphical user interface designer, code editor, compiler, visual debugger and more.
J2SDK 1.3.1 must be installed before installing Forté for Java Community Edition. If you
have any questions about using this software, please read the introductory Forté documen-
tation on the CD. We will provide additional information on our Web site
www.deitel.com.

The CD also contains the book’s examples and an HTML Web page with links to the
Deitel & Associates, Inc. Web site, the Prentice Hall Web site and the many Web sites
listed in the appendices. If you have access to the Internet, this Web page can be loaded into
your Web browser to give you quick access to all the resources. Finally, the CD contains
Chapter 22 and Appendices E–K.

Ancillary Package for Java How to Program, Fourth Edition
Java How to Program, Fourth Edition has extensive ancillary materials for instructors
teaching from the book. The Instructor’s Manual CD contains solutions to the vast majority
of the end-of-chapter exercises and a test bank of multiple choice questions (approximately
2 per book section). In addition, we provide PowerPoint® slides containing all the code and
figures in the text. You are free to customize these slides to meet your own classroom
needs. Prentice Hall provides a Companion Web Site (www.prenhall.com/deitel)
that includes resources for instructors and students. For instructors, the Web site has a Syl-
labus Manager for course planning, links to the PowerPoint slides and reference materials
from the appendices of the book (such as the operator precedence chart, character sets and
Web resources). For students, the Web site provides chapter objectives, true/false exercises
with instant feedback, chapter highlights and reference materials. [NOTE: Please do not
write to us requesting the instructor’s manual. Distribution of this publication is
strictly limited to college professors teaching from the book. Instructors may obtain
the solutions manual only from their regular Prentice Hall representatives. We regret
that we cannot provide the solutions to professionals.]

Java 2 Multimedia Cyber Classroom, Fourth Edition (CD and
Web-Based Training Versions) and The Complete Java 2
Training Course, Fourth Edition
We have prepared an interactive, CD-based, software version of Java How to Program,
Fourth Edition called the Java 2 Multimedia Cyber Classroom, Fourth Edition. It is loaded
with features for learning and reference. The Cyber Classroom is wrapped with the text-
book at a discount in The Complete Java 2 Training Course, Fourth Edition. If you already
have the book and would like to purchase the Java 2 Multimedia Cyber Classroom, Fourth
Edition separately, please visit www.informit.com/cyberclassrooms. The
ISBN# for the Java 2 Multimedia Cyber Classroom, Fourth Edition is 0-13-064935-x. All
Deitel Cyber Classrooms are generally available in CD and Web-based training formats.

The CD has an introduction with the authors overviewing the Cyber Classroom’s fea-
tures. The 197 live-code™ example Java programs in the textbook truly “come alive” in
the Cyber Classroom. If you are viewing a program and want to execute it, you simply click

XLVI Preface Appendix

on the lightning bolt icon and the program will run. You will immediately see—and hear
for the audio-based multimedia programs—the program’s outputs. If you want to modify a
program and see and hear the effects of your changes, simply click the floppy-disk icon that
causes the source code to be “lifted off” the CD and “dropped into” one of your own direc-
tories so you can edit the text, recompile the program and try out your new version. Click
the audio icon and Paul Deitel will talk about the program and “walk you through” the code.

The Cyber Classroom also provides navigational aids including extensive hyper-
linking. The Cyber Classroom is browser based, so it remembers recent sections you have
visited and allows you to move forward or backward among these sections. The thousands
of index entries are hyperlinked to their text occurrences. You can key in a term using the
“find” feature and the Cyber Classroom will locate its occurrences throughout the text. The
Table of Contents entries are “hot”—so clicking a chapter name takes you to that chapter.

Students tell us that they particularly like the hundreds of solved problems from the
textbook that are included with the Cyber Classroom. Studying and running these extra pro-
grams is a great way for students to enhance their learning experience.

Students and professional users of our Cyber Classrooms tell us they like the interac-
tivity and that the Cyber Classroom is an effective reference because of the extensive
hyperlinking and other navigational features. We received an email from a person who said
that he lives “in the boonies” and cannot take a live course at a university, so the Cyber
Classroom was the solution to his educational needs.

Professors tell us that their students enjoy using the Cyber Classroom, spend more time
on the course and master more of the material than in textbook-only courses. We have pub-
lished (and will be publishing) many other Cyber Classroom and Complete Training
Course products. For a complete list of the available and forthcoming Cyber Classrooms
and Complete Training Courses, see the Deitel™ Series page at the beginning of this book
or the product listing and ordering information at the end of this book. You can also visit
www.deitel.com or www.prenhall.com/deitel for more information.

Advanced Java™ 2 Platform How to Program
Our companion book—Advanced Java 2 Platform How to Program—focuses on the Java
2 Platform, Enterprise Edition (J2EE), presents advanced Java 2 Platform Standard Edi-
tion features and introduces the Java 2 Platform, Micro Edition (J2ME). This book is in-
tended for developers and upper-level university students in advanced courses who already
know Java and want a deeper treatment and understanding of the language. The book fea-
tures our signature live-code™ approach of complete working programs and contains over
37,000 lines of code. The programs are more substantial than those presented in Java How
to Program, Fourth Edition. The book expands the coverage of Java Database Connectivity
(JDBC), remote method invocation (RMI), servlets and JavaBeans from Java How to Pro-
gram, Fourth Edition. The book also covers emerging and more advanced Java technolo-
gies of concern to enterprise application developers. The Table of Contents for Advanced
Java 2 Platform How to Program is: Chapters—Introduction; Advanced Swing Graphi-
cal User Interface Components; Model-View-Controller; Graphics Programming with Java
2D and Java 3D; Case Study: A Java2D Application; JavaBeans Component Model; Secu-
rity; Java Database Connectivity (JDBC); Servlets; Java Server Pages (JSP); Case Study:
Servlet and JSP Bookstore; Java 2 Micro Edition (J2ME) and Wireless Internet; Remote
Method Invocation (RMI); Session Enterprise JavaBeans (EJBs) and Distributed Transac-

Appendix Preface XLVII

tions; Entity EJBs; Java Message Service (JMS) and Message-Driven EJBs; Enterprise
Java Case Study: Architectural Overview; Enterprise Java Case Study: Presentation and
Controller Logic; Enterprise Java Case Study: Business Logic Part 1; Enterprise Java Case
Study: Business Logic Part 2; Application Servers; Jini; JavaSpaces; Jiro; Java Manage-
ment Extensions (JMX); Common Object Request Broker Architecture (CORBA): Part 1;
Common Object Request Broker Architecture (CORBA): Part 2; Peer-to-Peer Networking;
Appendices—Creating Markup with XML; XML Document Type Definitions; XML Doc-
ument Object Model (DOM); XSL: Extensible Stylesheet Language Transformations;
Downloading and Installing J2EE 1.2.1; Java Community Process (JCP); Java Native In-
terface (JNI); Career Opportunities; Unicode.

Acknowledgments
One of the great pleasures of writing a textbook is acknowledging the efforts of the many
people whose names may not appear on the cover, but whose hard work, cooperation,
friendship, and understanding were crucial to the production of the book.

Other people at Deitel & Associates, Inc. devoted long hours to this project. We would
like to acknowledge the efforts of our full-time Deitel & Associates, Inc. colleagues Tem
Nieto, Sean Santry, Jonathan Gadzik, Kate Steinbuhler, Rashmi Jayaprakash and Laura
Treibick.

• Tem Nieto is a graduate of the Massachusetts Institute of Technology. Tem teach-
es XML, Java, Internet and Web, C, C++ and Visual Basic seminars and works
with us on textbook writing, course development and multimedia authoring ef-
forts. He is co-author with us of Internet & World Wide Web How to Program
(Second Edition), XML How to Program, Perl How to Program and Visual Basic
6 How to Program. In Java How to Program, Fourth Edition Tem co-authored
Chapters 11, 12, 13 and 21 and the Special Section entitled “Building Your Own
Compiler” in Chapter 19.

• Sean Santry, a graduate of Boston College (Computer Science and Philosophy)
and co-author of Advanced Java 2 Platform How to Program, edited Chapter 22
(Java Media Framework and Java Sound), helped update the programs in Chapter
15 (Multithreading), designed and implemented the Deitel Messenger networking
application in Chapter 17 (Networking), helped design the optional case study on
OOD/UML, reviewed the optional design patterns case study and reviewed the
implementation of the elevator simulation for the OOD/UML case study.

• Jonathan Gadzik, a graduate of the Columbia University School of Engineering
and Applied Science (BS in Computer Science) co-authored the optional OOD/
UML case study and the optional “Discovering Design Patterns” sections. He also
implemented the 3,465-line Java program that completely solves the object-ori-
ented elevator simulation exercise presented in the OOD/UML case study.

• Kate Steinbuhler, a graduate of Boston College with majors in English and Com-
munications, co-authored Appendix J, Career Opportunities, and managed the
permissions process. Kate is moving on to law school at the University of Pitts-
burgh—good luck Kate! Thank you for your contributions to three Deitel publica-
tions.

XLVIII Preface Appendix

• Rashmi Jayaprakash, a graduate of Boston University with a major in Computer
Science, co-authored Appendix K, Unicode.

• Laura Treibick, a graduate of University of Colorado at Boulder with a major in
Photography and Multimedia, created the delightful animated bug character for
the implementation of the OOD/UML case study.

We would also like to thank the participants in our Deitel & Associates, Inc. College
Internship Program.2

• Susan Warren, a Junior in Computer Science at Brown University, and Eugene
Izumo, a Sophomore in Computer Science at Brown University, reviewed the en-
tire Fourth Edition; reviewed and updated Chapter 22, Java Media Framework
and Java Sound; and updated Appendix A (Java Demos) and Appendix B (Java
Resources). Susan and Eugene also worked on many of the books’s ancillary ma-
terials, including the solutions to the exercises, true/false questions for the com-
panion Web site (www.prenhall.com/deitel), true/false questions for the
Java 2 Multimedia Cyber Classroom and multiple choice questions for the Instruc-
tor’s test bank.

• Vincent He, a Senior in Management and Computer Science at Boston College,
co-authored Chapter 22, Java Media Framework and Java Sound—one of the most
exciting and fun chapters in the book! We are sure you will enjoy the multimedia
extravaganza Vincent created for you.

• Liz Rockett, a Senior in English at Princeton University edited and updated Chap-
ter 22, Java Media Framework and Java Sound.

• Chris Henson, a graduate of Brandeis University (Computer Science and History),
reviewed Chapter 22, Java Media Framework and Java Sound.

• Christina Carney, a Senior in Psychology and Business at Framingham State Col-
lege, researched and updated the bibliography, helped prepare the Preface and per-
formed the URL research for the OOD/UML case study and design patterns.

• Amy Gips, a Sophomore in Marketing and Finance at Boston College, updated
and added URLs for applets, graphics, Java 2D and Multimedia in Appendices A
and B. Amy also researched quotes for Chapter 22 and helped prepare the Preface.

• Varun Ganapathi, a Sophomore in Computer Science and Electrical Engineering
at Cornell University, updated Appendix F, Creating HTML Documentation with
javadoc.

• Reshma Khilnani, a Junior in Computer Science and Mathematics at the Massa-
chusetts Institute of Technology, worked with Rashmi on the Unicode Appendix

We are fortunate to have been able to work on this project with the talented and dedi-
cated team of publishing professionals at Prentice Hall. We especially appreciate the

2. The Deitel & Associates, Inc. College Internship Program offers a limited number of salaried po-
sitions to Boston-area college students majoring in Computer Science, Information Technology or
Marketing. Students work at our corporate headquarters in Sudbury, Massachusetts full-time in the
summers and part-time during the academic year. Full-time positions are available to college grad-
uates. For more information about this competitive program, please contact Abbey Deitel at
deitel@deitel.com and check our Web site, www.deitel.com.

Appendix Preface XLIX

extraordinary efforts of our computer science editor, Petra Recter and her boss—our mentor
in publishing—Marcia Horton, Editor-in-Chief of Prentice-Hall’s Engineering and Com-
puter Science Division. Camille Trentacoste did a marvelous job as production manager.

The Java 2 Multimedia Cyber Classroom, Fourth Edition was developed in parallel
with Java How to Program, Fourth Edition. We sincerely appreciate the “new media”
insight, savvy and technical expertise of our e-media editor-in-chief, mentor and friend
Mark Taub. He and our e-media editor, Karen Mclean, did a remarkable job bringing the
Java 2 Multimedia Cyber Classroom, Fourth Edition to publication under a tight schedule.
Michael Ruel did a marvelous job as Cyber Classroom project manager.

We owe special thanks to the creativity of Tamara Newnam Cavallo
(smart_art@earthlink.net) who did the art work for our programming tips icons
and the cover. She created the delightful bug creature who shares with you the book’s pro-
gramming tips.

We sincerely appreciate the efforts of our fourth edition reviewers:

Java How to Program, Fourth Edition Reviewers
Dibyendu Baksi (Sun Microsystems)
Tim Boudreau (Sun Microsystems)
Michael Bundschuh (Sun Microsystems)
Gary Ginstling (Sun Microsystems)
Tomas Pavek (Sun Microsystems)
Rama Roberts (Sun Microsystems)
Terry Hull (Sera Nova)
Ralph Johnson (“gang-of-four” co-author of the seminal book, Design Patterns:

Elements of Reusable Object-Oriented Software, Addison Wesley, 1995)
Cameron Skinner (Embarcadero Technologies; OMG)
Michael Chonoles (Lockheed Martin Adv. Concepts; OMG)
Brian Cook (The Technical Resource Connection; OMG)
Akram Al-Rawi (Zayed University)
Charley Bay (Fronte Range Community College)
Clint Bickmore (Fronte Range Community College)
Ron Braithwaite (Nutriware)
Columbus Brown (IBM)
Larry Brown (co-author of Core Web Programming)
Dan Corkum (Trillium Software)
Jonathan Earl (Technical Training and Consulting)
Karl Frank (togethersoft.com)
Charles Fry (thesundancekid.org)
Kyle Gabhart (Objective Solutions)
Felipe Gaucho (Softexport)
Rob Gordon (SuffolkSoft, Inc.)
Michelle Guy (XOR)
Christopher Green (Colorado Springs Technical Consulting Group)
Kevlin Henney (Curbralan Limited)
Ethan Henry (Sitraka Software)
Faisal Kaleem (Florida International University)
Rob Kelly (SUNY)

L Preface Appendix

Scott Kendall (Consultant, UML author)
Sachin Khana (Freelance Java Programmer)
Michael-Franz Mannion (Java Developer)
Julie McVicar (Oakland Community College)
Matt Mitton (Consultant)
Dan Moore (XOR)
Simon North (Synopsys)
Chetan Patel (Lexisnexis)
Brian Pontarelli (Consultant)
Kendall Scott (Consultant, UML author)
Craig Shofding (CAS Training Corp)
Spencer Roberts (Titus Corporation)
Toby Steel (CertaPay)
Stephen Tockey (Construx Software)
Kim Topley (Author of Core Java Foundation Classes and Core Swing: Advanced

Programming, both published by Prentice Hall)
Gustavo Toretti (Java Programmer; Campinas University)
Michael Van Kleeck (Director of Technology, Learning.com)
Dave Wagstaff (Sungard)

Java How to Program, Third Edition Post-Publication Reviewers
Jonathan Earl (Technical Training Consultants)
Harry Foxwell (Sun Microsystems)
Terry Hull (Sera Nova)
Ron McCarty (Penn State University Behrend Campus)
Bina Ramamurthy (SUNY Buffalo)
Vadim Tkachenko (Sera Nova)

Under a tight time schedule, they scrutinized every aspect of the text and made countless
suggestions for improving the accuracy and completeness of the presentation.

We would sincerely appreciate your comments, criticisms, corrections, and sugges-
tions for improving the text. Please address all correspondence to:

deitel@deitel.com

We will respond immediately. Well, that’s it for now. Welcome to the exciting world
of Java programming. We hope you enjoy this look at leading-edge computer applications
development. Good luck!

Dr. Harvey M. Deitel
Paul J. Deitel

About the Authors
Dr. Harvey M. Deitel, CEO of Deitel & Associates, Inc., has 40 years experience in the
computing field including extensive industry and academic experience. He is one of the
world’s leading computer science instructors and seminar presenters. Dr. Deitel earned
B.S. and M.S. degrees from the Massachusetts Institute of Technology and a Ph.D. from

Appendix Preface LI

Boston University. He has 20 years of college teaching experience including earning tenure
and serving as the Chairman of the Computer Science Department at Boston College before
founding Deitel & Associates, Inc. with his son Paul J. Deitel. He is author or co-author of
several dozen books and multimedia packages and is currently writing many more. With
translations published in Japanese, Russian, Spanish, Italian, Basic Chinese, Traditional
Chinese, Korean, French, Polish and Portuguese, Dr. Deitel's texts have earned internation-
al recognition. Dr. Deitel has delivered professional seminars internationally to major cor-
porations, government organizations and various branches of the military.

Paul J. Deitel, Chief Technical Officer of Deitel & Associates, Inc., is a graduate of
the Massachusetts Institute of Technology’s Sloan School of Management where he
studied Information Technology. Through Deitel & Associates, Inc. he has delivered
Internet and World Wide Web courses and programming language classes for industry cli-
ents including Sun Microsystems, EMC2, IBM, BEA Systems, Visa International, Progress
Software, Boeing, Fidelity, Hitachi, Cap Gemini, Compaq, Art Technology, White Sands
Missile Range, NASA at the Kennedy Space Center, the National Severe Storm Labora-
tory, Rogue Wave Software, Lucent Technologies, Computervision, Cambridge Tech-
nology Partners, Adra Systems, Entergy, CableData Systems, Banyan, Stratus, Concord
Communications and many other organizations. He has lectured on Java and C++ for the
Boston Chapter of the Association for Computing Machinery, and has taught satellite-
based courses through a cooperative venture of Deitel & Associates, Inc., Prentice Hall and
the Technology Education Network. He and his father, Dr. Harvey M. Deitel, are the
world’s best-selling Computer Science textbook authors.

About Deitel & Associates, Inc.
Deitel & Associates, Inc. is an internationally recognized corporate training and content-
creation organization specializing in Internet/World Wide Web software technology, e-
business/e-commerce software technology and computer programming languages educa-
tion. Deitel & Associates, Inc. is a member of the World Wide Web Consortium. The com-
pany provides courses on Internet and World Wide Web programming, object technology
and major programming languages. The founders of Deitel & Associates, Inc. are Dr. Har-
vey M. Deitel and Paul J. Deitel. The company’s clients include many of the world’s largest
computer companies, government agencies, branches of the military and business organi-
zations. Through its publishing partnership with Prentice Hall, Deitel & Associates, Inc.
publishes leading-edge programming textbooks, professional books, interactive CD-ROM-
based multimedia Cyber Classrooms, satellite courses and Web-based training courses.
Deitel & Associates, Inc. and the authors can be reached via e-mail at

deitel@deitel.com

To learn more about Deitel & Associates, Inc., its publications and its worldwide corporate
on-site curriculum, see the last few pages of this book and visit:

www.deitel.com

Individuals wishing to purchase Deitel books, Cyber Classrooms, Complete Training
Courses and Web-based training courses can do so through

www.deitel.com

LII Preface Appendix

Bulk orders by corporations and academic institutions should be placed directly with Pren-
tice Hall. See the last few pages of this book for worldwide ordering details.

The World Wide Web Consortium (W3C)
Deitel & Associates, Inc. is a member of the World Wide Web Consortium
(W3C). The W3C was founded in 1994 “to develop common protocols for
the evolution of the World Wide Web.” As a W3C member, we hold a seat
on the W3C Advisory Committee (our Advisory Committee representa-

tive is our Chief Technology Officer, Paul Deitel). Advisory Committee members help pro-
vide “strategic direction” to the W3C through meetings around the world. Member
organizations also help develop standards recommendations for Web technologies (such as
HTML, XML and many others) through participation in W3C activities and groups. Mem-
bership in the W3C is intended for companies and large organizations. For information on
becoming a member of the W3C visit www.w3.org/Consortium/Prospectus/
Joining.

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

1
Introduction to

Computers, the Internet
and the Web

Objectives
• To understand basic computer science concepts.
• To become familiar with different types of

programming languages.
• To introduce the Java development environment.
• To understand Java’s role in developing distributed

client/server applications for the Internet and Web.
• To introduce object-oriented design with the UML

and design patterns.
• To preview the remaining chapters of the book.
Our life is frittered away by detail … Simplify, simplify.
Henry Thoreau

High thoughts must have high language.
Aristophanes

The chief merit of language is clearness.
Galen

My object all sublime
I shall achieve in time.
W. S. Gilbert

He had a wonderful talent for packing thought close, and
rendering it portable.
Thomas Babington Macaulay

Egad, I think the interpreter is the hardest to be understood
of the two!
Richard Brinsley Sheridan

2 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

1.1 Introduction
Welcome to Java! We have worked hard to create what we hope will be an informative,
entertaining and challenging learning experience for you. Java is a powerful computer pro-
gramming language that is fun to use for novices and appropriate for experienced program-
mers building substantial information systems. Java How to Program: Fourth Edition is
designed to be an effective learning tool for each of these audiences.

How can one book appeal to both groups? The answer is that the common core of the
book emphasizes achieving program clarity through the proven techniques of structured
programming and object-oriented programming. Nonprogrammers will learn program-
ming the right way from the beginning. We have attempted to write in a clear and straight-
forward manner. The book is abundantly illustrated. Perhaps most importantly, the book
presents hundreds of working Java programs and shows the outputs produced when those
programs are run on a computer. We teach all Java features in the context of complete
working Java programs. We call this the live-code™ approach. These examples are avail-
able from three locations—they are on the CD that accompanies this book, they may be

Outline
1.1 Introduction
1.2 What Is a Computer?
1.3 Computer Organization
1.4 Evolution of Operating Systems
1.5 Personal, Distributed and Client/Server Computing
1.6 Machine Languages, Assembly Languages and High-Level

Languages
1.7 History of C++
1.8 History of Java
1.9 Java Class Libraries
1.10 Other High-Level Languages
1.11 Structured Programming
1.12 The Internet and the World Wide Web
1.13 Basics of a Typical Java Environment
1.14 General Notes about Java and This Book
1.15 Thinking About Objects: Introduction to Object Technology and the

Unified Modeling Language
1.16 Discovering Design Patterns: Introduction
1.17 Tour of the Book
1.18 (Optional) A Tour of the Case Study on Object-Oriented Design with

the UML
1.19 (Optional) A Tour of the “Discovering Design Patterns” Sections

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 1 Introduction to Computers, the Internet and the Web 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

downloaded from our Web site www.deitel.com and they are available on our interac-
tive CD product, the Java 2 Multimedia Cyber Classroom: Fourth Edition. The Cyber
Classroom’s features and ordering information appear at the back of this book. The Cyber
Classroom also contains answers to approximately half of the solved exercises in this book,
including short answers, small programs and many full projects. If you purchased The
Complete Java 2 Training Course: Fourth Edition, you already have the Cyber Classroom.

The early chapters introduce the fundamentals of computers, computer programming
and the Java computer programming language. Novices who have taken our courses tell us
that the material in those chapters presents a solid foundation for the deeper treatment of
Java in the later chapters. Experienced programmers tend to read the early chapters quickly
and find that the treatment of Java in the later chapters is rigorous and challenging.

Many experienced programmers have told us that they appreciate our structured pro-
gramming treatment. Often, they have been programming in structured languages like C or
Pascal, but they were never formally introduced to structured programming, so they are not
writing the best possible code in these languages. As they review structured programming
in the chapters “Control Structures: Part 1” and “Control Structures: Part 2,” they are able
to improve their C and Pascal programming styles as well. So whether you are a novice or
an experienced programmer, there is much here to inform, entertain and challenge you.

Most people are familiar with the exciting tasks computers perform. Using this text-
book, you will learn how to command computers to perform those tasks. It is software (i.e.,
the instructions you write to command computers to perform actions and make decisions)
that controls computers (often referred to as hardware), and Java is one of today’s most
popular software-development languages. Java was developed by Sun Microsystems and
an implementation of it is available free over the Internet from the Sun Web site

java.sun.com/j2se

This book is based on the Java 2 Platform, Standard Edition, which describes the Java lan-
guage, libraries and tools. Other vendors can implement Java development kits based on the
Java 2 Platform. Sun provides an implementation of the Java 2 Platform, Standard Edition
called the Java 2 Software Development Kit, Standard Edition (J2SDK) that includes the
minimum set of tools you need to write software in Java. At the time of this publication, the
most recent version was J2SDK 1.3.1. You can download future updates to the J2SDK from
the Sun Web site java.sun.com/j2se.

Computer use is increasing in almost every field of endeavor. In an era of steadily rising
costs, computing costs have been decreasing dramatically due to rapid developments in both
hardware and software technology. Computers that might have filled large rooms and cost
millions of dollars two decades ago can now be inscribed on the surfaces of silicon chips
smaller than a fingernail, costing perhaps a few dollars each. Ironically, silicon is one of the
most abundant materials on earth—it is an ingredient in common sand. Silicon-chip tech-
nology has made computing so economical that hundreds of millions of general-purpose
computers are in use worldwide helping people in business, industry, government, and in their
personal lives. The number of computers worldwide easily could double in the next few years.

This book will challenge you for several reasons. For many years, students learned C or
Pascal as their first programming language. They probably learned the programming meth-
odology called structured programming. You will learn both structured programming and the
exciting newer methodology, object-oriented programming. Why do we teach both? We

4 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

believe that object orientation is the key programming methodology of the future. You will
build and work with many objects in this course. However, you will discover that the internal
structure of those objects is built with structured programming techniques. Also, the logic of
manipulating objects is occasionally best expressed with structured programming.

Another reason we present both methodologies is the continuing migration from C-based
systems (built primarily with structured programming techniques) to C++ and Java-based
systems (built primarily with object-oriented programming techniques). There is a huge
amount of so-called “legacy C code” in place, because C has been in use for over three
decades. Once people learn C++ or Java, they find these languages to be more powerful than
C. These people often choose to move their programming projects to C++ or Java. They begin
converting their legacy systems and begin employing the object-oriented programming capa-
bilities of C++ or Java to realize the full benefits of these languages. Often, the choice
between C++ and Java is made based on the simplicity of Java compared to C++.

Java has become the language of choice for implementing Internet-based and Intranet-
based applications and software for devices that communicate over a network. Do not be
surprised when your new stereo and other devices in your home will be networked together
by Java technology! Also, do not be surprised when your wireless devices, like cell phones,
pagers and personal digital assistants (PDAs) communicate over the so-called Wireless
Internet via the kind of Java-based networking protocols that you will learn in this book and
its companion Advanced Java 2 Platform How to Program.

Java is a particularly attractive first programming language. At the JavaOne™ trade
show in June 2001, it was announced that Java is now a required part of the programming
languages curriculum in 56% of US colleges and universities. Also, 87% of US colleges
and universities offer Java courses. Java is attractive to high schools as well. In 2003, the
College Board will standardize on Java for Advanced Placement computer science courses.

Java has evolved rapidly into the large-scale applications arena. Java is no longer a lan-
guage used simply to make World Wide Web pages “come alive.” Java has become the pre-
ferred language for meeting many organizations’ programming needs.

For many years, languages like C and C++ appealed to universities because of their
portability. Introductory courses could be offered in these languages on any hardware/oper-
ating system combination, as long as a C/C++ compiler was available. However, the pro-
gramming world has become more complex and more demanding. Today, users want
applications with graphical user interfaces (GUIs). They want applications that use multi-
media capabilities such as graphics, images, animation, audio and video. They want appli-
cations that can run on the Internet and the World Wide Web and communicate with other
applications. They want applications that can take advantage of the flexibility and perfor-
mance improvements of multithreading (which enables programmers to specify that sev-
eral activities should occur in parallel). They want applications with richer file processing
than is provided by C or C++. They want applications that are not limited to the desktop or
even to some local computer network, but can integrate Internet components and remote
databases as well. They want applications that can be written quickly and correctly in a
manner that takes advantage of prebuilt software components. They want easy access to a
growing universe of reusable software components. Programmers want all these benefits in
a truly portable manner, so that applications will run without modification on a variety of
platforms (i.e., different types of computers running different operating systems). Java
offers all these benefits to the programming community.

Chapter 1 Introduction to Computers, the Internet and the Web 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Another reason Java is attractive for university courses is that it is fully object oriented.
One reason that C++ use has grown so quickly is that it extends C programming into the
arena of object orientation. For the huge community of C programmers, this has been a
powerful advantage. C++ includes ANSI/ISO C and offers the ability to do object-oriented
programming as well. (ANSI is the American National Standards Institute, and ISO is the
International Standards Organization.) An enormous amount of C code has been written in
industry over the last several decades. C++ is a superset of C, so many organizations find
it to be an ideal next step. Programmers can take their C code, compile it (often with nom-
inal changes) in a C++ compiler and continue writing C-like code while mastering the
object paradigm. Then, the programmers can gradually migrate portions of the legacy C
code into C++ as time permits. New systems can be entirely written in object-oriented C++.
Such strategies have been appealing to many organizations. The downside is that, even
after adopting this strategy, companies tend to continue producing C-like code for many
years. This, of course, means that they do not realize the benefits of object-oriented pro-
gramming quickly and could produce programs that are confusing and hard to maintain as
a result of to their hybrid design. Many organizations would prefer to plunge 100% into
object-oriented development, but the realities of mountains of legacy code and the tempta-
tion to take a C-programming approach often prevent this.

Java is a fully object-oriented language with strong support for proper software engi-
neering techniques. It is difficult to write C-like, so-called procedural programs in Java.
You must create and manipulate objects. Error processing is built into the language. Many
of the complex details of C and C++ programming that prevent programmers from “looking
at the big picture” are not included in Java. For universities, these features are powerfully
appealing. Students will learn object-oriented programming from the start. They will
simply think in an object-oriented manner.

Here, too, there is a trade-off. Organizations turning to Java for new applications
development do not want to convert all their legacy code to Java. So Java allows for so-
called native code. This means that existing C and C++ code can be integrated with Java
code. Although this may seem a bit awkward (and it certainly can be), it presents a prag-
matic solution to a problem most organizations face.

The fact that Java is free for download at the Sun Web site, java.sun.com/j2se,
is appealing to universities facing tight budgets and lengthy budget planning cycles. Also,
as bug fixes and new versions of Java are developed, these become available immediately
over the Internet, so universities can keep their Java software current.

Can Java be taught in a first programming course—the intended audience for this book?
We think so. Prior to writing this book, Deitel & Associates, Inc. instructors taught hundreds
of Java courses to several thousand people at all levels of expertise, including many nonpro-
grammers. We found that nonprogrammers become productive faster with Java than with C
or C++. They are anxious to experiment with Java’s powerful features for graphics, graphical
user interfaces, multimedia, animation, multithreading, networking and the like—and they
are successful at building substantial Java programs even in their first courses.

For many years, the Pascal programming language was the preferred vehicle for use in
introductory and intermediate programming courses. Many people said that C was too dif-
ficult a language for these courses. In 1992, we published the first edition of C How to Pro-
gram, to encourage universities to try C instead of Pascal in these courses. We used the
same pedagogic approach we had used in our university courses for a dozen years, but

6 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

wrapped the concepts in C rather than Pascal. We found that students were able to handle
C at about the same level as Pascal. However, there was one noticeable difference—stu-
dents appreciated that they were learning a language (C) likely to be valuable to them in
industry. Our industry clients appreciated the availability of C-literate graduates who could
work immediately on substantial projects rather than first having to go through costly and
time-consuming training programs.

The first edition of C How to Program included a 60-page introduction to C++ and
object-oriented programming. We saw C++ coming on strong, but we felt it would be at
least a few more years before the universities would be ready to teach C++ and object-ori-
ented programming (OOP) in introductory courses.

During 1993, we saw a surge in interest in C++ and OOP among our industry clients,
but we still did not sense that the universities were ready to switch to C++ and OOP en
masse. So, in January 1994, we published the Second Edition of C How to Program with a
300-page section on C++ and OOP. In May 1994, we published the first edition of C++
How to Program, a 950-page book devoted to the premise that C++ and OOP were now
ready for prime time in introductory university courses for many schools that wanted to be
at the leading edge of programming-languages education.

In 1995, we were following the introduction of Java carefully. In November 1995, we
attended an Internet conference in Boston. A representative from Sun Microsystems gave
a presentation on Java that filled one of the large ballrooms at the Hynes Convention
Center. As the presentation proceeded, it became clear to us that Java would play a signif-
icant part in the development of interactive, multimedia Web pages. We immediately saw
a much greater potential for the language. We saw Java as the proper language for univer-
sities to teach first-year programming language students in this modern world of graphics,
images, animation, audio, video, database, networking, multithreading and collaborative
computing. At the time, we were busy writing the second edition of C++ How to Program.
We discussed with our publisher, Prentice Hall, our vision of Java making a strong impact
in the university curriculum. We all agreed to delay the second edition of C++ How to Pro-
gram a bit so that we could get the first edition of Java How to Program (based on Java
1.0.2) to the market in time for fall 1996 courses.

As Java rapidly evolved to Java 1.1, we wrote Java How to Program: Second Edition
in 1997, less than a year after the first edition reached bookstores. Hundreds of universities
and corporate training programs worldwide used the second edition. To keep pace with the
enhancements in Java, we published Java How to Program: Third Edition in 1999. The
third edition was a major overhaul to upgrade the book to the Java 2 Platform.

Java continues to evolve rapidly, so we wrote this fourth edition of Java How to Pro-
gram—our first book to reach a fourth edition—just five years after the first edition was
published. This edition is based on the Java 2 Platform, Standard Edition (J2SE). Java has
grown so rapidly over the last several years that it now has two other editions. The Java 2
Platform, Enterprise Edition (J2EE) is geared toward developing large-scale, distributed
networking applications and Web-based applications. The Java 2 Platform, Micro Edition
(J2ME) is geared toward development of applications for small devices (such as cell
phones, pagers and personal digital assistants) and other memory-constrained applications.
The number of topics to cover in Java has become far too large for one book. So, in parallel
with Java How to Program, Fourth Edition, we are publishing Advanced Java 2 Platform
How to Program, which emphasizes developing applications with J2EE and provides cov-

Chapter 1 Introduction to Computers, the Internet and the Web 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

erage of several high-end topics from the J2SE. In addition, this book also includes sub-
stantial materials on J2ME and wireless-application development.

So, there you have it! You are about to start on a challenging and rewarding path. As
you proceed, please share your thoughts on Java and Java How to Program: Fourth Edition
with us via e-mail at deitel@deitel.com. We will respond promptly.

Prentice Hall maintains www.prenhall.com/deitel—a Web site dedicated to
our Prentice Hall publications, including textbooks, professional books, interactive multi-
media CD-based Cyber Classrooms, Complete Training Courses (boxed products con-
taining both a Cyber Classroom and the corresponding book), Web-based training, e-
whitepapers, e-books and ancillary materials for all these products. For each of our books,
the site contains companion Web sites that include frequently asked questions (FAQs),
code downloads, errata, updates, additional text and examples, additional self-test ques-
tions and new developments in programming languages and object-oriented programming
technologies. If you would like to learn more about the authors or Deitel & Associates, Inc.
please visit www.deitel.com. Good luck!

1.2 What Is a Computer?
A computer is a device capable of performing computations and making logical decisions at
speeds millions, even billions, of times faster than human beings can. For example, many of
today’s personal computers can perform hundreds of millions, even billions, of additions per
second. A person operating a desk calculator might require decades to complete the same
number of calculations a powerful personal computer can perform in one second. (Points to
ponder: How would you know whether the person added the numbers correctly? How would
you know whether the computer added the numbers correctly?) Today’s fastest supercomput-
ers can perform hundreds of billions of additions per second—about as many calculations as
hundreds of thousands of people could perform in one year! And trillion-instruction-per-sec-
ond computers are already functioning in research laboratories!

Computers process data under the control of sets of instructions called computer pro-
grams. These programs guide the computer through orderly sets of actions specified by
people called computer programmers.

The various devices that comprise a computer system (such as the keyboard, screen,
disks, memory and processing units) are referred to as hardware. The computer programs
that run on a computer are referred to as software. Hardware costs have been declining dra-
matically in recent years, to the point that personal computers have become a commodity.
Unfortunately, software-development costs have been rising steadily, as programmers
develop ever more powerful and complex applications without being able to improve sig-
nificantly the technology of software development. In this book, you will learn proven soft-
ware-development methods that can reduce software-development costs—top-down
stepwise refinement, functionalization and object-oriented programming. Object-oriented
programming is widely believed to be the significant breakthrough that can greatly enhance
programmer productivity.

1.3 Computer Organization
Regardless of differences in physical appearance, virtually every computer may be envi-
sioned as being divided into six logical units or sections. These are as follows:

8 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

1. Input unit. This is the “receiving” section of the computer. It obtains information
(data and computer programs) from input devices and places this information at
the disposal of the other units so that the information may be processed. Most in-
formation is entered into computers today through typewriter-like keyboards,
“mouse” devices and disks. In the future, most information will be entered by
speaking to computers, by electronically scanning images and by video recording.

2. Output unit. This is the “shipping” section of the computer. It takes information
processed by the computer and places it on various output devices to make the in-
formation available for use outside the computer. Information output from com-
puters is displayed on screens, printed on paper, played through audio speakers,
magnetically recorded on disks and tapes or used to control other devices.

3. Memory unit. This is the rapid-access, relatively low-capacity “warehouse” sec-
tion of the computer. It retains information that has been entered through the input
unit so that the information may be made immediately available for processing
when it is needed. The memory unit also retains information that has already been
processed until that information can be placed on output devices by the output
unit. The memory unit often is called either memory, primary memory or random-
access memory (RAM).

4. Arithmetic and logic unit (ALU). This is the “manufacturing” section of the com-
puter. It is responsible for performing calculations such as addition, subtraction,
multiplication and division. It contains the decision mechanisms that allow the
computer, for example, to compare two items from the memory unit to determine
whether they are equal.

5. Central processing unit (CPU). This is the “administrative” section of the com-
puter. It is the computer’s coordinator and is responsible for supervising the oper-
ation of the other sections. The CPU tells the input unit when information should
be read into the memory unit, tells the ALU when information from the memory
unit should be utilized in calculations and tells the output unit when to send infor-
mation from the memory unit to certain output devices.

6. Secondary storage unit. This is the long-term, high-capacity “warehousing” sec-
tion of the computer. Programs or data not being used by the other units are nor-
mally placed on secondary storage devices (such as disks) until they are needed,
possibly hours, days, months or even years later. Information in secondary storage
takes longer to access than information in primary memory. The cost per unit of
secondary storage is much less than the cost per unit of primary memory.

1.4 Evolution of Operating Systems
Early computers were capable of performing only one job or task at a time. This form of
computer operation is often called single-user batch processing. The computer runs a single
program at a time while processing data in groups or batches. In these early systems, users
generally submitted their jobs to the computer center on decks of punched cards. Users of-
ten had to wait hours or even days before printouts were returned to their desks.

Software systems called operating systems were developed to help make it more con-
venient to use computers. Early operating systems managed the smooth transition between

Chapter 1 Introduction to Computers, the Internet and the Web 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

jobs. This minimized the time it took for computer operators to switch between jobs and
hence increased the amount of work, or throughput, computers could process.

As computers became more powerful, it became evident that single-user batch pro-
cessing rarely utilized the computer’s resources efficiently. Instead, it was thought that
many jobs or tasks could be made to share the resources of the computer to achieve better
utilization. This is called multiprogramming. Multiprogramming involves the “simulta-
neous” operation of many jobs on the computer—the computer shares its resources among
the jobs competing for its attention. With early multiprogramming operating systems, users
still submitted jobs on decks of punched cards and waited hours or days for results.

In the 1960s, several groups in industry and the universities pioneered timesharing
operating systems. Timesharing is a special case of multiprogramming in which users
access the computer through terminals, typically devices with keyboards and screens. In a
typical timesharing computer system, there may be dozens or even hundreds of users
sharing the computer at once. The computer does not actually run all the users’ jobs simul-
taneously. Rather, it runs a small portion of one user’s job and moves on to service the next
user. The computer does this so quickly that it might provide service to each user several
times per second. Thus the users’ programs appear to be running simultaneously. An
advantage of timesharing is that the user receives almost immediate responses to requests
rather than having to wait long periods for results, as with previous modes of computing.
Also, if a particular user is currently idle, the computer can continue to service other users
rather than wait for one user.

1.5 Personal, Distributed and Client/Server Computing
In 1977, Apple Computer popularized the phenomenon of personal computing. Initially, it
was a hobbyist’s dream. Computers became economical enough for people to buy them for
their own personal use. In 1981, IBM, the world’s largest computer vendor, introduced the
IBM Personal Computer. Almost overnight, personal computing became legitimate in busi-
ness, industry and government organizations.

But these computers were “stand-alone” units—people did their work on their own
machines and transported disks back and forth to share information. Although early per-
sonal computers were not powerful enough to timeshare several users, these machines
could be linked together in computer networks, sometimes over telephone lines and some-
times in local area networks (LANs) within an organization. This led to the phenomenon of
distributed computing, in which an organization’s computing, instead of being performed
strictly at some central computer installation, is distributed over networks to the sites at
which the real work of the organization is performed. Personal computers were powerful
enough both to handle the computing requirements of individual users and to handle the
basic communications tasks of passing information back and forth electronically.

Today’s most powerful personal computers are as powerful as the million-dollar
machines of just a decade ago. The most powerful desktop machines—called worksta-
tions—provide individual users with enormous capabilities. Information is shared easily
across computer networks where some computers called file servers offer a common store
of programs and data that may be used by client computers distributed throughout the net-
work (hence the term client/server computing). C and C++ have become and remain the
languages of choice for writing operating systems. They also remain popular for writing
computer networking, distributed client/server and Internet and Web applications, although

10 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Java is now the dominant language in each of these areas. Many programmers have discov-
ered that programming in Java helps them be more productive than programming in C or
C++. Today’s popular operating systems, such as UNIX, Linux, MacOS, Windows and
Windows 2000, provide the kinds of capabilities discussed in this section.

1.6 Machine Languages, Assembly Languages and High-Level
Languages
Programmers write instructions in various programming languages, some directly under-
standable by computers and others that require intermediate translation steps. Hundreds of
computer languages are in use today. These may be divided into three general types:

1. Machine languages

2. Assembly languages

3. High-level languages

Any computer can directly understand only its own machine language. Machine lan-
guage is the “natural language” of a particular computer. It is defined by the hardware
design of that computer. Machine languages generally consist of strings of numbers (ulti-
mately reduced to 1s and 0s) that instruct computers to perform their most elementary oper-
ations one at a time. Machine languages are machine dependent (i.e., a particular machine
language can be used on only one type of computer). Machine languages are cumbersome
for humans, as can be seen by the following section of a machine-language program that
adds overtime pay to base pay and stores the result in gross pay.

+1300042774
+1400593419
+1200274027

As computers became more popular, it became apparent that machine-language pro-
gramming was simply too slow and tedious for most programmers. Instead of using the
strings of numbers that computers could directly understand, programmers began using
English-like abbreviations to represent the elementary operations of computers. These
English-like abbreviations formed the basis of assembly languages. Translator programs
called assemblers were developed to convert assembly-language programs to machine lan-
guage at computer speeds. The following section of an assembly-language program also
adds overtime pay to base pay and stores the result in gross pay, but somewhat more clearly
than its machine-language equivalent.

LOAD BASEPAY
ADD OVERPAY
STORE GROSSPAY

Although such code is clearer to humans, it is incomprehensible to computers until trans-
lated to machine language.

Computer usage increased rapidly with the advent of assembly languages, but pro-
gramming in these still required many instructions to accomplish even the simplest tasks.
To speed the programming process, high-level languages were developed in which single
statements could be written to accomplish substantial tasks. The translator programs that
convert high-level language programs into machine language are called compilers. High-

Chapter 1 Introduction to Computers, the Internet and the Web 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

level languages allow programmers to write instructions that look almost like everyday
English and contain commonly used mathematical notations. A payroll program written in
a high-level language might contain a statement such as

grossPay = basePay + overTimePay

Obviously, high-level languages are much more desirable from the programmer’s
standpoint than either machine languages or assembly languages. C, C++ and Java are
among the most powerful and most widely used high-level programming languages.

The process of compiling a high-level language program into machine language can
take a considerable amount of computer time. Interpreter programs were developed to exe-
cute high-level language programs directly without the need for compiling those programs
into machine language. Although compiled programs execute much faster than interpreted
programs, interpreters are popular in program-development environments in which pro-
grams are recompiled frequently as new features are added and errors are corrected. Once
a program is developed, a compiled version can be produced to run most efficiently. As we
study Java, you will see that interpreters have played an especially important part in helping
Java achieve its goal of portability across a great variety of platforms.

1.7 History of C++
C++ evolved from C, which evolved from two previous languages, BCPL and B. BCPL
was developed in 1967 by Martin Richards as a language for writing operating-systems
software and compilers. Ken Thompson modeled many features in his language B after
their counterparts in BCPL and used B to create early versions of the UNIX operating sys-
tem at Bell Laboratories in 1970 on a Digital Equipment Corporation PDP-7 computer.
Both BCPL and B were “typeless” languages—every data item occupied one “word” in
memory. For example, it was the programmer’s responsibility to treat a data item as a
whole number or a real number.

The C language was evolved from B by Dennis Ritchie at Bell Laboratories and was
originally implemented on a DEC PDP-11 computer in 1972. C uses many important con-
cepts of BCPL and B while adding data typing and other features. C initially became widely
known as the development language of the UNIX operating system. Today, virtually all
new major operating systems are written in C or C++. Over the past two decades, C has
become available for most computers. C is hardware independent. With careful design, it
is possible to write C programs that are portable to most computers.

By the late 1970s, C had evolved into what is now referred to as “traditional C,” or
“Kernighan and Ritchie C.” The publication by Prentice Hall in 1978 of Kernighan and
Ritchie’s book, The C Programming Language, brought wide attention to the language.
This publication became one of the most successful computer science books ever.

The widespread use of C with various types of computers (sometimes called hardware
platforms) led to many variations. These were similar, but often incompatible. This was a
serious problem for programmers who needed to write portable programs that would run
on several platforms. It became clear that a standard version of C was needed. In 1983, the
X3J11 technical committee was created under the American National Standards Com-
mittee on Computers and Information Processing (X3) to “provide an unambiguous and
machine-independent definition of the language.” In 1989, the standard was approved.
ANSI cooperated with the International Standards Organization (ISO) to standardize C

12 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

worldwide; the joint standard document was published in 1990 and is referred to as ANSI/
ISO 9899: 1990. The second edition of Kernighan and Ritchie,1 published in 1988, reflects
this version called ANSI C, a version of the language still used worldwide (Ke88).

C++, an extension of C, was developed by Bjarne Stroustrup in the early 1980s at Bell
Laboratories. C++ provides a number of features that “spruce up” the C language, but more
importantly, it provides capabilities for object-oriented programming. C++ was also stan-
dardized by the ANSI and ISO committees.

There is a revolution brewing in the software community. Building software quickly,
correctly and economically remains an elusive goal, and this at a time when demands for
new and more powerful software are soaring. Objects are essentially reusable software
components that model items in the real world. Software developers are discovering that
using a modular, object-oriented design and implementation approach can make software-
development groups much more productive than is possible with previous popular pro-
gramming techniques such as structured programming. Object-oriented programs are often
easier to understand, correct and modify.

Many other object-oriented languages have been developed, including Smalltalk,
developed at Xerox’s Palo Alto Research Center (PARC). Smalltalk is a pure object-ori-
ented language—literally everything is an object. C++ is a hybrid language—it is possible
to program in either a C-like style, an object-oriented style or both.

1.8 History of Java
Perhaps the microprocessor revolution’s most important contribution to date is that it made
possible the development of personal computers, which now number in the hundreds of
millions worldwide. Personal computers have had a profound impact on people and the way
organizations conduct and manage their business.

Many people believe that the next major area in which microprocessors will have a
profound impact is in intelligent consumer-electronic devices. Recognizing this, Sun
Microsystems funded an internal corporate research project code-named Green in 1991.
The project resulted in the development of a C- and C++-based language that its creator,
James Gosling, called Oak after an oak tree outside his window at Sun. It was later discov-
ered that there already was a computer language called Oak. When a group of Sun people
visited a local coffee place, the name Java was suggested, and it stuck.

The Green project ran into some difficulties. The marketplace for intelligent con-
sumer-electronic devices was not developing as quickly as Sun had anticipated. Worse yet,
a major contract for which Sun competed was awarded to another company. So the project
was in danger of being canceled. By sheer good fortune, the World Wide Web exploded in
popularity in 1993, and Sun people saw the immediate potential of using Java to create Web
pages with so-called dynamic content. This breathed new life into the project.

Sun formally announced Java at a major conference in May 1995. Ordinarily, an event
like this would not have generated much attention. However, Java generated immediate
interest in the business community because of the phenomenal interest in the World Wide
Web. Java is now used to create Web pages with dynamic and interactive content, to
develop large-scale enterprise applications, to enhance the functionality of World Wide

1. Kernighan, B. W., and D. M. Ritchie, The C Programming Language (Second Edition), Engle-
wood Cliffs, NJ: Prentice Hall, 1988.

Chapter 1 Introduction to Computers, the Internet and the Web 13

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Web servers (the computers that provide the content we see in our Web browsers), to pro-
vide applications for consumer devices (such as cell phones, pagers and personal digital
assistants) and for many other purposes.

1.9 Java Class Libraries
Java programs consist of pieces called classes. Classes consist of pieces called methods that
perform tasks and return information when they complete their tasks. You can program
each piece you may need to form a Java program. However, most Java programmers take
advantage of rich collections of existing classes in Java class libraries. The class libraries
are also known as the Java APIs (Application Programming Interfaces). Thus, there are re-
ally two pieces to learning the Java “world.” The first is learning the Java language itself
so that you can program your own classes; the second is learning how to use the classes in
the extensive Java class libraries. Throughout the book, we discuss many library classes.
Class libraries are provided primarily by compiler vendors, but many class libraries are sup-
plied by independent software vendors (ISVs). Also, many class libraries are available
from the Internet and World Wide Web as freeware or shareware. You can download free-
ware products and use them for free—subject to any restrictions specified by the copyright
owner. You also can download shareware products for free, so you can try the software.
Shareware products often are free of charge for personal use. However, for shareware prod-
ucts that you use regularly or use for commercial purposes, you are expected to pay a fee
designated by the copyright owner.

Many freeware and shareware products are also open source. The source code for
open-source products is freely available on the Internet, which enables you to learn from
the source code, validate that the code serves its stated purpose and even modify the code.
Often, open-source products require that you publish any enhancements you make so the
open-source community can continue to evolve those products. One example of a popular
open-source product is the Linux operating system.

Software Engineering Observation 1.1
Use a building-block approach to creating programs. Avoid reinventing the wheel. Use ex-
isting pieces—this is called software reuse and it is central to object-oriented programming. 1.1

[Note: We will include many of these Software Engineering Observations throughout
the text to explain concepts that affect and improve the overall architecture and quality of
software systems, and particularly, of large software systems. We will also highlight Good
Programming Practices (practices that can help you write programs that are clearer, more
understandable, more maintainable and easier to test and debug), Common Programming
Errors (problems to watch out for so you do not make these same errors in your programs),
Performance Tips (techniques that will help you write programs that run faster and use less
memory), Portability Tips (techniques that will help you write programs that can run, with
little or no modifications, on a variety of computers; these tips also include general obser-
vations about how Java achieves its high degree of portability), Testing and Debugging
Tips (techniques that will help you remove bugs from your programs and, more important,
techniques that will help you write bug-free programs to begin with) and Look and Feel
Observations (techniques that will help you design the “look” and “feel” of your graphical
user interfaces for appearance and ease of use). Many of these techniques and practices are
only guidelines; you will, no doubt, develop your own preferred programming style.]

14 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Software Engineering Observation 1.2
When programming in Java, you will typically use the following building blocks: Classes
from class libraries, classes and methods you create yourself and classes and methods other
people create and make available to you. 1.2

The advantage of creating your own classes and methods is that you know exactly how
they work and you can examine the Java code. The disadvantage is the time-consuming and
complex effort that goes into designing and developing new classes and methods.

Performance Tip 1.1
Using Java API classes and methods instead of writing your own versions can improve pro-
gram performance, because these classes and methods are carefully written to perform effi-
ciently. This technique also improves the prototyping speed of program development (i.e., the
time it takes to develop a new program and get its first version running). 1.1

Portability Tip 1.1
Using classes and methods from the Java API instead of writing your own versions improves
program portability, because these classes and methods are included in every Java imple-
mentation (assuming the same version number). 1.1

Software Engineering Observation 1.3
Extensive class libraries of reusable software components are available over the Internet and
the Web. Many of these libraries provide source code and are available at no charge. 1.3

1.10 Other High-Level Languages
Hundreds of high-level languages have been developed, but only a few have achieved
broad acceptance. Fortran (FORmula TRANslator) was developed by IBM Corporation
between 1954 and 1957 to be used for scientific and engineering applications that require
complex mathematical computations. Fortran is still widely used.

COBOL (COmmon Business Oriented Language) was developed in 1959 by a group
of computer manufacturers and government and industrial computer users. COBOL is used
primarily for commercial applications that require precise and efficient manipulation of
large amounts of data. Today, about half of all business software is still programmed in
COBOL. Approximately one million people are actively writing COBOL programs.

Pascal was designed at about the same time as C. It was created by Professor Nicklaus
Wirth and was intended for academic use. We discuss Pascal further in the next section.

Basic was developed in 1965 at Dartmouth College as a simple language to help nov-
ices become comfortable with programming. Bill Gates implemented Basic on several
early personal computers. Today, Microsoft—the company Bill Gates created—is the
world’s leading software-development organization.

1.11 Structured Programming
During the 1960s, many large software-development efforts encountered severe difficul-
ties. Software schedules were typically late, costs greatly exceeded budgets and the fin-
ished products were unreliable. People began to realize that software development was a
far more complex activity than they had imagined. Research activity in the 1960s resulted

Chapter 1 Introduction to Computers, the Internet and the Web 15

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

in the evolution of structured programming—a disciplined approach to writing programs
that are clearer than unstructured programs, easier to test and debug and easier to modify.
Chapters 4 and 5 discuss the principles of structured programming.

One of the more tangible results of this research was the development of the Pascal
programming language by Nicklaus Wirth in 1971. Pascal, named after the seventeenth-
century mathematician and philosopher Blaise Pascal, was designed for teaching structured
programming in academic environments and rapidly became the preferred programming
language in most universities. Unfortunately, the language lacks many features needed to
make it useful in commercial, industrial and government applications, so it has not been
widely accepted in these environments.

The Ada programming language was developed under the sponsorship of the United
States Department of Defense (DOD) during the 1970s and early 1980s. Hundreds of sep-
arate languages were being used to produce DOD’s massive command-and-control soft-
ware systems. DOD wanted a single language that would fill most of its needs. Pascal
was chosen as a base, but the final Ada language is quite different from Pascal. The lan-
guage was named after Lady Ada Lovelace, daughter of the poet Lord Byron. Lady Love-
lace is credited with writing the world’s first computer program in the early 1800s (for
the Analytical Engine mechanical computing device designed by Charles Babbage). One
important capability of Ada is called multitasking, which allows programmers to specify
that many activities are to occur in parallel. The native capabilities of other widely used
high-level languages we have discussed—including C and C++—generally allow the
programmer to write programs that perform only one activity at a time. Java, through a
technique we will explain called multithreading, also enables programmers to write pro-
grams with parallel activities. [Note: Most operating systems provide libraries specific to
individual platforms (sometimes called platform-dependent libraries) that enable high-
level languages like C and C++ to specify that many activities are to occur in parallel in
a program.]

1.12 The Internet and the World Wide Web
The Internet was developed more than three decades ago with funding supplied by the De-
partment of Defense. Originally designed to connect the main computer systems of about
a dozen universities and research organizations, the Internet today is accessible by hun-
dreds of millions of computers worldwide.

With the introduction of the World Wide Web—which allows computer users to locate
and view multimedia-based documents on almost any subject—the Internet has exploded
into one of the world’s premier communication mechanisms.

The Internet and the World Wide Web will surely be listed among the most important
and profound creations of humankind. In the past, most computer applications ran on com-
puters that were not connected to one another. Today’s applications can be written to com-
municate among the world’s hundreds of millions of computers. The Internet mixes
computing and communications technologies. It makes our work easier. It makes informa-
tion instantly and conveniently accessible worldwide. It makes it possible for individuals
and local small businesses to get worldwide exposure. It is changing the nature of the way
business is done. People can search for the best prices on virtually any product or service.
Special-interest communities can stay in touch with one another. Researchers can be made
instantly aware of the latest breakthroughs worldwide.

16 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Java How to Program: Fourth Edition presents programming techniques that allow
Java applications to use the Internet and World Wide Web to interact with other applica-
tions. These capabilities, and the capabilities discussed in our companion book Advanced
Java 2 Platform How to Program, allow Java programmers to develop the kind of enter-
prise-level distributed applications that are used in industry today. Java applications can be
written to execute on any computer platform, yielding major savings in systems develop-
ment time and cost for corporations. If you have been hearing a great deal about the Internet
and World Wide Web lately, and if you are interested in developing applications to run over
the Internet and the Web, learning Java may be the key to challenging and rewarding career
opportunities for you.

1.13 Basics of a Typical Java Environment
Java systems generally consist of several parts: An environment, the language, the Java Ap-
plications Programming Interface (API) and various class libraries. The following discus-
sion explains a typical Java program development environment, as shown in Fig. 1.1.

Java programs normally go through five phases to be executed (Fig. 1.1). These are: edit,
compile, load, verify and execute. We discuss these concepts in the context of the Java 2 Soft-
ware Development Kit (J2SDK) that is included on the CD that accompanies this book. Care-
fully follow the installation instructions for the J2SDK provided on the CD to ensure that you
set up your computer properly to compile and execute Java programs. [Note: If you are not
using UNIX/Linux, Windows 95/98/ME or Windows NT/2000, refer to the manuals for your
system’s Java environment or ask your instructor how to accomplish these tasks in your envi-
ronment (which will probably be similar to the environment in Fig. 1.1).]

Phase 1 consists of editing a file. This is accomplished with an editor program (nor-
mally known as an editor). The programmer types a Java program, using the editor, and
makes corrections, if necessary. When the programmer specifies that the file in the editor
should be saved, the program is stored on a secondary storage device, such as a disk. Java
program file names end with the .java extension. Two editors widely used on UNIX/
Linux systems are vi and emacs. On Windows 95/98/ME and Windows NT/2000, simple
edit programs like the DOS Edit command and the Windows Notepad will suffice. Java
integrated development environments (IDEs), such as Forté for Java Community Edition,
NetBeans, Borland’s JBuilder, Symantec’s Visual Cafe and IBM’s VisualAge have built-
in editors that are integrated into the programming environment. We assume the reader
knows how to edit a file.

[Note that Forté for Java Community Edition is written in Java and is free for non-
commercial use. It is included on the CD accompanying this book. Sun updates this soft-
ware approximately twice a year. Newer versions can be downloaded from

www.sun.com/forte/ffj

Forté for Java Community Edition executes on most major platforms. This book is written
for any generic Java 2 development environment. It is not dependent on Forté for Java
Community Edition. Our example programs should operate properly with most Java inte-
grated development environments.]

In Phase 2 (discussed again in Chapters 2 and 3), the programmer gives the command
javac to compile the program. The Java compiler translates the Java program into byte-

Chapter 1 Introduction to Computers, the Internet and the Web 17

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

codes—the language understood by the Java interpreter. To compile a program called
Welcome.java, type

Fig. 1.1Fig. 1.1Fig. 1.1Fig. 1.1 Typical Java environment.

Primary

.

.
.
.

Primary

.

.
.
.

Primary

.

.
.
.

Disk

Disk

Disk

Bytecode Verifier

Editor

Class Loader

Compiler

Interpreter

Program is created in
the editor and stored
on disk.

Compiler creates
bytecodes and stores
them on disk.

Class loader puts
bytecodes in memory.

Bytecode verifier
confirms that all
bytecodes are valid
and do not violate
Java’s security
restrictions.

Interpreter reads
bytecodes and
translates them into a
language that the
computer can
understand, possibly
storing data values as
the program executes.

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

18 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

javac Welcome.java

at the command window of your system (i.e., the MS-DOS prompt in Windows, the Com-
mand Prompt in Windows NT/2000 or the shell prompt in UNIX/Linux). If the program
compiles correctly, the compiler produces a file called Welcome.class. This is the file
containing the bytecodes that will be interpreted during the execution phase.

Phase 3 is called loading. The program must first be placed in memory before it can be
executed. This is done by the class loader, which takes the .class file (or files) containing
the bytecodes and transfers it to memory. The .class file can be loaded from a disk on your
system or over a network (such as your local university or company network or even the
Internet). There are two types of programs for which the class loader loads .class files—
applications and applets. An application is a program (such as a word-processor program, a
spreadsheet program, a drawing program or an e-mail program) that normally is stored and
executed from the user’s local computer. An applet is a small program that normally is stored
on a remote computer that users connect to via a World Wide Web browser. Applets are
loaded from a remote computer into the browser, executed in the browser and discarded when
execution completes. To execute an applet again, the user must point a browser at the appro-
priate location on the World Wide Web and reload the program into the browser.

Applications are loaded into memory and executed by using the Java interpreter via
the command java. When executing a Java application called Welcome, the command

java Welcome

invokes the interpreter for the Welcome application and causes the class loader to load in-
formation used in the Welcome program. [Note: Many Java programmers refer to the in-
terpreter as the Java Virtual Machine or the JVM.]

The class loader also executes when a World Wide Web browser such as Netscape
Navigator or Microsoft Internet Explorer loads a Java applet. Browsers are used to view
documents on the World Wide Web called Hypertext Markup Language (HTML) docu-
ments. HTML describes the format of a document in a manner that is understood by the
browser application (we introduce HTML in Section 3.4; for a detailed treatment of HTML
and other Internet programming technologies, please see our text Internet and World Wide
Web How to Program, Second Edition). An HTML document may refer to a Java applet.
When the browser sees an applet referenced in an HTML document, the browser launches
the Java class loader to load the applet (normally from the location where the HTML doc-
ument is stored). Each browser that supports Java has a built-in Java interpreter. After the
applet loads, the browser’s Java interpreter executes the applet. Applets can also execute
from the command line, using the appletviewer command provided with the J2SDK—
the set of tools including the compiler (javac), interpreter (java), appletviewer and
other tools used by Java programmers. Like Netscape Navigator and Microsoft Internet
Explorer, the appletviewer requires an HTML document to invoke an applet. For
example, if the Welcome.html file refers to the Welcome applet, the appletviewer
command is used as follows:

appletviewer Welcome.html

This causes the class loader to load the information used in the Welcome applet. The ap-
pletviewer is a minimal browser—it knows only how to interpret references to applets
and ignores all other HTML in a document.

Chapter 1 Introduction to Computers, the Internet and the Web 19

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Before the Java interpreter built into a browser or the appletviewer executes the
bytecodes in an applet, the bytecodes are verified by the bytecode verifier in Phase 4.
This ensures that the bytecodes for classes that are loaded from the Internet (referred to
as downloaded classes) are valid and that they do not violate Java’s security restrictions.
Java enforces strong security, because Java programs arriving over the network should
not be able to cause damage to your files and your system (as computer viruses might).
Note that bytecode verification also occurs in applications that download classes from a
network.

Finally, in Phase 5, the computer, under the control of its CPU, interprets the program
one bytecode at a time, thus performing the actions specified by the program.

Programs might not work on the first try. Each of the preceding phases can fail because
of various errors that we will discuss in this text. For example, an executing program might
attempt to divide by zero (an illegal operation in Java just as it is in arithmetic). This would
cause the Java program to print an error message. The programmer would return to the edit
phase, make the necessary corrections and proceed through the remaining phases again to
determine that the corrections work properly.

Common Programming Error 1.1
Errors like division-by-zero errors occur as a program runs, so these errors are called run-
time errors or execution-time errors. Fatal runtime errors cause programs to terminate imme-
diately without having successfully performed their jobs. Nonfatal runtime errors allow pro-
grams to run to completion, often producing incorrect results. 1.1

Most programs in Java input or output data. When we say that a program prints a result,
we normally mean that the program displays results on the computer screen. Data may be
output to other devices, such as disks and hardcopy printers.

1.14 General Notes about Java and This Book
Java is a powerful language. Experienced programmers sometimes take pride in being able
to create some weird, contorted, convoluted usage of a language. This is a poor program-
ming practice. It makes programs more difficult to read, more likely to behave strangely,
more difficult to test and debug and more difficult to adapt to changing requirements. This
book is also geared for novice programmers, so we stress clarity. The following is our first
“good programming practice.”

Good Programming Practice 1.1
Write your Java programs in a simple and straightforward manner. This is sometimes re-
ferred to as KIS (“keep it simple”). Do not “stretch” the language by trying bizarre usages. 1.1

You have heard that Java is a portable language and that programs written in Java can
run on many different computers. For programming in general, portability is an elusive
goal. For example, the ANSI C standard document2 contains a lengthy list of portability
issues, and complete books have been written that discuss portability.3,4

2. ANSI, American National Standard for Information Systems–Programming Language C (ANSI
Document ANSI/ISO 9899: 1990), New York, NY: American National Standards Institute, 1990.

3. Jaeschke, R., Portability and the C Language, Indianapolis, IN: Hayden Books, 1989.
4. Rabinowitz, H., and C. Schaap, Portable C, Englewood Cliffs, NJ: Prentice Hall, 1990.

20 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Portability Tip 1.2
Although it is easier to write portable programs in Java than in other programming languag-
es, there are differences among compilers, interpreters and computers that can make porta-
bility difficult to achieve. Simply writing programs in Java does not guarantee portability.
The programmer will occasionally need to deal with compiler and computer variations. 1.2

Testing and Debugging Tip 1.1
Always test your Java programs on all systems on which you intend to run those programs,
to ensure that your Java programs will work correctly for their intended audience. 1.1

We have done a careful walkthrough of Sun’s Java documentation and audited our pre-
sentation against it for completeness and accuracy. However, Java is a rich language, and
there are some subtleties in the language and some topics we have not covered. If you need
additional technical details on Java, we suggest that you read the most current Java docu-
mentation available over the Internet at java.sun.com. Our book contains an extensive
bibliography of books and papers on the Java language in particular and on object-oriented
programming in general. A Web-based version of the Java API documentation can be
found at java.sun.com/j2se/1.3/docs/api/index.html. Also, you can
download this documentation to your own computer from java.sun.com/j2se/
1.3/docs.html.

Good Programming Practice 1.2
Read the documentation for the version of Java you are using. Refer to this documentation
frequently to be sure you are aware of the rich collection of Java features and that you are
using these features correctly. 1.2

Good Programming Practice 1.3
Your computer and compiler are good teachers. If, after carefully reading your Java docu-
mentation manual, you are not sure how a feature of Java works, experiment and see what
happens. Study each error or warning message you get when you compile your programs,
and correct the programs to eliminate these messages. 1.3

Good Programming Practice 1.4
The Java 2 Software Development Kit comes with the Java source code. Many programmers
read the actual source code of the Java API classes to determine how those classes work and
to learn additional programming techniques. If the Java API documentation is not clear on
a particular topic, try studying the source code of the class. 1.4

In this book, we explain how Java works in its current implementations. Perhaps the
most striking problem with the early versions of Java is that Java programs execute inter-
pretively on the client’s machine. Interpreters execute slowly compared to fully compiled
machine code.

Performance Tip 1.2
Interpreters have an advantage over compilers for the Java world, namely that an interpret-
ed program can begin execution immediately as soon as it is downloaded to the client’s ma-
chine, whereas a source program to be compiled must first suffer a potentially long delay as
the program is compiled before it can be executed. 1.2

Chapter 1 Introduction to Computers, the Internet and the Web 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Portability Tip 1.3
Although only Java interpreters were available to execute bytecodes at the client’s site on
early Java systems, compilers that translate Java bytecodes (or in some cases the Java
source code) into the native machine code of the client’s machine have been written for most
popular platforms. These compiled programs perform comparably to compiled C or C++
code. However, there are not bytecode compilers for every Java platform, so Java programs
will not perform at the same level on all platforms. 1.2

Applets present some more interesting issues. Remember, an applet could be coming
from virtually any Web server in the world. So the applet will have to be able to run on any
possible Java platform.

Portability Tip 1.4
Short, fast-executing Java applets can certainly still be interpreted. But what about more
substantial, compute-intensive applets? Here, the user might be willing to suffer the compi-
lation delay to get better execution performance. For some especially performance-intensive
applets, the user might have no choice; interpreted code would run too slowly for the applet
to perform properly, so the applet would have to be compiled. 1.2

Portability Tip 1.5
An intermediate step between interpreters and compilers is a just-in-time (JIT) compiler that,
as the interpreter runs, produces compiled code for the programs and executes the programs
in machine language rather than reinterpreting them. JIT compilers do not produce machine
language that is as efficient as that from a full compiler. 1.2

Portability Tip 1.6
For the latest information on high-speed Java program translation, you might want to read
about Sun’s HotSpot™ compiler, so visit java.sun.com/products/hotspot. The
HotSpot compiler is a standard component of the Java 2 Software Development Kit. 1.2

The Java compiler, javac, is not a traditional compiler in that it does not convert a
Java program from source code into native machine code for a particular computer plat-
form. Instead, the Java compiler translates source code into bytecodes. Bytecodes are the
language of the Java Virtual Machine—a program that simulates the operation of a com-
puter and executes its own machine language (i.e., Java bytecodes). The Java Virtual
Machine is implemented in the J2SDK as the java interpreter, which translates the byte-
codes into native machine language for the local computer platform.

Software Engineering Observation 1.4
For organizations wanting to do heavy-duty information systems development, Integrated
Development Environments (IDEs) are available from many major software suppliers, in-
cluding Sun Microsystems. The IDEs provide many tools for supporting the software-devel-
opment process, such as editors for writing and editing programs, debuggers for locating
logic errors in programs and many other features. 1.4

Software Engineering Observation 1.5
Sun Microsystems, Inc.’s powerful Java IDE—Forté for Java, Community Edition—is avail-
able on the CD that accompanies this book and can be downloaded from www.sun.com/
forte/ffj. 1.5

22 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

1.15 Thinking About Objects: Introduction to Object
Technology and the Unified Modeling Language
Now we begin our early introduction to object orientation. We will see that object orien-
tation is a natural way of thinking about the world and a natural way of writing computer
programs.

In the bodies of each of the first seven chapters, we concentrate on the “conventional”
methodology of structured programming, because the objects we will build will be com-
posed in part of structured-program pieces. However, we end each chapter with a
“Thinking About Objects” section in which we present a carefully paced introduction to
object orientation. Our goal in these “Thinking About Objects” sections is to help you
develop an object-oriented way of thinking, so that you immediately can use the object-ori-
ented programming techniques that we present starting in Chapter 8. The “Thinking About
Objects” sections also introduce you to the Unified Modeling Language (UML). The UML
is a graphical language that allows people who build systems (e.g., software architects, sys-
tems engineers, programmers and so on) to represent their object-oriented designs, using a
common notation.

In this section, we introduce basic concepts (i.e., “object think”) and terminology (i.e.,
“object speak”). Chapters 2–13, 15 and 22 and Appendices G–I include optional “Thinking
About Objects” sections that present a substantial case study that applies the techniques of
object-oriented design (OOD). The optional sections at the ends of Chapters 2 through 7
analyze a typical problem statement that requires a system to be built, determine the objects
required to implement that system, determine the attributes the objects will have, determine
the behaviors these objects will exhibit and specify how the objects will interact with one
another to meet the system requirements. All this occurs before you learn to write object-
oriented Java programs! The optional sections at the ends of Chapters 8–13 and 15 modify
and enhance the design presented in Chapters 2–7. Chapter 22 presents how to display our
multimedia-rich design on the screen. The optional “Thinking About Objects” sections in
each chapter apply the concepts discussed in that chapter to the case study. In
Appendices G, H and I, we present a complete Java implementation of the object-oriented
system we design in the earlier chapters.

This case study will help prepare you for the kinds of substantial projects you are likely
to encounter in industry. If you are a student and your instructor does not plan to include
this case study in your course, you may want to cover it on your own time. We believe it
will be well worth your time to walk through this large and challenging project, because the
material presented in the case-study sections reinforces the material covered in the corre-
sponding chapters. You will experience a solid introduction to object-oriented design with
the UML. Also, you will sharpen your code-reading skills by touring a carefully written and
well-documented 3,594-line Java program that completely solves the problem presented in
the case study.

We begin our introduction to object orientation with some key terminology. Every-
where you look in the real world you see them—objects: People, animals, plants, cars,
planes, buildings, computers and so on. Humans think in terms of objects. We possess the
marvelous ability of abstraction, which enables us to view screen images such as people,
planes, trees and mountains as objects, rather than as individual dots of color (called
pixels—for “picture elements”). We can, if we wish, think in terms of beaches rather than
grains of sand, forests rather than trees and houses rather than bricks.

Chapter 1 Introduction to Computers, the Internet and the Web 23

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

We might be inclined to divide objects into two categories—animate objects and inan-
imate objects. Animate objects are “alive” in some sense; they move around and do things.
Inanimate objects, on the other hand, seem not to do much at all. They do not move on their
own. All these objects, however, do have some things in common. They all have attributes
like size, shape, color, and weight, and they all exhibit behaviors (e.g., a ball rolls, bounces,
inflates and deflates; a baby cries, sleeps, crawls, walks and blinks; a car accelerates, brakes
and turns; a towel absorbs water).

Humans learn about objects by studying their attributes and observing their behaviors.
Different objects can have similar attributes and can exhibit similar behaviors. Compari-
sons can be made, for example, between babies and adults and between humans and chim-
panzees. Cars, trucks, little red wagons and roller skates have much in common.

Object-oriented design models real-world objects. It takes advantage of class relation-
ships, where objects of a certain class—such as a class of vehicles—have the same charac-
teristics. It takes advantage of inheritance relationships, and even multiple-inheritance5

relationships, where newly created classes of objects are derived by absorbing characteris-
tics of existing classes and adding unique characteristics of their own. An object of class
“convertible” certainly has the characteristics of the more general class “automobile,” plus
a convertible’s roof goes up and down.

Object-oriented design provides a more natural and intuitive way to view the design pro-
cess—namely, by modeling real-world objects, their attributes, their behavior. OOD also
models communication between objects. Just as people send messages to one another (e.g., a
sergeant commanding a soldier to stand at attention), objects also communicate via messages.

OOD encapsulates data (attributes) and functions (behavior) into objects; the data and
functions of an object are intimately tied together. Objects have the property of information
hiding. This means that, although objects may know how to communicate with one another
across well-defined interfaces, objects normally are not allowed to know how other objects
are implemented—implementation details are hidden within the objects themselves.
Surely, it is possible to drive a car effectively without knowing the details of how engines,
transmissions and exhaust systems work internally. We will see why information hiding is
so crucial to good software engineering.

Languages such as Java are object-oriented—programming in such a language is
called object-oriented programming (OOP) and allows designers to implement the object-
oriented design as a working system. Languages such as C, on the other hand, are proce-
dural programming languages, so programming tends to be action-oriented. In C, the unit
of programming is the function. In Java, the unit of programming is the class from which
objects are eventually instantiated (a fancy term for “created”). Java classes contain
methods (that implement class behaviors) and attributes (that implement class data).

C programmers concentrate on writing functions. Groups of actions that perform some
common task are formed into functions, and functions are grouped to form programs. Data
are certainly important in C, but the view is that data exist primarily in support of the
actions that functions perform. The verbs in a system specification help the C programmer
determine the set of functions needed to implement that system.

Java programmers concentrate on creating their own user-defined types called classes
and components. Each class contains data and the set of functions that manipulate that data.

5. We will learn later that although Java—unlike C++—does not support multiple inheritance, it does
offer most of the key benefits of this technology by supporting multiple interfaces per class.

24 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

The data components of a Java class are called attributes. The function components of a
Java class are called methods. Just as an instance of a built-in type such as int is called a
variable, an instance of a user-defined type (i.e., a class) is called an object. The pro-
grammer uses built-in types as the “building blocks” for constructing user-defined types.
The focus in Java is on classes (out of which we make objects) rather than on functions.
The nouns in a system specification help the Java programmer determine the set of classes
from which objects will be created that will work together to implement the system.

Classes are to objects as blueprints are to houses. We can build many houses from one
blueprint, and we can instantiate many objects from one class. Classes can also have rela-
tionships with other classes. For example, in an object-oriented design of a bank, the “bank-
teller” class needs to relate to the “customer” class. These relationships are called
associations.

We will see that, when software is packaged as classes, these classes can be reused in
future software systems. Groups of related classes are often packaged as reusable compo-
nents. Just as real-estate brokers tell their clients that the three most important factors
affecting the price of real estate are “location, location and location,” many people in the
software community believe that the three most important factors affecting the future of
software development are “reuse, reuse and reuse.”

Indeed, with object technology, we can build much of the software we will need by
combining “standardized, interchangeable parts” called classes. This book teaches you how
to “craft valuable classes” for reuse. Each new class you create will have the potential to
become a valuable software asset that you and other programmers can use to speed and
enhance the quality of future software-development efforts—an exciting possibility.

Introduction to Object-Oriented Analysis and Design (OOAD)
You soon will be writing programs in Java. How will you create the code for your programs?
If you are like many beginning programmers, you will simply turn on your computer and
start typing. This approach may work for small projects, but what would you do if you were
asked to create a software system to control the automated teller machines for a major bank?
Such a project is too large and complex for you to sit down and simply start typing.

To create the best solutions, you should follow a detailed process for obtaining an anal-
ysis of your project’s requirements and developing a design for satisfying those require-
ments. Ideally, you would go through this process and have its results reviewed and
approved by your superiors before writing any code for your project. If this process
involves analyzing and designing your system from an object-oriented point of view, we
call it an object-oriented analysis and design (OOAD) process. Experienced programmers
know that, no matter how simple a problem appears, time spent on analysis and design can
save innumerable hours that might be lost from abandoning an ill-planned system-develop-
ment approach part of the way through its implementation.

OOAD is the generic term for the ideas behind the process we employ to analyze a
problem and develop an approach for solving it. Small problems like the ones discussed in
these first few chapters do not require an exhaustive process. It may be sufficient to write
pseudocode before we begin writing code. (Pseudocode is an informal means of expressing
program code. It is not actually a programming language, but we can use it as a kind of
“outline” to guide us as we write our code. We introduce pseudocode in Chapter 4.)

Pseudocode can suffice for small problems, but as problems and the groups of people
solving these problems increase in size, the methods of OOAD become more involved. Ide-

Chapter 1 Introduction to Computers, the Internet and the Web 25

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

ally, a group should agree on a strictly defined process for solving the problem and on a uni-
form way of communicating the results of that process to one another. Although many
different OOAD processes exist, a single graphical language for communicating the results
of any OOAD process has become widely used. This language is known as the Unified Mod-
eling Language (UML). The UML was developed in the mid-1990s under the initial direc-
tion of three software methodologists: Grady Booch, James Rumbaugh and Ivar Jacobson.

History of the UML
In the 1980s, increasing numbers of organizations began using OOP to program their ap-
plications, and a need developed for an established process with which to approach OOAD.
Many methodologists—including Booch, Rumbaugh and Jacobson—individually pro-
duced and promoted separate processes to satisfy this need. Each of these processes had its
own notation, or “language” (in the form of graphical diagrams), to convey the results of
analysis and design.

By the early 1990s, different companies, and even different divisions within the same
company, were using different processes and notations. Additionally, these companies
wanted to use software tools that would support their particular processes. With so many
processes, software vendors found it difficult to provide such tools. Clearly, a standard
notation and standard processes were needed.

In 1994, James Rumbaugh joined Grady Booch at Rational Software Corporation, and
the two began working to unify their popular processes. They were soon joined by Ivar
Jacobson. In 1996, the group released early versions of the UML to the software engi-
neering community and requested feedback. Around the same time, an organization known
as the Object Management Group™ (OMG™) invited submissions for a common mod-
eling language. The OMG is a not-for-profit organization that promotes the use of object-
oriented technology by issuing guidelines and specifications for object-oriented technolo-
gies. Several corporations—among them HP, IBM, Microsoft, Oracle and Rational Soft-
ware—had already recognized the need for a common modeling language. These
companies formed the UML Partners in response to the OMG’s request for proposals. This
consortium developed the UML version 1.1 and submitted it to the OMG. The OMG
accepted the proposal and, in 1997, assumed responsibility for the continuing maintenance
and revision of the UML. In 2001, the OMG released the UML version 1.4 (the current ver-
sion at the time this book was published) and is working on version 2.0 (scheduled tenta-
tively for release in 2002).

What is the UML?
The Unified Modeling Language is now the most widely used graphical representation
scheme for modeling object-oriented systems. It has indeed unified the various popular no-
tational schemes. Those who design systems use the language (in the form of graphical di-
agrams) to model their systems.

An attractive feature of the UML is its flexibility. The UML is extendable and is inde-
pendent of the many OOAD processes. UML modelers are free to develop systems by using
various processes, but all developers can now express those systems with one standard set
of notations.

The UML is a complex, feature-rich graphical language. In our “Thinking About
Objects” sections, we present a concise, simplified subset of these features. We then use this
subset to guide the reader through a first design experience with the UML intended for the

26 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

novice object-oriented designer/programmer. For a more complete discussion of the UML,
refer to the Object Management Group’s Web site (www.omg.org) and to the official
UML 1.4 specifications document (www.omg.org/uml). In addition, many UML books
have been published: UML Distilled: Second Edition, by Martin Fowler (with Kendall
Scott) (ISBN #020165783X) provides a detailed introduction to the UML, with many
examples. The Unified Modeling Language User Guide (ISBN #0201571684), written by
Booch, Rumbaugh and Jacobson, is the definitive tutorial to the UML. The reader looking
for an interactive learning product might consider Grady Booch’s The Complete UML
Training Course (ISBN #0130870145).

Object-oriented technology is ubiquitous in the software industry, and the UML is rap-
idly becoming so. Our goal in these “Thinking About Objects” sections is to encourage you
to think in an object-oriented manner as early, and as often, as possible. In the “Thinking
About Objects” section at the end of Chapter 2, you will begin to apply object technology
to implement a solution to a substantial problem. We hope that you will find this optional
project to be an enjoyable and challenging introduction to object-oriented design with the
UML and to object-oriented programming.

1.16 Discovering Design Patterns: Introduction
This section begins our treatment of design patterns, entitled “Discovering Design Pat-
terns.” Most of the examples provided in this book contain fewer than 150 lines of code.
These examples do not require an extensive design process, because they use only a few
classes and illustrate introductory programming concepts. However, some programs, such
as our optional elevator-simulation case study, are more complex—they can require thou-
sands of lines of code or even more, contain many interactions among objects and involve
many user interactions. Larger systems, such as automated teller machines or air-traffic
control systems, could contain millions of lines of code. Effective design is crucial to the
proper construction of such complex systems.

Over the past decade, the software engineering industry has made significant progress
in the field of design patterns—proven architectures for constructing flexible and maintain-
able object-oriented software.6 Using design patterns can substantially reduce the com-
plexity of the design process. Designing an ATM system will be a somewhat less
formidable task if developers use design patterns. In addition, well-designed object-ori-
ented software allows designers to reuse and integrate preexisting components in future
systems. Design patterns benefit system developers by

• helping to construct reliable software using proven architectures and accumulated
industry expertise

• promoting design reuse in future systems

• helping to identify common mistakes and pitfalls that occur when building sys-
tems

• helping to design systems independently of the language in which they will ulti-
mately be implemented

6. Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns; Elements of
Reusable Object-Oriented Software. (Massachusetts: Addison-Wesley, 1995).

Chapter 1 Introduction to Computers, the Internet and the Web 27

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

• establishing a common design vocabulary among developers

• shortening the design phase in a software-development process

The notion of using design patterns to construct software systems originated in the
field of architecture. Architects use a set of established architectural design elements, such
as arches and columns, when designing buildings. Designing with arches and columns is a
proven strategy for constructing sound buildings—these elements may be viewed as archi-
tectural design patterns.

In software, design patterns are neither classes nor objects. Rather, designers use
design patterns to construct sets of classes and objects. To use design patterns effectively,
designers must familiarize themselves with the most popular and effective patterns used in
the software-engineering industry. In this chapter, we discuss fundamental object-oriented
design patterns and architectures, as well as their importance in constructing well-engi-
neered software.

We present several design patterns in Java, but these design patterns can be implemented
in any object-oriented language, such as C++ or Visual Basic. We describe several design pat-
terns used by Sun Microsystems in the Java API. We use design patterns in many programs
in this book, which we will identify throughout our discussion. These programs provide
examples of using design patterns to construct reliable, robust object-oriented software.

History of Object-Oriented Design Patterns
During 1991–1994, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides—
collectively known as the “gang of four”—used their combined expertise to write the book
Design Patterns, Elements of Reusable Object-Oriented Software (Addison-Wesley: 1995).
This book described 23 design patterns, each providing a solution to a common software
design problem in industry. The book groups design patterns into three categories—cre-
ational design patterns, structural design patterns and behavioral design patterns. Cre-
ational design patterns describe techniques to instantiate objects (or groups of objects).
Structural design patterns allow designers to organize classes and objects into larger struc-
tures. Behavioral design patterns assign responsibilities to objects.

The gang-of-four book showed that design patterns evolved naturally through years of
industry experience. In his article Seven Habits of Successful Pattern Writers,7 John Vlissides
states that “the single most important activity in pattern writing is reflection.” This statement
implies that, to create patterns, developers must reflect on, and document, their successes (and
mistakes). Developers use design patterns to capture and employ this collective industry
experience, which ultimately helps them avoid making the same mistakes twice.

New design patterns are being created all the time and being introduced rapidly to
designers worldwide via the Internet. The topic of design patterns has generally been
viewed as advanced, but authors such as ourselves are working this material into introduc-
tory and intermediate-level textbooks to help make this important knowledge available to
a much wider audience.

Our treatment of design patterns begins with this required section in Chapter 1 and
continues with five optional “Discovering Design Patterns” sections at the ends of Chapters
9, 13, 15, 17 and 21. Each of these sections is placed at the end of the chapter that introduces

7. Vlissides, John. Pattern Hatching; Design Patterns Applied. (Massachusetts: Addison-Wesley,
1998).

28 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

the necessary Java technologies. If you are a student and your instructor does not plan to
include this material in your course, we encourage you to read this material on your own.

1.17 Tour of the Book
You are about to study one of today’s most exciting and rapidly developing computer pro-
gramming languages. Mastering Java will help you develop powerful business and person-
al computer-applications software. In this section, we take a tour of the many capabilities
of Java you will study in Java How to Program: Fourth Edition.

Chapter 1—Introduction to Computers, the Internet and the Web— discusses
what computers are, how they work and how they are programmed. The chapter gives a
brief history of the development of programming languages from machine languages, to
assembly languages, to high-level languages. The origin of the Java programming language
is discussed. The chapter includes an introduction to a typical Java programming environ-
ment. The chapter also introduces object technology, the Unified Modeling Language and
design patterns.

Chapter 2—Introduction to Java Applications— provides a lightweight introduc-
tion to programming applications in the Java programming language. The chapter intro-
duces nonprogrammers to basic programming concepts and constructs. The programs in
this chapter illustrate how to display (also called outputting) data on the screen to the user
and how to obtain (also called inputting) data from the user at the keyboard. Some of the
input and output is by performed using a graphical user interface (GUI) component called
JOptionPane that provides predefined windows (called dialog boxes) for input and
output. This allows a nonprogrammer to concentrate on fundamental programming con-
cepts and constructs rather than on the more complex GUI event handling. Using JOp-
tionPane here enables us to delay our introduction of GUI event handling to Chapter 6,
“Methods.” Chapter 2 also provides detailed treatments of decision making and arithmetic
operations. After studying this chapter, the student will understand how to write simple, but
complete, Java applications.

Chapter 3—Introduction to Java Applets— introduces another type of Java pro-
gram, called an applet. Applets are Java programs designed to be transported over the
Internet and executed in World Wide Web browsers (like Netscape Navigator and
Microsoft Internet Explorer). The chapter introduces applets, using several of the demon-
stration applets supplied with the Java 2 Software Development Kit (J2SDK). We use
appletviewer (a utility supplied with the J2SDK) or a Web browser to execute several
sample applets. We then write Java applets that perform tasks similar to the programs of
Chapter 2, and we explain the similarities and differences between applets and applications.
After studying this chapter, the student will understand how to write simple, but complete,
Java applets. The next several chapters use both applets and applications to demonstrate
additional key programming concepts.

Chapter 4—Control Structures: Part 1— focuses on the program-development pro-
cess. The chapter discusses how to take a problem statement (i.e., a requirements docu-
ment) and from it develop a working Java program, including performing intermediate
steps in pseudocode. The chapter introduces some fundamental data types and simple con-
trol structures used for decision making (if and if/else) and repetition (while). We
examine counter-controlled repetition and sentinel-controlled repetition, and introduce
Java’s increment, decrement and assignment operators. The chapter uses simple flowcharts

Chapter 1 Introduction to Computers, the Internet and the Web 29

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

to show the flow of control through each of the control structures. The techniques discussed
in Chapters 2 through 7 constitute a large part of what has been traditionally taught in the
universities under the topic of structured programming. With Java, we do object-oriented
programming. In doing so, we discover that the insides of the objects we build make abun-
dant use of control structures. We have had a particularly positive experience assigning
problems 4.11 through 4.14 in our introductory courses. Since these four problems have
similar structure, doing all four is a nice way for students to “get the hang of” the program-
development process. This chapter helps the student develop good programming habits in
preparation for dealing with the more substantial programming tasks in the remainder of
the text.

Chapter 5—Control Structures: Part 2—continues the discussions of Java control
structures (for, the switch selection structure and the do/while repetition structure).
The chapter explains the labeled break and continue statements with live-code exam-
ples. The chapter also contains a discussion of logical operators—&& (logical AND), &
(boolean logical AND), || (logical OR), | (boolean logical inclusive OR), ̂ (boolean log-
ical exclusive OR) and ! (NOT). There is a substantial exercise set including mathematical,
graphical and business applications. Students will enjoy Exercise 5.25, which asks them to
write a program with repetition and decision structures that prints the iterative song, “The
Twelve Days of Christmas.” The more mathematically inclined students will enjoy prob-
lems on binary, octal, decimal and hexadecimal number systems, calculating the mathemat-
ical constant π with an infinite series, Pythagorean triples and De Morgan’s Laws. Our
students particularly enjoy the challenges of triangle-printing and diamond-printing in
Exercises 5.10, 5.18 and 5.20; these problems help students learn to deal with nested repe-
tition structures—a complex topic to master in introductory courses.

Chapter 6—Methods—takes a deeper look inside objects. Objects contain data
called instance variables and executable units called methods (these are often called func-
tions in non-object-oriented procedural programming languages like C and member func-
tions in C++). We explore methods in depth and include a discussion of methods that
“call themselves,” so-called recursive methods. We discuss class-library methods, pro-
grammer-defined methods and recursion. The techniques presented in Chapter 6 are
essential to the production of properly structured programs, especially the kinds of larger
programs and software that system programmers and application programmers are likely
to develop in real-world applications. The “divide and conquer” strategy is presented as
an effective means for solving complex problems by dividing them into simpler inter-
acting components. Students enjoy the treatment of random numbers and simulation, and
they appreciate the discussion of the dice game of craps that makes elegant use of control
structures (this is one of our most successful lectures in our introductory courses). The
chapter offers a solid introduction to recursion and includes a table summarizing the
dozens of recursion examples and exercises distributed throughout the remainder of the
book. Some texts leave recursion for a chapter late in the book; we feel this topic is best
covered gradually throughout the text. The topic of method overloading (i.e., allowing
multiple methods to have the same name as long as they have different “signatures”) is
motivated and explained clearly. We introduce events and event handling—elements
required for programming graphical user interfaces. Events are notifications of state
change such as button clicks, mouse clicks and pressing a keyboard key. Java allows pro-
grammers to specify the responses to events by coding methods called event handlers.

30 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

The extensive collection of exercises at the end of the chapter includes several classical
recursion problems such as the Towers of Hanoi; we revisit this problem later in the text
where we employ graphics, animation and sound to make the problem “come alive.”
There are many mathematical and graphical examples. Our students particularly enjoy
the development of a “Computer-Assisted Instruction” system in Exercises 6.31 through
6.33; we ask students to develop a multimedia version of this system later in the book.
Students will enjoy the challenges of the “mystery programs.” The more mathematically
inclined students will enjoy problems on perfect numbers, greatest common divisors,
prime numbers and factorials.

Chapter 7—Arrays—explores the processing of data in lists and tables of values.
Arrays in Java are processed as objects, further evidence of Java’s commitment to almost
100% object orientation. We discuss the structuring of data into arrays, or groups, of related
data items of the same type. The chapter presents numerous examples of both single-sub-
scripted arrays and double-subscripted arrays. It is widely recognized that structuring data
properly is just as important as using control structures effectively in the development of
properly structured programs. Examples in the chapter investigate various common array
manipulations, printing histograms, sorting data, passing arrays to methods and an intro-
duction to the field of survey data analysis (with simple statistics). A feature of this chapter
is the discussion of elementary sorting and searching techniques and the presentation of
binary searching as a dramatic improvement over linear searching. The end-of-chapter
exercises include a variety of interesting and challenging problems, such as improved
sorting techniques, the design of an airline reservations system, an introduction to the con-
cept of turtle graphics (made famous in the LOGO programming language) and the
Knight’s Tour and Eight Queens problems that introduce the notions of heuristic program-
ming so widely employed in the field of artificial intelligence. The exercises conclude with
a series of recursion problems including the selection sort, palindromes, linear search,
binary search, the eight queens, printing an array, printing a string backwards and finding
the minimum value in an array. The chapter exercises include a delightful simulation of the
classic race between the tortoise and the hare, card shuffling and dealing algorithms, recur-
sive quicksort and recursive maze traversals. A special section entitled “Building Your
Own Computer” explains machine-language programming and proceeds with the design
and implementation of a computer simulator that allows the reader to write and run machine
language programs. This unique feature of the text will be especially useful to the reader
who wants to understand how computers really work. Our students enjoy this project and
often implement substantial enhancements; many enhancements are suggested in the exer-
cises. In Chapter 19, another special section guides the reader through building a compiler;
the machine language produced by the compiler is then executed on the machine language
simulator produced in Chapter 7. Information is communicated from the compiler to the
simulator in sequential files (presented in Chapter 16).

Chapter 8—Object-Based Programming—begins our deeper discussion of classes.
The chapter represents a wonderful opportunity for teaching data abstraction the “right
way”—through a language (Java) expressly devoted to implementing abstract data types
(ADTs). The chapter focuses on the essence and terminology of classes and objects. What
is an object? What is a class of objects? What does the inside of an object look like? How
are objects created? How are they destroyed? How do objects communicate with one
another? Why are classes such a natural mechanism for packaging software as reusable

Chapter 1 Introduction to Computers, the Internet and the Web 31

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

componentry? The chapter discusses implementing ADTs as Java-style classes, accessing
class members, enforcing information hiding with private instance variables, separating
interface from implementation, using access methods and utility methods and initializing
objects with constructors (and using overloaded constructors). The chapter discusses
declaring and using constant references, composition—the process of building classes that
have as members references to objects, the this reference that enables an object to “know
itself,” dynamic memory allocation, static class members for containing and manipu-
lating class-wide data and examples of popular abstract data types such as stacks and
queues. The chapter introduces the package statement and discusses how to create reus-
able packages. The chapter also introduces creating Java archive (JAR) files and demon-
strates how to use JAR files to deploy applets that consist of multiple classes. The chapter
exercises challenge the student to develop classes for complex numbers, rational numbers,
times, dates, rectangles, huge integers, a class for playing Tic-Tac-Toe, a savings-account
class and a class for holding sets of integers.

Chapter 9—Object-Oriented Programming—discusses the relationships among
classes of objects and programming with related classes. How can we exploit commonality
between classes of objects to minimize the amount of work it takes to build large software
systems? What is polymorphism? What does it mean to “program in the general” rather
than “program in the specific?” How does programming in the general make it easy to
modify systems and add new features with minimal effort? How can we program for a
whole category of objects rather than programming individually for each type of object?
The chapter deals with one of the most fundamental capabilities of object-oriented pro-
gramming languages, inheritance, which is a form of software reusability in which new
classes are developed quickly and easily by absorbing the capabilities of existing classes
and adding appropriate new capabilities. The chapter discusses the notions of superclasses
and subclasses, protected members, direct superclasses, indirect superclasses, use of
constructors in superclasses and subclasses, and software engineering with inheritance.
This chapter introduces inner classes that help hide implementation details. Inner classes
are most frequently used to create GUI event handlers. Named inner classes can be declared
inside other classes and are useful in defining common event handlers for several GUI com-
ponents. Anonymous inner classes are declared inside methods and are used to create one
object—typically an event handler for a specific GUI component. The chapter compares
inheritance (“is a” relationships) with composition (“has a” relationships). A feature of the
chapter is its several substantial case studies. In particular, a lengthy case study implements
a point, circle and cylinder class hierarchy. The exercises ask the student to compare the
creation of new classes by inheritance vs. composition; to extend the inheritance hierar-
chies discussed in the chapter; to write an inheritance hierarchy for quadrilaterals, trape-
zoids, parallelograms, rectangles and squares and to create a more general shape hierarchy
with two-dimensional shapes and three-dimensional shapes. The chapter explains polymor-
phic behavior. When many classes are related through inheritance to a common superclass,
each subclass object may be treated as a superclass object. This enables programs to be
written in a general manner independent of the specific types of the subclass objects. New
kinds of objects can be handled by the same program, thus making systems more exten-
sible. Polymorphism enables programs to eliminate complex switch logic in favor of
simpler “straight-line” logic. A video game screen manager, for example, can send a
“draw” message to every object in a linked list of objects to be drawn. Each object knows

32 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

how to draw itself. A new type of object can be added to the program without modifying
that program as long as that new object also knows how to draw itself. This style of pro-
gramming is typically used to implement today’s popular graphical user interfaces. The
chapter distinguishes between abstract classes (from which objects cannot be instanti-
ated) and concrete classes (from which objects can be instantiated). The chapter also intro-
duces interfaces—sets of methods that must be defined by any class that implements the
interface. Interfaces are Java’s replacement for the dangerous (albeit powerful) feature of
C++ called multiple inheritance.

Abstract classes are useful for providing a basic set of methods and default implemen-
tation to classes throughout the hierarchy. Interfaces are useful in many situations similar
to abstract classes; however, interfaces do not include any implementation—interfaces
have no method bodies and no instance variables. A feature of the chapter is its three major
polymorphism case studies—a payroll system, a shape hierarchy headed up by an
abstract class and a shape hierarchy headed up by an interface. The chapter exercises
ask the student to discuss a number of conceptual issues and approaches, work with
abstract classes, develop a basic graphics package, modify the chapter’s employee
class—and pursue all these projects with polymorphic programming.

Chapter 10—Strings and Characters—deals with processing words, sentences,
characters and groups of characters. The key difference between Java and C here is that
Java strings are objects. This makes string manipulation more convenient and much safer
than in C where string and array manipulations are based on dangerous pointers. We
present classes String, StringBuffer, Character and StringTokenizer. For
each, we provide extensive live-code examples demonstrating most of their methods “in
action.” In all cases, we show output windows so that the reader can see the precise effects
of each of the string and character manipulations. Students will enjoy the card shuffling and
dealing example (which they will enhance in the exercises to the later chapters on graphics
and multimedia). A key feature of the chapter is an extensive collection of challenging
string-manipulation exercises related to limericks, pig Latin, text analysis, word pro-
cessing, printing dates in various formats, check protection, writing the word equivalent of
a check amount, Morse Code and metric-to-English conversions. Students will enjoy the
challenges of developing their own spell checker and crossword-puzzle generator.

Advanced Topics
Chapters 11, 12 and 13 were coauthored with our colleague, Mr. Tem Nieto of Deitel &
Associates, Inc. Tem’s infinite patience, attention to detail, illustration skills and creativity
are apparent throughout these chapters. [Take a fast peek at Figure 12.19 to see what hap-
pens when we turn Tem loose!]

Chapter 11—Graphics and Java2D—is the first of several chapters that present the
multimedia “sizzle” of Java. We consider Chapters 11 through 22 to be the book’s
advanced material. This is “fun stuff.” Traditional C and C++ programming are pretty
much confined to character-mode input/output. Some versions of C++ are supported by
platform-dependent class libraries that can do graphics, but using these libraries makes
your applications nonportable. Java’s graphics capabilities are platform independent and
hence, portable—and we mean portable in a worldwide sense. You can develop graphics-
intensive Java applets and distribute them over the World Wide Web to colleagues every-
where, and they will run nicely on the local Java platforms. We discuss graphics contexts

Chapter 1 Introduction to Computers, the Internet and the Web 33

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

and graphics objects; drawing strings, characters and bytes; color and font control; screen
manipulation and paint modes and drawing lines, rectangles, rounded rectangles, three-
dimensional rectangles, ovals, arcs and polygons. We introduce the Java2D API, which
provides powerful graphical manipulation tools. Figure 11.22 is an example of how easy it
is to use the Java2D API to create complex graphics effects such as textures and gradients.
The chapter has 23 figures that painstakingly illustrate each of these graphics capabilities
with live-code™ examples, appealing screen outputs, detailed features tables and detailed
line art. Some of the 27 exercises challenge students to develop graphical versions of their
solutions to previous exercises on Turtle Graphics, the Knight’s Tour, the Tortoise and the
Hare simulation, Maze Traversal and the Bucket Sort. Our companion book, Advanced
Java 2 Platform How to Program, presents the Java 3D API.

Chapter 12—Graphical User Interface Components: Part 1—introduces the cre-
ation of applets and applications with user-friendly graphical user interfaces (GUIs). This
chapter focuses on Java’s Swing GUI components. These platform-independent GUI com-
ponents are written entirely in Java. This provides Swing GUI components with great flex-
ibility—the GUI components can be customized to look like the computer platform on
which the program executes, or they can use the standard Java look-and-feel that provides
an identical user interface across all computer platforms. GUI development is a huge topic,
so we divided it into two chapters. These chapters cover the material in sufficient depth to
enable you to build “industrial-strength” GUI interfaces. We discuss the javax.swing
package, which provides much more powerful GUI components than the java.awt com-
ponents that originated in Java 1.0. Through its 16 programs and many tables and line draw-
ings, the chapter illustrates GUI principles, the javax.swing hierarchy, labels, push
buttons, lists, text fields, combo boxes, checkboxes, radio buttons, panels, handling mouse
events, handling keyboard events and using three of Java’s simpler GUI layout managers,
namely, FlowLayout, BorderLayout and GridLayout. The chapter concentrates
on the delegation event model for GUI processing. The 33 exercises challenge the student
to create specific GUIs, exercise various GUI features, develop drawing programs that let
the user draw with the mouse and control fonts.

Chapter 13—Graphical User Interface Components: Part 2—continues the
detailed Swing discussion started in Chapter 12. Through its 13 programs, as well as
tables and line drawings, the chapter illustrates GUI design principles, the
javax.swing hierarchy, text areas, subclassing Swing components, sliders, windows,
menus, pop-up menus, changing the look-and-feel, and using three of Java’s advanced
GUI layout managers, namely, BoxLayout, CardLayout and GridBagLayout.
Two of the most important examples introduced in this chapter are a program that can
run as either an applet or application and a program that demonstrates how to create a
multiple document interface (MDI) graphical user interface. MDI is a complex graphical
user interface in which one window—called the parent—acts as the controlling window
for the application. This parent window contains one or more child windows—which are
always graphically displayed within the parent window. Most word processors use MDI
graphical user interfaces. The chapter concludes with a series of exercises that encourage
the reader to develop substantial GUIs with the techniques and components presented in
the chapter. One of the most challenging exercises in this chapter is a complete drawing
application that asks the reader to create an object oriented-program that keeps track of
the shapes the user has drawn. Other exercises use inheritance to subclass Swing compo-

34 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

nents and reinforce layout manager concepts. The first six chapters of our companion
book, Advanced Java 2 Platform How to Program, are designed for courses in advanced
GUI programming.

Chapter 14—Exception Handling—is one of the most important chapters in the
book from the standpoint of building so-called “mission-critical” or “business-critical”
applications that require high degrees of robustness and fault tolerance. Things do go
wrong, and at today’s computer speeds—commonly hundreds of millions operations per
second (with recent personal computers running at a billion or more instructions per
second)—if they can go wrong they will, and rather quickly at that. Programmers are often
a bit naive about using components. They ask, “How do I request that a component do
something for me?” They also ask “What value(s) does that component return to me to indi-
cate it has performed the job I asked it to do?” But programmers also need to be concerned
with, “What happens when the component I call on to do a job experiences difficulty? How
will that component signal that it had a problem?” In Java, when a component (e.g., a class
object) encounters difficulty, it can “throw an exception.” The environment of that compo-
nent is programmed to “catch” that exception and deal with it. Java’s exception-handling
capabilities are geared to an object-oriented world in which programmers construct systems
largely from reusable, prefabricated components built by other programmers. To use a Java
component, you need to know not only how that component behaves when “things go
well,” but also what exceptions that component throws when “things go poorly.” The
chapter distinguishes between rather serious system Errors (normally beyond the control
of most programs) and Exceptions (which programs generally deal with to ensure robust
operation). The chapter discusses the vocabulary of exception handling. The try block
executes program code that either executes properly or throws an exception if something
goes wrong. Associated with each try block are one or more catch blocks that handle
thrown exceptions in an attempt to restore order and keep systems “up and running” rather
than letting them “crash.” Even if order cannot be fully restored, the catch blocks can per-
form operations that enable a system to continue executing, albeit at reduced levels of per-
formance—such activity is often referred to as “graceful degradation.” Regardless of
whether exceptions are thrown, a finally block accompanying a try block will always
execute; the finally block normally performs cleanup operations like closing files and
releasing resources acquired in the try block. The material in this chapter is crucial to
many of the live-code examples in the remainder of the book. The chapter enumerates
many of the Errors and Exceptions of the Java packages. The chapter has some of the
most appropriate quotes in the book, thanks to Barbara Deitel’s painstaking research. The
vast majority of the book’s Testing and Debugging Tips emerged naturally from the mate-
rial in Chapter 14.

Chapter 15—Multithreading—deals with programming applets and applications
that can perform multiple activities in parallel. Although our bodies are quite good at this
(breathing, eating, blood circulation, vision, hearing, etc. can all occur in parallel), our con-
scious minds have trouble with this. Computers used to be built with a single, rather expen-
sive processor. Today, processors are becoming so inexpensive that it is possible to build
computers with many processors that work in parallel—such computers are called multi-
processors. The trend is clearly towards computers that can perform many tasks in parallel.
Most of today’s programming languages, including C and C++, do not include built-in fea-
tures for expressing parallel operations. These languages are often referred to as “sequen-

Chapter 1 Introduction to Computers, the Internet and the Web 35

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

tial” programming languages or “single-thread-of-control” languages. Java includes
capabilities to enable multithreaded applications (i.e., applications that can specify that
multiple activities are to occur in parallel). This makes Java better prepared to deal with the
more sophisticated multimedia, network-based multiprocessor-based applications pro-
grammers will develop. As we will see, multithreading is effective even on single-pro-
cessor systems. For years, the “old guy” taught operating systems courses and wrote
operating systems textbooks, but he never had a multithreaded language like Java available
to demonstrate the concepts. In this chapter, we thoroughly enjoyed presenting multi-
threaded programs that demonstrate clearly the kinds of problems that can occur in parallel
programming. There are all kinds of subtleties that develop in parallel programs that you
simply never think about when writing sequential programs. A feature of the chapter is the
extensive set of examples that show these problems and how to solve them. Another feature
is the implementation of the “circular buffer,” a popular means of coordinating control
between asynchronous, concurrent “producer” and “consumer” processes that, if left to run
without synchronization, would cause data to be lost or duplicated incorrectly, often with
devastating results. We discuss the monitor construct developed by C. A. R. Hoare and
implemented in Java; this is a standard topic in operating systems courses. The chapter dis-
cusses threads and thread methods. It walks through the various thread states and state tran-
sitions with a detailed line drawing showing the life-cycle of a thread. We discuss thread
priorities and thread scheduling and use a line drawing to show Java’s fixed-priority sched-
uling mechanism. We examine a producer/consumer relationship without synchronization,
observe the problems that occur and solve the problem with thread synchronization. We
implement a producer/consumer relationship with a circular buffer and proper synchroni-
zation with a monitor. We discuss daemon threads that “hang around” and perform tasks
(e.g., “garbage collection”) when processor time is available. We discuss interface Run-
nable which enables objects to run as threads without having to subclass class Thread.
We close with a discussion of thread groups which, for example, enable separation to be
enforced between system threads like the garbage collector and user threads. The chapter
has a nice complement of exercises. The featured exercise is the classic readers and writers
problem, a favorite in upper level operating systems courses; citations appear in the exer-
cises for students who wish to research this topic. This is an important problem in database-
oriented transaction-processing systems. It raises subtle issues of solving problems in con-
currency control while ensuring that every separate activity that needs to receive service
does so without the possibility of “indefinite postponement,” that could cause some activ-
ities never to receive service—a condition also referred to as “starvation.” Operating sys-
tems professors will enjoy the projects implemented by Java-literate students. We can
expect substantial progress in the field of parallel programming as Java’s multithreading
capabilities enable large numbers of computing students to pursue parallel-programming
class projects. As these students enter industry over the next several years, we expect a
surge in parallel systems programming and parallel applications programming. We have
been predicting this for decades—Java is making it a reality.

If this is your first Java book and you are an experienced computing professional, you
may well be thinking, “Hey, this just keeps getting better and better. I can’t wait to get
started programming in this language. It will let me do all kinds of stuff I would like to do,
but that was never easy for me to do with the other languages I have used.” You’ve got it
right. Java is an enabler. So, if you liked the multithreading discussion, hold onto your hat,

36 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

because Java will let you program multimedia applications and make them available instan-
taneously over the World Wide Web.

Chapter 16—Files and Streams—deals with input/output that is accomplished
through streams of data directed to and from files. This is one of the most important chap-
ters for programmers who will be developing commercial applications. Modern business is
centered around data. In this chapter, we translate data (objects) into a persistent format
usable by other applications. Being able to store data in files or move it across networks
(Chapter 17) makes it possible for programs to save data and to communicate with each
other. This is the real strength of software today. The chapter begins with an introduction
to the data hierarchy from bits, to bytes, to fields, to records, to files. Next, Java’s simple
view of files and streams is presented. We then present a walkthrough of the dozens of
classes in Java’s extensive input/output files and streams class hierarchy. We put many of
these classes to work in live-code examples in this chapter and in Chapter 17. We show how
programs pass data to secondary storage devices, like disks, and how programs retrieve
data already stored on those devices. Sequential-access files are discussed using a series of
three programs that show how to open and close files, how to store data sequentially in a
file and how to read data sequentially from a file. Random-access files are discussed using
a series of four programs that show how to create a file sequentially for random access, how
to read and write data to a file with random access and how to read data sequentially from
a randomly accessed file. The fourth random-access program combines many of the tech-
niques of accessing files both sequentially and randomly into a complete transaction-pro-
cessing program. We discuss buffering and how it helps programs that do significant
amounts of input/output perform better. We discuss class File which programs use to
obtain a variety of information about files and directories. We explain how objects can be
output to, and input from, secondary storage devices. Students in our industry seminars
have told us that, after studying the material on file processing, they were able to produce
substantial file-processing programs that were immediately useful to their organizations.
The exercises ask the student to implement a variety of programs that build and process
sequential-access files and random-access files.

Chapter 17—Networking—deals with applets and applications that can communi-
cate over computer networks. This chapter presents Java’s lowest level networking capa-
bilities. We write programs that “walk the Web.” The chapter examples illustrate an applet
interacting with the browser in which it executes, creating a mini Web browser, communi-
cating between two Java programs using streams-based sockets and communicating
between two Java programs using packets of data. A key feature of the chapter is the live-
code implementation of a collaborative client/server Tic-Tac-Toe game in which two cli-
ents play Tic-Tac-Toe with one another arbitrated by a multithreaded server—great stuff!
The multithreaded server architecture is exactly what is used today in popular UNIX and
Windows NT network servers. The capstone example in the chapter is the Deitel Messenger
case study, which simulates many of today’s popular instant-messaging applications that
enable computers users to communicate with friends, relatives and coworkers over the
Internet. This 1130-line, multithreaded, client/server case study uses most of the program-
ming techniques presented up to this point in the book. The messenger application also
introduces multicasting, which enables a program to send packets of data to groups of cli-
ents. The chapter has a nice collection of exercises including several suggested modifica-
tions to the multithreaded server example. Our companion book, Advanced Java 2 Platform

Chapter 1 Introduction to Computers, the Internet and the Web 37

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

How to Program, offers a much deeper treatment of networking and distributed computing,
with topics including remote method invocation (RMI), servlets, JavaServer Pages (JSP),
Java 2 Enterprise Edition, wireless Java (and the Java 2 Micro Edition) and Common
Object Request Broker Architecture (CORBA).

Chapter 18—Multimedia: Images, Animation and Audio—is the first of two chap-
ters that present Java’s capabilities for making computer applications come alive (Chapter
22 offers an extensive treatment of the Java Media Framework). It is remarkable that stu-
dents in first programming courses will be writing applications with all these capabilities.
The possibilities are intriguing. Imagine having access (over the Internet and through CD-
ROM technology) to vast libraries of graphics images, audios and videos and being able to
weave your own together with those in the libraries to form creative applications. Already,
most new computers sold come “multimedia equipped.” Students can create extraordinary
term papers and classroom presentations with components drawn from vast public-domain
libraries of images, line drawings, voices, pictures, videos, animations and the like. A
“paper” when many of us were in the earlier grades was a collection of characters, possibly
handwritten, possibly typewritten. A “paper” today can be a multimedia “extravaganza”
that makes the subject matter come alive. It can hold your interest, pique your curiosity and
make you feel what the subjects of the paper felt when they were making history. Multi-
media is making science labs much more exciting. Textbooks are coming alive. Instead of
looking at a static picture of some phenomenon, you can watch that phenomenon occur in
a colorful, animated, presentation with sounds, videos and various other effects, leveraging
the learning process. People are able to learn more, learn it in more depth and experience
more viewpoints.

The chapter discusses images and image manipulation, audios and animation. A fea-
ture of the chapter is the image maps that enable a program to sense the presence of the
mouse pointer over a region of an image, without clicking the mouse. We present a live-
code image-map application with the icons from the programming tips you have seen in this
chapter and will see throughout the book. As the user moves the mouse pointer across the
seven icon images, the type of tip is displayed, either “Good Programming Practice” for the
thumbs-up icon, “Portability Tip” for the bug with the suitcase icon and so on. Once you
have read the chapter, you will be eager to try out all these techniques, so we have included
35 problems to challenge and entertain you (more are provided in Chapter 22). Here are
some of the exercises that you may want to turn into term projects:

You are going to have a great time attacking these problems! Some will take a few
hours and some are great term projects. We see all kinds of opportunities for multimedia
electives starting to appear in the university computing curriculum. We hope you will have
contests with your classmates to develop the best solutions to several of these problems.

15 Puzzle Game of Pool One-Armed Bandit
Analog Clock Horse Race Random Inter-Image Transition
Animation Image Flasher Randomly Erasing an Image
Artist Image Zooming Reaction Time Tester
Calendar/Tickler File Jigsaw Puzzle Generator Rotating Images
Calling Attention to an Image Kaleidoscope Scrolling Image Marquee
Coloring Black and White ImagesLimericks Scrolling Text Marquee
Crossword Maze Generator and Walker Shuffleboard
Fireworks Designer Multimedia Simpletron SimulatorText Flasher

38 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Chapter 19—Data Structures—is particularly valuable in second- and third-level
university courses. The chapter discusses the techniques used to create and manipulate
dynamic data structures, such as linked lists, stacks, queues (i.e., waiting lines) and trees.
The chapter begins with discussions of self-referential classes and dynamic memory allo-
cation. We proceed with a discussion of how to create and maintain various dynamic data
structures. For each type of data structure, we present live-code programs and show sample
outputs. Although it is valuable to know how these classes are implemented, Java program-
mers will quickly discover that many of the data structures they need are already available
in class libraries, such as Java’s own java.util that we discuss in Chapter 20 and Java
Collections that we discuss in Chapter 21. The chapter helps the student master Java-
style references (i.e., Java’s replacement for the more dangerous pointers of C and C++).
One problem when working with references is that students could have trouble visualizing
the data structures and how their nodes are linked together. So we present illustrations that
show the links and the sequence in which they are created. The binary tree example is a nice
capstone for the study of references and dynamic data structures. This example creates a
binary tree; enforces duplicate elimination and introduces recursive preorder, inorder and
postorder tree traversals. Students have a genuine sense of accomplishment when they
study and implement this example. They particularly appreciate seeing that the inorder tra-
versal prints the node values in sorted order. The chapter includes a substantial collection
of exercises. A highlight of the exercises is the special section “Building Your Own Com-
piler.” This exercise is based on earlier exercises that walk the student through the devel-
opment of an infix-to-postfix conversion program and a postfix-expression evaluation
program. We then modify the postfix evaluation algorithm to generate machine-language
code. The compiler places this code in a file (using techniques the student mastered in
Chapter 16). Students then run the machine language produced by their compilers on the
software simulators they built in the exercises of Chapter 7! The many exercises include a
supermarket simulation using queueing, recursively searching a list, recursively printing a
list backwards, binary tree node deletion, level-order traversal of a binary tree, printing
trees, writing a portion of an optimizing compiler, writing an interpreter, inserting/deleting
anywhere in a linked list, analyzing the performance of binary tree searching and sorting
and implementing an indexed list class.

Chapter 20—Java Utilities Package and Bit Manipulation—walks through the
classes of the java.util package and discusses each of Java’s bitwise operators. This is
a nice chapter for reinforcing the notion of reuse. When classes already exist, it is much
faster to develop software by simply reusing these classes than by “reinventing the wheel.”
Classes are included in class libraries because the classes are generally useful, correct, per-
formance tuned, portability certified and/or for a variety of other reasons. Someone has
invested considerable work in preparing these classes so why should you write your own?
The world’s class libraries are growing at a phenomenal rate. Given this, your skill and
value as a programmer will depend on your familiarity with what classes exist and how you
can reuse them cleverly to develop high-quality software rapidly. University data structures
courses will be changing drastically over the next several years because most important
data structures are already implemented in widely available class libraries. This chapter dis-
cusses many classes. Two of the most useful are Vector (a dynamic array that can grow
and shrink as necessary) and Stack (a dynamic data structure that allows insertions and
deletions from only one end—called the top—thus ensuring last-in-first-out behavior). The

Chapter 1 Introduction to Computers, the Internet and the Web 39

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

beauty of studying these two classes is that they are related through inheritance, as is dis-
cussed in Chapter 9, so the java.util package itself implements some classes in terms
of others, thus avoiding reinventing the wheel and taking advantage of reuse. We also dis-
cuss classes Dictionary, Hashtable, Properties (for creating and manipulating
persistent Hashtables), Random and BitSet. The discussion of BitSet includes live
code for one of the classic applications of BitSets, namely the Sieve of Eratosthenes,
used for determining prime numbers. The chapter discusses in detail Java’s powerful bit-
manipulation capabilities, which enable programmers to exercise lower level hardware
capabilities. This helps programs process bit strings, set individual bits on or off and store
information more compactly. Such capabilities—inherited from C—are characteristic of
low-level assembly languages and are valued by programmers writing system software
such as operating systems and networking software.

Chapter 21—Collections—discusses many of the Java 2 classes (of the
java.util package) that provide predefined implementations of many of the data
structures discussed in Chapter 19. This chapter, too, reinforces the notion of reuse.
These classes are modeled after a similar class library in C++—the Standard Template
Library. Collections provide Java programmers with a standard set of data structures for
storing and retrieving data and a standard set of algorithms (i.e., procedures) that allow
programmers to manipulate the data (such as searching for particular data items and
sorting data into ascending or descending order). The chapter examples demonstrate col-
lections, such as linked lists, trees, maps and sets, and algorithms for searching, sorting,
finding the maximum value, finding the minimum value and so on. Each example clearly
shows how powerful and easy to use collections are. The exercises suggest modifications
to the chapter examples and ask the reader to reimplement data structures presented in
Chapter 19 using collections.

Chapter 22—Java Media Framework and Java Sound—is the second of our two
chapters dedicated to Java’s tremendous multimedia capabilities. This chapter focusses on
the Java Media Framework (JMF) and the Java Sound API. The Java Media Framework
provides both audio and video capabilities. With the JMF, a Java program can play audio
and video media and capture audio and video media from devices such as microphones and
video cameras. Many of today’s multimedia applications involve sending audio or video
feeds across the Internet. For example, you can visit the cnn.com Web site to watch or
listen to live news conferences, and many people listen to Internet-based radio stations
through their Web browsers. The JMF enables Java developers to create so-called
streaming media applications, in which a Java program sends live or recorded audio or
video feeds across the Internet to other computers, then applications on those other com-
puters play the media as it arrives over the network. The JavaSound APIs enable programs
to manipulate Musical Instrument Digital Interface (MIDI) sounds and captured media
(i.e., media from a device such as a microphone). This chapter concludes with a substantial
MIDI-processing application that enables users to select MIDI files to play and record new
MIDI files. Users can create their own MIDI music by interacting with the application’s
simulated synthesizer keyboard. In addition, the application can synchronize playing the
notes in a MIDI file with pressing the keys on the simulated synthesizer keyboard—similar
to a player piano! As with Chapter 18, once you read this chapter, you will be eager to try
all these techniques, so we have included 44 additional multimedia exercises to challenge
and entertain you. Some of the interesting projects include the following:

40 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Appendix A—Java Demos—presents a huge collection of some of the best Java
demos available on the Web. Many of these sites make their source code available to you,
so you can download the code and add your own features—a truly great way to learn Java!
We encourage our students to do this, and we’re amazed at the results! You should start
your search by checking out the Sun Microsystems applet Web page, java.sun.com/
applets. You can save time finding the best demos by checking out JARS (the Java
Applet Rating Service) at www.jars.com. Here’s a list of some of the demos mentioned
in Appendix A (the URLs and descriptions of each are in Appendix A):

Appendix B—Java Resources—presents some of the best Java resources available
on the Web. This is a great way for you to get into the “world of Java.” The appendix lists
various Java resources, such as consortia, journals and companies that make various key
Java-related products. Here are some of the resources mentioned in Appendix B:

Bouncing Ball Physics Demo Knight’s Tour Walker Story Teller
Craps Morse Code Tic-Tac-Toe
Digital Clock MP3 Player Tortoise and the Hare
Flight Simulator Multimedia Authoring System Towers of Hanoi
Karaoke Pinball Machine Video Conferencing
Kinetics Physics Demo Roulette Video Games

Animated SDSU Logo Java Game Park Sevilla RDM 168
Bumpy Lens 3D Java4fun games Stereoscopic 3D Hypercube
Centipedo Missile Commando Teamball demos
Crazy Counter PhotoAlbum II Tube
Famous Curves Applet Index Play A Piano Urbanoids
Goldmine Sab’s Game Arcade Warp 1.5
Iceblox game SabBowl bowling game

animated applets Intelligence.com newsgroups
applets/applications Java Applet Rating Service newsletters
arts and entertainment Java Developer Connection Object Management Group
audio sites Java Developer’s Journal products
books Java Media Framework projects
Borland JBuilder IDE Java Report publications
conferences Java tools puzzles
consultants Java Toys reference materials
contests Java Users Group (JUGs) resources
CORBA homepage Java Woman seminars
current information java.sun.com sites
databases JavaWorld on-line magazine software
demos (many with source code) learning Java Sun Microsystems
developer’s kit links to Java sites SunWorld on-line magazine
development tools lists of resources Team Java
discussion groups lists of what is new and cool The Java Tutorial
documentation live chat sessions on Java trade shows
downloadable applets multimedia collections training (please call us!)
FAQs (frequently asked ?s) NASA multimedia gallery tutorials for learning java
games NetBeans IDE URLs for Java applets
graphics news www.javaworld.com
IBM Developers Java Zone news:comp.lang.java Yahoo (Web search engine)

Chapter 1 Introduction to Computers, the Internet and the Web 41

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Appendix C—Operator Precedence Chart—lists each of the Java operators and
indicates their relative precedence and associativity. We list each operator on a separate line
and include the full name of the operator.

Appendix D—ASCII Character Set—lists the characters of the ASCII (American
Standard Code for Information Interchange) character set and indicates the character code
value for each. Java uses the Unicode character set with 16-bit characters for representing
all of the characters in the world’s “commercially significant” languages. Unicode includes
ASCII as a subset. Currently, most English-speaking countries are using ASCII and just
beginning to experiment with Unicode.

Appendix E—Number Systems—discusses the binary (base 2), decimal (base 10),
octal (base 8) and hexadecimal (base 16) number systems. This material is valuable for
introductory courses in computer science and computer engineering. The appendix is pre-
sented with the same pedagogic learning aids as the chapters of the book. A nice feature of
the appendix is its 31 exercises, 19 of which are self-review exercises with answers.

Appendix F—Creating javadoc Documentation—introduces the javadoc doc-
umentation-generation tool. Sun Microsystems uses javadoc to document the Java APIs.
The example in this appendix takes the reader through the javadoc documentation pro-
cess. First, we introduce the comment style and tags that javadoc recognizes and uses to
create documentation. Next, we discuss the commands and options used to run the utility.
Finally, we examine the source files javadoc uses and the HTML files javadoc creates.

1.18 (Optional) A Tour of the Case Study on Object-Oriented
Design with the UML
In this and the next section, we tour the two optional major features of the book—the op-
tional case study of object-oriented design with the UML and our introduction to design
patterns. The case study involving object-oriented design with the UML is an important ad-
dition to Java How to Program, Fourth Edition. This tour previews the contents of the
“Thinking About Objects” sections and discusses how they relate to the case study. After
completing this case study, you will have completed an object-oriented design and imple-
mentation for a significant Java application.

Section 1.15—Thinking About Objects: Introduction to Object Technology and the
Unified Modeling Language
This section introduces the object-oriented design case study with the UML. We provide a
general background of what objects are and how they interact with other objects. We also
discuss briefly the state of the software-engineering industry and how the UML has influ-
enced object-oriented analysis and design processes.

Section 2.9—(Optional Case Study) Thinking About Objects: Examining the Problem
Statement
Our case study begins with a problem statement that specifies the requirements for a system
that we will create. In this case study, we design and implement a simulation of an elevator
system in a two-story building. The application user can “create” a person on either floor.
This person then walks across the floor to the elevator, presses a button, waits for the ele-
vator to arrive and rides it to the other floor. We provide the design of our elevator system
after investigating the structure and behavior of object-oriented systems in general. We dis-

42 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

cuss how the UML will facilitate the design process in subsequent “Thinking About Ob-
ject” sections by providing us with several types of diagrams to model our system. Finally,
we provide a list of URL and book references on object-oriented design with the UML. You
might find these references helpful as you proceed through our case-study presentation.

Section 3.8—(Optional Case Study) Thinking About Objects: Identifying the Classes in
the Problem Statement
In this section, we design the elevator-simulation model, which represents the operations
of the elevator system. We identify the classes, or “building blocks,” of our model by ex-
tracting the nouns and noun phrases from the problem statement. We arrange these classes
into a UML class diagram that describes the class structure of our model. The class diagram
also describes relationships, known as associations, among classes (for example, a person
has an association with the elevator, because the person rides the elevator). Lastly, we ex-
tract from the class diagram another type of diagram in the UML—the object diagram. The
object diagram models the objects (instances of classes) at a specific time in our simulation.

Section 4.14—(Optional Case Study) Thinking About Objects: Identifying Class
Attributes
A class contains both attributes (data) and operations (behaviors). This section focuses on
the attributes of the classes discussed in Section 3.7. As we see in later sections, changes in
an object’s attributes often affect the behavior of that object. To determine the attributes for
the classes in our case study, we extract the adjectives describing the nouns and noun phras-
es (which defined our classes) from the problem statement, then place the attributes in the
class diagram we create in Section 3.7.

Section 5.11—(Optional Case Study) Thinking About Objects: Identifying Objects’
States and Activities
An object, at any given time, occupies a specific condition called a state. A state transition
occurs when that object receives a message to change state. The UML provides the state-
chart diagram, which identifies the set of possible states that an object may occupy and
models that object’s state transitions. An object also has an activity—the work performed
by an object in its lifetime. The UML provides the activity diagram—a flowchart that mod-
els an object’s activity. In this section, we use both types of diagrams to begin modeling
specific behavioral aspects of our elevator simulation, such as how a person rides the ele-
vator and how the elevator responds when a button is pressed on a given floor.

Section 6.16—(Optional Case Study) Thinking About Objects: Identifying Class
Operations
In this section, we identify the operations, or services, of our classes. We extract from the
problem statement the verbs and verb phrases that specify the operations for each class. We
then modify the class diagram of Fig. 3.16 to include each operation with its associated
class. At this point in the case study, we will have gathered all information possible from
the problem statement. However, as future chapters introduce such topics as inheritance,
event-handling and multithreading, we will modify our classes and diagrams.

Section 7.10—(Optional Case Study) Thinking About Objects: Collaboration Among
Objects
At this point, we have created a “rough sketch” of the model for our elevator system. In this
section, we see how it works. We investigate the behavior of the model by discussing col-

Chapter 1 Introduction to Computers, the Internet and the Web 43

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

laborations—messages that objects send to each other to communicate. The class opera-
tions that we discovered in Section 6.16 turn out to be the collaborations among the objects
in our system. We determine the collaborations in our system, then collect them into a col-
laboration diagram—the UML diagram for modeling collaborations. This diagram reveals
which objects collaborate and when. We present a collaboration diagram of the people en-
tering and exiting the elevator.

Section 8.17—(Optional Case Study) Thinking About Objects: Starting to Program the
Classes for the Elevator Simulation
In this section, we take a break from designing the behavior of our system. We begin the
implementation process to emphasize the material discussed in Chapter 8. Using the UML
class diagram of Section 3.7 and the attributes and operations discussed in Sections 4.14
and 6.16, we show how to implement a class in Java from a design. We do not implement
all classes—because we have not completed the design process. Working from our UML
diagrams, we create code for the Elevator class.

Section 9.23—(Optional Case Study) Thinking About Objects: Incorporating
Inheritance into the Elevator Simulation
Chapter 9 begins our discussion of object-oriented programming. We consider inherit-
ance—classes sharing similar characteristics may inherit attributes and operations from a
“base” class. In this section, we investigate how our elevator simulation can benefit from
using inheritance. We document our discoveries in a class diagram that models inheritance
relationships—the UML refers to these relationships as generalizations. We modify the
class diagram of Section 3.7 by using inheritance to group classes with similar characteris-
tics. We continue implementing the Elevator class of Section 8.17 by incorporating in-
heritance.

Section 10.22—(Optional Case Study) Thinking About Objects: Event Handling
In this section, we include interfaces necessary for the objects in our elevator simulation to
send messages to other objects. In Java, objects often communicate by sending an event—
a notification that some action has occurred. The object receiving the event then performs
an action in response to the type of event received—this is known as event handling. In
Section 7.10, we outlined the message passing, or the collaborations, in our model, using a
collaboration diagram. We now modify this diagram to include event handling, and, as an
example, we explain in detail how doors in our simulation open upon the elevator’s arrival.

Section 11.10—(Optional Case Study) Thinking About Objects: Designing Interfaces
with the UML
In this section, we design a class diagram that models the relationships between classes and
interfaces in our simulation—the UML refers to these relationships as realizations. In ad-
dition, we list all operations that each interface provides to the classes. Lastly, we show how
to create the Java classes that implement these interfaces. As in Section 8.17 and
Section 9.23, we use class Elevator to demonstrate the implementation.

Section 12.16 - (Optional Case Study) Thinking About Objects: Use Cases
Chapter 12 discusses user interfaces that enable a user to interact with a program. In this
section, we discuss the interaction between our elevator simulation and its user. Specifical-
ly, we investigate the scenarios that may occur between the application user and the simu-

44 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

lation itself—this set of scenarios is called a use case. We model these interactions, using
use-case diagrams of the UML. We then discuss the graphical user interface for our simu-
lation, using our use-case diagrams.

Section 13.17—(Optional Case Study) Thinking About Objects: Model-View-Controller
We designed our system to consist of three components, each having a distinct responsibil-
ity. By this point in the case study, we have almost completed the first component, called
the model, which contains data that represent the simulation. We design the view—the sec-
ond component, dealing with how the model is displayed—in Section 22.8. We design the
controller—the component that allows the user to control the model—in Section 12.16. A
system such as ours that uses the model, view and controller components is said to adhere
to Model-View-Controller (MVC) architecture. In this section, we explain the advantages
of using this architecture to design software. We use the UML component diagram to mod-
el the three components, then implement this diagram as Java code.

Section 15.12—(Optional Case Study) Thinking About Objects: Multithreading
In the real world, objects operate and interact concurrently. Java is a multithreaded lan-
guage, which enables the objects in our simulation to act seemingly independently from
each other. In this section, we declare certain objects as “threads” to enable these objects to
operate concurrently. We modify the collaboration diagram originally presented in Section
7.10 (and modified in Section 10.22) to incorporate multithreading. We present the UML
sequence diagram for modeling interactions in a system. This diagram emphasizes the
chronological ordering of messages. We use a sequence diagram to model how a person
inside the simulation interacts with the elevator. This section concludes the design of the
model portion of our simulation. We design how this model is displayed in Section 22.9,
then implement this model as Java code in Appendix H.

Section 22.9—(Optional Case Study) Thinking About Objects: Animation and Sound in
the View
This section designs the view, which specifies how the model portion of the simulation is
displayed. Chapter 18 presents several techniques for integrating animation in programs,
and Chapter 22 presents techniques for integrating sound. Section 22.9 uses some of these
techniques to incorporate sound and animation into our elevator simulation. Specifically,
this section deals with animating the movements of people and our elevator, generating
sound effects and playing “elevator music” when a person rides the elevator. This section
concludes the design of our elevator simulation. Appendices G, H and I implement this de-
sign as a 3,594-line, fully operational Java program.

Appendix G—Elevator Events and Listener Interfaces
[Note: This appendix is on the CD that accompanies this book.] As we discussed in
Section 10.22, several objects in our simulation interact with each other by sending messages,
called events, to other objects wishing to receive these events. The objects receiving the
events are called listener objects—these must implement listener interfaces. In this section,
we implement all event classes and listener interfaces used by the objects in our simulation.

Appendix H—Elevator Model
[Note: This appendix is on the CD that accompanies this book.] The majority of the case
study involved designing the model (i.e., the data and logic) of the elevator simulation. In

Chapter 1 Introduction to Computers, the Internet and the Web 45

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

this section, we implement that model in Java. Using all the UML diagrams we created, we
present the Java classes necessary to implement the model. We apply the concepts of ob-
ject-oriented design with the UML and object-oriented programming and Java that you
learned in the chapters.

Appendix I—Elevator View
[Note: This appendix is on the CD that accompanies this book.] The final section imple-
ments how we display the model from Appendix H. We use the same approach to imple-
ment the view as we used to implement the model—we create all the classes required to run
the view, using the UML diagrams and key concepts discussed in the chapters. By the end
of this section, you will have completed an “industrial-strength” design and implementa-
tion of a large-scale system. You should feel confident tackling larger systems, such as the
8000-line Enterprise Java case study we present in our companion book Advanced Java 2
Platform How to Program and the kinds of applications that professional software engi-
neers build. Hopefully, you will move on to even deeper study of object-oriented design
with the UML.

1.19 (Optional) A Tour of the “Discovering Design Patterns”
Sections
Our treatment of design patterns is spread over five optional sections of the book. We over-
view those sections here.

Section 9.24—(Optional) Discovering Design Patterns: Introducing Creational,
Structural and Behavioral Design Patterns
This section provides tables that list the sections in which we discuss the various design pat-
terns. We divide the discussion of each section into creational, structural and behavioral de-
sign patterns. Creational patterns provide ways to instantiate objects, structural patterns
deal with organizing objects and behavioral patterns deal with interactions between objects.
The remainder of the section introduces some of these design patterns, such as the Single-
ton, Proxy, Memento and State design patterns. Finally, we provide several URLs for fur-
ther study on design patterns.

Section 13.18—(Optional) Discovering Design Patterns: Design Patterns Used in
Packages java.awt and javax.swing
This section contains most of our design-patterns discussion. Using the material on Java
Swing GUI components in Chapters 12 and 13, we investigate some examples of pattern
use in packages java.awt and javax.swing. We discuss how these classes use the
Factory Method, Adapter, Bridge, Composite, Chain-of-Responsibility, Command, Ob-
server, Strategy and Template Method design patterns. We motivate each pattern and
present examples of how to apply them.

Section 15.13—(Optional) Discovering Design Patterns: Concurrent Design Patterns
Developers have introduced several design patterns since those described by the gang of
four. In this section, we discuss concurrency design patterns, including Single-Threaded
Execution, Guarded Suspension, Balking, Read/Write Lock and Two-Phase Termina-
tion—these solve various design problems in multithreaded systems. We investigate how
class java.lang.Thread uses concurrency patterns.

46 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

Section 17.11—(Optional) Discovering Design Patterns: Design Patterns Used in
Packages java.io and java.net
Using the material on files, streams and networking in Chapters 16 and 17, we investigate
some examples of pattern use in packages java.io and java.net. We discuss how
these classes use the Abstract Factory, Decorator and Facade design patterns. We also con-
sider architectural patterns, which specify a set of subsystems—aggregates of objects that
each collectively comprise a major system responsibility—and how these subsystems in-
teract with each other. We discuss the popular Model-View-Controller and Layers archi-
tectural patterns.

Section 21.12—(Optional) Discovering Design Patterns: Design Patterns Used in
Package java.util
Using the material on data structures and collections in Chapters 19, 20 and 21, we inves-
tigate pattern use in package java.util. We discuss how these classes use the Prototype
and Iterator design patterns. This section concludes the discussion on design patterns. After
finishing the Discovering Design Patterns material, you should be able to recognize and
use key design patterns and have a better understanding of the workings of the Java API.
After completing this material, we recommend that you move on to the gang-of-four book.

Well, there you have it! We have worked hard to create this book and its optional
Cyber Classroom version. The book is loaded with live-code examples, programming tips,
self-review exercises and answers, challenging exercises and projects, and numerous study
aids to help you master the material. Java is a powerful programming language that will
help you write programs quickly and effectively. And Java is a language that scales nicely
into the realm of enterprise-systems development to help organizations build their key
information systems. As you read the book, if something is not clear, or if you find an error,
please write to us at deitel@deitel.com. We will respond promptly, and we will post
corrections and clarifications on our Web site,

www.deitel.com

We hope you enjoy learning with Java How to Program: Fourth Edition as much as we
enjoyed writing it!

SUMMARY
• Software controls computers (often referred to as hardware).

• Java is one of today’s most popular software-development languages.

• Java was developed by Sun Microsystems. Sun provides an implementation of the Java 2 Platform,
Standard Edition called the Java 2 Software Development Kit (J2SDK), version 1.3.1 that includes
the minimum set of tools you need to write software in Java.

• Java is a fully object-oriented language with strong support for proper software-engineering tech-
niques.

• A computer is a device capable of performing computations and making logical decisions at
speeds millions, even billions, of times faster than human beings can.

• Computers process data under the control of sets of instructions called computer programs. These
computer programs guide the computer through orderly sets of actions specified by people called
computer programmers.

Chapter 1 Introduction to Computers, the Internet and the Web 47

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

• The various devices that comprise a computer system (such as the keyboard, screen, disks, mem-
ory and processing units) are referred to as hardware.

• The computer programs that run on a computer are referred to as software.

• The input unit is the “receiving” section of the computer. It obtains information (data and comput-
er programs) from various input devices and places this information at the disposal of the other
units so that the information may be processed.

• The output unit is the “shipping” section of the computer. It takes information processed by the
computer and places it on output devices to make it available for use outside the computer.

• The memory unit is the rapid access, relatively low-capacity “warehouse” section of the computer.
It retains information that has been entered through the input unit so that the information may be
made immediately available for processing when it is needed and retains information that has al-
ready been processed until that information can be placed on output devices by the output unit.

• The arithmetic and logic unit (ALU) is the “manufacturing” section of the computer. It is respon-
sible for performing calculations such as addition, subtraction, multiplication and division and for
making decisions.

• The central processing unit (CPU) is the “administrative” section of the computer. It is the com-
puter’s coordinator and is responsible for supervising the operation of the other sections.

• The secondary storage unit is the long-term, high-capacity “warehousing” section of the computer.
Programs or data not being used by the other units are normally placed on secondary storage de-
vices (such as disks) until they are needed, possibly hours, days, months or even years later.

• Early computers were capable of performing only one job or task at a time. This form of computer
operation often is called single-user batch processing.

• Software systems called operating systems were developed to help make it more convenient to use
computers. Early operating systems managed the smooth transition between jobs and minimized
the time it took for computer operators to switch between jobs.

• Multiprogramming involves the “simultaneous” operation of many jobs on the computer—the
computer shares its resources among the jobs competing for its attention.

• Timesharing is a special case of multiprogramming in which dozens or even hundreds of users
share a computer through terminals. The computer runs a small portion of one user’s job, then
moves on to service the next user. The computer does this so quickly that it might provide service
to each user several times per second, so programs appear to run simultaneously.

• An advantage of timesharing is that the user receives almost immediate responses to requests rath-
er than having to wait long periods for results, as with previous modes of computing.

• In 1977, Apple Computer popularized the phenomenon of personal computing.

• In 1981, IBM introduced the IBM Personal Computer. Almost overnight, personal computing be-
came legitimate in business, industry and government organizations.

• Although early personal computers were not powerful enough to timeshare several users, these
machines could be linked together in computer networks, sometimes over telephone lines and
sometimes in local area networks (LANs) within an organization. This led to the phenomenon of
distributed computing, in which an organization’s computing is distributed over networks to the
sites at which the real work of the organization is performed.

• Today, information is shared easily across computer networks where some computers called file
servers offer a common store of programs and data that may be used by client computers distrib-
uted throughout the network—hence the term client/server computing.

• Java has become the language of choice for developing Internet-based applications (and for many
other purposes).

48 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

• Computer languages may be divided into three general types: machine languages, assembly lan-
guages and high-level languages.

• Any computer can directly understand only its own machine language. Machine languages gener-
ally consist of strings of numbers (ultimately reduced to 1s and 0s) that instruct computers to per-
form their most elementary operations one at a time. Machine languages are machine dependent.

• English-like abbreviations formed the basis of assembly languages. Translator programs called as-
semblers convert assembly-language programs to machine language at computer speeds.

• Compilers translate high-level language programs into machine-language programs. High-level
languages (like Java) contain English words and conventional mathematical notations.

• Interpreter programs directly execute high-level language programs without the need for compil-
ing those programs into machine language.

• Although compiled programs execute much faster than interpreted programs, interpreters are pop-
ular in program-development environments in which programs are recompiled frequently as new
features are added and errors are corrected.

• Objects are essentially reusable software components that model items in the real world. Modular,
object-oriented design and implementation approaches make software-development groups more
productive than is possible with previous popular programming techniques such as structured pro-
gramming. Object-oriented programs are often easier to understand, correct and modify.

• Java originated at Sun Microsystems as a project for intelligent consumer-electronic devices.

• When the World Wide Web exploded in popularity in 1993, Sun people saw the immediate poten-
tial of using Java to create Web pages with so-called dynamic content.

• Java is now used to create Web pages with dynamic and interactive content, to develop large-scale
enterprise applications, to enhance the functionality of Web servers, to provide applications for
consumer devices and so on.

• Java programs consist of pieces called classes. Classes consist of pieces called methods that per-
form tasks and return information when they complete their tasks.

• Most Java programmers use rich collections of existing classes in Java class libraries.

• FORTRAN (FORmula TRANslator) was developed by IBM Corporation between 1954 and 1957
for scientific and engineering applications that require complex mathematical computations.

• COBOL (COmmon Business Oriented Language) was developed in 1959 by a group of computer
manufacturers and government and industrial computer users. COBOL is used primarily for com-
mercial applications that require precise and efficient manipulation of large amounts of data.

• Pascal was designed at about the same time as C. It was created by Professor Nicklaus Wirth and
was intended for academic use.

• Basic was developed in 1965 at Dartmouth College as a simple language to help novices become
comfortable with programming.

• Structured programming is a disciplined approach to writing programs that are clearer than un-
structured programs, easier to test and debug and easier to modify.

• The Ada language was developed under the sponsorship of the United States Department of De-
fense (DOD) during the 1970s and early 1980s. One important capability of Ada is called multi-
tasking; this allows programmers to specify that many activities are to occur in parallel.

• Most high-level languages—including C and C++—generally allow the programmer to write pro-
grams that perform only one activity at a time. Java, through a technique called multithreading,
enables programmers to write programs with parallel activities.

• The Internet was developed more than three decades ago with funding supplied by the Department
of Defense. Originally designed to connect the main computer systems of about a dozen universi-

Chapter 1 Introduction to Computers, the Internet and the Web 49

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

ties and research organizations, the Internet today is accessible by hundreds of millions of com-
puters worldwide.

• The Web allows computer users to locate and view multimedia-intensive documents over the In-
ternet.

• Java systems generally consist of several parts: an environment, the language, the Java Applica-
tions Programming Interface (API) and various class libraries.

• Java programs normally go through five phases to be executed—edit, compile, load, verify and
execute.

• Java program file names end with the .java extension.
.

• The Java compiler (javac) translates a Java program into bytecodes—the language understood
by the Java interpreter. If a program compiles correctly, the compiler produces a file with the
.class extension. This is the file containing the bytecodes that are interpreted during the execu-
tion phase.

• A Java program must first be placed in memory before it can execute. This is done by the class
loader, which takes the .class file (or files) containing the bytecodes and transfers it to memory.
The .class file can be loaded from a disk on your system or over a network.

• An application is a program that is normally stored and executed on the user’s local computer.

• An applet is a small program that is normally stored on a remote computer that users connect to
via a Web browser. Applets are loaded from a remote computer into the browser, executed in the
browser and discarded when execution completes.

• Applications are loaded into memory, then executed by the java interpreter.

• Browsers are used to view HTML (Hypertext Markup Language) documents on the World Wide
Web.

• When the browser sees an applet in an HTML document, the browser launches the Java class load-
er to load the applet. The browsers that support Java each have a built-in Java interpreter. Once the
applet is loaded, the Java interpreter in the browser begins executing the applet.

• Applets can also be executed from the command line using the appletviewer command pro-
vided with the Java 2 Software Development Kit (J2SDK). The appletviewer is commonly
referred to as the minimum browser—it knows only how to interpret applets.

• Before the bytecodes in an applet are executed by the Java interpreter built into a browser or the
appletviewer, they are verified by the bytecode verifier to ensure that the bytecodes for down-
loaded classes are valid and that they do not violate Java’s security restrictions.

• An intermediate step between interpreters and compilers is a just-in-time (JIT) compiler that, as
the interpreter runs, produces compiled code for the programs and executes the programs in ma-
chine language rather than reinterpreting them. JIT compilers do not produce machine language
that is as efficient as a full compiler.

• For organizations wanting to do heavy-duty information-systems development, Integrated Devel-
opment Environments (IDEs) are available from the major software suppliers. The IDEs provide
many tools for supporting the software-development process.

• Object orientation is a natural way of thinking about the world and of writing computer programs.

• The Unified Modeling Language (UML) is a graphical language that allows people who build sys-
tems to represent their object-oriented designs in a common notation.

• Humans think in terms of objects. We possess the marvelous ability of abstraction, which enables
us to view screen images as people, planes, trees and mountains rather than as individual dots of
color (called pixels—for “picture elements”).

50 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

• Humans learn about objects by studying their attributes and observing their behaviors. Different
objects can have similar attributes and can exhibit similar behaviors.

• Object-oriented design (OOD) models real-world objects. It takes advantage of class relationships,
where objects of a certain class—such as a class of vehicles—have the same characteristics. It
takes advantage of inheritance relationships, and even multiple-inheritance relationships, where
newly created classes of objects are derived by absorbing characteristics of existing classes and
adding unique characteristics of their own.

• OOD encapsulates data (attributes) and functions (behavior) into objects; the data and functions
of an object are intimately tied together.

• Objects have the property of information hiding. This means that, although objects may know how
to communicate with one another across well-defined interfaces, objects normally are not allowed
to know how other objects are implemented.

• Languages such as Java are object-oriented—programming in such a language is called object-ori-
ented programming (OOP) and allows designers to implement the object-oriented design as a
working system.

• In Java, the unit of programming is the class from which objects are eventually instantiated (a fan-
cy term for “created”). Java classes contain methods (which implement class behaviors) and at-
tributes (which implement class data).

• Java programmers concentrate on creating their own user-defined types, called classes. Each class
contains data and the set of functions that manipulate that data. The data components of a Java
class are called attributes. The function components of a Java class are called methods.

• An instance of a user-defined type (i.e., a class) is called an object.

• Classes can also have relationships with other classes. These relationships are called associations.

• With object technology, we can build much of the software we will need by combining “standard-
ized, interchangeable parts” called classes.

• The process of analyzing and designing a system from an object-oriented point of view is called
object-oriented analysis and design (OOAD).

• The Unified Modeling Language (the UML) is now the most widely used graphical representation
scheme for modeling object-oriented systems. Those who design systems use the language (in the
form of graphical diagrams) to model their systems.

• Over the past decade, the software-engineering industry has made significant progress in the field
of design patterns—proven architectures for constructing flexible and maintainable object-orient-
ed software. Using design patterns can substantially reduce the complexity of the design process.

• Design patterns benefit system developers by helping to construct reliable software using proven
architectures and accumulated industry expertise, promoting design reuse in future systems, iden-
tifying common mistakes and pitfalls that occur when building systems, helping to design systems
independently of the language in which they will be implemented, establishing a common design
vocabulary among developers and shortening the design phase in a software-development process.

• Designers use design patterns to construct sets of classes and objects.

• Creational design patterns describe techniques to instantiate objects (or groups of objects).

• Structural design patterns allow designers to organize classes and objects into larger structures.

• Behavioral design patterns assign responsibilities to objects.

TERMINOLOGY
abstraction ALU (arithmetic and logic unit)
Ada ANSI C

Chapter 1 Introduction to Computers, the Internet and the Web 51

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

applet IDE (Integrated Development Environment)
appletviewer command information hiding
application inheritance
arithmetic and logic unit (ALU) input device
array input unit
assembly language input/output (I/O)
attribute instance variable
Basic Internet
behavior interpreter
behavioral design pattern Java
bytecode .java extension
bytecode verifier Java 2 Software Development Kit (J2SDK)
C java interpreter
C standard library Java Virtual Machine
C++ javac compiler
central processing unit (CPU) JIT (just-in-time) compiler
class KIS (keep it simple)
.class file legacy systems
class libraries live-code™ approach
class loader load phase
client/server computing logic error
COBOL machine dependent
collections machine independent
compile phase machine language
compiler memory unit
compile-time error method
computer Microsoft
computer program Microsoft Internet Explorer Web browser
computer programmer modeling
condition multiprocessor
CPU (central processing unit) multitasking
creational design pattern multithreading
design pattern Netscape Navigator Web browser
disk nonfatal run-time error
distributed computing object
dynamic content object
edit phase object-oriented analysis and design (OOAD)
editor object-oriented design (OOD)
encapsulation object-oriented programming (OOP)
event-driven programming open source
execute phase output device
execution-time error output unit
fatal runtime error Pascal
file server personal computing
Fortran platforms
freeware portability
hardware primary memory
high-level language problem statement
HotSpot compiler procedural programming
HTML (Hypertext Markup Language) programming language

52 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

SELF-REVIEW EXERCISES
1.1 Fill in the blanks in each of the following statements:

a) The company that popularized personal computing was .
b) The computer that made personal computing legitimate in business and industry was the

.
c) Computers process data under the control of sets of instructions called .
d) The six key logical units of the computer are the , , ,

, and .
e) The three classes of languages discussed in the chapter are , and

.
f) The programs that translate high-level language programs into machine language are

called .

1.2 Fill in the blanks in each of the following sentences about the Java environment:
a) The command from the Java 2 Software Development Kit executes a Java

applet.
b) The command from the Java 2 Software Development Kit executes a Java

application
c) The command from the Java 2 Software Development Kit compiles a Java

program.
d) A(n) file is required to invoke a Java applet.
e) A Java program file must end with the file extension.
f) When a Java program is compiled, the file produced by the compiler ends with the

 file extension.
g) The file produced by the Java compiler contains that are interpreted to exe-

cute a Java applet or application.

1.3 Fill in the blanks in each of the following statements:
a) The allows computer users to locate and view multimedia-based documents

on almost any subject over the Internet.
b) Java typically are stored on your computer and are designed to execute in-

dependent of a World Wide Web browsers.
c) Lists and tables of values are called .
d) The GUI components are written completely in Java.
e) allows an applet or application to perform multiple activities in parallel.
f) provide Java programmers with a standard set of data structures for storing

and retrieving data and a standard set of algorithms that allow programmers to manipu-
late the data.

reference Swing GUI components
requirements document syntax error
reusable componentry throughput
runtime error throw an exception
secondary storage unit timesharing
shareware translator programs
software Unified Modeling Language (UML)
software reuse verify phase
structural design pattern video
structured programming World Wide Web
Sun Microsystems

Chapter 1 Introduction to Computers, the Internet and the Web 53

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

1.4 Fill in the blanks in each of the following statements (based on Sections 1.15 and 1.16):
a) Over the past decade, the software-engineering industry has made significant progress in

the field of —proven architectures for constructing flexible and maintainable
object-oriented software.

b) Objects have the property of .
c) Java programmers concentrate on creating their own user-defined types, called

.
d) Classes can also have relationships with other classes. These relationships are called

.
e) The process of analyzing and designing a system from an object-oriented point of view

is called .

ANSWERS TO SELF-REVIEW EXERCISES
1.1 a) Apple. b) IBM Personal Computer. c) programs. d) input unit, output unit, memory unit,
arithmetic and logic unit, central processing unit, secondary storage unit. e) machine languages, as-
sembly languages, high-level languages. f) compilers.

1.2 a) appletviewer. b) java. c) javac. d) HTML. e) .java. f) .class. g) byte-
codes.

1.3 a) World Wide Web. b) applications. c) arrays. d) Swing. e) Multithreading. f) Collections.

1.4 a) design patterns. b) information hiding. c) classes. d) associations. e) object-oriented
analysis and design (OOAD).

EXERCISES
1.5 Categorize each of the following items as either hardware or software:

a) CPU
b) Java compiler
c) ALU
d) Java interpreter
e) input unit
f) editor

1.6 Why might you want to write a program in a machine-independent language instead of a ma-
chine-dependent language? Why might a machine-dependent language be more appropriate for writ-
ing certain types of programs?

1.7 Fill in the blanks in each of the following statements:
a) Which logical unit of the computer receives information from outside the computer for

use by the computer? .
b) The process of instructing the computer to solve specific problems is called .
c) What type of computer language uses English-like abbreviations for machine language

instructions? .
d) Which logical unit of the computer sends information that has already been processed by

the computer to various devices so that the information may be used outside the comput-
er? .

e) Which logical unit of the computer retains information? .
f) Which logical unit of the computer performs calculations? .
g) Which logical unit of the computer makes logical decisions? .
h) The level of computer language most convenient to the programmer for writing programs

quickly and easily is .

54 Introduction to Computers, the Internet and the Web Chapter 1

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/8/01

i) The only language that a computer can directly understand is called that computer’s
.

j) Which logical unit of the computer coordinates the activities of all the other logical units?
.

1.8 Distinguish between the terms fatal error and nonfatal error. Why might you prefer to ex-
perience a fatal error rather than a nonfatal error?

1.9 Fill in the blanks in each of the following statements:
a) Java are designed to be transported over the Internet and executed in World

Wide Web browsers.
b) programming causes a program to perform a task in response to user inter-

actions with graphical user interface (GUI) components.
c) Java’s graphics capabilities are and, hence portable.
d) The standard can be used to provide identical user interfaces across all com-

puter platforms.
e) Languages that cannot perform multiple activities in parallel are called lan-

guages or languages.
f) Aggregations of data such as linked lists, stacks, queues and trees are called .

1.10 Fill in the blanks in each of the following statements (based on Sections 1.15 and 1.16):
a) design patterns describe techniques to instantiate objects (or groups of ob-

jects).
b) The is now the most widely used graphical representation scheme for mod-

eling object-oriented systems.
c) Java classes contain (which implement class behaviors) and

(which implement class data).
d) design patterns allow designers to organize classes and objects into larger

structures.
e) design patterns assign responsibilities to objects.
f) In Java, the unit of programming is the , from which are eventu-

ally instantiated.

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

2
Introduction to Java

Applications

Objectives
• To be able to write simple Java applications.
• To be able to use input and output statements.
• To become familiar with primitive data types.
• To understand basic memory concepts.
• To be able to use arithmetic operators.
• To understand the precedence of arithmetic operators.
• To be able to write decision-making statements.
• To be able to use relational and equality operators.
Comment is free, but facts are sacred.
C. P. Scott

The creditor hath a better memory than the debtor.
James Howell

When faced with a decision, I always ask, “What would be
the most fun?”
Peggy Walker

He has left his body to science—
and science is contesting the will.
David Frost

Classes struggle, some classes triumph, others are
eliminated.
Mao Zedong

Equality, in a social sense, may be divided into that of
condition and that of rights.
James Fenimore Cooper

56 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

2.1 Introduction
The Java language facilitates a disciplined approach to computer program design. We now
introduce Java programming and present examples that illustrate several important features
of Java. Each example is analyzed one line at a time. In this chapter and Chapter 3, we
present two program types in Java—applications and applets. In Chapter 4 and Chapter 5,
we present a detailed treatment of program development and program control in Java.

2.2 A First Program in Java: Printing a Line of Text
Java uses notations that may appear strange to nonprogrammers. We begin by considering
a simple application that displays a line of text. An application is a program that executes
using the java interpreter (discussed later in this section). The program and its output are
shown in Fig. 2.1.

This program illustrates several important features of the Java language. We consider
each line of the program in detail. Each program we present in this book has line numbers
included for the reader’s convenience; line numbers are not part of actual Java programs.
Line 9 does the “real work” of the program, namely displaying the phrase Welcome to
Java Programming! on the screen. But let us consider each line in order. Line 1,

// Fig. 2.1: Welcome1.java

begins with //, indicating that the remainder of the line is a comment. Programmers insert
comments to document programs and improve program readability. Comments also help
other people read and understand a program. Comments do not cause the computer to per-
form any action when the program is run. The Java compiler ignores comments. We begin
every program with a comment indicating the figure number and file name (line 1).

Outline

2.1 Introduction
2.2 A First Program in Java: Printing a Line of Text

2.2.1 Compiling and Executing your First Java Application
2.3 Modifying Our First Java Program

2.3.1 Displaying a Single Line of Text with Multiple Statements
2.3.2 Displaying Multiple Lines of Text with a Single Statement

2.4 Displaying Text in a Dialog Box
2.5 Another Java Application: Adding Integers
2.6 Memory Concepts
2.7 Arithmetic
2.8 Decision Making: Equality and Relational Operators
2.9 (Optional Case Study) Thinking About Objects: Examining the

Problem Statement

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 2 Introduction to Java Applications 57

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Good Programming Practice 2.1
Use comments to clarify difficult concepts used in a program. 2.1

A comment that begins with // is called a single-line comment, because the comment
terminates at the end of the current line. A // comment can also begin in the middle of a
line and continue until the end of that line.

Multiple-line comments can be written in two other forms. For example,

/* This is a multiple
 line comment. It can be
 split over many lines */

is a comment that can spread over several lines. This type of comment begins with delimiter
/* and ends with delimiter */; this type of comment may be called a multiple-line com-
ment. All text between the delimiters of the comment is ignored by the compiler. A similar
form of comment called a documentation comment is delimited by /** and */.

Common Programming Error 2.1
Forgetting one of the delimiters of a multiple-line comment is a syntax error. 2.1

Java absorbed comments delimited with /* and */ from the C programming language
and single-line comments delimited with // from the C++ programming language. Java
programmers generally use C++-style single-line comments in preference to C-style com-
ments. Throughout this book, we use C++-style single-line comments. The documentation
comment syntax (/** and */) is special to Java. It enables programmers to embed docu-
mentation for their programs directly in the programs. The javadoc utility program (pro-
vided by Sun Microsystems with the Java 2 Software Development Kit) reads those
comments from the program and uses them to prepare your program’s documentation.
There are subtle issues to using javadoc-style comments properly. We do not use jav-
adoc-style comments in the programs presented in this book. However, javadoc-style
comments are explained thoroughly in Appendix F.

1 // Fig. 2.1: Welcome1.java
2 // A first program in Java.
3
4 public class Welcome1 {
5
6 // main method begins execution of Java application
7 public static void main(String args[])
8 {
9 System.out.println("Welcome to Java Programming!");

10
11 } // end method main
12
13 } // end class Welcome1

Welcome to Java Programming!

Fig. 2.1Fig. 2.1Fig. 2.1Fig. 2.1 A first program in Java.

58 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Line 2,

// A first program in Java.

is a single-line comment that describes the purpose of the program.

Good Programming Practice 2.2
Every program should begin with a comment describing the purpose of the program. 2.2

Line 3 is simply a blank line. Programmers use blank lines and space characters to
make programs easier to read. Together, blank lines, space characters and tab characters are
known as white space. (Space characters and tabs are known specifically as white-space
characters.) Such characters are ignored by the compiler. We discuss conventions for using
white-space characters in this chapter and the next several chapters, as these spacing con-
ventions are needed in may Java programs.

Good Programming Practice 2.3
Use blank lines, space characters and tab characters to enhance program readability. 2.3

Line 4,

public class Welcome1 {

begins a class definition for class Welcome1. Every program in Java consists of at least
one class definition that is defined by you—the programmer. These classes are known as
programmer-defined classes, or user-defined classes. The class keyword introduces a
class definition in Java and is immediately followed by the class name (Welcome1 in this
program). Keywords (or reserved words) are reserved for use by Java (we discuss the var-
ious keywords throughout the text) and are always spelled with all lowercase letters. The
complete list of Java keywords is shown in Fig. 4.2.

By convention, all class names in Java begin with a capital letter and have a capital
letter for every word in the class name (e.g., SampleClassName). The name of the class
is called an identifier. An identifier is a series of characters consisting of letters, digits,
underscores (_) and dollar signs ($) that does not begin with a digit and does not contain
spaces. Some valid identifiers are Welcome1, $value, _value, m_inputField1
and button7. The name 7button is not a valid identifier, because it begins with a digit,
and the name input field is not a valid identifier, because it contains a space. Java is
case sensitive—i.e., uppercase and lowercase letters are different, so a1 and A1 are dif-
ferent identifiers.

Common Programming Error 2.2
Java is case sensitive. Not using the proper uppercase and lowercase letters for an identifier
is normally a syntax error. 2.2

Good Programming Practice 2.4
By convention, you should always begin a class name with a capital letter. 2.4

Good Programming Practice 2.5
When reading a Java program, look for identifiers that start with capital letters. These iden-
tifiers normally represent Java classes. 2.5

Chapter 2 Introduction to Java Applications 59

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Software Engineering Observation 2.1
Avoid using identifiers that contain dollar signs ($), as the compiler often uses dollar signs
to create identifier names. 2.1

In Chapter 2 through Chapter 7, every class we define begins with the public key-
word. For now, we will simply require this keyword. The public keyword is discussed
in detail in Chapter 8. Also in that chapter, we discuss classes that do not begin with key-
word public. [Note: Several times early in this text, we ask you to mimic certain Java
features we introduce as you write your own Java programs. We specifically do this when
it is not yet important for you to know all of the details of a feature in order for you to use
that feature in Java. All programmers initially learn how to program by mimicking what
other programmers have done before them. For each detail we ask you to mimic, we indi-
cate where the full discussion will be presented later in the text.]

When you save your public class definition in a file, the file name must be the class
name followed by the “.java” file-name extension. For our application, the file name is
Welcome1.java. All Java class definitions are stored in files ending with the file-name
extension “.java.”

Common Programming Error 2.3
It is an error for a public class if the file name is not identical to the class name (plus the
.java extension) in terms of both spelling and capitalization. Therefore, it is also an error
for a file to contain two or more public classes. 2.3

Common Programming Error 2.4
It is an error not to end a file name with the .java extension for a file containing an appli-
cation’s class definition. If the extension is missing, the Java compiler will not be able to
compile the class definition. 2.4

A left brace (at the end of line 4), {, begins the body of every class definition. A cor-
responding right brace (in line 13 in this program), }, must end each class definition.
Notice that lines 6–11 are indented. This indentation is one of the spacing conventions men-
tioned earlier. We define each spacing convention as a Good Programming Practice.

Good Programming Practice 2.6
Whenever you type an opening left brace, {, in your program, immediately type the closing
right brace, }, then reposition the cursor between the braces to begin typing the body. This
practice helps prevent errors due to missing braces. 2.6

Good Programming Practice 2.7
Indent the entire body of each class definition one “level” of indentation between the left
brace, {, and the right brace, }, that define the body of the class. This format emphasizes the
structure of the class definition and helps make the class definition easier to read. 2.7

Good Programming Practice 2.8
Set a convention for the indent size you prefer, and then uniformly apply that convention. The
Tab key may be used to create indents, but tab stops may vary between editors. We recom-
mend using three spaces to form a level of indent. 2.8

Common Programming Error 2.5
If braces do not occur in matching pairs, the compiler indicates an error. 2.5

60 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Line 5 is a blank line, inserted for program readability. Line 6,

// main method begins execution of Java application

is a single-line comment indicating the purpose of lines 6–11 of the program.
Line 7,

public static void main(String args[])

is a part of every Java application. Java applications begin executing at main. The paren-
theses after main indicate that main is a program building block called a method. Java
class definitions normally contain one or more methods. For a Java application class, ex-
actly one of those methods must be called main and must be defined as shown on line 7;
otherwise, the java interpreter will not execute the application. Methods are able to per-
form tasks and return information when they complete their tasks. The void keyword in-
dicates that this method will perform a task (displaying a line of text, in this program), but
will not return any information when it completes its task. Later, we will see that many
methods return information when they complete their task. Methods are explained in detail
in Chapter 6. For now, simply mimic main’s first line in your Java applications.

The left brace, {, on line 8 begins the body of the method definition. A corresponding
right brace, }, must end the method definition’s body (line 11 of the program). Notice that
the line in the body of the method is indented between the braces.

Good Programming Practice 2.9
Indent the entire body of each method definition one “level” of indentation between the left
brace, {, and the right brace, }, that define the body of the method. This format makes the
structure of the method stand out and helps make the method definition easier to read. 2.9

Line 9,

System.out.println("Welcome to Java Programming!");

instructs the computer to perform an action, namely to print the string of characters con-
tained between the double quotation marks. A string is sometimes called a character string,
a message or a string literal. We refer to characters between double quotation marks gener-
ically as strings. White-space characters in strings are not ignored by the compiler.

System.out is known as the standard output object. System.out allows Java
applications to display strings and other types of information in the command window from
which the Java application executes. In Microsoft Windows 95/98/ME, the command
window is the MS-DOS prompt. In Microsoft Windows NT/2000, the command window is
the Command Prompt (cmd.exe). In UNIX, the command window is normally called a
command window, a command tool, a shell tool or a shell. On computers running an oper-
ating system that does not have a command window (such as a Macintosh), the java inter-
preter normally displays a window containing the information the program displays.

Method System.out.println displays (or prints) a line of text in the command
window. When System.out.println completes its task, it automatically positions
the output cursor (the location where the next character will be displayed) to the beginning
of the next line in the command window. (This move of the cursor is similar to you pressing
the Enter key when typing in a text editor—the cursor appears at the beginning of the next
line in your file.)

Chapter 2 Introduction to Java Applications 61

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

The entire line, including System.out.println, its argument in the parentheses
(the string) and the semicolon (;), is a statement. Every statement must end with a semi-
colon (also known as the statement terminator). When the statement on line 9 of our pro-
gram executes, it displays the message Welcome to Java Programming! in the
command window.

Common Programming Error 2.6
Omitting the semicolon at the end of a statement is a syntax error. A syntax error occurs when
the compiler cannot recognize a statement. The compiler normally issues an error message
to help the programmer identify and fix the incorrect statement. Syntax errors are violations
of the language rules. Syntax errors are also called compile errors, compile-time errors or
compilation errors, because the compiler detects them during the compilation phase. You will
be unable to execute your program until you correct all of the syntax errors in it. 2.6

Testing and Debugging Tip 2.1
When the compiler reports a syntax error, the error may not be on the line number indicated
by the error message. First, check the line for which the error was reported. If that line does
not contain syntax errors, check the preceding several lines in the program. 2.1

Some programmers find it difficult when reading and/or writing a program to match
the left and right braces ({ and }) that delimit the body of a class definition or a method
definition. For this reason, some programmers prefer to include a single-line comment after
a closing right brace (}) that ends a method definition and after a closing right brace that
ends a class definition. For example, line 11,

} // end method main

specifies the closing right brace (}) of method main, and line 13,

} // end class Welcome1

specifies the closing right brace (}) of class Welcome1. Each comment indicates the
method or class that the right brace terminates. We use such comments through Chapter 6
to help beginning programmers determine where each program component terminates. Af-
ter Chapter 6, we use such comments when pairs of braces contain many statements, which
makes the closing braces difficult to identify.

Good Programming Practice 2.10
Some programmers prefer to follow the closing right brace (}) of a method body or class def-
inition with a single-line comment indicating the method or class definition to which the
brace belongs. This comment improves program readability. 2.10

2.2.1 Compiling and Executing your First Java Application

We are now ready to compile and execute our program. To compile the program, we open
a command window, change to the directory where the program is stored and type

javac Welcome1.java

If the program contains no syntax errors, the preceding command creates a new file called
Welcome1.class containing the Java bytecodes that represent our application. These
bytecodes will be interpreted by the java interpreter when we tell it to execute the pro-
gram, as shown in the Microsoft Windows 2000 Command Prompt of Fig. 2.2.

62 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

In the command prompt of Figure 2.2, we typed

java Welcome1

to launch the java interpreter and indicate that it should load the “.class” file for class
Welcome1. Note that the “.class” file-name extension is omitted from the preceding
command; otherwise the interpreter will not execute the program. The interpreter automat-
ically calls method main. Next, the statement on line 7 of main displays “Welcome to
Java Programming!”

Testing and Debugging Tip 2.2
The Java compiler generates syntax error messages when the syntax of a program is incor-
rect. When you are learning how to program, sometimes it is helpful to “break” a working
program so you can see the error messages produced by the compiler. Then, when you en-
counter that error message again, you will have an idea of the error’s cause. Try removing
a semicolon or curly brace from the program of Fig. 2.1, then recompile the program to see
the error messages generated by the omission. 2.2

2.3 Modifying Our First Java Program
This section continues our introduction to Java programming with two examples that mod-
ify the example in Fig. 2.1 to print text on one line by using multiple statements and to print
text on several lines by using a single statement.

2.3.1 Displaying a Single Line of Text with Multiple Statements

Welcome to Java Programming! can be displayed using several methods. Class
Welcome2, shown in Fig. 2.3, uses two statements to produce the same output as that
shown in Fig. 2.1.

Most of the program is identical to that of Fig. 2.1, so we discuss only the changes here.
Line 2,

// Printing a line of text with multiple statements.

is a single-line comment stating the purpose of this program. Line 4 begins the definition
of class Welcome2.

Lines 9–10 of method main,

System.out.print("Welcome to ");
System.out.println("Java Programming!");

Fig. 2.2Fig. 2.2Fig. 2.2Fig. 2.2 Executing Welcome1 in a Microsoft Windows 2000 Command Prompt.

Chapter 2 Introduction to Java Applications 63

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

display one line of text in the command window. The first statement uses System.out’s
method print to display a string. The difference between print and println is that,
after displaying its argument, print does not position the output cursor at the beginning
of the next line in the command window; the next character the program displays in the
command window will appear immediately after the last character that print displays.
Thus, line 10 positions the first character in its argument, “J,” immediately after the last
character that line 9 displays (the space character at the end of the string on line 9). Each
print or println statement resumes displaying characters from where the last print
or println statement stopped displaying characters.

2.3.2 Displaying Multiple Lines of Text with a Single Statement

A single statement can display multiple lines by using newline characters. Newline char-
acters are “special characters” that indicate to System.out’s print and println
methods when they should position the output cursor to the beginning of the next line in the
command window. Figure 2.4 outputs four lines of text, using newline characters to deter-
mine when to begin each new line.

Most of the program is identical to those of Fig. 2.1 and Fig. 2.3, so we discuss only
the changes here. Line 2,

// Printing multiple lines of text with a single statement.

is a single-line comment stating the purpose of this program. Line 4 begins the definition
of class Welcome3.

Line 9,

System.out.println("Welcome\nto\nJava\nProgramming!");

displays four separate lines of text in the command window. Normally, the characters in a
string are displayed exactly as they appear in the double quotes. Notice, however, that the

1 // Fig. 2.3: Welcome2.java
2 // Printing a line of text with multiple statements.
3
4 public class Welcome2 {
5
6 // main method begins execution of Java application
7 public static void main(String args[])
8 {
9 System.out.print("Welcome to ");

10 System.out.println("Java Programming!");
11
12 } // end method main
13
14 } // end class Welcome2

Welcome to Java Programming

Fig. 2.3Fig. 2.3Fig. 2.3Fig. 2.3 Printing a line of text with multiple statements.

64 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

two characters \ and n are not printed on the screen. The backslash (\) is called an escape
character. It indicates that a “special character” is to be output. When a backslash appears
in a string of characters, Java combines the next character with the backslash to form an
escape sequence. The escape sequence \n is the newline character. When a newline char-
acter appears in a string being output with System.out, the newline character causes the
screen’s output cursor to move to the beginning of the next line in the command window.
Some other common escape sequences are listed in Fig. 2.5.

1 // Fig. 2.4: Welcome3.java
2 // Printing multiple lines of text with a single statement.
3
4 public class Welcome3 {
5
6 // main method begins execution of Java application
7 public static void main(String args[])
8 {
9 System.out.println("Welcome\nto\nJava\nProgramming!");

10
11 } // end method main
12
13 } // end class Welcome3

Welcome
to
Java
Programming!

Fig. 2.4Fig. 2.4Fig. 2.4Fig. 2.4 Printing multiple lines of text with a single statement.

Escape sequence Description

\n Newline. Position the screen cursor to the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor to the beginning of the cur-
rent line; do not advance to the next line. Any characters output after
the carriage return overwrite the characters previously output on that
line.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double-quote character. For example,

 System.out.println("\"in quotes\"");

displays

 "in quotes"

Fig. 2.5Fig. 2.5Fig. 2.5Fig. 2.5 Some common escape sequences.

Chapter 2 Introduction to Java Applications 65

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

2.4 Displaying Text in a Dialog Box
Although the first several programs presented in this chapter display output in the com-
mand window, many Java applications use windows or dialog boxes (also called dialogs)
to display output. For example, World Wide Web browsers such as Netscape Navigator or
Microsoft Internet Explorer display Web pages in their own windows. Email programs typ-
ically allow you to type and read messages in a window provided by the email program.
Typically, dialog boxes are windows in which programs display important messages to the
user of the program. Java’s class JOptionPane provides prepackaged dialog boxes that
enable programs to display messages to users. Figure 2.6 displays the same string as in
Fig. 2.4 in a predefined dialog box known as a message dialog.

One of the great strengths of Java is its rich set of predefined classes that programmers
can reuse rather than “reinventing the wheel.” We use many of these classes throughout the
book. Java’s numerous predefined classes are grouped into categories of related classes
called packages. The packages are referred to collectively as the Java class library, or the
Java applications programming interface (Java API). The packages of the Java API are
split into core packages and extension packages. The names of the packages begin with
either “java” (core packages) or “javax” (extension packages). Many of the core and
extension packages are included as part of the Java 2 Software Development Kit. We over-
view these included packages in Chapter 6. As Java continues to evolve, new packages are
developed as extension packages. These extensions often can be downloaded from
java.sun.com and used to enhance Java’s capabilities. In this example, we use class
JOptionPane, which Java defines for us in package javax.swing.

Line 4,

// Java extension packages

is a single-line comment indicating the section of the program in which we specify im-
port statements for classes in Java’s extension packages. In every program that specifies
import statements, we separate the import statements into the following groups: Java
core packages (for package names starting with java), Java extension packages (for pack-
age names starting with javax) and Deitel packages (for our own packages defined later
in the book).

Line 5,

import javax.swing.JOptionPane; // import class JOptionPane

is an import statement. The compiler uses import statements to identify and load class-
es used in a Java program. When you use classes from the Java API, the compiler attempts
to ensure that you use them correctly. The import statements help the compiler locate the
classes you intend to use. For each new class we use from the Java API, we indicate the
package in which you can find that class. This package information is important. It helps
you locate descriptions of each package and class in the Java API documentation. A Web-
based version of this documentation can be found at

java.sun.com/j2se/1.3/docs/api/index.html

Also, you can download this documentation to your own computer from

java.sun.com/j2se/1.3/docs.html

66 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

We will provide an overview of the use of this documentation with the downloads and re-
sources for Java How to Program, Fourth Edition on our Web site, www.deitel.com.
Packages are discussed in detail in Chapter 8, Object-Based Programming.

Common Programming Error 2.7
All import statements must appear before the class definition. Placing an import state-
ment inside a class definition’s body or after a class definition is a syntax error. 2.7

Line 5 tells the compiler to load the JOptionPane class from the javax.swing
package. This package contains many classes that help Java programmers define graphical
user interfaces (GUIs) for their application. GUI components facilitate data entry by the
user of your program and formatting or presentation of data outputs to the user of your pro-
gram. For example, Fig. 2.7 contains a Netscape Navigator window. In the window, there
is a bar containing menus (File, Edit, View, etc.), called a menu bar. Below the menu bar
is a set of buttons that each have a defined task in Netscape Navigator. Below the buttons
there is a text field in which the user can type the name of the World Wide Web site to visit.
The menus, buttons and text fields are part of Netscape Navigator’s GUI. They enable you
to interact with the Navigator program. Java contains classes that implement the GUI com-
ponents described here and others that will be described in Chapter 12, Basic Graphical
User Interface Components, and Chapter 13, Advanced Graphical User Interface Compo-
nents.

1 // Fig. 2.6: Welcome4.java
2 // Printing multiple lines in a dialog box
3
4 // Java extension packages
5 import javax.swing.JOptionPane; // import class JOptionPane
6
7 public class Welcome4 {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 JOptionPane.showMessageDialog(
13 null, "Welcome\nto\nJava\nProgramming!");
14
15 System.exit(0); // terminate application
16
17 } // end method main
18
19 } // end class Welcome4

Fig. 2.6Fig. 2.6Fig. 2.6Fig. 2.6 Displaying multiple lines in a dialog box.

Chapter 2 Introduction to Java Applications 67

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

In method main of Fig. 2.6, lines 12–13,

JOptionPane.showMessageDialog(
null, "Welcome\nto\nJava\nProgramming!");

indicate a call to method showMessageDialog of class JOptionPane. The method
requires two arguments. When a method requires multiple arguments, the arguments are
separated with commas (,). Until we discuss JOptionPane in detail in Chapter 13, the
first argument will always be the keyword null. The second argument is the string to dis-
play. The first argument helps the Java application determine where to position the dialog
box. When the first argument is null, the dialog box appears in the center of the computer
screen. Most applications you use on your computer execute in their own window (e.g.,
email programs, Web browsers and word processors). When such an application displays
a dialog box, it normally appears in the center of the application window, which is not nec-
essarily the center of the screen. Later in this book, you will see more elaborate applications
in which the first argument to method showMessageDialog will cause the dialog box
to appear in the center of the application window, rather than the center of the screen.

Good Programming Practice 2.11
Place a space after each comma (,) in an argument list, to make programs more readable. 2.11

Method JOptionPane.showMessageDialog is a special method of class JOp-
tionPane called a static method. Such methods are always called by using their class
name followed by a dot operator (.) and the method name, as in

ClassName.methodName(arguments)

Many of the predefined methods we introduce early in this book are static methods. We
ask you to mimic this syntax for calling static methods until we discuss them in detail
in Chapter 8, Object-Based Programming.

Fig. 2.7Fig. 2.7Fig. 2.7Fig. 2.7 A sample Netscape Navigator window with GUI components.

menu menu barbutton text field

68 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Executing the statement at lines 12–13 displays the dialog box in Fig. 2.8. The title bar
of the dialog contains the string Message, to indicate that the dialog is presenting a mes-
sage to the user. The dialog box automatically includes an OK button that allows the user
to dismiss (hide) the dialog by pressing the button. This is accomplished by positioning the
mouse cursor (also called the mouse pointer) over the OK button and clicking the left
mouse button.

Remember that all statements in Java end with a semicolon (;). Therefore, lines 12–
13 represent one statement. Java allows large statements to be split over many lines. How-
ever, you cannot split a statement in the middle of an identifier or in the middle of a string.

Common Programming Error 2.8
Splitting a statement in the middle of an identifier or a string is a syntax error. 2.8

Line 15,

System.exit(0); // terminate application

uses static method exit of class System to terminate the application. In any applica-
tion that displays a graphical user interface, this line is required in order to terminate the
application. Notice once again the syntax used to call the method—the class name (Sys-
tem), a dot (.) and the method name (exit). Remember that identifiers starting with cap-
ital letters normally represent class names. So, you can assume that System is a class.
Class System is part of the package java.lang. Notice that class System is not im-
ported with an import statement at the beginning of the program. By default, package
java.lang is imported in every Java program. Package java.lang is the only package
in the Java API for which you are not required to provide an import statement.

The argument 0 to method exit indicates that the application has terminated success-
fully. (A nonzero value normally indicates that an error has occurred.) This value is passed
to the command window that executed the program. The argument is useful if the program
is executed from a batch file (on Windows 95/98/ME/NT/2000 systems) or a shell script
(on UNIX/Linux systems). Batch files and shell scripts often execute several programs in
sequence. When the first program ends, the next program begins execution automatically.
It is possible to use the argument to method exit in a batch file or shell script to determine
whether other programs should execute. For more information on batch files or shell
scripts, see your operating system’s documentation.

Fig. 2.8Fig. 2.8Fig. 2.8Fig. 2.8 Message dialog box.

The OK button
allows the user
to dismiss the
dialog box.

The dialog box is
automatically sized
to accommodate
the string.

Title bar

Mouse cursor

Chapter 2 Introduction to Java Applications 69

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Common Programming Error 2.9
Forgetting to call System.exit in an application that displays a graphical user interface
prevents the program from terminating properly. This omission normally results in the com-
mand window preventing you from typing any other commands. Chapter 14 discusses in
more detail the reason that System.exit is required in GUI-based applications. 2.9

2.5 Another Java Application: Adding Integers
Our next application inputs two integers (whole numbers, like –22, 7 and 1024) typed by a
user at the keyboard, computes the sum of the values and displays the result. This program
uses another predefined dialog box from class JOptionPane called an input dialog that
allows the user to input a value for use in the program. The program also uses a message
dialog to display the sum of the integers. Figure 2.9 shows the application and sample
screen captures.

1 // Fig. 2.9: Addition.java
2 // An addition program.
3
4 // Java extension packages
5 import javax.swing.JOptionPane; // import class JOptionPane
6
7 public class Addition {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 String firstNumber; // first string entered by user
13 String secondNumber; // second string entered by user
14 int number1; // first number to add
15 int number2; // second number to add
16 int sum; // sum of number1 and number2
17
18 // read in first number from user as a String
19 firstNumber =
20 JOptionPane.showInputDialog("Enter first integer");
21
22 // read in second number from user as a String
23 secondNumber =
24 JOptionPane.showInputDialog("Enter second integer");
25
26 // convert numbers from type String to type int
27 number1 = Integer.parseInt(firstNumber);
28 number2 = Integer.parseInt(secondNumber);
29
30 // add the numbers
31 sum = number1 + number2;
32
33 // display the results
34 JOptionPane.showMessageDialog(
35 null, "The sum is " + sum, "Results",
36 JOptionPane.PLAIN_MESSAGE);

Fig. 2.9Fig. 2.9Fig. 2.9Fig. 2.9 An addition program “in action” (part 1 of 2).

70 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Lines 1 and 2,

// Fig. 2.9: Addition.java
// An addition program.

are single-line comments stating the figure number, file name and purpose of the program.
Line 4,

// Java extension packages

is a single-line comment specifying that the next line imports a class from the Java exten-
sion packages.

Line 5,

import javax.swing.JOptionPane; // import class JOptionPane

indicates that the compiler should load class JOptionPane for use in this application.
As stated earlier, every Java program consists of at least one class definition. Line 7,

public class Addition {

begins the definition of class Addition. The file name for this public class must be
Addition.java.

Remember that all class definitions start with an opening left brace (at the end of line
7), {, and end with a closing right brace, } (in line 42).

As stated earlier, every application begins execution with method main (lines 10–40).
The left brace (line 11) marks the beginning of main’s body and the corresponding right
brace (line 36) marks the end of main’s body.

Lines 12–13,

String firstNumber; // first string entered by user
String secondNumber; // second string entered by user

37
38 System.exit(0); // terminate application
39
40 } // end method main
41
42 } // end class Addition

Fig. 2.9Fig. 2.9Fig. 2.9Fig. 2.9 An addition program “in action” (part 2 of 2).

Chapter 2 Introduction to Java Applications 71

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

are declarations. The words firstNumber and secondNumber are the names of vari-
ables. A variable is a location in the computer’s memory where a value can be stored for
use by a program. All variables must be declared with a name and a data type before they
can be used in a program. This declaration specifies that the variables firstNumber and
secondNumber are data of type String (located in package java.lang), which
means that the variables will hold strings. A variable name can be any valid identifier. Like
statements, declarations end with a semicolon (;). Notice the single-line comments at the
end of each line. This use and placement of the comments is a common practice used by
programmers to indicate the purpose of each variable in the program.

Good Programming Practice 2.12
Choosing meaningful variable names helps a program to be self-documenting (i.e., it be-
comes easier to understand the program simply by reading it rather than by reading manuals
or viewing an excessive number of comments). 2.12

Good Programming Practice 2.13
By convention, variable-name identifiers begin with a lowercase letter. As with class names,
every word in the name after the first word should begin with a capital letter. For example,
identifier firstNumber has a capital N in its second word, Number. 2.13

Good Programming Practice 2.14
Some programmers prefer to declare each variable on a separate line. This format allows for
easy insertion of a descriptive comment next to each declaration. 2.14

Software Engineering Observation 2.2
Java automatically imports classes from package java.lang, such as class String.
Therefore, import statements are not required for classes in package java.lang. 2.2

Declarations can be split over several lines, with each variable in the declaration sep-
arated by a comma (i.e., a comma-separated list of variable names). Several variables of
the same type may be declared in one declaration or in multiple declarations. Lines 12–13
can also be written as follows:

String firstNumber, // first string entered by user
 secondNumber; // second string entered by user

Lines 14–16,

int number1; // first number to add
int number2; // second number to add
int sum; // sum of number1 and number2

declare that variables number1, number2 and sum are data of type int, which means
that these variables will hold integer values (whole numbers such as 7, –11, 0 and 31,914).
We will soon discuss the data types float and double, for specifying real numbers
(numbers with decimal points, such as 3.4, 0.0 and –11.19), and variables of type char,
for specifying character data. A char variable may hold only a single lowercase letter, a
single uppercase letter, a single digit or a single special character (such as x, $, 7 and *)
and escape sequences (such as the newline character, \n). Java is capable of representing
characters from many other spoken languages. Types such as int, double and char are
often called primitive data types, or built-in data types. Primitive-type names are keywords;

72 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

thus, they must appear in all lowercase letters. Chapter 4 summarizes the eight primitive
types (boolean, char, byte, short, int, long, float and double).

Line 18 is a single-line comment indicating that the next statement reads the first
number from the user. Lines 19–20,

firstNumber =
 JOptionPane.showInputDialog("Enter first integer");

reads from the user a String representing the first of the two integers to add. Method
JOptionPane.showInputDialog displays the input dialog in Fig. 2.10.

The argument to showInputDialog indicates what the user should type in the text
field. This message is called a prompt, because it directs the user to take a specific action.
The user types characters in the text field, and then clicks the OK button or presses the
Enter key to return the string to the program. (If you type and nothing appears in the text
field, position the mouse pointer in the text field and click the left mouse button to activate
the text field.) Unfortunately, Java does not provide a simple form of input that is analogous
to displaying output in the command window with System.out’s method print and
println. For this reason, we normally receive input from a user through a GUI compo-
nent (an input dialog box in this program).

Technically, the user can type anything in the text field of the input. Our program
assumes that the user follows directions and enters a valid integer value. In this program, if
the user either types a noninteger value or clicks the Cancel button in the input dialog, a
runtime logic error will occur. Chapter 14, Exception Handling, discusses how to make
your programs more robust by enabling them to handle such errors. This is also known as
making your program fault tolerant.

The result of JOptionPane method showInputDialog (a String containing
the characters typed by the user) is given to variable firstNumber by using the assign-
ment operator, =. The statement (lines 19–20) is read as “firstNumber gets the value
of JOptionPane.showInputDialog("Enter first integer").” The =
operator is called a binary operator, because it has two operands: firstNumber and the
result of the expression JOptionPane.showInputDialog("Enter first
integer"). This whole statement is called an assignment statement, because it assigns
a value to a variable. The expression to the right side of the assignment operator, =, is
always evaluated first. In this case, the program calls method showInputDialog, and
the value input by the user is assigned to firstNumber.

Fig. 2.10Fig. 2.10Fig. 2.10Fig. 2.10 Input dialog box.

When the user clicks OK,
showInputDialog
returns the 45 typed by
the user to the program
as a String. The
program must convert
the String to an
integer.

Text field in which the
user types a value.

Prompt to the user.

Chapter 2 Introduction to Java Applications 73

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Line 22 is a single-line comment indicating that the next statement reads the second
number from the user.

Lines 23–24,

secondNumber =
 JOptionPane.showInputDialog("Enter second integer");

display an input dialog in which the user types a String representing the second of the
two integers to add.

Lines 27–28,

number1 = Integer.parseInt(firstNumber);
number2 = Integer.parseInt(secondNumber);

convert the two Strings input by the user to int values that the program can use in a
calculation. Method Integer.parseInt (a static method of class Integer) con-
verts its String argument to an integer. Class Integer is defined in package ja-
va.lang. Line 27 assigns the int (integer) value that Integer.parseInt returns to
variable number1. Line 28 assigns the int (integer) value that Integer.parseInt
returns to variable number2.

Line 31,

sum = number1 + number2;

is an assignment statement that calculates the sum of the variables number1 and
number2 and assigns the result to variable sum by using the assignment operator, =. The
statement is read as, “sum gets the value of number1 + number2.” Most calculations are
performed in assignment statements. When the program encounters the addition operation,
it uses the values stored in the variables number1 and number2 to perform the calcula-
tion. In the preceding statement, the addition operator is a binary operator: its two operands
are number1 and number2.

Good Programming Practice 2.15
Place spaces on either side of a binary operator. This format makes the operator stand out
and makes the program more readable. 2.15

After the calculation has been performed, lines 34–36,

JOptionPane.showMessageDialog(
null, "The sum is " + sum, "Results",

 JOptionPane.PLAIN_MESSAGE);

use method JOptionPane.showMessageDialog to display the result of the addi-
tion. This new version of JOptionPane method showMessageDialog requires four
arguments. As in Fig. 2.6, the null first argument indicates that the message dialog will
appear in the center of the screen. The second argument is the message to display. In this
case, the second argument is the expression

"The sum is " + sum

74 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

which uses the operator + to “add” a String (the literal "The sum is ") and the value
of variable sum (the int variable containing the result of the addition on line 31). Java has
a version of the + operator for string concatenation that concatenates a String and a val-
ue of another data type (including another String); the result of this operation is a new
(and normally longer) String. If we assume that sum contains the integer value 117, the
expression evaluates as follows:

1. Java determines that the two operands of the + operator (the string "The sum
is " and the integer sum) are of different types and one of them is a String.

2. Java converts sum to a String.

3. Java appends the String representation of sum to the end of "The sum is ",
resulting in the String "The sum is 117".

Method showMessageDialog displays the resulting String in the dialog box. Note
that the automatic conversion of integer sum occurs only because the addition operation
concatenates the String literal "The sum is " and sum. Also, note that the space be-
tween is and 117 is part of the string "The sum is ". String concatenation is discussed
in detail in Chapter 10, “Strings and Characters.”

Common Programming Error 2.10
Confusing the + operator used for string concatenation with the + operator used for addition
can lead to strange results. For example, assuming that integer variable y has the value 5,
the expression "y + 2 = " + y + 2 results in the string "y + 2 = 52", not "y + 2 = 7",
because first the value of y is concatenated with the string "y + 2 = ", and then the value 2
is concatenated with the new larger string "y + 2 = 5". The expression "y + 2 = " + (y +
2) produces the desired result. 2.10

The third and fourth arguments of method showMessageDialog in Fig. 2.9 repre-
sent the string that should appear in the dialog box’s title bar and the dialog box type,
respectively. The fourth argument—JOptionPane.PLAIN_MESSAGE—is a value
indicating the type of message dialog to display. This type of message dialog does not dis-
play an icon to the left of the message. Figure 2.11 illustrates the second and third argu-
ments and shows that there is no icon in the window.

The message dialog types are shown in Fig. 2.12. All message dialog types except
PLAIN_MESSAGE dialogs display an icon to the user indicating the type of message.

Fig. 2.11Fig. 2.11Fig. 2.11Fig. 2.11 Message dialog box customized with the four-argument version of
method showMessageDialog.

The user clicks OK to
dismiss the dialog.

Argument 2: The
message to display

Argument 3: The title bar string

Chapter 2 Introduction to Java Applications 75

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

2.6 Memory Concepts
Variable names such as number1, number2 and sum actually correspond to locations in
the computer's memory. Every variable has a name, a type, a size and a value.

In the addition program of Fig. 2.9, when the statement

number1 = Integer.parseInt(firstNumber);

executes, the string previously typed by the user in the input dialog and stored in first-
Number is converted to an int and placed into a memory location to which the name
number1 has been assigned by the compiler. Suppose that the user enters the string 45 as
the value for firstNumber. The program converts firstNumber to an int, and the
computer places that integer value, 45, into location number1, as shown in Fig. 2.13.

Whenever a value is placed in a memory location, the value replaces the previous value
in that location. The previous value is destroyed (i.e., lost).

When the statement

number2 = Integer.parseInt(secondNumber);

executes, suppose that the user enters the string 72 as the value for secondNumber. The
program converts secondNumber to an int, and the computer places that integer value,
72, into location number2. The memory appears as shown in Fig. 2.14.

Message dialog type Icon Description

JOptionPane.ERROR_MESSAGE Displays a dialog that indicates an error
to the user.

JOptionPane.INFORMATION_MESSAGE Displays a dialog with an informational
message to the user. The user can sim-
ply dismiss the dialog.

JOptionPane.WARNING_MESSAGE Displays a dialog that warns the user of
a potential problem.

JOptionPane.QUESTION_MESSAGE Displays a dialog that poses a question
to the user. This dialog normally
requires a response, such as clicking on
a Yes or a No button.

JOptionPane.PLAIN_MESSAGE no icon Displays a dialog that simply contains a
message, with no icon.

Fig. 2.12Fig. 2.12Fig. 2.12Fig. 2.12 JOptionPane constants for message dialogs.

Fig. 2.13Fig. 2.13Fig. 2.13Fig. 2.13 Memory location showing the name and value of variable number1.

number1 45

76 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

After the program of Fig. 2.9 obtains values for number1 and number2, it adds the
values and places the sum into variable sum. The statement

sum = number1 + number2;

performs the addition and also replaces sum’s previous value. After sum has been calcu-
lated, memory appears as shown in Fig. 2.15. Note that the values of number1 and
number2 appear exactly as they did before they were used in the calculation of sum.
These values were used, but not destroyed, as the computer performed the calculation.
Thus, when a value is read from a memory location, the process is nondestructive.

2.7 Arithmetic
Most programs perform arithmetic calculations. The arithmetic operators are summarized
in Fig. 2.16. Note the use of various special symbols not used in algebra. The asterisk (*)
indicates multiplication, and the percent sign (%) is the modulus operator, which is dis-
cussed shortly. The arithmetic operators in Fig. 2.16 are binary operators, because they
each operate on two operands. For example, the expression sum + value contains the bi-
nary operator + and the two operands sum and value.

Integer division yields an integer quotient; for example, the expression 7 / 4 evaluates
to 1, and the expression 17 / 5 evaluates to 3. Note that any fractional part in integer divi-
sion is simply discarded (i.e., truncated)—no rounding occurs. Java provides the modulus
operator, %, that yields the remainder after integer division. The expression x % y yields the
remainder after x is divided by y. Thus, 7 % 4 yields 3, and 17 % 5 yields 2. This operator
is most commonly used with integer operands, but also can be used with other arithmetic
types. In later chapters, we consider many interesting applications of the modulus operator,
such as determining if one number is a multiple of another. There is no arithmetic operator
for exponentiation in Java. Chapter 5 shows how to perform exponentiation in Java. [Note:
The modulus operator can be used with both integer and floating-point numbers.]

Fig. 2.14Fig. 2.14Fig. 2.14Fig. 2.14 Memory locations after storing values for number1 and number2.

number1 45

number2 72

Fig. 2.15Fig. 2.15Fig. 2.15Fig. 2.15 Memory locations after calculating the sum of number1 and
number2.

number1 45

number2 72

sum 117

Chapter 2 Introduction to Java Applications 77

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Arithmetic expressions in Java must be written in straight-line form to facilitate
entering programs into the computer. Thus, expressions such as “a divided by b” must be
written as a / b, so that all constants, variables and operators appear in a straight line. The
following algebraic notation is generally not acceptable to compilers:

Parentheses are used in Java expressions in the same manner as in algebraic expres-
sions. For example, to multiply a times the quantity b + c, we write

a * (b + c)

Java applies the operators in arithmetic expressions in a precise sequence determined
by the following rules of operator precedence, which are generally the same as those fol-
lowed in algebra:

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Thus, parentheses may be used to force the order of evaluation to occur in any se-
quence desired by the programmer. Parentheses are at the highest level of prece-
dence. In cases of nested or embedded parentheses, the operators in the innermost
pair of parentheses are applied first.

2. Multiplication, division and modulus operations are applied next. If an expression
contains several multiplication, division or modulus operations, the operators are
applied from left to right. Multiplication, division and modulus operators have the
same level of precedence.

3. Addition and subtraction operations are applied last. If an expression contains sev-
eral addition and subtraction operations, the operators are applied from left to
right. Addition and subtraction operators have the same level of precedence.

The rules of operator precedence enable Java to apply operators in the correct order. When
we say that operators are applied from left to right, we are referring to the associativity of
the operators. We will see that some operators associate from right to left. Figure 2.17 sum-
marizes these rules of operator precedence. This table will be expanded as additional Java
operators are introduced. A complete precedence chart is included in Appendix C.

Java operation Arithmetic operator Algebraic expression Java expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * bm b * m

Division /
x / y or or x ÷ y

x / y

Modulus % r mod s r % s

Fig. 2.16Fig. 2.16Fig. 2.16Fig. 2.16 Arithmetic operators.

x
y
--

a
b

78 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Now, let us consider several expressions in light of the rules of operator precedence.
Each example lists an algebraic expression and its Java equivalent.

The following is an example of an arithmetic mean (average) of five terms:

Algebra:

Java: m = (a + b + c + d + e) / 5;

The parentheses are required, because division has higher precedence than that of addition.
The entire quantity (a + b + c + d + e) is to be divided by 5. If the parentheses are er-
roneously omitted, we obtain a + b + c + d + e / 5, which evaluates as

The following is an example of the equation of a straight line:

Algebra:

Java: y = m * x + b;

No parentheses are required. The multiplication operator is applied first, because multipli-
cation has a higher precedence than that of addition. The assignment occurs last, because it
has a lower precedence than that of multiplication and division.

The following example contains modulus (%), multiplication, division, addition and
subtraction operations:

Algebra:

Java: z = p * r % q + w / x - y;

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses on the same
level (i.e., not nested), they are evaluated left to right.

*, / and % Multiplication
Division
Modulus

Evaluated second. If there are several of this type of
operator, they are evaluated from left to right.

+ or - Addition
Subtraction

Evaluated last. If there are several of this type of oper-
ator, they are evaluated from left to right.

Fig. 2.17Fig. 2.17Fig. 2.17Fig. 2.17 Precedence of arithmetic operators.

m a b c d e+ + + +
5

---------------------------------------=

a b c d e
5
---+ + + +

y mx b+=

z pr%q w/x y–+=

1 2 4 3 56

Chapter 2 Introduction to Java Applications 79

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

The circled numbers under the statement indicate the order in which Java applies the oper-
ators. The multiplication, modulus and division operations are evaluated first in left-to-
right order (i.e., they associate from left to right), because they have higher precedence than
that of addition and subtraction. The addition and subtraction operations are evaluated next.
These operations are also applied from left to right.

Not all expressions with several pairs of parentheses contain nested parentheses. For
example, the expression

a * (b + c) + c * (d + e)

does not contain nested parentheses. Rather, these parentheses are on the same level.
To develop a better understanding of the rules of operator precedence, consider the

evaluation of a second-degree polynomial (y = ax2 + bx + c):

y = a * x * x + b * x + c;

The circled numbers under the preceding statement indicate the order in which Java applies
the operators. There is no arithmetic operator for exponentiation in Java; x2 is represented
as x * x.

Suppose that a, b, c and x are initialized as follows: a = 2, b = 3, c = 7 and x = 5.
Figure 2.18 illustrates the order in which the operators are applied in the preceding second-
degree polynomial.

As in algebra, it is acceptable to place unnecessary parentheses in an expression to
make the expression clearer. Such unnecessary parentheses are also called redundant
parentheses. For example, the preceding assignment statement might be parenthesized as
follows:

 y = (a * x * x) + (b * x) + c;

Good Programming Practice 2.16
Using parentheses for complex arithmetic expressions, even when the parentheses are not
necessary, can make the arithmetic expressions easier to read. 2.16

2.8 Decision Making: Equality and Relational Operators
This section introduces a simple version of Java’s if structure that allows a program to
make a decision based on the truth or falsity of some condition. If the condition is met (i.e.,
the condition is true), the statement in the body of the if structure is executed. If the con-
dition is not met (i.e., the condition is false), the body statement does not execute. We will
see an example shortly.

Conditions in if structures can be formed by using the equality operators and rela-
tional operators summarized in Fig. 2.19. The relational operators all have the same level
of precedence and associate from left to right. The equality operators both have the same
level of precedence, which is lower than the precedence of the relational operators. The
equality operators also associate from left to right.

16 2 4 3 5

80 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Fig. 2.18Fig. 2.18Fig. 2.18Fig. 2.18 Order in which a second-degree polynomial is evaluated.

Standard algebraic
equality or
relational operator

Java equality
or relational
operator

Example
of Java
condition

Meaning of
Java condition

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Fig. 2.19Fig. 2.19Fig. 2.19Fig. 2.19 Equality and relational operators.

y = 2 * 5 * 5 + 3 * 5 + 7;

 2 * 5 is 10 (Leftmost multiplication)

y = 10 * 5 + 3 * 5 + 7;

 10 * 5 is 50 (Leftmost multiplication)

y = 50 + 3 * 5 + 7;

 3 * 5 is 15 (Multiplication before addition)

y = 50 + 15 + 7;

 50 + 15 is 65 (Leftmost addition)

y = 65 + 7;

 65 + 7 is 72 (Last addition)

y = 72; (Last operation—place 72 into y)

Step 1.

Step 2.

Step 5.

Step 3.

Step 4.

Step 6.

Chapter 2 Introduction to Java Applications 81

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Common Programming Error 2.11
It is a syntax error if the operators ==, !=, >= and<= contain spaces between their symbols,
as in = =, ! =, > = and < =, respectively. 2.11

Common Programming Error 2.12
Reversing the operators !=, >= and <=, as in =!, => and =<, is a syntax error. 2.12

Common Programming Error 2.13
Confusing the equality operator, ==, with the assignment operator, =, can be a logic error
or a syntax error. The equality operator should be read as “is equal to,” and the assignment
operator should be read as “gets” or “gets the value of.” Some people prefer to read the
equality operator as “double equals” or “equals equals.” 2.13

The next example uses six if structures to compare two numbers input into text fields
by the user. If the condition in any of these if statements is true, the assignment statement
associated with that if structure executes. The user inputs two values through input dia-
logs. Next, the program converts the input values to integers and stores them in variables
number1 and number2. Then, the program compares the numbers and displays the
results of the comparisons in an information dialog. The program and sample outputs are
shown in Fig. 2.20.

1 // Fig. 2.20: Comparison.java
2 // Compare integers using if structures, relational operators
3 // and equality operators.
4
5 // Java extension packages
6 import javax.swing.JOptionPane;
7
8 public class Comparison {
9

10 // main method begins execution of Java application
11 public static void main(String args[])
12 {
13 String firstNumber; // first string entered by user
14 String secondNumber; // second string entered by user
15 String result; // a string containing the output
16 int number1; // first number to compare
17 int number2; // second number to compare
18
19 // read first number from user as a string
20 firstNumber =
21 JOptionPane.showInputDialog("Enter first integer:");
22
23 // read second number from user as a string
24 secondNumber =
25 JOptionPane.showInputDialog("Enter second integer:");
26

Fig. 2.20Fig. 2.20Fig. 2.20Fig. 2.20 Using equality and relational operators (part 1 of 3).

82 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

27 // convert numbers from type String to type int
28 number1 = Integer.parseInt(firstNumber);
29 number2 = Integer.parseInt(secondNumber);
30
31 // initialize result to empty String
32 result = "";
33
34 if (number1 == number2)
35 result = number1 + " == " + number2;
36
37 if (number1 != number2)
38 result = number1 + " != " + number2;
39
40 if (number1 < number2)
41 result = result + "\n" + number1 + " < " + number2;
42
43 if (number1 > number2)
44 result = result + "\n" + number1 + " > " + number2;
45
46 if (number1 <= number2)
47 result = result + "\n" + number1 + " <= " + number2;
48
49 if (number1 >= number2)
50 result = result + "\n" + number1 + " >= " + number2;
51
52 // Display results
53 JOptionPane.showMessageDialog(
54 null, result, "Comparison Results",
55 JOptionPane.INFORMATION_MESSAGE);
56
57 System.exit(0); // terminate application
58
59 } // end method main
60
61 } // end class Comparison

Fig. 2.20Fig. 2.20Fig. 2.20Fig. 2.20 Using equality and relational operators (part 2 of 3).

Chapter 2 Introduction to Java Applications 83

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

The definition of application class Comparison begins at line 8,

public class Comparison {

As discussed previously, method main (lines 11–59) begins the execution of every Java
application.

Lines 13–17,

String firstNumber; // first string entered by user
String secondNumber; // second string entered by user
String result; // a string containing the output
int number1; // first number to compare
int number2; // second number to compare

declare the variables used in method main. Note that there are three variables of type
String and two variables of type int. Remember that variables of the same type may be
declared in one declaration or in multiple declarations. If more than one name is declared
in a declaration, the names are separated by commas (,), as in

String firstNumber, secondNumber, result;

Fig. 2.20Fig. 2.20Fig. 2.20Fig. 2.20 Using equality and relational operators (part 3 of 3).

84 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

or as in

String firstNumber,
 secondNumber,
 result;

This is set of names known as a comma-separated list. Once again, notice the comment at
the end of each declaration in lines 13–17, indicating the purpose of each variable in the
program.

Lines 20–21,

firstNumber =
 JOptionPane.showInputDialog("Enter first integer:");

use JOptionPane.showInputDialog to allow the user to input the first integer val-
ue as a string and store it in firstNumber.

Lines 24–25,

secondNumber =
 JOptionPane.showInputDialog("Enter second integer:");

use JOptionPane.showInputDialog to allow the user to input the second integer
value as a string and store it in secondNumber.

Lines 28–29,

number1 = Integer.parseInt(firstNumber);
number2 = Integer.parseInt(secondNumber);

convert each string input by the user in the input dialogs to type int and assign the values
to int variables number1 and number2.

Line 32,

result = "";

assigns to result the empty string—a string containing no characters. Every variable de-
clared in a method (such as main) must be initialized (given a value) before it can be used
in an expression. Because we do not yet know what the final result string will be, we
assign to result the empty string as a temporary initial value.

Common Programming Error 2.14
Not initializing a variable defined in a method before that variable is used in the method’s
body is a syntax error. 2.14

Lines 34–35,

if (number1 == number2)
 result = result + number1 + " == " + number2;

define an if structure that compares the values of the variables number1 and number2
to determine if they are equal. The if structure always begins with keyword if, followed
by a condition in parentheses. The if structure expects one statement in its body. The in-
dentation shown here is not required, but it improves the readability of the program by em-
phasizing that the statement in line 35 is part of the if structure that begins on line 34.

Chapter 2 Introduction to Java Applications 85

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Good Programming Practice 2.17
Indent the statement i7n the body of an if structure to make the body of the structure stand
out and to enhance program readability. 2.17

Good Programming Practice 2.18
Place only one statement per line in a program. This format enhances program readability 2.18

In the preceding if structure, if the values of variables number1 and number2 are
equal, line 35 assigns to result the value of result + number1 + " == " +
number2. As discussed in Fig. 2.9, the + operator in this expression performs string con-
catenation. For this discussion, we assume that each of the variables number1 and
number2 has the value 123. First, the expression converts number1’s value to a string
and appends it to result (which currently contains the empty string) to produce the string
"123". Next, the expression appends " == " to "123" to produce the string "123 == ".
Finally, the expression appends number2 to "123 == " to produce the string
"123 == 123". The String result becomes longer as the program proceeds through
the if structures and performs more concatenations. For example, given the value 123 for
both number1 and number2 in this discussion, the if conditions at lines 46–47 (<=) and
49–50 (>=) are also true. So, the program displays the result

123 == 123
123 <= 123
123 >= 123

in a message dialog.

Common Programming Error 2.15
Replacing operator == in the condition of an if structure, such as if (x == 1), with op-
erator =, as in if (x = 1), is a syntax error. 2.15

Common Programming Error 2.16
Forgetting the left and right parentheses for the condition in an if structure is a syntax er-
ror. The parentheses are required. 2.16

Notice that there is no semicolon (;) at the end of the first line of each if structure.
Such a semicolon would result in a logic error at execution time. For example,

if (number1 == number2); // logic error
 result = result + number1 + " == " + number2;

would actually be interpreted by Java as

if (number1 == number2)
 ;

result = result + number1 + " == " + number2;

where the semicolon on the line by itself—called the empty statement—is the statement to
execute if the condition in the if structure is true. When the empty statement executes, no
task is performed in the program. The program then continues with the assignment state-
ment, which executes regardless of whether the condition is true or false.

86 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Common Programming Error 2.17
Placing a semicolon immediately after the right parenthesis of the condition in an if struc-
ture is normally a logic error. The semicolon will cause the body of the if structure to be
empty, so the if structure itself will perform no action, regardless of whether its condition
is true. Worse yet, the intended body statement of the if structure will now become a state-
ment in sequence with the if structure and will always be executed. 2.17

Notice the use of spacing in Fig. 2.20. Remember that white-space characters, such as
tabs, newlines and spaces, are normally ignored by the compiler. So, statements may be
split over several lines and may be spaced according to the programmer’s preferences
without affecting the meaning of a program. It is incorrect to split identifiers and string lit-
erals. Ideally, statements should be kept small, but it is not always possible to do so.

Good Programming Practice 2.19
A lengthy statement may be spread over several lines. If a single statement must be split
across lines, choose breaking points that make sense, such as after a comma in a comma-
separated list, or after an operator in a lengthy expression. If a statement is split across two
or more lines, indent all subsequent lines until the end of the statement. 2.19

The chart in Fig. 2.21 shows the precedence of the operators introduced in this chapter.
The operators are shown from top to bottom in decreasing order of precedence. Notice that
all of these operators, with the exception of the assignment operator, =, associate from left
to right. Addition is left associative, so an expression like x + y + z is evaluated as if it had
been written as (x + y) + z. The assignment operator, =, associates from right to left, so
an expression like x = y = 0 is evaluated as if it had been written as x = (y = 0), which,
as we will soon see, first assigns the value 0 to variable y and then assigns the result of that
assignment, 0, to x.

Good Programming Practice 2.20
Refer to the operator precedence chart (see the complete chart in Appendix C) when writing
expressions containing many operators. Confirm that the operations in the expression are
performed in the order you expect. If you are uncertain about the order of evaluation in a
complex expression, use parentheses to force the order, exactly as you would do in algebraic
expressions. Be sure to observe that some operators, such as assignment, =, associate from
right to left rather than from left to right. 2.20

Operators Associativity Type

() left to right parentheses

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

= right to left assignment

Fig. 2.21Fig. 2.21Fig. 2.21Fig. 2.21 Precedence and associativity of the operators discussed so far.

Chapter 2 Introduction to Java Applications 87

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

We have introduced many important features of Java in this chapter, including dis-
playing data on the screen, inputting data from the keyboard, performing calculations and
making decisions. We should note that these applications are meant to introduce the reader
to basic programming concepts. As you will see in later chapters, more substantial Java
applications contain just a few lines of code in method main that creates the objects that
perform the work of the application. In Chapter 3, we demonstrate many similar techniques
as we introduce Java applet programming. In Chapter 4, we build on the techniques of
Chapter 2 and Chapter 3 as we introduce structured programming. You will become more
familiar with indentation techniques. We will study how to specify and vary the order in
which statements are executed; this order is called flow of control.

2.9 (Optional Case Study) Thinking About Objects: Examining
the Problem Statement
Now we begin our optional, object-oriented design and implementation case study. The
“Thinking About Objects” sections at the ends of this and the next several chapters will ease
you into object orientation by examining an elevator simulation case study. This case study
will provide you with a substantial, carefully paced, complete design and implementation ex-
perience. In Chapters 3 through 13, Chapter 15 and Chapter 22, we will perform the various
steps of an object-oriented design (OOD) process using the UML while relating to the object-
oriented concepts discussed in the chapters. In Appendices G, H and I, we will implement the
elevator simulator using the techniques of object-oriented programming (OOP) in Java. We
present the complete case-study solution. This is not an exercise; rather, it is an end-to-end
learning experience that concludes with a detailed walkthrough of the actual Java code. We
have provided this case study so that you can become accustomed to the kinds of substantial
problems encountered in industry. We hope you enjoy this learning experience.

Problem Statement
A company intends to build a two-floor office building and equip it with an elevator. The
company wants you to develop an object-oriented software-simulator application in Java
that models the operation of the elevator to determine whether it will meet the company’s
needs. The company wants the simulation to contain an elevator system. The application
consists of three parts. The first and most substantial part is the simulator, which models the
operation of the elevator system. The second part is the display of this model on screen so
that the user may view it graphically. The final part is the graphical user interface, or GUI,
that allows the user to control the simulation. Our design and implementation will follow
the so-called Model-View-Controller architecture we will learn about in Section 13.17.

The elevator system consists of an elevator shaft and an elevator car. In our simulation,
we model people who ride the elevator car (referred to as “the elevator”) to travel between
the floors in the elevator shaft, as shown in Fig. 2.22, Fig. 2.23 and Fig. 2.24.

The elevator contains a door (called the “elevator door”) that opens upon the elevator’s
arrival at a floor and closes upon the elevator’s departure from that floor. The elevator door
is closed during the trips between floors to prevent the passenger from being injured by
brushing against the wall of the elevator shaft. In addition, the elevator shaft connects to a
door on each floor (referred to as the two “floor doors”), so people cannot fall down the
shaft when the elevator is not at a floor. Note that we do not display the floor doors in the
figures, because they would obscure the inside of the elevator (we use a mesh door to rep-

88 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

resent the elevator door because mesh allows us to see inside the elevator). The floor door
opens concurrently with the elevator door, so it appears as if both doors open at the same
time. A person sees only one door, depending on that person’s location. When the person
is inside the elevator, the person sees the elevator door and can exit the elevator when this
door opens; when the person is outside the elevator, the person sees the floor door and can
enter the elevator when that door opens1.

The elevator starts on the first floor with all the doors closed. To conserve energy, the
elevator moves only when necessary. For simplicity, the elevator and floors each have a
capacity of only one person.2

The user of our application should, at any time, be able to create a unique person in the
simulation and situate that person on either the first or second floor (Fig. 2.22). When cre-
ated, the person walks across the floor to the elevator. The person then presses a button on
the floor next to the elevator shaft (referred to as a “floor button”). When pressed, that floor
button illuminates, then requests the elevator. When summoned, the elevator travels to the
person’s floor. If the elevator is already on that person’ floor, the elevator does not travel.
Upon arrival, the elevator resets the button inside the elevator (called the “elevator
button”), sounds the bell inside the elevator, then opens the elevator door (which opens the
floor door on that floor). The elevator then signals the elevator shaft of the arrival. The ele-
vator shaft, upon receiving this message, resets the floor button and illuminates the light on
that floor.

Occasionally, a person requests the elevator when it is moving. If the request was gen-
erated at the floor from which the elevator just departed, the elevator must “remember” to
revisit that floor after carrying the current passenger to the other floor.

When the floor door opens, the person enters the elevator after the elevator passenger
(if there is one) exits. If a person neither enters nor requests the elevator, the elevator closes
its door and remains on that floor until the next person presses a floor button to summon
the elevator.

When a person enters the elevator, that person presses the elevator button, which also
illuminates when pressed. The elevator closes its door (which also closes the floor door on
that floor) and moves to the opposite floor. The elevator takes five seconds to travel
between floors. When the elevator arrives at the destination floor, the elevator door opens
(along with the floor door on that floor) and the person exits the elevator.

The application user introduces a person onto the first or second floor by pressing the
First Floor button or the Second Floor button, respectively. When the user presses the
First Floor button, a person should be created (by the elevator simulation) and positioned
on the first floor of the building. When the user presses the Second Floor button, a person
should be created and positioned on the second floor. Over time, the user can create any
number of people in the simulation, but the user cannot create a new person on an occupied
floor. For example, Fig. 2.22 shows that the First Floor button is disabled to prevent the
user from creating more than one person on the first floor. Figure 2.23 shows that this
button is reenabled when the person rides the elevator.

1. Most people do not consider this when riding an elevator—they really think of one “elevator
door,” when in reality, there is a door in the elevator and a door on the floor, and these doors open
and close in tandem.

2. After you have studied this case study, you may want to modify it to allow more than one person
to ride the elevator at once and more than one person to wait on each floor at once.

Chapter 2 Introduction to Java Applications 89

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Fig. 2.22Fig. 2.22Fig. 2.22Fig. 2.22 Person moving towards elevator on the first floor.

Fig. 2.23Fig. 2.23Fig. 2.23Fig. 2.23 Person riding the elevator to the second floor.

First floor

Second floor Lights

Person walking
to elevator

Elevator

Elevator shaft

Elevator door

Floor buttons

GUI button

Elevator button

Bell

(Disabled) GUI button

90 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

The company requests that we display the results of the simulation graphically, as
shown in Fig. 2.22, Fig. 2.23 and Fig. 2.24. At various points in time, the screen should dis-
play a person walking to the elevator, pressing a button and entering, riding and exiting the
elevator. The display also should also show the elevator moving, the doors opening, the
lights turning on and off, the buttons illuminating when they are pressed and the buttons
darkening when they are reset.

The company requests that audio be integrated into the simulation. For example, as a
person walks, the application user should hear the footsteps. Each time a floor or elevator
button is pressed or reset, the user should hear a click. The bell should ring upon the ele-
vator’s arrival, and doors should creak when they open or close. Lastly, “elevator music”
should play as the elevator travels between floors.

Analyzing and Designing the Elevator System
We must analyze and design our system before we implement it as Java code. The output
of the analysis phase is intended to specify clearly in a requirements document what the
system is supposed to do. The requirements document for this case study is essentially the
description of what the elevator simulator is supposed to do—presented informally in the
last few pages. The output of the design phase should specify clearly how the system should
be constructed to do what is needed. In the next several “Thinking About Objects” sections,
we perform the steps of an object-oriented design (OOD) process on the elevator system.
The UML is designed for use with any OOD process—many such processes exist. One
popular method is the Rational Unified Process™ developed by Rational Software Corpo-
ration. For this case study, we present our own simplified design process. For many of our
readers, this will be their first OOD/UML experience.

Fig. 2.24Fig. 2.24Fig. 2.24Fig. 2.24 Person walking away from elevator.

Person exiting and walking
away on floor

Floor light lit when
elevator arrives

Elevator door open

Chapter 2 Introduction to Java Applications 91

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

We now begin the design phase of our elevator system, which will span Chapters 2
through 13, Chapter 15 and Chapter 22, in which we gradually develop the design.
Appendices G, H and I present the complete Java implementation.

 A system is a set of components that interact to solve a problem. In our case study, the
elevator-simulator application represents the system. A system may contain “subsystems,”
which are “systems within a system.” Subsystems simplify the design process by managing
subsets of system responsibilities. System designers may allocate system responsibilities
among the subsystems, design the subsystems, then integrate the subsystems with the
overall system. Our elevator-simulation system contains three subsystems, which are
defined in the problem statement:

1. the simulator model (which represents the operation of the elevator system),

2. the display of this model on screen (so that the user may view it graphically), and

3. the graphical user interface (that allows the user to control the simulation).

We develop the simulator model gradually through Chapter 15 and present the imple-
mented model in Appendix H. We discuss the GUI components allowing the user to control
the model in Chapter 12 and introduce how the subsystems work together to form the
system in Chapter 13. Finally, we introduce how to display the simulator model on the
screen in Chapter 22 and conclude the display in Appendix I.

System structure describes the system’s objects and their inter-relationships. System
behavior describes how the system changes as its objects interact with each other. Every
system has both structure and behavior—we must design both. However, there are several
distinct types of system structures and behaviors. For example, the interaction among the
objects in the system differs from the interaction between the user and the system, yet both
are interactions that constitute the system behavior.

The UML specifies nine types of diagrams for modeling systems. Each diagram
models a distinct characteristic of a system’s structure or behavior—the first four diagrams
relate to system structure; the remaining five diagrams relate to system behavior:

1. Class diagram

2. Object diagram

3. Component diagram

4. Deployment diagram

5. Activity diagram

6. Statechart diagram

7. Collaboration diagram

8. Sequence diagram

9. Use-Case diagram

Class diagrams, which we explain in “Thinking About Objects” Section 3.8, model
the classes, or “building blocks,” used to build a system. Each entity in the problem state-
ment is a candidate to be a class in the system (i.e., Person, Elevator, Floor, etc.).

Object diagrams, which we also explain in Section 3.8, model a “snapshot” of the
system by modeling a system’s objects and their relationships at a specific point in time.
Each object represents an instance of a class from the class diagram (e.g., the elevator

92 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

object is an instance of class Elevator), and there may be several objects created from
one class (e.g., both the first floor button object and the second floor button object are cre-
ated from class FloorButton).

Component diagrams, presented in Section 13.17, model the components—resources
(which include graphics and audio) and packages (which are groups of classes)—that make
up the system.

Deployment diagrams model the runtime requirements of the system (such as the com-
puter or computers on which the system will reside), memory requirements for the system,
or other devices the system requires during execution. We do not present deployment dia-
grams in this case study, because we are not designing a “hardware-specific” system—our
simulation requires only one computer containing the Java 2 runtime environment on
which to run.

Statechart diagrams, which we introduce in Section 5.11, model how an object
changes state (i.e., the condition of an object at a specific time). When an object changes
state, that object may behave differently in the system.

Activity diagrams, which we also introduce in Section 5.11, model an object’s
activity—that object’s workflow during program execution. An activity diagram is a flow-
chart that models the actions the object will perform and in what order.

Both collaboration diagrams and sequence diagrams model the interactions among
the objects in a system. Collaboration diagrams emphasize what interactions occur,
whereas sequence diagrams emphasize when interactions occur. We introduce these dia-
grams in Section 7.10 and Section 15.12, respectively.

Use-Case diagrams represent the interaction between the user and our system (i.e., all
actions the user may perform on the system). We introduce use-case diagrams in
Section 12.16, where we discuss user-interface issues.

In “Thinking About Objects” Section 3.17, we continue designing our elevator system
by identifying the classes in the problem statement. We accomplish this by extracting all
the nouns and noun clauses from the problem statement. Using these classes, we develop a
class diagram that models the structure of our elevator simulation system.

Internet and World-Wide-Web Resources
Listed below are URLs and books on object-oriented design with the UML—you may find
these references helpful as you study the remaining sections of our case-study presentation.

www.omg.com/technology/uml/index.htm
This is the UML resourse page from the Object Management Group, which provides specifications
for various object-oriented technologies, such as the UML.

www.smartdraw.com/drawing/software/indexUML.asp
This site shows how to draw UML diagrams without the use of modeling tools.

www.rational.com/uml/index.jsp
This is the UML resource page for Rational Software Corporation—the company that created the
UML.

microgold.com/Stage/UML_FAQ.html
This site provides the UML FAQ maintained by Rational Software.

www.softdocwiz.com/Dictionary.htm
This site hosts the Unified Modeling Language Dictionary, which lists and defines all terms used in
the UML.

Chapter 2 Introduction to Java Applications 93

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

www.embarcadero.com
This site provides a free 30-day license to download a trial-version of Describe™— the new UML
modeling tool from Embarcadero Technologies®.

www.ics.uci.edu/pub/arch/uml/uml_books_and_tools.html
This site lists books on the UML and software tools that use the UML, such as Rational Rose™ and
Embarcadero Describe™.

www.ootips.org/ood-principles.html
This site provides answers to the question “what makes good OOD?”

wdvl.internet.com/Authoring/Scripting/Tutorial/oo_design.html
This site introduces OOD and provides OOD resources.

Bibliography
Booch, G., Object-Oriented Analysis and Design with Applications. Addison-Wesley. Massachu-

setts; 1994.

Folwer, M., and Scott, K., UML Distilled Second Edition; A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley. Massachusetts; 1999.

Larman, C., Applying UML and Patterns; An Introduction to Object-Oriented Analysis and Design.
Prentice Hall. New Jersey; 1998.

Page-Jones, M., Fundamentals of Object-Oriented Design in UML. Addison-Wesley. Massachusetts;
1999.

Rumbaugh, J.; Jacobson, I.; and Booch, G., The Unified Modeling Language Reference Manual.
Addison-Wesley. Massachusetts; 1999.

Rumbaugh, J.; Jacobson, I.; and Booch, G., The Unified Modeling Language User Guide. Addison-
Wesley. Massachusetts; 1999.

Rumbaugh, J.; Jacobson, I.; and Booch, G., The Complete UML Training Course. Prentice Hall.
New Jersey; 2000.

Rumbaugh, J.; Jacobson, I.; and Booch, G., The Unified Software Development Process. Addison-
Wesley. Massachusetts; 1999.

Rosenburg, D., and Scott, K., Applying Use Case Driven Object Modeling with UML: An Annotated
e-Commerce Example. Addison-Wesley. Massachusetts; 2001.

Schach, S., Object-Oriented and Classical Software Engineering. McGraw Hill. New York; 2001.

Schneider, G., and Winters, J., Applying Use Cases. Addison-Wesley. Massachusetts; 1998.

Scott, K., UML Explained. Addison-Wesley. Massachusetts; 2001.

Stevens, P., and Pooley, R.J., Using UML: Software Engineering with Objects and Components
Revised Edition. Addison-Wesley; 2000.

SUMMARY
• An application is a program that executes using the java interpreter.

• A comment that begins with // is called a single-line comment. Programmers insert comments to
document programs and improve program readability.

• A string of characters contained between double quotation marks is called a string, a character
string, a message or a string literal.

• Blank lines, space characters, newline characters and tab characters are known as white-space
characters. White-space characters outside strings are ignored by the compiler.

94 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

• Keyword class introduces a class definition and is immediately followed by the class name.

• Keywords (or reserved words) are reserved for use by Java. Keywords must appear in all lower-
case letters.

• By convention, all class names in Java begin with a capital letter. If a class name contains more
than one word, the first letter of each word should be capitalized.

• An identifier is a series of characters consisting of letters, digits, underscores (_) and dollar signs
($) that does not begin with a digit, does not contain any spaces and is not a keyword.

• Java is case sensitive—that is, uppercase and lowercase letters are different.

• A left brace, {, begins the body of every class definition. A corresponding right brace, }, ends each
class definition.

• Java applications begin executing at method main.

• Methods are able to perform tasks and return information when they complete their tasks.

• The first line of method main must be defined as

public static void main(String args[])

• A left brace, {, begins the body of a method definition. A corresponding right brace, }, ends the
method definition’s body.

• System.out is known as the standard output object. System.out allows Java applications to
display strings and other types of information in the command window from which the Java appli-
cation executes.

• The escape sequence \n indicates a newline character. Other escape sequences include \t (tab),
\r (carriage return), \\ (backslash) and \" (double quote).

• Method println of the System.out object displays (or prints) a line of information in the
command window. When println completes its task, it automatically positions the output cur-
sor to the beginning of the next line in the command window.

• Every statement must end with a semicolon (also known as the statement terminator).

• The difference between System.out’s print and println methods is that print does not
position to the beginning of the next line in the command window when it finishes displaying its
argument. The next character displayed in the command window appears immediately after the
last character displayed with print.

• Java contains many predefined classes that are grouped into categories of related classes called
packages. The packages are referred to collectively as the Java class library or the Java applica-
tions programming interface (Java API).

• Class JOptionPane is defined in package javax.swing. Class JOptionPane contains
methods that display dialog boxes.

• The compiler uses import statements to locate classes required to compile a Java program.

• The javax.swing package contains many classes that help define a graphical user interface
(GUI) for an application. GUI components facilitate data entry by the user of a program and data
outputs by a program.

• Method showMessageDialog of class JOptionPane displays a dialog box containing a
message to the user.

• A static method is called by following its class name by a dot (.) and the name of the method.

• Method exit of class System terminates an application. Class System is in package ja-
va.lang. All Java programs import package java.lang by default.

Chapter 2 Introduction to Java Applications 95

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

• A variable is a location in the computer’s memory where a value can be stored for use by a pro-
gram. The name of a variable is any valid identifier.

• All variables must be declared with a name and a data type before they can be used in a program.

• Declarations end with a semicolon (;) and can be split over several lines, with each variable in the
declaration separated by a comma (forming a comma-separated list of variable names).

• Variables of type int hold integer values (whole numbers such as 7, –11, 0 and 31,914).

• Types such as int, float, double and char are primitive data types. Names of primitive data
types are keywords of the Java programming language.

• A prompt directs the user to take a specific action.

• A variable is assigned a value by using an assignment statement, which uses the assignment oper-
ator, =. The = operator is called a binary operator, because it has two operands.

• Method Integer.parseInt (a static method of class Integer) converts its String ar-
gument to an int value.

• Java has a version of the + operator for string concatenation that enables a string and a value of
another data type (including another string) to be concatenated.

• Every variable has a name, a type, a size and a value.

• When a value is placed in a memory location, the value replaces the value previously in that loca-
tion. When a value is read out of a memory location, the variable’s value remains unchanged.

• The arithmetic operators are binary operators, because they operate on two operands.

• Integer division yields an integer result.

• Arithmetic expressions in Java must be written in straight-line form to facilitate entering programs
into the computer.

• Operators in arithmetic expressions are applied in a precise sequence determined by the rules of
operator precedence.

• Parentheses may be used to force the order of evaluation of operators.

• When we say that operators are applied from left to right, we are referring to the associativity of
the operators. Some operators associate from right to left.

• Java’s if structure allows a program to make a decision based on the truth or falsity of a condition.
If the condition is met (i.e., the condition is true), the statement in the body of the if structure ex-
ecutes. If the condition is not met (i.e., the condition is false), the body statement does not execute.

• Conditions in if structures can be formed by using the equality operators and relational operators.

• The empty string is a string containing no characters.

• Every variable declared in a method must be initialized before it can be used in an expression.

TERMINOLOGY
addition operator (+) body of a class definition
applet body of a method definition
application braces ({ and })
argument to a method case sensitive
arithmetic operators character string
assignment operator (=) class
assignment statement class definition
associativity of operators .class file extension
backslash (\) escape character class keyword
binary operator class name

96 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

command tool main method
command window memory
comma-separated list memory location
comment (//) message
compilation error message dialog
compile error method
compiler Microsoft Internet Explorer browser
compile-time error modulus operator (%)
condition mouse cursor
decision mouse pointer
declaration MS-DOS Prompt
dialog multiple-line comment
dialog box multiplication operator (*)
division operator (/) nested parentheses
document a program Netscape Navigator browser
empty string ("") newline character (\n)
equality operators
 == “is equal to”
 != “is not equal to”

object
operand
operator

escape sequence package
exit method of System parentheses ()
false parseInt method of class Integer
graphical user interface (GUI) precedence
identifier primitive data type
if structure programmer-defined class
import statement prompt
input dialog public keyword
int primitive type relational operators

 < “is less than”
 <= “is less than or equal to”
 > “is greater than
 >= “is greater than or equal to”

integer (int)
Integer class
integer division
interpreter
Java reserved words
Java 2 Software Development Kit (J2SDK) right brace, }, ends the body of a class
Java applications programming interface (API) right brace, }, ends the body of a method
Java class library right-to-left associativity
Java documentation comment rules of operator precedence
.java file extension semicolon (;) statement terminator
java interpreter shell tool
java.lang package showInputDialog method of JOptionPane
javax.swing package showMessageDialog method of

 JOptionPaneJOptionPane class
JOptionPane.ERROR_MESSAGE single-line comment
JOptionPane.INFORMATION_MESSAGE standard output object
JOptionPane.PLAIN_MESSAGE statement
JOptionPane.QUESTION_MESSAGE statement terminator (;)
JOptionPane.WARNING_MESSAGE static method
left brace, {, begins the body of a class straight-line form
left brace, {, begins the body of a method string
literal String class

Chapter 2 Introduction to Java Applications 97

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

SELF-REVIEW EXERCISES
2.1 Fill in the blanks in each of the following statements:

a) The begins the body of every method, and the ends the body of
every method.

b) Every statement ends with a .
c) The structure is used to make decisions.
d) begins a single-line comment.
e) , , and are called white-space characters.
f) Class contains methods that display message dialogs and input dialogs.
g) are reserved for use by Java.
h) Java applications begin execution at method .
i) Methods and display information in the command window.
j) A method is always called using its class name followed by a dot (.) and its

method name.

2.2 State whether each of the following is true or false. If false, explain why.
a) Comments cause the computer to print the text after the // on the screen when the pro-

gram is executed.
b) All variables must be given a type when they are declared.
c) Java considers the variables number and NuMbEr to be identical.
d) The modulus operator (%) can be used only with integer operands.
e) The arithmetic operators *, /, %, + and - all have the same level of precedence.
f) Method Integer.parseInt converts an integer to a String.

2.3 Write Java statements to accomplish each of the following tasks:
a) Declare variables c, thisIsAVariable, q76354 and number to be of type int.
b) Display a dialog asking the user to enter an integer.
c) Convert a String to an integer, and store the converted value in integer variable age.

Assume that the String is stored in value.
d) If the variable number is not equal to 7, display "The variable number is not

equal to 7" in a message dialog. [Hint: Use the version of the message dialog that re-
quires two arguments.]

e) Print the message "This is a Java program" on one line in the command window.
f) Print the message "This is a Java program" on two lines in the command window;

the first line should end with Java. Use only one statement.

2.4 Identify and correct the errors in each of the following statements:
a) if (c < 7);

 JOptionPane.showMessageDialog(null,
 "c is less than 7");

b) if (c => 7)
 JOptionPane.showMessageDialog(null,
 "c is equal to or greater than 7");

string concatenation title bar of a dialog
string concatenation operator (+) true
subtraction operator (-) user-defined class
syntax error variable
System class variable name
System.out object variable value
System.out.print method void keyword
System.out.println method white-space characters

98 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

2.5 Write a statement (or comment) to accomplish each of the following tasks:
a) State that a program will calculate the product of three integers.
b) Declare the variables x, y, z and result to be of type int.
c) Declare the variables xVal, yVal and zVal to be of type String.
d) Prompt the user to enter the first value, read the value from the user and store it in the

variable xVal.
e) Prompt the user to enter the second value, read the value from the user and store it in the

variable yVal.
f) Prompt the user to enter the third value, read the value from the user and store it in the

variable zVal.
g) Convert xVal to an int, and store the result in the variable x.
h) Convert yVal to an int, and store the result in the variable y.
i) Convert zVal to an int, and store the result in the variable z.
j) Compute the product of the three integers contained in variables x, y and z, and assign

the result to the variable result.
k) Display a dialog containing the message "The product is " followed by the value

of the variable result.
l) Return a value from the program indicating that the program terminated successfully.

2.6 Using the statements you wrote in Exercise 2.5, write a complete program that calculates and
prints the product of three integers.

ANSWERS TO SELF-REVIEW EXERCISES
2.1 a) left brace ({), right brace (}). b) semicolon (;). c) if. d) //. e) Blank lines, space
characters, newline characters and tab characters. f) JOptionPane. g) Keywords. h) main.
i) System.out.print and System.out.println. j) static.

2.2 a) False. Comments do not cause any action to be performed when the program is executed.
They are used to document programs and improve their readability.

b) True.
c) False. Java is case sensitive, so these variables are distinct.
d) False. The modulus operator can also be used with noninteger operands in Java.
e) False. The operators *, / and % are on the same level of precedence, and the operators +

and - are on a lower level of precedence.
f) False. Integer.parseInt method converts a String to an integer (int) value.

2.3 a) int c, thisIsAVariable, q76354, number;
b) value = JOptionPane.showInputDialog("Enter an integer");
c) age = Integer.parseInt(value);
d) if (number != 7)

 JOptionPane.showMessageDialog(null,
 "The variable number is not equal to 7");

e) System.out.println("This is a Java program");
f) System.out.println("This is a Java\nprogram");

2.4 The solutions to Self-Review Exercise 2.4 are as follows:
a) Error: Semicolon after the right parenthesis of the condition in the if statement.

Correction: Remove the semicolon after the right parenthesis. [Note: The result of this
error is that the output statement will be executedregardless of whether the condition in
the if statement is true. The semicolon after the right parenthesis is considered an empty
statement—a statement that does nothing. We will learn more about the empty statement
in the next chapter.]

Chapter 2 Introduction to Java Applications 99

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

b) Error: The relational operator => is incorrect.
Correction: Change => to >=.

2.5 a) // Calculate the product of three integers
b) int x, y, z, result;
c) String xVal, yVal, zVal;
d) xVal = JOptionPane.showInputDialog(

 "Enter first integer:");
e) yVal = JOptionPane.showInputDialog(

 "Enter second integer:");
f) zVal = JOptionPane.showInputDialog(

 "Enter third integer:");
g) x = Integer.parseInt(xVal);
h) y = Integer.parseInt(yVal);
i) z = Integer.parseInt(zVal);
j) result = x * y * z;
k) JOptionPane.showMessageDialog(null,

"The product is " + result);
l) System.exit(0);

2.6 The solution to Exercise 2.6 is as follows:

1 // Calculate the product of three integers
2
3 // Java extension packages
4 import javax.swing.JOptionPane;
5
6 public class Product {
7
8 public static void main(String args[])
9 {

10 int x, y, z, result;
11 String xVal, yVal, zVal;
12
13 xVal = JOptionPane.showInputDialog(
14 "Enter first integer:");
15 yVal = JOptionPane.showInputDialog(
16 "Enter second integer:");
17 zVal = JOptionPane.showInputDialog(
18 "Enter third integer:");
19
20 x = Integer.parseInt(xVal);
21 y = Integer.parseInt(yVal);
22 z = Integer.parseInt(zVal);
23
24 result = x * y * z;
25 JOptionPane.showMessageDialog(null,
26 "The product is " + result);
27
28 System.exit(0);
29 }
30 }

100 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

EXERCISES
2.7 Fill in the blanks in each of the following statements:

a) are used to document a program and improve its readability.
b) An input dialog capable of receiving input from the user is displayed with method

 of class .
c) A decision can be made in a Java program with an .
d) Calculations are normally performed by statements.
e) A dialog capable of displaying a message to the user is displayed with method

 of class .

2.8 Write Java statements that accomplish each of the following tasks:
a) Display the message "Enter two numbers", using class JOptionPane.
b) Assign the product of variables b and c to variable a.
c) State that a program performs a sample payroll calculation (i.e., use text that helps to doc-

ument a program).

2.9 State whether each of the following is true or false. If false, explain why.
a) Java operators are evaluated from left to right.
b) The following are all valid variable names: _under_bar_, m928134, t5, j7,

her_sales$, his_$account_total, a, b$, c, z, z2.
c) A valid Java arithmetic expression with no parentheses is evaluated from left to right.
d) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.

2.10 Fill in the blanks in each of the following statements:
a) What arithmetic operations have the same precedence as multiplication? .
b) When parentheses are nested, which set of parentheses is evaluated first in an arithmetic

expression? .
c) A location in the computer's memory that may contain different values at various times

throughout the execution of a program is called a .

2.11 What displays in the message dialog when each of the given Java statements is performed?
Assume that x = 2 and y = 3.

a) JOptionPane.showMessageDialog(null, "x = " + x);
b) JOptionPane.showMessageDialog(null,

"The value of x + x is " + (x + x));
c) JOptionPane.showMessageDialog(null, "x =");
d) JOptionPane.showMessageDialog(null,

 (x + y) + " = " + (y + x));

Chapter 2 Introduction to Java Applications 101

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

2.12 Which of the following Java statements contain variables whose values are changed or re-
placed?

a) p = i + j + k + 7;
b) JOptionPane.showMessageDialog(null,

"variables whose values are destroyed");
c) JOptionPane.showMessageDialog(null, "a = 5");
d) stringVal = JOptionPane.showInputDialog("Enter string:);

2.13 Given that y = ax3 + 7, which of the following are correct Java statements for this equation?
a) y = a * x * x * x + 7;
b) y = a * x * x * (x + 7);
c) y = (a * x) * x * (x + 7);
d) y = (a * x) * x * x + 7;
e) y = a * (x * x * x) + 7;
f) y = a * x * (x * x + 7);

2.14 State the order of evaluation of the operators in each of the following Java statements, and
show the value of x after each statement is performed:

a) x = 7 + 3 * 6 / 2 - 1;
b) x = 2 % 2 + 2 * 2 - 2 / 2;
c) x = (3 * 9 * (3 + (9 * 3 / (3))));

2.15 Write an application that displays the numbers 1 to 4 on the same line, with each pair of ad-
jacent numbers separated by one space. Write the program using the following methods:

a) Using one System.out statement.
b) Using four System.out statements.

2.16 Write an application that asks the user to enter two numbers, obtains the numbers from the
user and prints the sum, product, difference and quotient (division) of the numbers. Use the tech-
niques shown in Fig. 2.9.

2.17 Write an application that asks the user to enter two integers, obtains the numbers from the
user and displays the larger number followed by the words “is larger” in an information message
dialog. If the numbers are equal, print the message “These numbers are equal.” Use the tech-
niques shown in Fig. 2.20.

2.18 Write an application that inputs three integers from the user and displays the sum, average,
product, smallest and largest of the numbers in an information message dialog. Use the GUI tech-
niques shown in Fig. 2.20. [Note: The calculation of the average in this exercise should result in an
integer representation of the average. So, if the sum of the values is 7, the average should be 2, not
2.3333….]

2.19 Write an application that inputs from the user the radius of a circle and prints the circle’s di-
ameter, circumference and area. Use the value 3.14159 for π. Use the GUI techniques shown in
Fig. 2.9. [Note: You may also use the predefined constant Math.PI for the value of π. This constant
is more precise than the value 3.14159. Class Math is defined in the java.lang package, so you
do not need to import it.] Use the following formulas (r is the radius):

diameter = 2r
circumference = 2πr

area = πr2

2.20 Write an application that displays in the command window a box, an oval, an arrow and a
diamond using asterisks (*), as follows:

102 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

2.21 Modify the program you created in Exercise 2.20 to display the shapes in a JOption-
Pane.PLAIN_MESSAGE dialog. Does the program display the shapes exactly as in Exercise 2.20?

2.22 What does the following code print?

System.out.println("*\n**\n***\n****\n*****");

2.23 What does the following code print?

System.out.println("*");
System.out.println("***");
System.out.println("*****");
System.out.println("****");
System.out.println("**");

2.24 What does the following code print?

System.out.print("*");
System.out.print("***");
System.out.print("*****");
System.out.print("****");
System.out.println("**");

2.25 What does the following code print?

System.out.print("*");
System.out.println("***");
System.out.println("*****");
System.out.print("****");
System.out.println("**");

2.26 Write an application that reads five integers and determines and prints the largest and the
smallest integers in the group. Use only the programming techniques you learned in this chapter.

2.27 Write an application that reads an integer and determines and prints whether it is odd or even.
[Hint: Use the modulus operator. An even number is a multiple of 2. Any multiple of 2 leaves a re-
mainder of 0 when divided by 2.]

2.28 Write an application that reads in two integers and determines and prints if the first is a multi-
ple of the second. [Hint: Use the modulus operator.]

2.29 Write an application that displays in the command window a checkerboard pattern as fol-
lows:

********* *** * *
* * * * *** * *
* * * * ***** * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
********* *** * *

Chapter 2 Introduction to Java Applications 103

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

2.30 Modify the program you wrote in Exercise 2.29 to display the checkerboard pattern in a
JOptionPane.PLAIN_MESSAGE dialog. Does the program display the shapes exactly as in
Exercise 2.29?

2.31 Here’s a peek ahead. In this chapter, you have learned about integers and the data type int.
Java can also represent uppercase letters, lowercase letters and a considerable variety of special sym-
bols. Every character has a corresponding integer representation. The set of characters a computer
uses and the corresponding integer representations for those characters is called that computer’s char-
acter set. You can indicate a character value in a program simply by enclosing that character in single
quotes, as in 'A'.

You can determine the integer equivalent of a character by preceding that character with
(int). This form is called a cast (we will say more about casts in Chapter 4) as in:

(int) 'A'

The following statement outputs a character and its integer equivalent:

System.out.println("The character " + 'A' +
 " has the value " + (int) 'A');

When the preceding statement executes, it displays the character A and the value 65 (from the so-
called Unicode character set) as part of the string.

Write an application that displays the integer equivalents of some uppercase letters, lowercase
letters, digits and special symbols. At a minimum, display the integer equivalents of the following: A
B C a b c 0 1 2 $ * + / and the blank character.

2.32 Write an application that inputs one number consisting of five digits from the user, separates
the number into its individual digits and prints the digits separated from one another by three spaces
each. For example, if the user types in the number 42339, the program should print

[Hint: It is possible to do this exercise with the techniques you learned in this chapter. You will
need to use both division and modulus operations to “pick off” each digit.]

Assume that the user enters the correct number of digits. What happens when you execute the
program and type a number with more than five digits? What happens when you execute the pro-
gram and type a number with fewer than five digits?

* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *

4 2 3 3 9

104 Introduction to Java Applications Chapter 2

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

2.33 Using only the programming techniques you learned in this chapter, write an application that
calculates the squares and cubes of the numbers from 0 to 10 and prints the resulting values in table
format as follows:

[Note: This program does not require any input from the user.]

2.34 Write a program that reads a first name and a last name from the user as two separate inputs
and concatenates the first name and last name, separating them by a space. Display in a message di-
alog the concatenated name.

2.35 Write a program that inputs five numbers and determines and prints the number of negative
numbers input, the number of positive numbers input and the number of zeros input.

number square cube
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

3
Introduction to Java

Applets

Objectives
• To observe some of Java’s exciting capabilities

through the Java 2 Software Development Kit’s
demonstration applets.

• To differentiate between applets and applications.
• To be able to write simple Java applets.
• To be able to write simple Hypertext Markup

Language (HTML) files to load an applet into the
appletviewer or a World Wide Web browser.

• To understand the difference between variables and
references.

• To execute applets in World Wide Web browsers.
He would answer to “Hi!” or to any loud cry
Such as “Fry me!” or “Fritter my wig!”
To “What-you-may-call-um!” or “What-was-his-name!”
But especially “Thing-um-a-jig!”
Lewis Carroll

Painting is only a bridge linking the painter's mind with that
of the viewer.
Eugène Delacroix

My method is to take the utmost trouble to find the right thing
to say, and then to say it with the utmost levity.
George Bernard Shaw
Though this be madness, yet there is method in 't.
William Shakespeare

106 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

3.1 Introduction
In Chapter 2, we introduced Java application programming and several important aspects
of Java applications. This chapter introduces another type of Java program called a Java ap-
plet. Applets are Java programs that can be embedded in Hypertext Markup Language (HT-
ML) documents (i.e., Web pages). When a browser loads a Web page containing an applet,
the applet downloads into the Web browser and begins execution.

The browser that executes an applet is generically known as the applet container. The
Java 2 Software Development Kit (J2SDK) includes an applet container (called the
appletviewer) for testing applets before you embed them in a Web page. Most Web
browsers in use today do not support Java 2 directly. For this reason, we normally demon-
strate our applets using the appletviewer. One browser that does support Java 2 is
Netscape Navigator 6. To execute applets in other Web browsers such as Microsoft Internet
Explorer or earlier versions of Netscape Navigator requires the Java Plug-in, which we dis-
cuss in Section 3.6.2 of this chapter.

Portability Tip 3.1
Most Web browsers in use today do not support applets written in Java 2. To execute applets
in such browsers, you must use the Java Plug-in (see Section 3.6.2). 3.1

Testing and Debugging Tip 3.1
Test your applets in the appletviewer applet container before executing them in a Web
browser. This enables you to see error messages that may occur. Also, once an applet is ex-
ecuting in a browser, it is sometimes difficult to reload the applet after making changes to
the applet’s class definition. 3.1

Outline

3.1 Introduction
3.2 Sample Applets from the Java 2 Software Development Kit

3.2.1 The TicTacToe Applet
3.2.2 The DrawTest Applet
3.2.3 The Java2D Applet

3.3 A Simple Java Applet: Drawing a String
3.3.1 Compiling and Executing WelcomeApplet

3.4 Two More Simple Applets: Drawing Strings and Lines
3.5 Another Java Applet: Adding Floating-Point Numbers
3.6 Viewing Applets in a Web Browser

3.6.1 Viewing Applets in Netscape Navigator 6
3.6.2 Viewing Applets in Other Browsers Using the Java Plug-In

3.7 Java Applet Internet and World Wide Web Resources
3.8 (Optional Case Study) Thinking About Objects: Identifying the

Classes in a Problem Statement

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 3 Introduction to Java Applets 107

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Testing and Debugging Tip 3.2
Test your applets in every Web browser in which the applets will execute to ensure that they
operate correctly in each browser. 3.2

One of our goals in this chapter is to mimic several features presented in Chapter 2.
This provides positive reinforcement of previous concepts. Another goal of this chapter is
to begin using the object-oriented programming terminology introduced in Section 1.15.

As in Chapter 2, there are a few cases where we do not as yet provide all the details
necessary to create complex applications and applets in Java. It is important to build your
knowledge of fundamental programming concepts first. In Chapter 4 and Chapter 5, we
present a detailed treatment of program development and program control in Java. As we
proceed through the text, we present many substantial applications and applets.

3.2 Sample Applets from the Java 2 Software Development Kit
We begin by considering several sample applets provided with the Java 2 Software Devel-
opment Kit (J2SDK) version 1.3. The applets we demonstrate give you a sense of Java’s
capabilities. Each of the sample programs provided with the J2SDK also comes with source
code (the .java files containing the Java applet programs). This source code is helpful as
you enhance your Java knowledge—you can read the source code provided to learn new
and exciting features of Java. Remember, all programmers initially learn new features by
mimicking their use in existing programs. The J2SDK comes with many such programs and
there are a tremendous number of Java resources on the Internet and World Wide Web that
include Java source code.

The demonstration programs provided with the J2SDK are located in your J2SDK
install directory in a subdirectory called demo. For the Java 2 Software Development Kit
version 1.3, the default location of the demo directory on Windows is

c:\jdk1.3\demo

On UNIX/Linux it is the directory in which you install the J2SDK followed by jdk1.3/
demo—for example

/usr/local/jdk1.3/demo

For other platforms, there will be a similar directory (or folder) structure. For the purpose
of this chapter, we assume on Windows that the J2SDK is installed in c:\jdk1.3 and on
UNIX that the J2SDK is installed in your home directory in ~/jdk1.3. [Note: You may
need to update these locations to reflect your chosen install directory and/or disk drive, or
a newer version of the J2SDK.]

If you are using a Java Development tool that does not come with the Sun Java demos,
you can download the J2SDK (with the demos) from the Sun Microsystems Java Web site

java.sun.com/j2se/1.3/

3.2.1 The TicTacToe Applet

The first applet we demonstrate from the J2SDK demos is the TicTacToe applet, which
allows you to play Tic-Tac-Toe against the computer. To execute this applet, open a com-

108 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

mand window (MS-DOS Prompt on Windows 95/98/ME, Command Prompt on Windows
NT/2000 or a command tool/shell tool on UNIX) and change directories to the J2SDK’s
demo directory. Both Windows and UNIX use command cd to change directories. For
example, the command

cd c:\jdk1.3\demo

changes to the demo directory on Windows and the command

cd ~/jdk1.3/demo

changes to the demo directory on UNIX.
The demo directory contains four subdirectories—applets, jfc, jpda and sound

(you can see these directories by issuing in the command window the dir command on
Windows or the ls command on UNIX). The applets directory contains many demon-
stration applets. The jfc (Java Foundation Classes) directory contains many examples of
Java’s newest graphics and GUI features (some of these examples are also applets). The
jdpa directory contains examples of the Java Platform Debugging Architecture (beyond
the scope of this book). The sound directory contains examples of the Java Sound API (cov-
ered in Chapter 18). For the demonstrations in this section, change directories to the
applets directory by issuing the command

cd applets

on either Windows or UNIX.
Listing the contents of the applets directory (with the dir command on Windows

or the ls command on UNIX) indicates that there are many examples. Figure 3.1 shows
the subdirectories and provides a brief description of the examples in each subdirectory.

Example Description

Animator Performs one of four separate animations.

ArcTest Demonstrates drawing arcs. You can interact with the applet to change
attributes of the arc that is displayed.

BarChart Draws a simple bar chart.

Blink Displays blinking text in different colors.

CardTest Demonstrates several GUI components and a variety of ways in which GUI
components can be arranged on the screen (the arrangement of GUI com-
ponents is also known as the layout of the GUI components).

Clock Draws a clock with rotating “hands,” the current date and the current time.
The clock is updated once per second.

DitherTest Demonstrates drawing with a graphics technique known as dithering that
allows gradual transformation from one color to another.

Fig. 3.1Fig. 3.1Fig. 3.1Fig. 3.1 The examples from the applets directory (part 1 of 2).

Chapter 3 Introduction to Java Applets 109

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Change directories to subdirectory TicTacToe. In that directory you will find the
HTML file example1.html that is used to execute the applet. In the command window,
type the command

appletviewer example1.html

and press the Enter key. This executes the appletviewer. The appletviewer loads
the HTML file specified as its command-line argument (example1.html), determines
from the file which applet to load (we discuss the details of HTML files in Section 3.3) and
begins executing the applet. Figure 3.2 shows several screen captures of playing Tic-Tac-
Toe with this applet.

DrawTest Allows the user to drag the mouse to draw lines and points on the applet in
different colors.

Fractal Draws a fractal. Fractals typically require complex calculations to deter-
mine how they are displayed.

GraphicsTest Draws a variety of shapes to illustrate graphics capabilities.

GraphLayout Draws a graph consisting of many nodes (represented as rectangles) con-
nected by lines. Drag a node to see the other nodes in the graph adjust on
the screen and demonstrate complex graphical interactions.

ImageMap Demonstrates an image with hot spots. Positioning the mouse pointer over
certain areas of the image highlights the area and a message is displayed in
the lower-left corner of the appletviewer window. Position over the
mouth in the image to hear the applet say “hi.”

JumpingBox Moves a rectangle randomly around the screen. Try to catch it by clicking it
with the mouse!

MoleculeViewer Presents a three-dimensional view of several different chemical molecules.
Drag the mouse to view the molecule from different angles.

NervousText Draws text that jumps around the screen.

SimpleGraph Draws a complex curve.

SortDemo Compares three sorting techniques. Sorting (described in Chapter 7)
arranges information in order—like alphabetizing words. When you exe-
cute the applet, three appletviewer windows appear. Click in each one
to start the sort. Notice that the sorts all operate at different speeds.

SpreadSheet Demonstrates a simple spreadsheet of rows and columns.

SymbolTest Draws characters from the Java character set.

TicTacToe Allows the user to play Tic-Tac-Toe against the computer.

WireFrame Draws a three-dimensional shape as a wire frame. Drag the mouse to view
the shape from different angles.

Example Description

Fig. 3.1Fig. 3.1Fig. 3.1Fig. 3.1 The examples from the applets directory (part 2 of 2).

110 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Testing and Debugging Tip 3.3
If the appletviewer command does not work and/or the system indicates that the ap-
pletviewer command cannot be found, the PATH environment variable may not be de-
fined properly on your computer. Review the installation directions for the Java 2 Software
Development Kit to ensure that the PATH environment variable is defined correctly for your
system (on some computers, you may need to restart your computer after modifying the PATH
environment variable). 3.3

You are player X. To interact with the applet, point the mouse at the square where you
want to place an X and click the mouse button (normally, the left mouse button). The applet
plays a sound (assuming your computer supports audio playback) and places an X in the
square if the square is open. If the square is occupied, this is an invalid move and the applet
plays a different sound indicating that you cannot make the specified move. After you make
a valid move, the applet responds by making its own move (this happens quickly).

To play again, re-execute the applet by clicking the appletviewer’s Applet menu
and selecting the Reload menu item (Fig. 3.3). To terminate the appletviewer, click
the appletviewer’s Applet menu and select the Quit menu item.

Fig. 3.2Fig. 3.2Fig. 3.2Fig. 3.2 Sample execution of the TicTacToe applet.

Fig. 3.3Fig. 3.3Fig. 3.3Fig. 3.3 Selecting Reload from the appletviewer’s Applet menu.

Select Quit to terminate
the appletviewer.

Reload the applet to
execute it again.

Chapter 3 Introduction to Java Applets 111

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

3.2.2 The DrawTest Applet
The next applet we demonstrate allows you to draw lines and points in different colors. To
draw, you simply drag the mouse on the applet by pressing a mouse button and holding it
while you drag the mouse. For this example, change directories to directory applets,
then to subdirectory DrawTest. In that directory is the example1.html file that is used
to execute the applet. In the command window, type the command

appletviewer example1.html

and press the Enter key. This executes the appletviewer. The appletviewer loads
the HTML file specified as its command-line argument (example1.html again), deter-
mines from the file which applet to load and begins execution of the applet. Figure 3.4
shows a screen capture of this applet after drawing some lines and points.

The default shape to draw is a line and the default color is black, so you can draw black
lines by dragging the mouse across the applet. To drag the mouse, press and hold the mouse
button and move the mouse. Notice that the line follows the mouse pointer around the
applet. The line is not permanent until you release the mouse button. You can then start a
new line by repeating the process.

Select a color by clicking the circle inside one of the colored rectangles at the bottom
of the applet. You can select from red, green, blue, pink, orange and black. The GUI com-
ponents used to present these options are commonly known as radio buttons. If you think
of a car radio, only one radio station can be selected at a time. Similarly, only one drawing
color can be selected at a time.

Fig. 3.4Fig. 3.4Fig. 3.4Fig. 3.4 Sample execution of applet DrawTest.

Select the
drawing color by
clicking the circle
for the color you
want. These GUI
components are
commonly known
as radio buttons.

Select the shape to
draw by clicking
the down arrow,
then clicking Lines
or Points. This GUI
component is
commonly known
as a combo box,
choice or drop-
down list.

Drag the mouse
pointer here to
draw.

112 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Try changing the shape to draw from Lines to Points by clicking the down arrow to
the right of the word Lines at the bottom of the applet. A list drops down from the GUI
component containing the two choices—Lines and Points. To select Points, click the
word Points in the list. The GUI component closes the list and the current shape type is
now Points. This GUI component is commonly known as a choice, combo box or drop-
down list.

To start a new drawing, select Reload from the appletviewer’s Applet menu. To
terminate the applet, select Quit from the appletviewer’s Applet menu.

3.2.3 The Java2D Applet
The last applet we demonstrate before defining applets of our own shows many of the com-
plex new two-dimensional drawing capabilities built into Java 2—known as the Java2D
API. For this example, change directories to the jfc directory in the J2SDK’s demo direc-
tory, then change to the Java2D directory (you can move up the directory tree toward
demo using the command “cd ..” in both Windows and UNIX/Linux). In that directory
is an HTML file (Java2Demo.html) that is used to execute the applet. In the command
window, type the command

appletviewer Java2Demo.html

and press the Enter key. This executes the appletviewer. The appletviewer loads
the HTML file specified as its command-line argument (Java2Demo.html), determines
from the file which applet to load and begins execution of the applet. This particular demo
takes some time to load as it is quite large. Figure 3.5 shows a screen capture of one of this
applet’s many demonstrations of Java’s two-dimensional graphics capabilities.

At the top of this demo you see tabs that look like file folders in a filing cabinet. This
demo provides 12 different tabs with several different features on each tab. To change to a
different part of the demo, simply click one of the tabs. Also, try changing the options in
the upper-right corner of the applet. Some of these affect the speed with which the applet
draws the graphics. For example, click the small box with a check in it (a GUI component
known as a checkbox) to the left of the word Anti-Aliasing to turn off anti-aliasing (a
graphics technique for producing smoother on-screen graphics in which the edges of the
graphic are blurred). When this feature is turned off (i.e., its checkbox is unchecked), the
animation speed increases for the animated shapes at the bottom of the demo shown in
Fig. 3.5. This occurs because an animated shape displayed with anti-aliasing takes longer
to draw than an animated shape without anti-aliasing.

3.3 A Simple Java Applet: Drawing a String
Now, let’s get started with some applets of our own. Remember, we are just getting start-
ed—we have many more topics to learn before we can write applets similar to those dem-
onstrated in Section 3.2. However, we will cover many of the same techniques in this book.

We begin by considering a simple applet that mimics the program of Fig. 2.1 by dis-
playing the string "Welcome to Java Programming!". The applet and its screen
output are shown in Fig. 3.6. The HTML document to load the applet into the applet-
viewer is shown and discussed in Fig. 3.7.

Chapter 3 Introduction to Java Applets 113

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Fig. 3.5Fig. 3.5Fig. 3.5Fig. 3.5 Sample execution of applet Java2D.

1 // Fig. 3.6: WelcomeApplet.java
2 // A first applet in Java.
3
4 // Java core packages
5 import java.awt.Graphics; // import class Graphics
6
7 // Java extension packages
8 import javax.swing.JApplet; // import class JApplet
9

10 public class WelcomeApplet extends JApplet {
11
12 // draw text on applet’s background
13 public void paint(Graphics g)
14 {
15 // call inherited version of method paint
16 super.paint(g);

Fig. 3.6Fig. 3.6Fig. 3.6Fig. 3.6 A first applet in Java and the applet’s screen output (part 1 of 2).

Click a tab to select a
two-dimensional graphics demo.

Try changing the options to see their
effect on the demonstration.

114 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

This program illustrates several important Java features. We consider each line of the
program in detail. Line 19 does the “real work” of the program, namely drawing the string
Welcome to Java Programming! on the screen. But let us consider each line of the
program in order. Lines 1–2

// Fig. 3.6: WelcomeApplet.java
// A first applet in Java.

begin with //, indicating that the remainder of each line is a comment. The comment on
line 1 indicates the figure number and file name for the applet source code. The comment
on line 2 simply describes the purpose of the program.

As stated in Chapter 2, Java contains many predefined components called classes that
are grouped into packages in the Java API. Line 5

import java.awt.Graphics; // import class Graphics

is an import statement that tells the compiler load class Graphics from package ja-
va.awt for use in this Java applet. Class Graphics enables a Java applet to draw graph-
ics such as lines, rectangles, ovals and strings of characters. Later in the book, you will see
that class Graphics also enables applications to draw.

Line 8

import javax.swing.JApplet; // import class JApplet

is an import statement that tells the compiler load class JApplet from package jav-
ax.swing. When you create an applet in Java, you normally import the JApplet class.
[Note: There is an older class called Applet from package java.applet that is not
used with Java’s newest GUI components from the javax.swing package. In this book,
we use only class JApplet with applets.]

17
18 // draw a String at x-coordinate 25 and y-coordinate 25
19 g.drawString("Welcome to Java Programming!", 25, 25);
20
21 } // end method paint
22
23 } // end class WelcomeApplet

Fig. 3.6Fig. 3.6Fig. 3.6Fig. 3.6 A first applet in Java and the applet’s screen output (part 2 of 2).

appletviewer window

The status bar mimics
what would be
displayed in the
browser’s status bar as
the applet loads and
begins executing.

Upper-left corner of
drawing area is location
(0, 0). Drawing area ends
just above the status bar.
X-coordinates increase
from left to right.
Y-coordinates increase
from top to bottom.

Pixel coordinate (25, 25),
where the string is displayed.

x-axis
y-axis

Applet menu

Chapter 3 Introduction to Java Applets 115

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

As with applications, every Java applet you create contains at least one class definition.
One key feature of class definitions that was not mentioned in Chapter 2 is that program-
mers rarely create class definitions “from scratch.” In fact, when you create a class defini-
tion, you normally use pieces of an existing class definition. Java uses inheritance
(introduced in Section 1.15 and discussed in detail in Chapter 9, “Object-Oriented Pro-
gramming”) to create new classes from existing class definitions. Line 10

public class WelcomeApplet extends JApplet {

begins a class definition for class WelcomeApplet. At the end of line 10, the left
brace, {, begins the body of the class definition. The corresponding right brace, }, on line
23 ends the class definition. Keyword class introduces the class definition. Welcome-
Applet is the class name. Keyword extends indicates that class WelcomeApplet in-
herits existing pieces from another class. The class from which WelcomeApplet inherits
(JApplet) appears to the right of extends. In this inheritance relationship, JApplet
is called the superclass or base class and WelcomeApplet is called the subclass or de-
rived class. Using inheritance here results in a WelcomeApplet class definition that has
the attributes (data) and behaviors (methods) of class JApplet as well as the new features
we are adding in our WelcomeApplet class definition (specifically, the ability to draw
Welcome to Java Programming! on the applet).

A key benefit of extending class JApplet is that someone else previously defined
“what it means to be an applet.” The appletviewer and World Wide Web browsers that
support applets expect every Java applet to have certain capabilities (attributes and behav-
iors). Class JApplet already provides all those capabilities—programmers do not need to
“reinvent the wheel” and define all these capabilities on their own. In fact, applet containers
expect applets to have over 200 different methods. In our programs to this point, we defined
one method in each program. If we had to define over 200 methods just to display
Welcome to Java Programming!, we would never create an applet, because it would
take too long to define one! Using extends to inherit from class JApplet enables applet
programmers to create new applets quickly.

The inheritance mechanism is easy to use; the programmer does not need to know
every detail of class JApplet or any other superclass from which a new class inherits. The
programmer needs to know only that class JApplet defines the capabilities required to
create the minimum applet. However, to make the best use of any class, programmers
should study all the capabilities of the superclass.

Good Programming Practice 3.1
Investigate the capabilities of any class in the Java API documentation (java.sun.com/
j2se/1.3/docs/api/index.html) carefully before inheriting a subclass from it.
This helps ensure that the programmer does not unintentionally “reinvent the wheel” by re-
defining a capability that the superclass already provides. 3.1

Classes are used as “templates” or “blueprints” to instantiate (or create) objects for use
in a program. An object (or instance) resides in the computer’s memory and contains infor-
mation used by the program. The term object normally implies that attributes (data) and
behaviors (methods) are associated with the object. The object’s methods use the attributes
to provide useful services to the client of the object (i.e., the code in a program that calls the
methods).

116 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

When an applet container (the appletviewer or browser in which the applet exe-
cutes) loads our WelcomeApplet class, the applet container creates an object (instance)
of class WelcomeApplet that implements the applet’s attributes and behaviors. [Note:
The terms instance and object are often used interchangeably.] Applet containers can create
only objects of classes that are public and extend JApplet. Thus, applet containers
require applet class definitions to begin with the keyword public (line 10). Otherwise,
the applet container cannot load and execute the applet. The public keyword and related
keywords (such as private and protected) are discussed in detail in Chapter 8,
“Object-Based Programming.” For now, we ask you simply to start all class definitions
with the public keyword until the discussion of public in Chapter 8.

When you save a public class in a file, the file name must be the class name followed
by the .java file name extension. For our applet, the file name must be WelcomeAp-
plet.java. Please note that the class name part of the file name must use the same
spelling as the class name, including identical use of uppercase and lowercase letters. For
reinforcement, we repeat two Common Programming Errors from Chapter 2.

Common Programming Error 3.1
It is an error for a public class if the file name is not identical to the class name (plus the
.java extension) in both spelling and capitalization. Therefore, it is also an error for a file
to contain two or more public classes. 3.1

Common Programming Error 3.2
It is an error not to end a file name with the .java extension for a file containing an appli-
cation’s class definition. The Java compiler will not be able to compile the class definition. 3.2

Testing and Debugging Tip 3.4
The compiler error message “Public class ClassName must be defined in a file called Class-
Name.java” indicates either that the file name does not exactly match the name of the pub-
lic class in the file (including all uppercase and lowercase letters) or that you typed the
class name incorrectly when compiling the class (the name must be spelled with the proper
uppercase and lowercase letters). 3.4

Line 13

public void paint(Graphics g)

begins the definition of the applet’s paint method—one of three methods (behaviors) that
the applet container calls for an applet when the container begins executing the applet. In
order, these three methods are init (discussed later in this chapter), start (discussed in
Chapter 6) and paint. Your applet class gets a “free” version of each of these methods
from class JApplet when you specify extends JApplet in the first line of your ap-
plet’s class definition. If you do not define these methods in your own applet, the applet
container calls the versions inherited from JApplet. The inherited versions of methods
init and start have empty bodies (i.e., their bodies do not contain statements, so they
do not perform a task) and the inherited version of method paint does not draw anything
on the applet. [Note: There are several other methods that an applet container calls during
an applet’s execution. We discuss these methods in Chapter 6, “Methods.”]

To enable our applet to draw, class WelcomeApplet overrides (replaces or rede-
fines) the default version of paint by placing statements in the body of paint that draw

Chapter 3 Introduction to Java Applets 117

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

a message on the screen. When the applet container tells the applet to “draw itself” on the
screen by calling method paint, our message Welcome to Java Programming!
appears rather than a blank screen.

Lines 13–21 are the definition of paint. The task of method paint is to draw
graphics (such as lines, ovals and strings of characters) on the screen. Keyword void indi-
cates that this method does not return any results when it completes its task. The set of
parentheses after paint defines the method’s parameter list. The parameter list is where
methods receive data required to perform their tasks. Normally, this data is passed by the
programmer to the method through a method call (also known as invoking a method or
sending a message). For example, in Chapter 2 we passed data to JOptionPane’s
showMessageDialog method such as the message to display or the type of dialog box.
However, when writing applets, the programmer does not call method paint explicitly.
Rather, the applet container calls paint to tell the applet to draw and the applet container
passes to the paint method the information paint requires to perform its task, namely
a Graphics object (called g). It is the applet container’s responsibility to create the
Graphics object to which g refers. Method paint uses the Graphics object to draw
graphics on the applet. The public keyword at the beginning of line 13 is required so the
applet container can call your paint method. For now, all method definitions should
begin with the public keyword. We introduce other alternatives in Chapter 8.

The left brace, {, on line 14 begins method paint’s body. The corresponding right
brace, }, on line 21 ends paint’s body.

Line 16

super.paint(g);

calls the version of method paint inherited from superclass JApplet.1

Line 19

g.drawString("Welcome to Java Programming!", 25, 25);

instructs the computer to perform an action (or task), namely to draw the characters of the
string Welcome to Java Programming! on the applet. This statement uses method
drawString defined by class Graphics (this class defines all the drawing capabilities
of a Java program, including strings of characters and shapes such as rectangles, ovals and
lines). The statement calls method drawString using the Graphics object g (in
paint’s parameter list) followed by a dot operator (.) followed by the method name
drawString. The method name is followed by a set of parentheses containing the argu-
ment list drawString needs to perform its task.

The first argument to drawString is the String to draw on the applet. The last
two arguments in the list—25 and 25—are the x-y coordinates (or position) at which the
bottom-left corner of the string should be drawn on the applet. Drawing methods from class
Graphics require coordinates to specify where to draw on the applet (later in the text we

1. For reasons that will become clear later in the text, this statement should be the first statement in
every applet’s paint method. Although the early examples of applets will work without this
statement, omitting this statement causes subtle errors in more elaborate applets that combine
drawing and GUI components. Including this statement now will get you in the habit of using it
and will save time and effort as you build more substantial applets later.

118 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

demonstrate drawing in applications). The first coordinate is the x-coordinate (the number
of pixels from the left side of the applet), and the second coordinate is the y-coordinate
(representing the number of pixels from the top of the applet). Coordinates are measured
from the upper-left corner of the applet in pixels (just below the Applet menu in the sample
output window of Fig. 3.6). A pixel (“picture element”) is the unit of display for your com-
puter’s screen. On a color screen, a pixel appears as one colored dot on the screen. Many
personal computers have 800 pixels for the width of the screen and 600 pixels for the height
of the screen, for a total of 800 times 600 or 480,000 displayable pixels. Many computers
today have screens with higher screen resolutions, i.e., they have more pixels for the width
and height of the screen. The size of an applet on the screen depends on the size and reso-
lution of the screen. For screens with the same size, the applet will appear smaller on the
screen with the higher resolution. Note that some older computers have screen resolutions
lower than 800 by 600. The most common lower resolution is 640 by 480.

When line 19 executes, it draws the message Welcome to Java Programming!
on the applet at the coordinates 25 and 25. Note that the quotation marks enclosing the
string are not displayed on the screen.

As an aside, why would you want free copies of methods init, start and paint
if they do not perform a task? The predefined start-up sequence of method calls made by
the appletviewer or browser for every applet is always init, start and paint—
this provides an applet programmer a guarantee that these methods will be called as every
applet begins execution. Every applet does not need all three of these methods. However,
the appletviewer or browser expects each of these methods to be defined so it can pro-
vide a consistent start-up sequence for an applet. [Note: This is similar to applications
always starting execution with main.] Inheriting the default versions of these methods
guarantees the browser that it can treat each applet uniformly by calling init, start and
paint as applet execution begins. Also, the programmer can concentrate on defining only
the methods required for a particular applet.

3.3.1 Compiling and Executing WelcomeApplet

As with application classes, you must compile applet classes before they can execute. After
defining class WelcomeApplet and saving it in WelcomeApplet.java, open a com-
mand window, change to the directory in which you saved the applet class definition and
type the command

javac WelcomeApplet.java

to compile class WelcomeApplet. If there are no syntax errors, the resulting bytecodes
are stored in the file WelcomeApplet.class.

Before you can execute the applet you must create an HTML (Hypertext Markup Lan-
guage) file to load the applet into the applet container (appletviewer or a browser).
Typically, an HTML file ends with the “.html” or “.htm” file name extension. Browsers
display the contents of documents that contain text (also known as text files). To execute a
Java applet, an HTML text file must indicate which applet the applet container should load
and execute. Figure 3.7 shows a simple HTML file—WelcomeApplet.html—that
loads into the applet defined in Fig. 3.6 into an applet container. [Note: For the early part
of this book, we always demonstrate applets with the appletviewer applet container.]

Chapter 3 Introduction to Java Applets 119

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Good Programming Practice 3.2
Always test a Java applet in the appletviewer and ensure that it is executing correctly
before loading the applet into a World Wide Web browser. Browsers often save a copy of an
applet in memory until the current browsing session terminates (i.e., all browser windows
are closed). Thus, if you change an applet, recompile the applet, then reload the applet in the
browser, you may not see the changes because the browser may still be executing the original
version of the applet. Close all your browser windows to remove the old version of the applet
from memory. Open a new browser window and load the applet to see your changes. 3.2

Software Engineering Observation 3.1
If your World Wide Web browser does not support Java 2, most of the applets in this book
will not execute in your browser. This is because most of the applets in this book use features
that are specific to Java 2 or are not provided by browsers that support Java 1.1.
Section 3.6.2 discusses how to use the Java Plug-in to view applets in Web browsers that do
not support Java 2. 3.1

Many HTML codes (or tags) come in pairs. For example, lines 1 and 4 of Fig. 3.7 indi-
cate the beginning and the end, respectively, of the HTML tags in the file. All HTML tags
begin with a left angle bracket, <, and end with a right angle bracket, >. Lines 2 and 3 are
special HTML tags for Java applets. They tell the applet container to load a specific applet
and define the size of the applet’s display area (its width and height in pixels) in the
appletviewer (or browser). Normally, the applet and its corresponding HTML file are
stored in the same directory on disk. Typically, a browser loads an HTML file from a com-
puter (other than your own) connected to the Internet. However, HTML files also can reside
on your computer (as we demonstrated in Section 3.2). When an applet container encoun-
ters an HTML file that specifies an applet to execute, the applet container automatically
loads the applet’s .class file (or files) from the same directory on the computer in which
the HTML file resides.

The <applet> tag has several attributes. The first attribute of the <applet> tag on
line 2 (code = "WelcomeApplet.class") indicates that the file WelcomeAp-
plet.class contains the compiled applet class. Remember, when you compile your
Java programs, every class is compiled into a separate file that has the same name as the
class and ends with the .class extension. The second and third attributes of the
<applet> tag indicate the width and the height of the applet in pixels. The upper-left
corner of the applet’s display area is always at x-coordinate 0 and y-coordinate 0. The width
of this applet is 300 pixels and its height is 45 pixels. You may want (or need) to use larger
width and height values to define a larger drawing area for your applets. The </
applet> tag (line 3) terminates the <applet> tag that began on line 2. The </html>
tag (line 4) specifies the end of the HTML tags that began on line 1 with <html>.

1 <html>
2 <applet code = "WelcomeApplet.class" width = "300" height = "45">
3 </applet>
4 </html>

Fig. 3.7Fig. 3.7Fig. 3.7Fig. 3.7 WelcomeApplet.html loads class WelcomeApplet of Fig. 3.6 into
the appletviewer.

120 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Software Engineering Observation 3.2
Generally, each applet should be less than 800 pixels wide and 600 pixels tall (most comput-
er screens support these dimensions as the minimum width and height). 3.2

Common Programming Error 3.3
Placing additional characters such as commas (,) between the attributes in the <applet>
tag may cause the appletviewer or browser to produce an error message indicating a
MissingResourceException when loading the applet. 3.3

Common Programming Error 3.4
Forgetting the ending </applet> tag prevents the applet from loading into the applet-
viewer or browser properly. 3.4

Testing and Debugging Tip 3.5
If you receive a MissingResourceException error message when loading an applet
into the appletviewer or a browser, check the <applet> tag in the HTML file carefully
for syntax errors. Compare your HTML file to the file in Fig. 3.7 to confirm proper syntax. 3.5

The appletviewer understands only the <applet> and </applet> HTML
tags, so it is sometimes referred to as the “minimal browser” (it ignores all other HTML
tags). The appletviewer is an ideal place to test an applet and ensure that it executes
properly. Once the applet’s execution is verified, you can add the applet’s HTML tags to
an HTML file that will be viewed by people browsing the Internet.

To execute the WelcomeApplet in the appletviewer open a command window,
change to the directory containing your applet and HTML file and type the command

appletviewer WelcomeApplet.html

Note that the appletviewer requires an HTML file to load an applet. This is different
from the java interpreter for applications which requires only the class name of the appli-
cation class. Also, the preceding command must be issued from the directory in which the
HTML file and the applet’s .class file are located.

Common Programming Error 3.5
Running the appletviewer with a file name that does not end with .html or .htm is an
error that prevents the appletviewer from loading your applet for execution. 3.5

Portability Tip 3.2
Test your applets in every browser used by people who view your applet. This will help en-
sure that people who view your applet experience the functionality you expect. [Note: A goal
of the Java Plug-In (discussed later in the book) is to provide consistent applet execution
across many different browsers.] 3.2

3.4 Two More Simple Applets: Drawing Strings and Lines
Let us consider another applet. An applet can draw Welcome to Java Programming!
several ways. For example, an applet can use two drawString statements in method
paint to print multiple lines of text as in Fig. 3.8. The HTML file to load the applet into
an applet container is shown in Fig. 3.9.

Chapter 3 Introduction to Java Applets 121

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Note that each call to method drawString can draw at any pixel location on the
applet. The reason the two output lines appear left aligned as shown in Fig. 3.8 is that both
use the same x coordinate (25). Also, each drawString method call uses different y
coordinates (25 on line 19 and 40 on line 20), so the strings appear at different vertical
locations on the applet. If we reverse lines 19 and 20 in the program, the output window
will still appear as shown because the pixel coordinates specified in each drawString
statement are independent of the coordinates specified in all other drawString state-
ments (and all other drawing operations). When drawing graphics, lines of text are not sep-
arated by newline characters (as shown with methods System.out’s method println
and JOptionPane’s method showMessageDialog in Chapter 2). In fact, if you try

1 // Fig. 3.8: WelcomeApplet2.java
2 // Displaying multiple strings in an applet.
3
4 // Java core packages
5 import java.awt.Graphics; // import class Graphics
6
7 // Java extension packages
8 import javax.swing.JApplet; // import class JApplet
9

10 public class WelcomeApplet2 extends JApplet {
11
12 // draw text on applet’s background
13 public void paint(Graphics g)
14 {
15 // call inherited version of method paint
16 super.paint(g);
17
18 // draw two Strings at different locations
19 g.drawString("Welcome to", 25, 25);
20 g.drawString("Java Programming!", 25, 40);
21
22 } // end method paint
23
24 } // end class WelcomeApplet2

Fig. 3.8Fig. 3.8Fig. 3.8Fig. 3.8 Applet that displays multiple strings.

1 <html>
2 <applet code = "WelcomeApplet2.class" width = "300" height = "60">
3 </applet>
4 </html>

Fig. 3.9Fig. 3.9Fig. 3.9Fig. 3.9 WelcomeApplet2.html loads class WelcomeApplet2 of Fig. 3.8
into the appletviewer.

Pixel coordinate (25, 40), where
Java Programming! is displayed

Pixel coordinate (25, 25), where
Welcome to is displayed

122 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

to output a string containing a newline character (\n), you will simply see a small black
box at that position in the string.

To make drawing more interesting, the applet of Fig. 3.10 draws two lines and a string.
The HTML file to load the applet into an applet container is shown in Fig. 3.11.

1 // Fig. 3.10: WelcomeLines.java
2 // Displaying text and lines
3
4 // Java core packages
5 import java.awt.Graphics; // import class Graphics
6
7 // Java extension packages
8 import javax.swing.JApplet; // import class JApplet
9

10 public class WelcomeLines extends JApplet {
11
12 // draw lines and a string on applet’s background
13 public void paint(Graphics g)
14 {
15 // call inherited version of method paint
16 super.paint(g);
17
18 // draw horizontal line from (15, 10) to (210, 10)
19 g.drawLine(15, 10, 210, 10);
20
21 // draw horizontal line from (15, 30) to (210, 30)
22 g.drawLine(15, 30, 210, 30);
23
24 // draw String between lines at location (25, 25)
25 g.drawString("Welcome to Java Programming!", 25, 25);
26
27 } // end method paint
28
29 } // end class WelcomeLines

Fig. 3.10Fig. 3.10Fig. 3.10Fig. 3.10 Drawing strings and lines.

1 <html>
2 <applet code = "WelcomeLines.class" width = "300" height = "40">
3 </applet>
4 </html>

Fig. 3.11Fig. 3.11Fig. 3.11Fig. 3.11 The WelcomeLines.html file, which loads class WelcomeLines of
Fig. 3.10 into the appletviewer.

Coordinate (15, 10)

Coordinate (15, 30)

Coordinate (210, 10)

Coordinate (210, 30)

Chapter 3 Introduction to Java Applets 123

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Lines 19 and 22 of method paint

g.drawLine(15, 10, 210, 10);
g.drawLine(15, 30, 210, 30);

use method drawLine of class Graphics to indicate that the Graphics object that g
refers to should draw lines. Method drawLine requires four arguments that represent the
two end points of the line on the applet—the x-coordinate and y-coordinate of the first end
point in the line and the x-coordinate and y-coordinate of the second end point in the line.
All coordinate values are specified with respect to the upper-left corner (0, 0) coordinate of
the applet. Method drawLine draws a straight line between the two end points.

3.5 Another Java Applet: Adding Floating-Point Numbers
Our next applet (Fig. 3.12) mimics the application of Fig. 2.9 for adding two integers. How-
ever, this applet requests that the user enter two floating-point numbers (i.e., numbers with
a decimal point such as 7.33, 0.0975 and 1000.12345). To store floating-point numbers in
memory we introduce primitive data type double, which represents double-precision
floating-point numbers. There is also primitive data type float for storing single-preci-
sion floating-point numbers. A double requires more memory to store a floating-point
value, but stores it with approximately twice the precision of a float (15 significant digits
for double vs. seven significant digits for float).

Once again, we use JOptionPane.showInputDialog to request input from the
user. The applet computes the sum of the input values and displays the result by drawing a
string inside a rectangle on the applet. The HTML file to load this applet into the applet-
viewer is shown in Fig. 3.13.

1 // Fig. 3.12: AdditionApplet.java
2 // Adding two floating-point numbers.
3
4 // Java core packages
5 import java.awt.Graphics; // import class Graphics
6
7 // Java extension packages
8 import javax.swing.*; // import package javax.swing
9

10 public class AdditionApplet extends JApplet {
11 double sum; // sum of values entered by user
12
13 // initialize applet by obtaining values from user
14 public void init()
15 {
16 String firstNumber; // first string entered by user
17 String secondNumber; // second string entered by user
18 double number1; // first number to add
19 double number2; // second number to add
20
21 // obtain first number from user
22 firstNumber = JOptionPane.showInputDialog(
23 "Enter first floating-point value");

Fig. 3.12Fig. 3.12Fig. 3.12Fig. 3.12 An addition program “in action” (part 1 of 2).

124 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

24
25 // obtain second number from user
26 secondNumber = JOptionPane.showInputDialog(
27 "Enter second floating-point value");
28
29 // convert numbers from type String to type double
30 number1 = Double.parseDouble(firstNumber);
31 number2 = Double.parseDouble(secondNumber);
32
33 // add numbers
34 sum = number1 + number2;
35 }
36
37 // draw results in a rectangle on applet’s background
38 public void paint(Graphics g)
39 {
40 // call inherited version of method paint
41 super.paint(g);
42
43 // draw rectangle starting from (15, 10) that is 270
44 // pixels wide and 20 pixels tall
45 g.drawRect(15, 10, 270, 20);
46
47 // draw results as a String at (25, 25)
48 g.drawString("The sum is " + sum, 25, 25);
49
50 } // end method paint
51
52 } // end class AdditionApplet

Fig. 3.12Fig. 3.12Fig. 3.12Fig. 3.12 An addition program “in action” (part 2 of 2).

Chapter 3 Introduction to Java Applets 125

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Lines 1–2

// Fig. 3.12: AdditionApplet.java
// Adding two floating-point numbers.

are single-line comments stating the figure number, file name and purpose of the program.
Line 5

import java.awt.Graphics; // import class Graphics

imports class Graphics (package java.awt) for use in this applet. Actually, the im-
port statement at line 5 is not required if we always use the complete name of class
Graphics—java.awt.Graphics—which includes the full package name and class
name. For example, the first line of method paint can be defined as

public void paint(java.awt.Graphics g)

Software Engineering Observation 3.3
The Java compiler does not require import statements in a Java source code file if the com-
plete class name—the full package name and class name (e.g., java.awt.Graphics)—
is specified every time a class name is used in the source code. 3.3

Line 8

import javax.swing.*; // import package javax.swing

specifies to the compiler that several classes from package javax.swing are used in this
applet. The asterisk (*) indicates that all classes in the javax.swing package (such as
JApplet and JOptionPane) should be available to the compiler so the compiler can
ensure that we use the classes correctly. This allows programmers to use the shorthand
name (the class name by itself) of any class from the javax.swing package in the pro-
gram. Remember that our last two programs imported only class JApplet from package
javax.swing. In this program, we use classes JApplet and JOptionPane from that
package. Importing an entire package into a program is also a shorthand notation so the pro-
grammer is not required to provide a separate import statement for every class used from
that package. Remember that you can always use the complete name of every class, i.e.,
javax.swing.JApplet and javax.swing.JOptionPane rather than import
statements.

Software Engineering Observation 3.4
The compiler does not load every class in a package when it encounters an import state-
ment that uses the * (e.g., javax.swing.*) notation. The compiler loads from the pack-
age only those classes the program uses. 3.4

1 <html>
2 <applet code = "AdditionApplet.class" width = "300" height = "65">
3 </applet>
4 </html>

Fig. 3.13Fig. 3.13Fig. 3.13Fig. 3.13 AdditionApplet.html loads class AdditionApplet of Fig. 3.12
into the appletviewer.

126 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Software Engineering Observation 3.5
Many packages have subpackages. For example, the java.awt package has subpackage
event for the package java.awt.event. When the compiler encounters an import
statement that uses the * (e.g., java.awt.*) notation to indicate that a program uses mul-
tiple classes from a package, the compiler does not load classes from the subpackage
event. Thus, you cannot define an import of java.* to search for classes from all Java
core packages. 3.5

Software Engineering Observation 3.6
When using import statements, separate import statements must be specified for each
package used in a program. 3.6

Common Programming Error 3.6
Assuming that an import statement for an entire package (e.g., java.awt.*) also im-
ports classes from subpackages in that package (e.g., java.awt.event.*) results in
syntax errors for the classes from the subpackages. There must be separate import statements
for every package from which classes are used. 3.6

Remember that applets inherit from the JApplet class, so they have all the methods
that an applet container requires to execute the applet. Line 10

public class AdditionApplet extends JApplet {

begins class AdditionApplet’s definition and indicates that it inherits from JApplet.
All class definitions start with an opening left brace (end of line 10), {, and end with

a closing right brace, } (line 52).

Common Programming Error 3.7
If braces do not occur in matching pairs, the compiler indicates a syntax error. 3.7

Line 11

double sum; // sum of values entered by user

is an instance variable declaration—every instance (object) of the class contains one copy
of each instance variable. For example, if there are 10 instances of this applet executing,
each instance has its own copy of sum. Thus, there would be 10 separate copies of sum
(one per applet). Programmers declare instance variables in the body of the class definition,
but outside the bodies of all the class’s method definitions. The preceding declaration states
that sum is a variable of primitive type double.

A benefit of instance variables is that all the methods of the class can use the instance
variables. Until now, we declared all variables in an application’s main method. Variables
defined in the body of a method are known as local variables and can be used only in the
body of the method in which they are defined. Another distinction between instance vari-
ables and local variables is that instance variables have default values and local variables
do not. The default value of variable sum is 0.0, because sum is an instance variable.

Good Programming Practice 3.3
Explicitly initializing instance variables rather than relying on automatic initialization im-
proves program readability. 3.3

Chapter 3 Introduction to Java Applets 127

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

The applet of Fig. 3.12 contains two methods—init (lines 14–35) and paint (lines
38–50). When an applet container loads an applet, the container creates an instance of the
applet class and calls its init method. The applet container calls method init only once
during an applet’s execution. Method init normally initializes the applet’s instance vari-
ables (if they need to be initialized to a value other than their default value) and performs
tasks that should occur only once when the applet begins execution. As we will see in later
chapters, the applet’s init method typically creates the applet’s graphical user interface.

Software Engineering Observation 3.7
The order in which methods are defined in a class definition has no effect on when those
methods are called at execution time. However, following conventions for the order in which
methods are defined improves program readability and maintainability. 3.7

The first line of the init method always appears as

public void init()

indicating that init is a public method that returns no information (void) when it
completes and receives no arguments (empty parentheses after init) to perform its task.

The left brace (line 15) marks the beginning of init’s body, and the corresponding
right brace (line 35) marks the end of init. Lines 16–17

String firstNumber; // first string entered by user
String secondNumber; // second string entered by user

declare local String variables firstNumber and secondNumber in which the pro-
gram stores the Strings input by the user.

Lines 18–19

double number1; // first number to add
double number2; // second number to add

declare local variables number1 and number2 of primitive data type double—these
variables hold floating-point values. Unlike sum, number1 and number2 are not in-
stance variables, so they are not initialized to 0.0 (the default value of double instance
variables).

As an important aside, there are actually two types of variables in Java—primitive data
type variables (normally called variables) and reference variables (normally called refer-
ences). The identifiers firstNumber and secondNumber are actually references—
names that are used to refer to objects in the program. Such references actually contain the
location of an object in the computer’s memory. In our preceding applets, method paint
actually receives a reference called g that refers to a Graphics object. Statements in
method paint use that reference to send messages to the Graphics object. These mes-
sages are calls to methods (like drawString, drawLine and drawRect) that enable
the program to draw. For example, the statement

g.drawString("Welcome to Java Programming!", 25, 25);

sends the drawString message to the Graphics object to which g refers. As part of
the message, which is simply a method call, we provide the data that drawString re-

128 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

quires to do its task. The Graphics object uses this data to draw the String at the spec-
ified location.

The identifiers number1, number2 and sum are the names of variables. A variable
is similar to an object. The primary difference between a variable and an object is that an
object is defined by a class definition that can contain both data (instance variables) and
methods, whereas a variable is defined by a primitive (or built-in) data type (one of char,
byte, short, int, long, float, double or boolean) that can contain only data. A
variable can store exactly one value at a time, whereas one object may contain many indi-
vidual pieces of data. The distinction between a variable and a reference is based on the data
type of the identifier, which is stated in a declaration. If the data type is a class name, the
identifier is a reference to an object and that reference can be used to send messages to (call
methods on) that object. If the data type is one of the primitive data types, the identifier is
a variable that can be used to store in memory or retrieve from memory a single value of
the declared primitive type.

Software Engineering Observation 3.8
A hint to help you determine if an identifier is a variable or a reference is the variable’s data
type. By convention all class names in Java start with a capital letter. Therefore, if the data
type starts with a capital letter, normally you can assume that the identifier is a reference to
an object of the declared type (e.g., Graphics g indicates that g is a reference to a
Graphics object). 3.8

Lines 22–23

// obtain first number from user
firstNumber = JOptionPane.showInputDialog(

"Enter first floating-point value");

read the first floating-point number from the user. JOptionPane method showInput-
Dialog displays an input dialog that prompts the user to enter a value. The user types a
value in the input dialog’s text field, then clicks the OK button to return the string the user
typed to the program. If you type and nothing appears in the text field, position the mouse
pointer in the text field and click the mouse to make the text field active. Variable first-
Number is assigned the result of the call to JOptionPane.showInputDialog oper-
ation with an assignment statement. The statement is read as “firstNumber gets the
value of JOptionPane.showInputDialog("Enter first floating-point
value").”

In lines 22–23, notice the method call syntax. At this point, we have seen two different
ways to call methods. This statement uses the static method call syntax introduced in
Chapter 2. All static methods are called with the syntax

ClassName.methodName(arguments)

Also in this chapter, we have called methods of class Graphics with a similar syntax that
started with a reference to a Graphics object. Generically, this syntax is

referenceName.methodName(arguments)

This syntax is used for most methods calls in Java. In fact, the applet container uses this
syntax to call methods init, start and paint on your applets.

Chapter 3 Introduction to Java Applets 129

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Lines 26–27

// obtain second number from user
secondNumber = JOptionPane.showInputDialog(

"Enter second floating-point value");

read the second floating-point value from the user by displaying an input dialog.
Lines 30–31

number1 = Double.parseDouble(firstNumber);
number2 = Double.parseDouble(secondNumber);

convert the two strings input by the user to double values for use in a calculation. Method
Double.parseDouble (a static method of class Double) converts its String ar-
gument to a double floating-point value. Class Double is in package java.lang. The
floating-point value returned by parseDouble in line 30 is assigned to variable
number1. The floating-point value returned by parseDouble in line 31 is assigned to
variable number2.

Software Engineering Observation 3.9
Each primitive data type (such as int or double) has a corresponding class (such as In-
teger or Double) in package java.lang. These classes (commonly known as type-
wrapper classes) provide methods for processing primitive data type values (such as convert-
ing a String to a primitive data type value or converting a primitive data type value to a
String). Primitive data types do not have methods. Therefore, methods related to a primi-
tive data type are located in the corresponding type-wrapper class (e.g., method parseDou-
ble that converts a String to a double value is located in class Double). See the online
API documentation for the complete details of the methods in the type-wrapper classes. 3.9

The assignment statement at line 34

sum = number1 + number2;

calculates the sum of the values stored in variables number1 and number2 and assigns
the result to variable sum using the assignment operator =. The statement is read as “sum
gets the value of number1 + number2.” Notice that instance variable sum is used in
method init even though sum was not defined in method init. We can use sum in
init (and all other methods of the class), because sum is an instance variable.

At this point the applet’s init method returns and the applet container calls the
applet’s start method. We did not define start in this applet, so the one inherited from
class JApplet is called here. Normally, the start method is used with an advanced con-
cept called multithreading. See Chapter 15 and Chapter 18 for typical uses of start.

Next, the applet container calls the applet’s paint method. In this example, method
paint draws a rectangle in which the result of the addition will appear. Line 45

g.drawRect(15, 10, 270, 20);

sends the drawRect message to the Graphics object to which g refers (calls the
Graphics object’s drawRect method). Method drawRect draws a rectangle based on
its four arguments. The first two integer values represent the upper-left x-coordinate and
upper-left y-coordinate where the Graphics object begins drawing the rectangle. The
third and fourth arguments are non-negative integers that represent the width of the rectan-

130 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

gle in pixels and the height of the rectangle in pixels, respectively. This particular statement
draws a rectangle starting at coordinate (15, 10) that is 270 pixels wide and 20 pixels tall.

Common Programming Error 3.8
It is a logic error to supply a negative width or negative height as an argument to Graphics
method drawRect. The rectangle will not be displayed and no error will be indicated. 3.8

Common Programming Error 3.9
It is a logic error to supply two points (i.e., pairs of x- and y-coordinates) as the arguments
to Graphics method drawRect. The third argument must be the width in pixels and the
fourth argument must be the height in pixels of the rectangle to draw. 3.9

Common Programming Error 3.10
It is normally a logic error to supply arguments to Graphics method drawRect that
cause the rectangle to draw outside the applet’s viewable area (i.e., the width and height of
the applet as specified in the HTML document that references the applet). Either increase the
applet’s width and height in the HTML document or pass arguments to method drawRect
that cause the rectangle to draw inside the applet’s viewable area. 3.10

Line 48

g.drawString("The sum is " + sum, 25, 25);

sends the drawString message to the Graphics object to which g refers (calls the
Graphics object’s drawString method). The expression

"The sum is " + sum

from the preceding statement uses the string concatenation operator + to concatenate the
string "The sum is " and sum (converted to a string) to create the string drawString
displays. Notice again that the preceding statement uses the instance variable sum even
though method paint does not define sum as a local variable.

The benefit of defining sum as an instance variable is that we were able to assign sum
a value in init and use sum’s value in the paint method later in the program. All
methods of a class are capable of using the instance variables in the class definition.

Software Engineering Observation 3.10
The only statements that should be placed in an applet’s init method are those that are di-
rectly related to the one-time initialization of an applet’s instance variables. The applet’s re-
sults should be displayed from other methods of the applet class. Results that involve drawing
should be displayed from the applet’s paint method. 3.10

Software Engineering Observation 3.11
The only statements that should be placed in an applet’s paint method are those that are
directly related to drawing (i.e., calls to methods of class Graphics) and the logic of draw-
ing. Generally, dialog boxes should not be displayed from an applet’s paint method. 3.11

3.6 Viewing Applets in a Web Browser
We demonstrated several applets in this chapter using the appletviewer applet contain-
er. As we mentioned, applets also can execute in Java-enabled Web browsers. Unfortunate-

Chapter 3 Introduction to Java Applets 131

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

ly, there are many different browser versions being used worldwide. Some support only
Java 1.0 and many support Java 1.1. However, few support the Java 2 Platform. Also, even
the browsers that support Java 1.1 do so inconsistently. In Section 3.6.1, we demonstrate
an applet executing in Netscape Navigator 6, which supports Java 2. In Section 3.6.2, we
demonstrate how to use the Java Plug-in to execute Java 2 applets in other Web browsers
such as Microsoft Internet Explorer or earlier versions of Netscape Navigator.

Portability Tip 3.3
Not all Web browsers support Java. Those that do often support different versions and are
not always consistent across all platforms. 3.3

3.6.1 Viewing Applets in Netscape Navigator 6
When you install Netscape Navigator 6, one of the browser components in the default in-
stallation is Java 2. Once installed, you can simply load an applet’s HTML file into the
browser to execute the applet. You can download and install Netscape 6 from

www.netscape.com

by clicking the Download button at the top of the Web page.
After installing the browser, open the program. On Windows, Netscape 6 typically

places an icon on your desktop during the install process. In the File menu, click Open
File… to select an HTML document from your local computer’s hard disk. In the Open
File dialog, navigate to the location of the HTML file of Fig. 3.11. Select the file name
WelcomeLines.html by clicking it, then click the Open button to open the file in the
browser. In a few moments, you should see the applet of Fig. 3.10 appear in the browser
window as shown in Fig. 3.14.

3.6.2 Viewing Applets in Other Browsers Using the Java Plug-In

If you would like to use the features of the Java 2 platform in an applet and execute that
applet in a browser that does not support Java 2, Sun provides the Java Plug-in to bypass a
browser’s Java support and use a complete version of the Java 2 Runtime Environment
(J2RE) that is installed on the user’s local computer. If the J2RE does not already exist on
the client machine, it can be downloaded and installed dynamically.

Performance Tip 3.1
Because of the size of the Java Plug-in, it is difficult and inefficient to download the Plug-in
for users with slower Internet connections. For this reason, the Plug-in is ideal for corporate
intranets where users are connected to a high-speed network. Once the Plug-in is download-
ed, it does not need to be downloaded again. 3.1

You must indicate in the HTML file containing an applet that the browser should use
the Java Plug-in to execute the applet. To do so, requires that you convert the <applet>
and </applet> tags into tags that load the Java Plug-in and execute the applet. Sun pro-
vides a conversion utility called the Java Plug-in 1.3 HTML Converter2 that performs the
conversion for you. Complete information on downloading and using the Java Plug-in and
the HTML Converter are available at the Web site

java.sun.com/products/plugin/

132 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Once you have downloaded and installed the Java Plug-in HTML converter, you can
execute it via the batch file HTMLConverter.bat on Windows or the shell script
HTMLConverter.sh on Linux/UNIX. These files are located in the converter direc-
tory’s classes subdirectory. Figure 3.15 shows the Java Plug in HTML Converter
window.

2. As of Java 2 Software Development Kit version 1.3.1, a command-line version of the Java Plug-
in HTML converter is one of the tools in the J2SDK. To use the command-line version, open a
command window and change directories to the location that contains the HTML file to convert.
In that directory type HTMLConverter fileName, where fileName is the HTML file to convert.
Visit java.sun.com/products/plugin/1.3/docs/htmlconv.html for more de-
tails on the command-line HTML converter.

Fig. 3.14Fig. 3.14Fig. 3.14Fig. 3.14 Applet of Fig. 3.10 executing in Netscape Navigator 6.

Fig. 3.15Fig. 3.15Fig. 3.15Fig. 3.15 Java Plug-in HTML Converter window.

HTML file loaded into browser

status bar

applet’s upper-left corner

The Java Plug-in
HTML Converter
allows you to
convert all the
HTML files
containing applets
in one directory.
Click the Browse…
button to select the
directory
containing the files
to convert.

Also, you can
specify the
directory in which
the original HTML
files are saved.

Chapter 3 Introduction to Java Applets 133

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

To perform the conversion, you must select the directory containing the HTML files
to convert. You can either type the directory name in the text field below All Files in
Folder, or you can select the directory by clicking the Browse… button to the right of
that text field. We clicked the Browse… button to display the Open dialog in Fig. 3.16.

After selecting the directory containing files to convert, the Java Plug in HTML
Converter window appears as in Fig. 3.17. The converter provides several conversion
templates to support different combinations of browsers. The default template supports
Netscape Navigator and Microsoft Internet Explorer. Figure 3.17 shows the expanded
Template File drop-down list containing the pre-defined conversion templates. We
selected the default template that enables Microsoft Internet Explorer and Netscape Navi-
gator to use the plug-in to execute an applet.

After selecting the appropriate template file, click the Convert… button at the bottom
of the Java Plug in HTML Converter window. Figure 3.18 shows the dialog box that
appears containing the status and results of the conversion. At this point the applet’s HTML
file can be loaded into Netscape Navigator or Microsoft Internet Explorer to execute the
applet. If the Java 2 Runtime Environment does not already exist on the user’s computer,
the converted HTML file contains information that enables the browser to prompt users to
determine if they would like to download the plug-in.

In this chapter and Chapter 2, we have introduced many important features of Java,
including applications, applets, displaying data on the screen, inputting data from the key-
board, performing calculations and making decisions. In Chapter 4, we build on these tech-
niques as we introduce structured programming. Here, you will become more familiar with
indentation techniques. We also study how to specify and vary the order in which a program
executes statements—this order is called flow of control.

Fig. 3.16Fig. 3.16Fig. 3.16Fig. 3.16 Selecting the directory containing HTML files to convert.

The Open dialog
box allows you to
select the directory
containing the files
to convert.

134 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

3.7 Java Applet Internet and World Wide Web Resources
If you have access to the Internet and the World Wide Web, there are a large number of
Java applet resources available to you. The best place to start is at the source—the Sun Mi-
crosystems, Inc. Java Web site java.sun.com. In the upper-left corner of the Web page
is an Applets hyperlink that takes you to the Web page

java.sun.com/applets

This page contains a variety of Java applet resources, including free applets you can use on
your own World Wide Web site, the demonstration applets from the J2SDK and a variety
of other applets (many of which can be downloaded and used on your own computer).

Fig. 3.17Fig. 3.17Fig. 3.17Fig. 3.17 Selecting the template used to convert the HTML files.

Fig. 3.18Fig. 3.18Fig. 3.18Fig. 3.18 Confirmation dialog after conversion completes.

The Java Plug-in HTML
Converter window after
selecting the directory
containing files to
convert.

The Template File
drop-down list allows
you to choose the
browsers in which to
use the plug-in to
execute applets.

The confirmation
dialog showing that
the converter found
and converted one
applet in an HTML
file in the specified
directory.

Chapter 3 Introduction to Java Applets 135

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

There is also a section entitled “Applets at Work” where you can read about uses of applets
in industry.

On the Sun Microsystems Java Web site, visit the Java Developer Connection

developer.java.sun.com/developer

This free site includes technical support, discussion forums, on-line training courses, tech-
nical articles, resources, announcements of new Java features, early access to new Java
technologies, and links to other important Java Web sites. Even though the site is free, you
must register to use it.

Another useful Web site is JARS—originally called the Java Applet Rating Service.
The JARS site

www.jars.com

calls itself the “#1 Java Review Service.” This site originally was a large Java repository
for applets. Its benefit was that it rated every applet registered at the site as top 1%, top 5%
and top 25%, so you could view the best applets on the Web. Early in the development of
the Java language, having your applet rated here was a great way to demonstrate your Java
programming abilities. JARS is now all-around resource for Java programmers.

The resources listed in this section provide hyperlinks to many other Java-related Web
sites. If you have Internet access, spend some time browsing these sites, executing applets
and reading the source code for the applets when it is available. This will help you rapidly
expand your Java expertise. Appendix B contains many other Web-based Java resources.

3.8 (Optional Case Study) Thinking About Objects: Identifying
the Classes in a Problem Statement
Now we begin the substantial task of designing the elevator simulator model, which repre-
sents the workings of the elevator system. We will design the user interaction and display
of this model in Section 12.16 and Section 22.9, respectively.

Identifying the Classes in a System
The first step of our OOD process is to identify the classes in our model. We will eventually
describe these classes in a formal way and implement them in Java. First, we review the
problem statement and locate all the nouns; it is likely that these include most of the classes
(or instances of classes) necessary to implement the elevator simulation. Figure 3.19 is a
list of these nouns (and noun phrases) in the order of their appearance.

Nouns (and noun phrases) in the problem statement

company elevator system graphical user interface (GUI)

office building elevator shaft elevator car

elevator display person

software-simulator application model floor (first floor; second floor)

Fig. 3.19Fig. 3.19Fig. 3.19Fig. 3.19 Nouns (and noun phrases) in problem statement (part 1 of 2).

136 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

We choose only the nouns that perform important duties in our model. For this reason
we omit several nouns (the next paragraph explains why each is omitted):

• company

• office building

• display

• graphical user interface (GUI)

• user of our application

• energy

• capacity

• First Floor and Second Floor GUI buttons

• audio

• elevator music

We do not need to model “company,” as a class, because the company is not part of
the simulation; the company simply wants us to model the elevator. We do not model the
office building, or the actual place the elevator is situated, because the building does not
affect how our elevator simulation operates. The phrases “display,” “audio” and “elevator
music” pertain to the presentation of the model, but do not pertain to the model itself. We
use these phrases when we construct the presentation in Section 22.9 and Appendix I. The
phrases “graphical user interface,” “user of our application” and “First Floor and Second
Floor GUI buttons” pertain to how the user controls the model, but they do not represent
the model. We use these phrases when we construct the user interface in Section 12.16.
“Capacity” is a property of the elevator and of the floor—not a separate entity itself. Lastly,
although we’ll be saving energy with the policy of not moving the elevator until requested,
we do not model “energy.”

We determine the classes for our system by grouping the remaining nouns into catego-
ries. We discard “elevator system” for the time being—we focus on designing only the
system’s model and disregard how this model relates to the system as a whole. (We discuss
the system as a whole in Section 13.17.) Using this logic, we discard “simulation,” because
the simulation is the system in our case study. Lastly, we combine “elevator” and “elevator
car” into “elevator,” because the problem statement uses the two words interchangeably.
Each remaining noun from Fig. 3.19 refers to one or more of the following categories:

passenger bell inside the elevator First Floor GUI button

floor door light on that floor Second Floor GUI button

user of our application energy audio

floor button capacity elevator music

elevator button

Nouns (and noun phrases) in the problem statement

Fig. 3.19Fig. 3.19Fig. 3.19Fig. 3.19 Nouns (and noun phrases) in problem statement (part 2 of 2).

Chapter 3 Introduction to Java Applets 137

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

• model

• elevator shaft

• elevator

• person

• floor (first floor, second floor)

• elevator door

• floor door

• elevator button

• floor button

• bell

• light

These categories are likely to be classes we will need to implement our system. Notice
that we create one category for the buttons on the floors and one category for the button on
the elevator. The two types of buttons perform different duties in our simulation—the but-
tons on the floors summon the elevator, and the button in the elevator informs the elevator
to move to the other floor.

We can now model the classes in our system based on the categories we created. By
convention, we capitalize class names in the design process (as we will do when we write
the actual Java program that implements our design). If the name of a class contains more
than one word, we run the words together and capitalize each word (e.g., Multiple-
WordName). Using this convention, we create classes ElevatorModel,3 Elevator-
Shaft, Elevator, Person, Floor, ElevatorDoor, FloorDoor,
ElevatorButton, FloorButton, Bell and Light. We construct our system using
all of these classes as building blocks. Before we begin building the system, however, we
must gain a better understanding of how the classes relate to one another.

Class Diagrams
The UML enables us to model, via the class diagram, the classes in the elevator system and
their interrelationships. Class diagrams model the structure of the system by providing the
classes, or “building blocks,” of the system. Figure 3.20 represents class Elevator using
the UML. In a class diagram, each class is modeled as a rectangle. We then divide this rect-
angle into three parts. The top part contains the name of the class. The middle part contains
the class’ attributes. (We discuss attributes in “Thinking About Objects” Section 4.14 and
Section 5.11.) The bottom part of the rectangle contains the class’ operations (discussed in
“Thinking About Objects,” Section 6.17).

3. When we refer to the “elevator model,” we imply all classes composing the model describing the
operation of our elevator system—in other words, in our simulation, several classes comprise the
model. We will see in Section 13.17 that our system requires a single class to represent the mod-
el—we create class ElevatorModel to act as the “representative” for the model, because, as
we will see in Fig. 3.23, ElevatorModel is the class that aggregates all other classes compris-
ing the model.

138 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Classes relate to one another via associations. Figure 3.21 shows how our classes
ElevatorShaft, Elevator and FloorButton relate to one another. Notice that the
rectangles in this diagram are not subdivided into three sections. The UML allows the sup-
pression of class attributes and operations in this manner to create more readable diagrams.
Such a diagram is said to be an elided diagram, (i.e., some information, such as the contents
for the second and bottom compartments), is not modeled. We place information in these
compartments in Section 4.14 and Section 6.17, respectively.

In this class diagram, a solid line that connects classes represents an association. An
association is a relationship between classes. The numbers near the lines express multi-
plicity values. Multiplicity values indicate how many objects of a class participate in the
association. From the diagram, we see that two objects of class FloorButton participate
in the association with one object of class ElevatorShaft, because the two Floor-
Buttons are located on the ElevatorShaft. Therefore, class FloorButton has a
two-to-one relationship with class ElevatorShaft; we can also say that class Eleva-
torShaft has a one-to-two relationship with class FloorButton. We also see that
class ElevatorShaft has a one-to-one relationship with class Elevator and vice
versa. Using the UML, we can model many types of multiplicity. Figure 3.22 shows the
multiplicity types and how to represent them.

An association can be named. For example, the word Requests above the line con-
necting classes FloorButton and Elevator indicates the name of that association—
the arrow shows the direction of the association. This part of the diagram reads “one object
of class FloorButton requests one object of class Elevator.” Note that associations
are directional with the direction indicated by the arrowhead next to the association name—
so it would be improper, for example, to read the preceding association as “one object of
class Elevator requests one object of class FloorButton.” In addition, the word
Resets indicates that “one object of class ElevatorShaft resets two objects of class
FloorButton.” Lastly, the phrase Signals arrival indicates that “one object of
class Elevator signals the Elevator object’s arrival to one object of class Eleva-
torShaft.”

The diamond attached to the association lines of class ElevatorShaft indicates
that class ElevatorShaft has an aggregation relationship with classes FloorButton
and Elevator. Aggregation implies a whole/part relationship. The class that has the
aggregation symbol (the hollow diamond) on its end of an association line is the whole (in
this case, ElevatorShaft), and the class on the other end of the association line is the
part (in this case, classes FloorButton and Elevator). In this example, the elevator
shaft “has an” elevator and two floor buttons. The “has a/has an” relationship defines aggre-
gation (we will see in Section 9.23 that the “is a/is an” relationship defines inheritance).

Fig. 3.20Fig. 3.20Fig. 3.20Fig. 3.20 Representing a class in the UML.

Elevator

Chapter 3 Introduction to Java Applets 139

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Figure 3.23 shows the complete class diagram for the elevator model. We model all
classes that we created, as well as the associations between these classes. [Note: In Chapter
9, we expand our class diagram by using the object-oriented concept of inheritance.]

Class ElevatorModel is represented near the top of the diagram and aggregates one
object of class ElevatorShaft and two objects of class Floor. The Elevator-
Shaft class is an aggregation of one object of class Elevator and two objects each of
classes Light, FloorDoor and FloorButton. (Notice the two-to-one relationships
between each of these classes and ElevatorShaft.) Class Elevator is an aggregation
of classes ElevatorDoor, ElevatorButton and Bell. Class Person has associa-
tions with both FloorButton and ElevatorButton (and other classes, as we will
soon see). The association name Presses and the name-direction arrowheads indicate
that the object of class Person presses these buttons. The object of class Person also
rides the object of class Elevator and walks across the object of class Floor. The name
Requests indicates that an object of class FloorButton requests the object of class
Elevator. The name Signals to move indicates that the object of class Elevator-
Button signals the object of class Elevator to move to the other floor. The diagram
indicates many other associations, as well.

Fig. 3.21Fig. 3.21Fig. 3.21Fig. 3.21 Class diagram showing associations among classes.

Symbol Meaning

0 None.

1 One.

m An integer value.

0..1 Zero or one.

m, n m or n

m..n At least m, but not more than n.

* Zero or more.

0..* Zero or more

1..* One or more

Fig. 3.22Fig. 3.22Fig. 3.22Fig. 3.22 Multiplicity types.

Requests
FloorButton

ElevatorShaft

Elevator

1

1 1

2

2 1

Resets
Signals
arrival

140 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Object Diagrams
The UML also defines object diagrams, which are similar to class diagrams in that both di-
agrams model the structure of the system. However, object diagrams model objects (in-
stances of classes) at a specific time in program execution. Object diagrams present a
snapshot of the structure while the system is running, providing information about which
objects are participating in the system at a definite point in time. Object diagrams represent
relationships between objects as solid lines—these relationship are called links.

Figure 3.24 models a snapshot of the system when no people are in the building (i.e., no
objects of class Person exist in the system at this point in time). Objects usually are written
in the form objectName : ClassName—objectName refers to the name of the object,
and ClassName refers to the class to which that object belongs. All names in an object dia-
gram are underlined. The UML permits us to omit the object names for objects in the diagram
where there exists only one object of that class (e.g., one object of class Bell at the bottom
of the diagram). In large systems, object diagrams can contain many objects. This can result
in cluttered, hard-to-read diagrams. If the name of a particular object is unknown, or if it is
not necessary to include the name (i.e., we care only about the object type), we can disregard
the object name and display only the colon and the class name.

Fig. 3.23Fig. 3.23Fig. 3.23Fig. 3.23 Class diagram for the elevator model.

Light ElevatorModel Floor

FloorDoor

ElevatorDoor

ElevatorShaft

Elevator

Bell

FloorButton

ElevatorButton

Person

Creates

Presses

Presses

1

1

1

1

1

1
1

1 22

1

1

1
1 1

1

1

2

1

1

0..*

2

1

Requests

1

1

Rides

1

1

Signals to
move

Resets

Resets

Walks
across

Opens

Opens

1

Rings

Turns
on/off

Signals
arrival

1

1

1

1

Chapter 3 Introduction to Java Applets 141

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Now we have identified the classes for our system (although we may discover others
in later phases of the design process). In “Thinking About Objects,” Section 4.14, we deter-
mine the attributes for each of these classes, and in “Thinking About Objects,”
Section 5.11, we use these attributes to examine how the system changes over time and to
introduce its behavioral aspects. As we expand our knowledge, we will discover new infor-
mation that will enable us to describe our classes more completely. Because the real world
is inherently object oriented, it will be quite natural for you to pursue this project, even
though you might have just begun your study of object orientation.

Questions

1. Why might it be more complicated to implement a three-story (or taller) building?

2. It is common for large buildings to have many elevators. We will see in Chapter
9 that once we have created one elevator object, it is easy to create as many as we
like. What problems or opportunities do you foresee in having several elevators,

Fig. 3.24Fig. 3.24Fig. 3.24Fig. 3.24 Object diagram of an empty building in our elevator model.

firstFloorLight : Light

: ElevatorModel

firstFloor : Floor

firstFloorDoor : FloorDoor

: ElevatorDoor

: ElevatorShaft

: Elevator

: Bell

firstFloorButton: FloorButton

: ElevatorButton

secondFloor : Floor

secondFloorButton : FloorButtonsecondFloorDoor : FloorDoor

secondFloorLight : Light

142 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

each of which may pick up and discharge passengers at every floor in a large
building?

3. For simplicity, we have given our elevator and each floor a capacity of one pas-
senger. What problems and opportunities do you foresee in being able to increase
these capacities?

SUMMARY
• Applets are Java programs that can be embedded in Hypertext Markup Language (HTML) docu-

ments (i.e., Web pages). When a browser loads a Web page containing an applet, the applet down-
loads into the Web browser and begins execution.

• In the appletviewer, you can execute an applet again by clicking the appletviewer’s Applet
menu and selecting the Reload option from the menu. To terminate an applet, click the applet-
viewer’s Applet menu and select the Quit option.

• Class Graphics is located in package java.awt. Import the Graphics class so the program
can draw graphics.

• Class JApplet is located in package javax.swing. When you create an applet in Java, you
must import the JApplet class.

• Java uses inheritance to create new classes from existing class definitions. Keyword extends
followed by a class name indicates the class from which a new class inherits.

• In the inheritance relationship, the class following extends is called the superclass or base class
and the new class is called the subclass or derived class. Using inheritance results in a new class
definition that has the attributes (data) and behaviors (methods) of the superclass as well as the
new features added in the subclass definition.

• A benefit of extending class JApplet is that someone else already has defined “what it means to
be an applet.” The appletviewer and World Wide Web browsers that support applets expect
every Java applet to have certain capabilities (attributes and behaviors), and class JApplet al-
ready provides those capabilities.

• Classes are used as “templates” or “blueprints” to instantiate (or create) objects in memory for use
in a program. An object (or instance) is a region in the computer’s memory in which information
is stored for use by the program. The term object normally implies that attributes (data) and be-
haviors (methods) are associated with the object and that those behaviors perform operations on
the attributes of the object.

• Method paint is one of three methods (behaviors) that an applet container calls when any applet
begins execution. These three methods are init, start and paint, and they are guaranteed to
be called in that order.

• The parameter list is where methods receive data required to complete their tasks. Normally, this
data is passed by the programmer to the method through a method call (also known as invoking a
method). In the case of method paint, the applet container calls the method and passes the
Graphics argument.

• Method drawString of class Graphics draws a string at the specified location on the applet.
The first argument to drawString is the String to draw. The last two arguments in the list are
the coordinates (or position) at which the string should be drawn. Coordinates are measured from
the upper-left (0, 0) coordinate of the applet in pixels.

• You must create an HTML (Hypertext Markup Language) file to load an applet into an applet con-
tainer, so the applet container can execute the applet.

Chapter 3 Introduction to Java Applets 143

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

• Many HTML codes (referred to as tags) come in pairs. HTML tags begin with a left angle bracket
< and end with a right angle bracket >.

• Normally, the applet and its corresponding HTML file are stored in the same directory on disk.

• The first component of the <applet> tag indicates the file containing the compiled applet class.
The second and third components of the <applet> tag indicate the width and the height of
the applet in pixels. Generally, each applet should be less than 800 pixels wide and 600 pixels tall.

• The appletviewer only understands the <applet> and </applet> HTML tags, so it is
sometimes referred to as the “minimal browser.” It ignores all other HTML tags.

• Method drawLine of class Graphics draws lines. The method requires four arguments repre-
senting the two end points of the line on the applet—the x-coordinate and y-coordinate of the first
end point in the line and the x-coordinate and y-coordinate of the second end point in the line. All
coordinate values are specified with respect to the upper-left corner (0, 0) coordinate of the applet.

• Primitive data type double stores double-precision floating-point numbers. Primitive data type
float stores single-precision floating-point numbers. A double requires more memory to store
a floating-point value, but stores it with approximately twice the precision of a float (15 signif-
icant digits for double vs. seven significant digits for float).

• The import statements are not required if you always use the complete name of a class, including
the full package name and class name (e.g., java.awt.Graphics).

• The asterisk (*) notation after a package name in an import indicates that all classes in the pack-
age should be available to the compiler so the compiler can ensure that the classes are used cor-
rectly. This allows programmers to use the shorthand name (the class name by itself) of any class
from the package in the program.

• Every instance (object) of a class contains one copy of each of that class’s instance variables. In-
stance variables are declared in the body of a class definition, but not in the body of any method
of that class definition. An important benefit of instance variables is that their identifiers can be
used in all methods of the class.

• Variables defined in the body of a method are known as local variables and can be used only in
the body of the method in which they are defined.

• Instance variables are always assigned a default value, and local variables are not.

• Method init normally initializes the applet’s instance variables (if they need to be initialized to
a value other than their default value) and performs any tasks that should occur only once when
the applet begins execution

• There are actually two types of variables in Java—primitive data type variables and references.

• References refer to objects in a program. References actually contain the location in the comput-
er’s memory of an object. A reference is used to send messages to (i.e., call methods on) the object
in memory. As part of the message (method call), we provide the data (arguments) that the method
requires to do its task.

• A variable is similar to an object. The primary difference between a variable and an object is that
an object is defined by a class definition that can contain both data (instance variables) and meth-
ods, whereas a variable is defined by a primitive (or built-in) data type (one of char, byte,
short, int, long, float, double or boolean) that can contain only data.

• A variable can store exactly one value at a time, whereas one object can contain many individual
data members.

• If the data type used to declare a variable is a class name, the identifier is a reference to an object
and that reference can be used to send messages to (call methods on) that object. If the data type
used to declare a variable is one of the primitive data types, the identifier is a variable that can be
used to store in memory or retrieve from memory a single value of the declared primitive type.

144 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

• Method Double.parseDouble (a static method of class Double) converts its String
argument to a double floating-point value. Class Double is part of the package java.lang.

• Method drawRect draws a rectangle based on its four arguments. The first two integer values
represent the upper-left x-coordinate and upper-left y-coordinate where the Graphics object be-
gins drawing the rectangle. The third and fourth arguments are non-negative integers that represent
the width of the rectangle in pixels and the height of the rectangle in pixels, respectively.

• To use the features of Java 2 in an applet, Sun provides the Java Plug-in to bypass a browser’s Java
support and use a complete version of the Java 2 Runtime Environment (J2RE) that is installed on
the user’s local computer.

• To specify that an applet should use the Java Plug-in rather than the browser’s Java support, use
the HTML Converter to convert the applet’s <applet> and </applet> tags in the HTML file
to indicate that the applet container should use the Plug-in to execute the applet. Sun provides the
Java Plug-in 1.3 HTML Converter to perform the conversion for you.

TERMINOLOGY
applet int primitive type
applet container interface
<applet> tag invoke a method
Applet menu JApplet class
appletviewer java.awt package
boolean primitive type Java Plug-in
browser Java 2 Runtime Environment (J2RE)
built-in data type javax.swing package
byte primitive type local variable
char primitive type logic error
command-line argument long primitive type
coordinate message
create an object method call
derived class Microsoft Internet Explorer
double primitive data type Netscape Communicator
Double.parseDouble method object
double-precision floating-point number paint method of class JApplet
drawLine method of class Graphics parameter list
drawRect method of class Graphics pixel (picture element)
drawString method of class Graphics primitive data type
extends keyword Quit menu item
float primitive type references
floating-point number Reload menu item
Graphics class short primitive type
height of an applet single-precision floating-point number
HTML Converter source code
HTML tag start method of class JApplet
Hypertext Markup Language (HTML) subclass
import statement superclass
information hiding text file
init method of class JApplet width of an applet
instance variable World Wide Web
instantiate an object

Chapter 3 Introduction to Java Applets 145

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

SELF-REVIEW EXERCISES
3.1 Fill in the blanks in each of the following.

a) Class provides methods for drawing.
b) Java applets begin execution with a series of three method calls: ,

 and .
c) Methods and display lines and rectangles.
d) Keyword indicates that a new class is a subclass of an existing class.
e) Every Java applet should extend either class or class .
f) Java’s eight primitive data types are , , , ,

, , and .

3.2 State whether each of the following is true or false. If false, explain why.
a) To draw a rectangle, method drawRect requires four arguments that specify two points

on the applet.
b) Method drawLine requires four arguments that specify two points on the applet to

draw a line.
c) Type Double is a primitive data type.
d) Data type int is used to declare a floating-point number.
e) Method Double.parseDouble converts a String to a primitive double value.

3.3 Write Java statements to accomplish each of the following:
a) Display a dialog asking the user to enter a floating-point number.
b) Convert a String to a floating-point number and store the converted value in double

variable age. Assume that the String is stored in stringValue.
c) Draw the message "This is a Java program" on one line on an applet (assume

you are defining this statement in the applet’s paint method) at position (10, 10).
d) Draw the message "This is a Java program" on two lines on an applet (assume

these statements are defined in applet method paint) starting at position (10, 10) and
where the first line ends with Java. Make the two lines start at the same x coordinate.

ANSWERS TO SELF-REVIEW EXERCISES
3.1 a) Graphics. b) init, start, paint. c) drawLine, drawRect. d) extends.
e) JApplet, Applet. f) byte, short, int, long, float, double, char and boolean.

3.2 a) False. Method drawRect requires four arguments—two that specify the upper-left cor-
ner of the rectangle and two that specify the width and height of the rectangle. b) True. c) False. Type
Double is a class in the java.lang package. Remember that names that start with a capital letter
are normally class names. d) False. Data type double or data type float can be used to declare a
floating-point number. Data type int is used to declare integers. e) True.

3.3 a) stringValue = JOptionPane.showInputDialog(
 "Enter a floating-point number");

b) age = Double.parseDouble(stringValue);
c) g.drawString("This is a Java program", 10, 10);
d) g.drawString("This is a Java", 10, 10);

g.drawString("program", 10, 25);

EXERCISES
3.4 Fill in the blanks in each of the following:

a) Data type declares a single-precision floating-point variable.

146 Introduction to Java Applets Chapter 3

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

b) If class Double provides method parseDouble to convert a String to a double
and class Integer provides method parseInt to convert a String to an int, then
class Float probably provides method to convert a String to a float.

c) Data type declares a double-precision floating-point variable.
d) The or a browser can be used to execute a Java applet.
e) To load an applet into a browser you must first define a(n) file.
f) The and HTML tags specify that an applet should be loaded into

an applet container and executed.

3.5 State whether each of the following is true or false. If false, explain why.
a) All browsers support Java 2.
b) When using an import of the form javax.swing.*, all classes in the package are

imported.
c) You do not need import statements if the full package name and class name are specified

each time you refer to a class in a program.

3.6 Write an applet that asks the user to enter two floating-point numbers, obtains the two num-
bers from the user and draws the sum, product (multiplication), difference and quotient (division) of
the two numbers. Use the techniques shown in Fig. 3.12.

3.7 Write an applet that asks the user to enter two floating-point numbers, obtains the numbers
from the user and displays the larger number followed by the words “is larger” as a string on the
applet. If the numbers are equal, print the message “These numbers are equal.” Use the tech-
niques shown in Fig. 3.12.

3.8 Write an applet that inputs three floating-point numbers from the user and displays the sum,
average, product, smallest and largest of these numbers as strings on the applet. Use the techniques
shown in Fig. 3.12.

3.9 Write an applet that inputs from the user the radius of a circle as a floating-point number and
draws the circle’s diameter, circumference and area. Use the value 3.14159 for π. Use the techniques
shown in Fig. 3.12. [Note: You may also use the predefined constant Math.PI for the value of π.
This constant is more precise than the value 3.14159. Class Math is defined in the java.lang
package, so you do not need to import it.] Use the following formulas (r is the radius):

diameter = 2r
circumference = 2πr

area = πr2

3.10 Write an applet that draws a box, an oval, an arrow and a diamond using asterisks (*) as fol-
lows:

3.11 Write an applet that reads five integers and determines and prints the largest and smallest in-
tegers in the group. Use only the programming techniques you learned in this chapter and Chapter 2.
Draw the results on the applet.

********* *** * *
* * * * *** * *
* * * * ***** * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
* * * * * * *
********* *** * *

Chapter 3 Introduction to Java Applets 147

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

3.12 Write an applet that reads in two floating-point numbers and determines and prints if the first
is a multiple of the second. (Hint: Use the modulus operator.) Use only the programming techniques
you learned in this chapter and Chapter 2. Draw the results on the applet.

3.13 Write an applet that draws a checkerboard pattern as follows:

3.14 Write an applet that draws a variety of rectangles of different sizes and locations.

3.15 Write an applet that allows the user to input the four arguments required by method draw-
Rect, then draws a rectangle using the four input values.

3.16 The Graphics class contains a drawOval method that takes the same four arguments as
method drawRect. However, the arguments for method drawOval specify the “bounding box” for
the oval. The sides of the bounding box are the boundaries of the oval. Write a Java applet that draws
an oval and a rectangle with the same four arguments. You will see that the oval touches the rectangle
at the center of each side.

3.17 Modify the solution to Exercise 3.16 to output a variety of ovals of different shapes and sizes.

3.18 Write an applet that allows the user to input the four arguments required by method draw-
Oval, then draws an oval using the four input values.

3.19 What does the following code print?

g.drawString("*", 25, 25);
g.drawString("***", 25, 55);
g.drawString("*****", 25, 85);
g.drawString("****", 25, 70);
g.drawString("**", 25, 40);

3.20 Using only programming techniques from Chapter 2 and Chapter 3, write an applet that cal-
culates the squares and cubes of the numbers from 0 to 10 and draws the resulting values in table for-
mat as follows:

[Note: This program does not require any input from the user.]

* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *
* * * * * * * *
 * * * * * * * *

number square cube
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

4
Control Structures:

Part 1

Objectives
• To understand basic problem-solving techniques.
• To be able to develop algorithms through the process

of top-down, stepwise refinement.
• To be able to use the if and if/else selection

structures to choose among alternative actions.
• To be able to use the while repetition structure to

execute statements in a program repeatedly.
• To understand counter-controlled repetition and

sentinel-controlled repetition.
• To be able to use the increment, decrement and

assignment operators.
Let’s all move one place on.
Lewis Carroll

The wheel is come full circle.
William Shakespeare, King Lear

How many apples fell on Newton’s head before he took the
hint!
Robert Frost, comment

Chapter 4 Control Structures: Part 1 149

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

4.1 Introduction
Before writing a program to solve a problem, it is essential to have a thorough understanding
of the problem and a carefully planned approach to solving the problem. When writing a
program, it is equally essential to understand the types of building blocks that are available
and to employ proven program construction principles. In this chapter and in Chapter 5, we
discuss these issues in our presentation of the theory and principles of structured program-
ming. The techniques you learn here are applicable to most high-level languages, including
Java. When we study object-based programming in more depth in Chapter 8, we will see
that control structures are helpful in building and manipulating objects.

4.2 Algorithms
Any computing problem can be solved by executing a series of actions in a specific order.
A procedure for solving a problem in terms of

1. the actions to be executed and

2. the order in which the actions are to be executed

is called an algorithm. The following example demonstrates that correctly specifying the
order in which the actions are to be executed is important.

Outline

4.1 Introduction
4.2 Algorithms
4.3 Pseudocode
4.4 Control Structures
4.5 The if Selection Structure
4.6 The if/else Selection Structure
4.7 The while Repetition Structure
4.8 Formulating Algorithms: Case Study 1 (Counter-Controlled

Repetition)
4.9 Formulating Algorithms with Top-Down, Stepwise Refinement: Case

Study 2 (Sentinel-Controlled Repetition)
4.10 Formulating Algorithms with Top-Down, Stepwise Refinement: Case

Study 3 (Nested Control Structures)
4.11 Assignment Operators
4.12 Increment and Decrement Operators
4.13 Primitive Data Types
4.14 (Optional Case Study) Thinking About Objects: Identifying Class

Attributes

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

150 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Consider the “rise-and-shine algorithm” followed by one junior executive for getting
out of bed and going to work: (1) Get out of bed, (2) take off pajamas, (3) take a shower,
(4) get dressed, (5) eat breakfast, (6) carpool to work.

This routine gets the executive to work well prepared to make critical decisions. Sup-
pose, however, that the same steps are performed in a slightly different order: (1) Get out
of bed, (2) take off pajamas, (3) get dressed, (4) take a shower, (5) eat breakfast, (6) carpool
to work.

In this case, our junior executive shows up for work soaking wet. Specifying the order
in which statements are to be executed in a computer program is called program control.
In this chapter and Chapter 5, we investigate the program control capabilities of Java.

4.3 Pseudocode
Pseudocode is an artificial and informal language that helps programmers develop algo-
rithms. The pseudocode we present here is particularly useful for developing algorithms
that will be converted to structured portions of Java programs. Pseudocode is similar to
everyday English; it is convenient and user friendly, although it is not an actual computer
programming language.

Pseudocode programs are not actually executed on computers. Rather, they help the
programmer “think out” a program before attempting to write it in a programming lan-
guage, such as Java. In this chapter, we give several examples of pseudocode programs.

Software Engineering Observation 4.1
Pseudocode is often used to “think out” a program during the program design process. Then
the pseudocode program is converted to Java. 4.1

The style of pseudocode we present consists purely of characters, so programmers may
conveniently type pseudocode programs using an editor program. The computer can pro-
duce a freshly printed copy of a pseudocode program on demand. A carefully prepared
pseudocode program may be converted easily to a corresponding Java program. This con-
version is done in many cases simply by replacing pseudocode statements with their Java
equivalents.

Pseudocode normally describes only executable statements—the actions that are per-
formed when the program is converted from pseudocode to Java and is run. Declarations
are not executable statements. For example, the declaration

int i;

tells the compiler the type of variable i and instructs the compiler to reserve space in mem-
ory for the variable. This declaration does not cause any action—such as input, output or a
calculation—to occur when the program is executed. Some programmers choose to list
variables and mention the purpose of each at the beginning of a pseudocode program.

4.4 Control Structures
Normally, statements in a program are executed one after the other in the order in which
they are written. This process is called sequential execution. Various Java statements we
will soon discuss enable the programmer to specify that the next statement to be executed
may be other than the next one in sequence. This is called transfer of control.

Chapter 4 Control Structures: Part 1 151

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

During the 1960s, it became clear that the indiscriminate use of transfers of control was
the root of much difficulty experienced by software development groups. The finger of
blame was pointed at the goto statement (used in several programming languages,
including C and Basic), which allows the programmer to specify a transfer of control to one
of a very wide range of possible destinations in a program. The notion of so-called struc-
tured programming became almost synonymous with “goto elimination.” Java does not
have a goto statement; however, goto is a reserved word and should not be used in a Java
program.

The research of Bohm and Jacopini1 had demonstrated that programs could be written
without any goto statements. The challenge of the era for programmers was to shift their
styles to “goto-less programming.” It was not until the 1970s that programmers started
taking structured programming seriously. The results have been impressive, as software
development groups have reported reduced development times, more frequent on-time
delivery of systems and more frequent within-budget completion of software projects. The
key to these successes is that structured programs are clearer, easier to debug and modify
and more likely to be bug free in the first place.

Bohm and Jacopini’s work demonstrated that all programs could be written in terms of
only three control structures—namely, the sequence structure, the selection structure and
the repetition structure. The sequence structure is built into Java. Unless directed other-
wise, the computer executes Java statements one after the other in the order in which they
are written. The flowchart segment in Fig. 4.1 illustrates a typical sequence structure in
which two calculations are performed in order.

A flowchart is a graphical representation of an algorithm or a portion of an algorithm.
Flowcharts are drawn using certain special-purpose symbols, such as rectangles, diamonds,
ovals and small circles; these symbols are connected by arrows called flowlines, which indi-
cate the order in which the actions of the algorithm execute.

Like pseudocode, flowcharts are often useful for developing and representing algo-
rithms, although pseudocode is strongly preferred by many programmers. Flowcharts show
clearly how control structures operate; that is all we use them for in this text. The reader
should carefully compare the pseudocode and flowchart representations of each control
structure.

1. Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two
Formation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336–371.

Fig. 4.1Fig. 4.1Fig. 4.1Fig. 4.1 Flowcharting Java’s sequence structure.

add grade to total total = total + grade;

add 1 to counter counter = counter + 1;

152 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Consider the flowchart segment for the sequence structure in Fig. 4.1. We use the rect-
angle symbol, also called the action symbol, to indicate any type of action, including a cal-
culation or an input/output operation. The flowlines in the figure indicate the order in
which the actions are to be performed; first, grade is to be added to total, and then 1
is to be added to counter. Java allows us to have as many actions as we want in a
sequence structure. As we will soon see, anywhere a single action may be placed, we may
instead place several actions in sequence.

When drawing a flowchart that represents a complete algorithm, an oval symbol con-
taining the word “Begin” is the first symbol used in the flowchart; an oval symbol con-
taining the word “End” indicates where the algorithm ends. When drawing only a portion
of an algorithm, as in Fig. 4.1, the oval symbols are omitted in favor of small circle sym-
bols, also called connector symbols.

Perhaps the most important flowcharting symbol is the diamond symbol, also called
the decision symbol, which indicates that a decision is to be made. We will discuss the dia-
mond symbol in the next section.

Java provides three types of selection structures; we discuss each in this chapter and in
Chapter 5. The if selection structure either performs (selects) an action, if a condition is
true, or skips the action, if the condition is false. The if/else selection structure per-
forms an action if a condition is true and performs a different action if the condition is false.
The switch selection structure (Chapter 5) performs one of many different actions,
depending on the value of an expression.

The if structure is called a single-selection structure, because it selects or ignores a
single action (or, as we will soon see, a single group of actions). The if/else structure
is called a double-selection structure, because it selects between two different actions (or
groups of actions). The switch structure is called a multiple-selection structure, because
it selects among many different actions (or groups of actions).

Java provides three types of repetition structures—namely, while, do/while and
for. (do/while and for are covered in Chapter 5.) Each of the words if, else,
switch, while, do and for are Java keywords. These words are reserved by the lan-
guage to implement various features, such as Java’s control structures. Keywords cannot
be used as identifiers, such as for variable names. A complete list of Java keywords is
shown in Fig. 4.2.

Java Keywords

abstract boolean break byte case

catch char class continue default

do double else extends false

final finally float for if

implements import instanceof int interface

long native new null package

private protected public return short

Fig. 4.2Fig. 4.2Fig. 4.2Fig. 4.2 Java keywords (part 1 of 2).

Chapter 4 Control Structures: Part 1 153

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Common Programming Error 4.1
Using a keyword as an identifier is a syntax error. 4.1

Well, that is all there is. Java has only seven control structures: the sequence structure,
three types of selection structures and three types of repetition structures. Each program is
formed by combining as many of each type of control structure as is appropriate for the
algorithm the program implements. As with the sequence structure in Fig. 4.1, we will see
that each control structure is flowcharted with two small circle symbols, one at the entry
point to the control structure and one at the exit point.

Single-entry/single-exit control structures make it easy to build programs; the control
structures are attached to one another by connecting the exit point of one control structure
to the entry point of the next. This procedure is similar to the way in which a child stacks
building blocks, so we call it control-structure stacking. We will learn that there is only one
other way in which control structures may be connected: control-structure nesting. Thus,
algorithms in Java programs are constructed from only seven different types of control
structures, combined in only two ways.

4.5 The if Selection Structure
A selection structure is used to choose among alternative courses of action in a program.
For example, suppose that the passing grade on an examination is 60 (out of 100). Then the
pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

determines if the condition “student’s grade is greater than or equal to 60” is true or false.
If the condition is true, then “Passed” is printed, and the next pseudocode statement in order
is “performed.” (Remember that pseudocode is not a real programming language.) If the
condition is false, the Print statement is ignored, and the next pseudocode statement in order
is performed. Note that the second line of this selection structure is indented. Such inden-
tation is optional, but it is highly recommended, because it emphasizes the inherent struc-
ture of structured programs. The Java compiler ignores white-space characters, like blanks,
tabs and newlines, used for indentation and vertical spacing. Programmers insert these
white-space characters to enhance program clarity.

static super switch synchronized this

throw throws transient true try

void volatile while

Keywords that are reserved, but not used, by Java

const goto

Java Keywords

Fig. 4.2Fig. 4.2Fig. 4.2Fig. 4.2 Java keywords (part 2 of 2).

154 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Good Programming Practice 4.1
Consistently applying reasonable indentation conventions throughout your programs im-
proves program readability. We suggest a fixed-size tab of about ¼ inch or three spaces per
indent. 4.1

The preceding pseudocode if statement may be written in Java as

if (studentGrade >= 60)
 System.out.println("Passed");

Notice that the Java code corresponds closely to the pseudocode. This attribute is a
property of pseudocode that makes it a useful program development tool. The statement in
the body of the if structure outputs the character string "Passed" in the command
window.

The flowchart in Fig. 4.3 illustrates the single-selection if structure. This flowchart
contains what is perhaps the most important flowcharting symbol—the diamond symbol,
also called the decision symbol, which indicates that a decision is to be made. The decision
symbol contains an expression, such as a condition, that can be either true or false. The
decision symbol has two flowlines emerging from it. One indicates the direction to be taken
when the expression in the symbol is true; the other indicates the direction to be taken when
the expression is false. A decision can be made on any expression that evaluates to a value
of Java’s boolean type (i.e., any expression that evaluates to true or false).

Note that the if structure is a single-entry/single-exit structure. We will soon learn
that the flowcharts for the remaining control structures also contain (besides small circle
symbols and flowlines) only rectangle symbols, to indicate the actions to be performed, and
diamond symbols, to indicate decisions to be made. This factor is indicative of the action/
decision model of programming we have been emphasizing throughout this chapter.

We can envision seven bins, each containing only control structures of one of the seven
types. These control structures are empty; nothing is written in the rectangles or in the dia-
monds. The programmer’s task, then, is to assemble a program from as many of each type
of control structure as the algorithm demands, combining the control structures in only two
possible ways (stacking or nesting) and then filling in the actions and decisions in a manner
appropriate for the algorithm. In this chapter we discuss the variety of ways in which
actions and decisions may be written.

Fig. 4.3Fig. 4.3Fig. 4.3Fig. 4.3 Flowcharting the single-selection if structure.

grade >= 60 true

false

print “Passed”

Chapter 4 Control Structures: Part 1 155

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

4.6 The if/else Selection Structure
The if selection structure performs an indicated action only when the given condition
evaluates to true; otherwise, the action is skipped. The if/else selection structure al-
lows the programmer to specify that a different action is to be performed when the condi-
tion is true rather than when the condition is false. For example, the pseudocode statement

If student’s grade is greater than or equal to 60
Print “Passed”

else
Print “Failed”

prints Passed if the student’s grade is greater than or equal to 60 and prints Failed if the
student’s grade is less than 60. In either case, after printing occurs, the next pseudocode
statement in sequence is “performed.” Note that the body of the else is also indented.

Good Programming Practice 4.2
Indent both body statements of an if/else structure. 4.2

The indentation convention you choose should be carefully applied throughout your
programs. It is difficult to read programs that do not use uniform spacing conventions.

The preceding pseudocode If/else structure may be written in Java as

if (studentGrade >= 60)
 System.out.println("Passed");
else
 System.out.println("Failed");

The flowchart in Fig. 4.4 nicely illustrates the flow of control in an if/else structure.
Once again, note that, besides small circles and arrows, the only symbols in the flowchart
are rectangles (for actions) and a diamond (for a decision). We continue to emphasize this
action/decision model of computing. Imagine again a deep bin containing as many empty
double-selection structures as might be needed to build a Java algorithm. The pro-
grammer’s job is to assemble the selection structures (by stacking and nesting) with other
control structures required by the algorithm and to fill in the empty rectangles and empty
diamonds with actions and decisions appropriate to the algorithm being implemented.

Fig. 4.4Fig. 4.4Fig. 4.4Fig. 4.4 Flowcharting the double-selection if/else structure.

grade >= 60 true

print “Failed”

false

print “Passed”

156 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

The conditional operator (?:) is related to the if/else structure. ?: is Java’s only
ternary operator—it takes three operands. The operands together with ?: form a condi-
tional expression. The first operand is a boolean expression, the second is the value for
the conditional expression if the condition evaluates to true and the third is the value for
the conditional expression if the condition evaluates to false. For example, the statement

System.out.println(studentGrade >= 60 ? "Passed" : "Failed");

contains a conditional expression that evaluates to the string "Passed" if the condition
studentGrade >= 60 is true and to the string "Failed" if the condition is false. Thus,
this statement with the conditional operator performs essentially the same function as the
if/else statement given previously. The precedence of the conditional operator is low,
so the entire conditional expression is normally placed in parentheses. We will see that con-
ditional operators can be used in some situations where if/else statements cannot.

Good Programming Practice 4.3
In general, conditional expressions are more difficult to read than if/else structures. Such
expressions should be used with discretion when they help improve a program’s readability. 4.3

Nested if/else structures test for multiple cases by placing if/else structures
inside if/else structures. For example, the following pseudocode statement prints A for
exam grades greater than or equal to 90, B for grades in the range 80 to 89, C for grades in
the range 70 to 79, D for grades in the range 60 to 69 and F for all other grades:

If student’s grade is greater than or equal to 90
Print “A”

else
If student’s grade is greater than or equal to 80

Print “B”
else

If student’s grade is greater than or equal to 70
Print “C”

else
If student’s grade is greater than or equal to 60

Print “D”
else

Print “F”

This pseudocode may be written in Java as

if (studentGrade >= 90)
 System.out.println("A");
else

if (studentGrade >= 80)
 System.out.println("B");

else
 if (studentGrade >= 70)
 System.out.println("C");
 else
 if (studentGrade >= 60)
 System.out.println("D");
 else
 System.out.println("F");

Chapter 4 Control Structures: Part 1 157

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

If studentGrade is greater than or equal to 90, the first four conditions will be true, but
only the System.out.println statement after the first test will be executed. After that
particular System.out.println is executed, the else part of the “outer” if/else
statement is skipped.

Good Programming Practice 4.4
If there are several levels of indentation, each level should be indented by the same addi-
tional amount of space. 4.4

Most Java programmers prefer to write the preceding if structure as

if (grade >= 90)
 System.out.println("A");
else if (grade >= 80)
 System.out.println("B");
else if (grade >= 70)
 System.out.println("C");
else if (grade >= 60)
 System.out.println("D");
else
 System.out.println("F");

Both forms are equivalent. The latter form is popular because it avoids the deep indentation
of the code to the right. Such deep indentation often leaves little room on a line, forcing
lines to be split and decreasing program readability.

It is important to note that the Java compiler always associates an else with the pre-
vious if unless told to do otherwise by the placement of braces ({}). This attribute is
referred to as the dangling-else problem. For example,

if (x > 5)
if (y > 5)

 System.out.println("x and y are > 5");
else
 System.out.println("x is <= 5");

appears to indicate that if x is greater than 5, the if structure in its body determines if y
is also greater than 5. If so, the string "x and y are > 5" is output. Otherwise, it appears
that if x is not greater than 5, the else part of the if/else structure outputs the string
"x is <= 5".

Beware! The preceding nested if structure does not execute as it would appear to. The
compiler actually interprets the preceding structure as

if (x > 5)
if (y > 5)

 System.out.println("x and y are > 5");
else

 System.out.println("x is <= 5");

in which the body of the first if structure is an if/else structure. This structure tests if
x is greater than 5. If so, execution continues by testing if y is also greater than 5. If the
second condition is true, the proper string—"x and y are > 5"—is displayed. However,
if the second condition is false, the string "x is <= 5" is displayed, even though we know
that x is greater than 5.

158 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

To force the preceding nested if structure to execute as it was originally intended, the
structure must be written as follows:

if (x > 5) {
if (y > 5)

 System.out.println("x and y are > 5");
}
else
 System.out.println("x is <= 5");

The braces ({}) indicate to the compiler that the second if structure is in the body of the
first if structure and that the else is matched with the first if structure. In Exercise 4.21
and Exercise 4.22, you will investigate the dangling-else problem further.

The if selection structure normally expects only one statement in its body. To include
several statements in the body of an if structure, enclose the statements in braces ({ and
}). A set of statements contained within a pair of braces is called a block.

Software Engineering Observation 4.2
A block can be placed anywhere in a program that a single statement can be placed. 4.2

The following example includes a block in the else part of an if/else structure:

if (grade >= 60)
 System.out.println("Passed");
else {
 System.out.println("Failed");
 System.out.println("You must take this course again.");
}

In this case, if grade is less than 60, the program executes both statements in the body of
the else and prints

Failed.
You must take this course again.

Notice the braces surrounding the two statements in the else clause. These braces are im-
portant. Without the braces, the statement

System.out.println("You must take this course again.");

would be outside the body of the else part of the if structure and would execute regard-
less of whether the grade is less than 60.

Common Programming Error 4.2
Forgetting one or both of the braces that delimit a block can lead to syntax or logic errors. 4.2

Syntax errors (such as when one brace in a block is left out of the program) are caught
by the compiler. A logic error (such as when both braces in a block are left out of the pro-
gram) has its effect at execution time. A fatal logic error causes a program to fail and ter-
minate prematurely. A nonfatal logic error allows a program to continue executing, but the
program produces incorrect results.

Chapter 4 Control Structures: Part 1 159

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Software Engineering Observation 4.3
Just as a block can be placed anywhere a single statement can be placed, it is also possible
to have no statement at all (i.e., the empty statement in such places). The empty statement is
represented by placing a semicolon (;) where a statement would normally be. 4.3

Common Programming Error 4.3
Placing a semicolon after the condition in an if structure leads to a logic error in single-
selection if structures and a syntax error in double-selection if structures (if the if part
contains a nonempty body statement). 4.3

Good Programming Practice 4.5
Some programmers prefer to type the beginning and ending braces of blocks before typing
the individual statements within the braces. This practice helps avoid omitting one or both of
the braces. 4.5

In this section, we have introduced the notion of a block. A block may contain decla-
rations (as does the body of main, for example). The declarations in a block commonly are
placed first in the block before any action statements occur, but declarations may also be
intermixed with action statements.

4.7 The while Repetition Structure
A repetition structure allows the programmer to specify that an action is to be repeated
while some condition remains true. The pseudocode statement

While there are more items on my shopping list
Purchase next item and cross it off my list

describes the repetition that occurs during a shopping trip. The condition “there are more
items on my shopping list” may be true or false. If it is true, then the action “Purchase next
item and cross it off my list” is performed. This action will be performed repeatedly while
the condition remains true. The statement(s) contained in the while repetition structure con-
stitute the body of the while structure. The body of the while structure may be a single state-
ment or a block. Eventually, the condition will become false (when the last item on the
shopping list has been purchased and crossed off the list). At this point, the repetition ter-
minates, and the first pseudocode statement after the repetition structure is executed.

Common Programming Error 4.4
Not providing in the body of a while structure an action that eventually causes the con-
dition in the while to become false is a logic error. Normally, such a repetition structure
will never terminate—an error called an infinite loop. 4.4

Common Programming Error 4.5
Spelling the keyword while with an uppercase W, as in While, is a syntax error. (Remem-
ber that Java is a case-sensitive language.) All of Java’s reserved keywords, such as while,
if and else, contain only lowercase letters. 4.5

As an example of a while structure, consider a program segment designed to find the
first power of 2 larger than 1000. Suppose that the int variable product has been ini-
tialized to 2. When the following while structure finishes executing, product contains
the result:

160 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

int product = 2;

while (product <= 1000)
 product = 2 * product;

The flowchart in Fig. 4.5 illustrates the flow of control of the preceding while repe-
tition structure. Once again, note that, besides small circles and arrows, the flowchart con-
tains only a rectangle symbol and a diamond symbol.

Imagine, again, a deep bin of empty while structures that may be stacked and nested
with other control structures to form a structured implementation of an algorithm’s flow of
control. The empty rectangles and diamonds are then filled in with appropriate actions and
decisions. The flowchart clearly shows the repetition. The flowline emerging from the rect-
angle wraps back to the decision, which is tested each time through the loop until the deci-
sion eventually becomes false. At this point, the while structure is exited, and control
passes to the next statement in the program.

When the while structure is entered, product is 2. Variable product is repeat-
edly multiplied by 2, taking on the values 4, 8, 16, 32, 64, 128, 256, 512 and 1024 succes-
sively. When product becomes 1024, the condition product <= 1000 in the while
structure becomes false. This result terminates the repetition, with 1024 as product’s
final value. Execution continues with the next statement after the while. [Note: If a
while structure’s condition is initially false, the body statement(s) will never be per-
formed.]

4.8 Formulating Algorithms: Case Study 1 (Counter-Controlled
Repetition)
To illustrate how algorithms are developed, we solve several variations of a class-averaging
problem. Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 to 100) for this quiz
are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each of the grades, perform
the averaging calculation and print the result.

Fig. 4.5Fig. 4.5Fig. 4.5Fig. 4.5 Flowcharting the while repetition structure.

product <= 1000 product = 2 * product
true

false

Chapter 4 Control Structures: Part 1 161

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Let us use pseudocode to list the actions to be executed and specify the order in which
these actions should be executed. We use counter-controlled repetition to input the grades
one at a time. This technique uses a variable called a counter to control the number of
times a set of statements will execute. In this example, repetition terminates when the
counter exceeds 10. In this section, we present a pseudocode algorithm (Fig. 4.6) and the
corresponding program (Fig. 4.7) to solve this probem using counter-controlled repetition.
In the next section, we show how pseudocode algorithms are developed. Counter-con-
trolled repetition is often called definite repetition, because the number of repetitions is
known before the loop begins executing.

Note the references in the algorithm to a total and a counter. A total is a variable used
to accumulate the sum of a series of values. A counter is a variable used to count—in this
case, to count the number of grades entered. Variables used to store totals should normally
be initialized to zero before being used in a program; otherwise, the sum would include the
previous value stored in the total’s memory location.

Set total to zero
Set grade counter to one

While grade counter is less than or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

Fig. 4.6Fig. 4.6Fig. 4.6Fig. 4.6 Pseudocode algorithm that uses counter-controlled repetition to solve
the class-average problem.

1 // Fig. 4.7: Average1.java
2 // Class average program with counter-controlled repetition.
3
4 // Java extension packages
5 import javax.swing.JOptionPane;
6
7 public class Average1 {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 int total, // sum of grades input by user
13 gradeCounter, // number of grades entered
14 gradeValue, // grade value
15 average; // average of all grades
16 String grade; // grade typed by user
17

Fig. 4.7Fig. 4.7Fig. 4.7Fig. 4.7 Class-average program with counter-controlled repetition (part 1 of 3).

162 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

18 // Initialization Phase
19 total = 0; // clear total
20 gradeCounter = 1; // prepare to loop
21
22 // Processing Phase
23 while (gradeCounter <= 10) { // loop 10 times
24
25 // prompt for input and read grade from user
26 grade = JOptionPane.showInputDialog(
27 "Enter integer grade: ");
28
29 // convert grade from a String to an integer
30 gradeValue = Integer.parseInt(grade);
31
32 // add gradeValue to total
33 total = total + gradeValue;
34
35 // add 1 to gradeCounter
36 gradeCounter = gradeCounter + 1;
37
38 } // end while structure
39
40 // Termination Phase
41 average = total / 10; // perform integer division
42
43 // display average of exam grades
44 JOptionPane.showMessageDialog(null,
45 "Class average is " + average, "Class Average",
46 JOptionPane.INFORMATION_MESSAGE);
47
48 System.exit(0); // terminate the program
49
50 } // end method main
51
52 } // end class Average1

Fig. 4.7Fig. 4.7Fig. 4.7Fig. 4.7 Class-average program with counter-controlled repetition (part 2 of 3).

Chapter 4 Control Structures: Part 1 163

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Good Programming Practice 4.6
Initialize counters and totals. 4.6

Line 5,

import javax.swing.JOptionPane;

imports class JOptionPane to enable the program to read data from the keyboard and
output data to the screen using the input dialog and message dialog shown in Chapter 2.

Line 7 begins the definition of application class Average1. Remember that the defi-
nition of an application class must contain a main method (lines 10–49) in order for the
application to be executed.

Lines 12–16,

int total, // sum of grades
 gradeCounter, // number of grades entered
 gradeValue, // grade value
 average; // average of all grades
String grade; // grade typed by user

declare variables total, gradeCounter, gradeValue and average to be of type
int and variable grade to be of type String. Variable grade stores the String the

Fig. 4.7Fig. 4.7Fig. 4.7Fig. 4.7 Class-average program with counter-controlled repetition (part 3 of 3).

164 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

user types in the input dialog. Variable gradeValue stores the integer value of grade
after the program converts it from a String to an int.

Notice that the preceding declarations appear in the body of method main. Remember
that variables declared in a method definition’s body are local variables and can be used
only from the line of their declaration in the method to the closing right brace (}) of the
method definition. A local variable’s declaration must appear before the variable is used in
that method. A local variable declared in one method of a class cannot be accessed directly
by other methods of a class.

Good Programming Practice 4.7
Always place a blank line before a declaration that appears between executable statements.
This format makes the declarations stand out in the program and contributes to program
clarity. 4.7

Good Programming Practice 4.8
If you prefer to place declarations at the beginning of a method, separate the declarations
from the executable statements in that method with one blank line, to highlight where the dec-
larations end and the executable statements begin. 4.8

Common Programming Error 4.6
Attempting to use a local variable’s value before initializing the variable (normally with an
assignment statement) results in a compile error indicating that the variable may not have
been initialized. The value of a local variable cannot be used until the variable is initialized.
The program will not compile properly until the variable receives an initial value. 4.6

Lines 19–20,

total = 0; // clear total
gradeCounter = 1; // prepare to loop

are assignment statements that initialize total to 0 and gradeCounter to 1. Note that
these statements initialize variables total and gradeCounter before they are used in
calculations.

Line 23,

while (gradeCounter <= 10) { // loop 10 times

indicates that the while structure should continue looping (also called iterating) as long
as the value of gradeCounter is less than or equal to 10.

Lines 26–27,

grade = JOptionPane.showInputDialog(
"Enter integer grade: ");

correspond to the pseudocode statement “Input the next grade.” The statement displays an
input dialog with the prompt “Enter integer grade:” on the screen.

After the user enters the grade, the program converts it from a String to an int at
line 30,

gradeValue = Integer.parseInt(grade);

Remember that class Integer is from package java.lang that the compiler imports in
every Java program. The pseudocode for the class-average problem does not reflect the pre-

Chapter 4 Control Structures: Part 1 165

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

ceding statement. The pseudocode statement “Input the next grade” requires the program-
mer to implement the process of obtaining the value from the user and converting it to a
type that can be used in calculating the average. As you learn to program, you will find that
you require fewer pseudocode statements to help you implement a program.

Next, the program updates the total with the new gradeValue entered by the
user. Line 33,

total = total + gradeValue;

adds gradeValue to the previous value of total and assigns the result to total.
Line 36,

gradeCounter = gradeCounter + 1;

adds 1 to gradeCounter to indicate that the program hasprocessed a grade and is ready
to input the next grade from the user. Incrementing gradeCounter is necessary for the
condition in the while structure to become false eventually and terminate the loop.

Line 41,

average = total / 10; // perform integer division

assigns the results of the average calculation to variable average. Lines 44–46,

JOptionPane.showMessageDialog(
null, "Class average is " + average, "Class Average",

 JOptionPane.INFORMATION_MESSAGE);

display an information message dialog containing the string "Class average is " fol-
lowed by the value of variable average. The string “Class Average” (the third argu-
ment) is the title of the message dialog.

Line 48,

System.exit(0); // terminate the program

terminates the application.
After compiling the class definition with javac, execute the application from the

command window with the command

java Average1

This command executes the Java interpreter and tells it that the main method for this ap-
plication is defined in class Average1.

Note that the averaging calculation in the program produced an integer result. Actu-
ally, the sum of the grade-point values in this example is 794, which, when divided by 10,
should yield 79.4 (i.e., a number with a decimal point). We will see how to deal with such
numbers (called floating-point numbers) in the next section.

4.9 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 2 (Sentinel-Controlled Repetition)
Let us generalize the class-average problem. Consider the following problem:

Develop a class-averaging program that processes an arbitrary number of grades each time
the program executes.

166 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

In the first class-average example, the number of grades (10) was known in advance. In this
example, no indication is given of how many grades the user will input. The program must
process an arbitrary number of grades. How can the program determine when to stop the
input of grades? How will it know when to calculate and print the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value or a flag value) to indicate the end of data entry. The
user types grades in until all legitimate grades have been entered. The user then types the
sentinel value to indicate that the last grade has been entered. Sentinel-controlled repetition
is often called indefinite repetition, because the number of repetitions is not known before
the loop begins executing.

Clearly, the sentinel value must be chosen so that it cannot be confused with an accept-
able input value. Because grades on a quiz are normally nonnegative integers, –1 is an
acceptable sentinel value for this problem. Thus, an execution of the class-average program
might process a stream of inputs such as 95, 96, 75, 74, 89 and –1. In this case, the program
would compute and print the class average for the grades 95, 96, 75, 74 and 89. (–1 is the
sentinel value, so it should not enter into the averaging calculation.)

Common Programming Error 4.7
Choosing a sentinel value that is also a legitimate data value results in a logic error and may
prevent a sentinel-controlled loop from terminating properly. 4.7

We approach the class-average program with a technique called top-down, stepwise
refinement, a method that is essential to the development of well-structured algorithms. We
begin with a pseudocode representation of the top:

Determine the class average for the quiz

The top is a single statement that conveys the overall function of the program. As such, the
top is, in effect, a complete representation of a program. Unfortunately, the top rarely con-
veys a sufficient amount of detail from which to write the Java algorithm. So we now begin
the refinement process. We divide the top into a series of smaller tasks and list these tasks
in the order in which they need to be performed. This procedure results in the following
first refinement:

Initialize variables
Input, sum up and count the quiz grades
Calculate and print the class average

This pseudocode uses only the sequence structure—the steps listed occur in order, one after
the other.

Software Engineering Observation 4.4
Each refinement, as well as the top itself, is a complete specification of the algorithm; only
the level of detail varies. 4.4

To proceed to the next level of refinement (i.e., the second refinement), we commit to
specific variables. We need a running total of the grades, a count of how many grades have
been processed, a variable to receive the value of each grade as it is input and a variable to
store the calculated average. The pseudocode statement

Initialize variables

Chapter 4 Control Structures: Part 1 167

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

may be refined as follows:

Initialize total to zero
Initialize counter to zero

Notice that only the variables total and counter are initialized before they are used; the vari-
ables average and grade (for the calculated average and the user input, respectively) need
not be initialized, because their values are replaced as they are calculated or input.

The pseudocode statement

Input, sum up and count the quiz grades

requires a repetition structure (i.e., a loop) that successively inputs each grade. We do not
know how many grades the user will input, so the program will use sentinel-controlled rep-
etition. The user at the keyboard inputs legitimate grades one at a time. After inputting the
last legitimate grade, the user types the sentinel value. The program tests for the sentinel
value after each grade is input and terminates the loop when the user inputs the sentinel val-
ue. The second refinement of the preceding pseudocode statement is then

Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

Notice that in pseudocode, we do not use braces around the pseudocode that forms the body
of the while structure. We simply indent the pseudocode under the while, to show that it
belongs to the while. Again, pseudocode is only an informal program development aid.

The pseudocode statement

Calculate and print the class average

may be refined as follows:

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

Notice that we are testing for the possibility of division by zero—a logic error that, if un-
detected, would cause the program to produce invalid output. The complete second refine-
ment of the pseudocode algorithm for the class-average problem is shown in Fig. 4.8.

Testing and Debugging Tip 4.1
When performing division by an expression whose value could be zero, explicitly test for this
case and handle it appropriately in your program (such as by printing an error message)
rather than allowing the division by zero to occur. 4.1

Good Programming Practice 4.9
Include completely blank lines in pseudocode programs to make the pseudocode more read-
able. The blank lines separate pseudocode control structures, as well as the phases of the
programs. 4.9

168 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Software Engineering Observation 4.5
Many algorithms can be divided logically into three phases: an initialization phase that ini-
tializes the program variables; a processing phase that inputs data values and adjusts pro-
gram variables accordingly and a termination phase that calculates and displays the
results. 4.5

The pseudocode algorithm in Fig. 4.8 solves the more general class-averaging
problem. This algorithm was developed after only two levels of refinement. Sometimes
more levels are necessary.

Software Engineering Observation 4.6
The programmer terminates the top-down, stepwise refinement process when the pseudocode
algorithm is specified in sufficient detail for the programmer to be able to convert the
pseudocode to a Java applet or application. Normally, implementing the Java applet or ap-
plication is then straightforward. 4.6

The Java application and a sample execution are shown in Fig. 4.9. Although each
grade is an integer, the averaging calculation is likely to produce a number with a decimal
point (i.e., a real number). The type int cannot represent real numbers (i.e., numbers with
decimal points), so this program uses data type double to handle floating-point numbers.
The program introduces a special operator called a cast operator to handle the type conver-
sion we will need for the averaging calculation. These features are explained in detail in the
discussion of the application.

In this example, we see that control structures may be stacked on top of one another
(in sequence) just as a child stacks building blocks. The while structure (lines 33–47) is
followed by an if/else structure (lines 52–63) in sequence. Much of the code in this pro-
gram is identical to the code in Fig. 4.7, so we concentrate in this example on the new fea-
tures and issues.

Initialize total to zero
Initialize counter to zero

Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

Fig. 4.8Fig. 4.8Fig. 4.8Fig. 4.8 Pseudocode algorithm that uses sentinel-controlled repetition to solve
the class-average problem.

Chapter 4 Control Structures: Part 1 169

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

1 // Fig. 4.9: Average2.java
2 // Class average program with sentinel-controlled repetition.
3
4 // Java core packages
5 import java.text.DecimalFormat;
6
7 // Java extension packages
8 import javax.swing.JOptionPane;
9

10 public class Average2 {
11
12 // main method begins execution of Java application
13 public static void main(String args[])
14 {
15 int gradeCounter, // number of grades entered
16 gradeValue, // grade value
17 total; // sum of grades
18 double average; // average of all grades
19 String input; // grade typed by user
20
21 // Initialization phase
22 total = 0; // clear total
23 gradeCounter = 0; // prepare to loop
24
25 // Processing phase
26 // prompt for input and read grade from user
27 input = JOptionPane.showInputDialog(
28 "Enter Integer Grade, -1 to Quit:");
29
30 // convert grade from a String to an integer
31 gradeValue = Integer.parseInt(input);
32
33 while (gradeValue != -1) {
34
35 // add gradeValue to total
36 total = total + gradeValue;
37
38 // add 1 to gradeCounter
39 gradeCounter = gradeCounter + 1;
40
41 // prompt for input and read grade from user
42 input = JOptionPane.showInputDialog(
43 "Enter Integer Grade, -1 to Quit:");
44
45 // convert grade from a String to an integer
46 gradeValue = Integer.parseInt(input);
47 }
48
49 // Termination phase
50 DecimalFormat twoDigits = new DecimalFormat("0.00");
51
52 if (gradeCounter != 0) {
53 average = (double) total / gradeCounter;

Fig. 4.9Fig. 4.9Fig. 4.9Fig. 4.9 Class-average program with sentinel-controlled repetition (part 1 of 2).

170 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Line 18 declares double variable average. This change allows us to store the class
average as a floating-point number. Line 23 initializes gradeCounter to 0, because no
grades have been entered yet. Remember that this program uses sentinel-controlled repeti-
tion. To keep an accurate record of the number of grades entered, variable grade-
Counter is incremented only when the user inputs a valid grade value.

Notice the difference in program logic for sentinel-controlled repetition as compared
with the counter-controlled repetition in Fig. 4.7. In counter-controlled repetition, each iter-
ation (loop) of the while structure reads a value from the user, for the specified number
of iterations. In sentinel-controlled repetition, the program reads and converts one value
(lines 27–31) before reaching the while structure. This value determines whether the pro-
gram’s flow of control should enter the body of the while structure. If the condition of the
while structure is false, the user entered the sentinel, so the body of the while struc-
ture does not execute (i.e., no grades were entered). If, on the other hand, the condition is
true, the body begins execution, and the loop adds the value input by the user to the

54
55 // display average of exam grades
56 JOptionPane.showMessageDialog(null,
57 "Class average is " + twoDigits.format(average),
58 "Class Average", JOptionPane.INFORMATION_MESSAGE);
59 }
60 else
61 JOptionPane.showMessageDialog(null,
62 "No grades were entered", "Class Average",
63 JOptionPane.INFORMATION_MESSAGE);
64
65 System.exit(0); // terminate application
66
67 } // end method main
68
69 } // end class Average2

Fig. 4.9Fig. 4.9Fig. 4.9Fig. 4.9 Class-average program with sentinel-controlled repetition (part 2 of 2).

Chapter 4 Control Structures: Part 1 171

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

total. After the value has been processed, lines 42–46 in the loop’s body input the next
value from the user before program control reaches the end of the while structure’s body.
As program control reaches the closing right brace (}) of the body at line 47, execution con-
tinues with the next test of the condition of the while structure (line 33). The condition
uses the new value just input by the user to determine if the while structure’s body should
execute again. Notice that the next value always is input from the user immediately before
the program tests the condition of the while structure. This structure allows the program
to determine if the value just input by the user is the sentinel value before the program pro-
cesses that value (i.e., adds it to the total). If the value input is the sentinel value, the
while structure terminates, and the program does not add the value to the total.

Notice the block in the while loop in Fig. 4.9. Without the braces, the last four state-
ments in the body of the loop would fall outside the loop, causing the computer to interpret
the code incorrectly as follows:

while (gradeValue != -1)

// add gradeValue to total
 total = total + gradeValue;

// add 1 to gradeCounter
gradeCounter = gradeCounter + 1;

// prompt for input and read grade from user
input = JOptionPane.showInputDialog(

"Enter Integer Grade, -1 to Quit:");

// convert grade from a String to an integer
gradeValue = Integer.parseInt(input);

This code would cause an infinite loop in the program if the user does not input the sentinel
-1 as the input value at lines 27–28 (before the while structure) in the program.

Common Programming Error 4.8
Omitting the curly braces that are needed to delineate a block can lead to logic errors such
as infinite loops. To prevent this problem, some programmers enclose the body of every con-
trol structure in braces. 4.8

Good Programming Practice 4.10
In a sentinel-controlled loop, the prompts requesting data entry should explicitly remind the
user of the value that represents the sentinel. 4.10

Line 50,

DecimalFormat twoDigits = new DecimalFormat("0.00");

declares twoDigits as a reference to an object of class DecimalFormat (package ja-
va.text). DecimalFormat objects format numbers. In this example, we want to output
the class average with two digits to the right of the decimal point (i.e., rounded to the nearest
hundredth). The preceding line creates a DecimalFormat object that is initialized with the
string "0.00". Each 0 is a format flag that specifies a required digit position in the formatted
floating-point number. This particular format indicates that every number formatted with
twoDigits will have at least one digit to the left of the decimal point and exactly two digits
to the right of the decimal point. If the number does not meet the formatting requirements, 0s
are inserted in the formatted number at the required positions. The new operator creates an

172 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

object as the program executes by obtaining enough memory to store an object of the type
specified to the right of new. The process of creating new objects is also known as creating
an instance, or instantiating an object. Operator new is known as the dynamic memory allo-
cation operator. The value in parentheses after the type in a new operation is used to initialize
(i.e., give a value to) the new object. Reference twoDigits is assigned the result of the new
operation by using the assignment operator, =. The statement is read as “twoDigits gets
the value of new DecimalFormat("0.00").”

Software Engineering Observation 4.7
Normally, objects are created with operator new. One exception to this is a string literal that
is contained in quotes, such as "hello". String literals are treated as objects of class
String and are instantiated automatically. 4.7

Averages do not always evaluate to integer values. Often, an average is a value that
contains a fractional part, such as 3.333 or 2.7. These values are referred to as floating-point
numbers and are represented by the data type double. The variable average is declared
to be of type double to capture the fractional result of our calculation. However, the result
of the calculation total / gradeCounter is an integer, because total and grade-
Counter are both integer variables. Dividing two integers results in integer division—any
fractional part of the calculation is lost (i.e., truncated). The fractional part of the calcula-
tion is lost before the result can be assigned to average, because the calculation is per-
formed before the assignment occurs.

To perform a floating-point calculation with integer values, we must create temporary
values that are floating-point numbers for the calculation. Java provides the unary cast
operator to accomplish this task. Line 53,

average = (double) total / gradeCounter;

uses the cast operator (double) to create a temporary floating-point copy of its oper-
and—total. Using a cast operator in this manner is called explicit conversion. The value
stored in total is still an integer. The calculation now consists of a floating-point value
(the temporary double version of total) divided by the integer gradeCounter. Java
knows how to evaluate only arithmetic expressions in which the operands’ data types are
identical. To ensure that the operands are of the same type, Java performs an operation
called promotion (or implicit conversion) on selected operands. For example, in an expres-
sion containing the data types int and double, the values of int operands are promoted
to double values for use in the expression. In this example, Java promotes the value of
gradeCounter to type double, and then the program performs the calculation and as-
signs the result of the floating-point division to average. Later in this chapter, we discuss
all of the standard data types and their order of promotion.

Common Programming Error 4.9
The cast operator can be used to convert between primitive numeric types and to convert be-
tween related class types (as we discuss in Chapter 9). Casting a variable to the wrong type
may cause compilation errors or runtime errors. 4.9

Cast operators are available for any data type. The cast operator is formed by placing
parentheses around the name of a data type. The operator is a unary operator (i.e., an
operator that takes only one operand). In Chapter 2, we studied the binary arithmetic oper-
ators. Java also supports unary versions of the plus (+) and minus (-) operators, so the pro-

Chapter 4 Control Structures: Part 1 173

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

grammer can write expressions like -7 or +5. Cast operators associate from right to left
and have the same precedence as other unary operators, such as unary + and unary -. This
precedence is one level higher than that of the multiplicative operators *, / and % and one
level lower than that of parentheses. (See the operator precedence chart in Appendix C.)
We indicate the cast operator with the notation (type) in our precedence charts, to indicate
that any type name can be used to form a cast operator.

Common Programming Error 4.10
Using floating-point numbers in a manner that assumes they are represented precisely can lead
to incorrect results. Floating-point numbers are represented approximately by computers. 4.10

Common Programming Error 4.11
Assuming that integer division rounds (rather than truncates) can lead to incorrect results. 4.11

Good Programming Practice 4.11
Do not compare floating-point values for equality or inequality. Rather, test for whether the
absolute value of the difference between two floating-point numbers is less than a specified
small value. 4.11

Despite the fact that floating-point numbers are not always 100% precise, they have
numerous applications. For example, when we speak of a “normal” body temperature of
98.6, we do not need to be precise to a large number of digits. When we view the temper-
ature on a thermometer and read it as 98.6, it may actually be 98.5999473210643. The point
here is that calling this number simply 98.6 is fine for most applications.

Another way in which floating-point numbers develop is through division. When we
divide 10 by 3, the result is 3.3333333…, with the sequence of 3s repeating infinitely. The
computer allocates only a fixed amount of space to hold such a value, so clearly the stored
floating-point value can be only an approximation.

4.10 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 3 (Nested Control Structures)
Let us work through another complete problem. We once again formulate the algorithm us-
ing pseudocode and top-down, stepwise refinement, and we develop a corresponding Java
program. Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real estate
brokers. Last year, several of the students who completed this course took the licensing
examination. Naturally, the college wants to know how well its students did on the exam. You
have been asked to write a program to summarize the results. You have been given a list of
these 10 students. Next to each name is written a 1 if the student passed the exam and a 2 if
the student failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the message “Enter result” on the
screen each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who passed
and the number of students who failed.

4. If more than 8 students passed the exam, print the message “Raise tuition.”

174 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

After reading the problem statement carefully, we make the following observations
about the problem:

1. The program must process test results for 10 students. A counter-controlled loop
will be used.

2. Each test result is a number—either a 1 or a 2. Each time the program reads a test
result, the program must determine if the number is a 1 or a 2. We test for a 1 in
our algorithm. If the number is not a 1, we assume that it is a 2. (An exercise at the
end of the chapter considers the consequences of this assumption.)

3. Two counters are used to keep track of the exam results—one to count the number
of students who passed the exam and one to count the number of students who
failed the exam.

4. After the program has processed all the results, it must decide if more than eight
students passed the exam.

Let us proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Analyze exam results and decide if tuition should be raised

Once again, it is important to emphasize that the top is a complete representation of the pro-
gram, but several refinements are likely before the pseudocode can evolve naturally into a
Java program. Our first refinement is

Initialize variables
Input the ten exam grades and count passes and failures
Print a summary of the exam results and decide if tuition should be raised

Here, too, even though we have a complete representation of the entire program, further re-
finement is necessary. We now commit to specific variables. We need counters to record
the passes and failures, a counter to control the looping process and a variable to store the
user input. The pseudocode statement

Initialize variables

may be refined as follows:

Initialize passes to zero
Initialize failures to zero
Initialize student to one

Notice that only the counters for the number of passes, number of failures and number of
students are initialized. The pseudocode statement

Input the ten quiz grades and count passes and failures

requires a loop that successively inputs the result of each exam. Here it is known in advance
that there are precisely ten exam results, so counter-controlled looping is appropriate. In-
side the loop (i.e., nested within the loop) a double-selection structure determines whether
each exam result is a pass or a failure and increments the appropriate counter accordingly.
The refinement of the preceding pseudocode statement is:

Chapter 4 Control Structures: Part 1 175

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

else
Add one to failures

Add one to student counter

Notice the use of blank lines to set off the if/else control structure to improve program read-
ability. The pseudocode statement

Print a summary of the exam results and decide if tuition should be raised

may be refined as follows:

Print the number of passes
Print the number of failures

If more than eight students passed
Print “Raise tuition”

The complete second refinement appears in Fig. 4.10. Notice that the pseudocode also uses
blank lines to set off the while structure for program readability.

Initialize passes to zero
Initialize failures to zero
Initialize student to one

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

else
Add one to failures

Add one to student counter

Print the number of passes
Print the number of failures

If more than eight students passed
Print “Raise tuition”

Fig. 4.10Fig. 4.10Fig. 4.10Fig. 4.10 Pseudocode for examination-results problem.

176 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

This pseudocode is now sufficiently refined for conversion to Java. The Java program
and two sample executions are shown in Fig. 4.11.

1 // Fig. 4.11: Analysis.java
2 // Analysis of examination results.
3
4 // Java extension packages
5 import javax.swing.JOptionPane;
6
7 public class Analysis {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 // initializing variables in declarations
13 int passes = 0, // number of passes
14 failures = 0, // number of failures
15 student = 1, // student counter
16 result; // one exam result
17 String input, // user-entered value
18 output; // output string
19
20 // process 10 students; counter-controlled loop
21 while (student <= 10) {
22
23 // obtain result from user
24 input = JOptionPane.showInputDialog(
25 "Enter result (1=pass,2=fail)");
26
27 // convert result to int
28 result = Integer.parseInt(input);
29
30 // process result
31 if (result == 1)
32 passes = passes + 1;
33 else
34 failures = failures + 1;
35
36 student = student + 1;
37 }
38
39 // termination phase
40 output = "Passed: " + passes +
41 "\nFailed: " + failures;
42
43 if (passes > 8)
44 output = output + "\nRaise Tuition";
45
46 JOptionPane.showMessageDialog(null, output,
47 "Analysis of Examination Results",
48 JOptionPane.INFORMATION_MESSAGE);
49
50 System.exit(0); // terminate application

Fig. 4.11Fig. 4.11Fig. 4.11Fig. 4.11 Java program for examination-results problem (part 1 of 2).

Chapter 4 Control Structures: Part 1 177

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Lines 13–18,

int passes = 0, // number of passes
 failures = 0, // number of failures
 student = 1, // student counter
 result; // one exam result
String input, // user-entered value
 output; // output string

51
52 } // end method main
53
54 } // end class Analysis

Fig. 4.11Fig. 4.11Fig. 4.11Fig. 4.11 Java program for examination-results problem (part 2 of 2).

178 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

declare the variables used in main to process the examination results. Note that we have
taken advantage of a feature of Java that incorporates variable initialization into dec-
larations (passes is assigned 0, failures is assigned 0 and student is assigned 1).
Looping programs may require initialization at the beginning of each repetition; such ini-
tialization would normally occur in assignment statements.

Notice the nested if/else structure at lines 31–34 of the while structure’s body.
Also, notice the use of String reference output in lines 40, 41 and 44 to build the string
that lines 46–48 display in a message dialog.

Good Programming Practice 4.12
Initializing local variables when they are declared in methods helps the programmer avoid
compiler messages warning of uninitialized data. 4.12

Software Engineering Observation 4.8
Experience has shown that the most difficult part of solving a problem on a computer is de-
veloping the algorithm for the solution. Once a correct algorithm has been specified, the pro-
cess of producing a working Java program from the algorithm is normally straightforward. 4.8

Software Engineering Observation 4.9
Many experienced programmers write programs without ever using program development
tools like pseudocode. These programmers feel that their ultimate goal is to solve the prob-
lem on a computer and that writing pseudocode merely delays the production of final outputs.
Although this method may work for simple and familiar problems, it can lead to serious er-
rors in large, complex projects. 4.9

4.11 Assignment Operators
Java provides several assignment operators for abbreviating assignment expressions. For
example, you can abbreviate the statement

c = c + 3;

with the addition assignment operator, +=, as

c += 3;

The += operator adds the value of the expression on the right of the operator to the value
of the variable on the left of the operator and stores the result in the variable on the left of
the operator. Any statement of the form

variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or % (or others we discuss later in
the text), can be written in the form

variable operator= expression;

Thus, the assignment expression c += 3 adds 3 to c. Figure 4.12 shows the arithmetic as-
signment operators, sample expressions using the operators and explanations of what the
operators do.

Chapter 4 Control Structures: Part 1 179

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Performance Tip 4.1
Programmers can write programs a bit faster and compilers can compile programs a bit fast-
er when the abbreviated assignment operators are used. Some compilers generate code that
runs faster when abbreviated assignment operators are used. 4.1

Performance Tip 4.2
Many of the performance tips we mention in this text result in nominal improvements, so the
reader may be tempted to ignore them. Significant performance improvement is often real-
ized when a supposedly nominal improvement is placed in a loop that may repeat a large
number of times. 4.2

4.12 Increment and Decrement Operators
Java provides the unary increment operator, ++, and the unary decrement operator, --,
which are summarized in Fig. 4.13. A program can increment the value of a variable called
c by 1 using the increment operator, ++, rather than the expression c = c + 1 or c += 1. If
an increment or decrement operator is placed before a variable, it is referred to as the pre-
increment or predecrement operator, respectively. If an increment or decrement operator
is placed after a variable, it is referred to as the postincrement or postdecrement operator,
respectively.

Assignment operator Sample expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;

+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d

*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

Fig. 4.12Fig. 4.12Fig. 4.12Fig. 4.12 Arithmetic assignment operators.

Operator Called Sample expression Explanation

++ preincrement ++a Increment a by 1, then use the new value of
a in the expression in which a resides.

++ postincrement a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

-- predecrement --b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- postdecrement b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. 4.13Fig. 4.13Fig. 4.13Fig. 4.13 The increment and decrement operators .

180 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Preincrementing (predecrementing) a variable causes the variable to be incremented
(decremented) by 1, and then the new value of the variable is used in the expression in
which it appears. Postincrementing (postdecrementing) the variable causes the current
value of the variable to be used in the expression in which it appears, and then the variable
value is incremented (decremented) by 1.

The application in Fig. 4.14 demonstrates the difference between the preincrementing
version and the postincrementing version of the ++ increment operator. Postincrementing
the variable c causes it to be incremented after it is used in the System.out.println
method call (line 13). Preincrementing the variable c causes it to be incremented before it
is used in the System.out.println method call (line 20).

The program displays the value of c before and after the ++ operator is used. The dec-
rement operator (--) works similarly.

Good Programming Practice 4.13
Unary operators should be placed next to their operands, with no intervening spaces. 4.13

1 // Fig. 4.14: Increment.java
2 // Preincrementing and postincrementing
3
4 public class Increment {
5
6 // main method begins execution of Java application
7 public static void main(String args[])
8 {
9 int c;

10
11 c = 5;
12 System.out.println(c); // print 5
13 System.out.println(c++); // print 5 then postincrement
14 System.out.println(c); // print 6
15
16 System.out.println(); // skip a line
17
18 c = 5;
19 System.out.println(c); // print 5
20 System.out.println(++c); // preincrement then print 6
21 System.out.println(c); // print 6
22
23 } // end method main
24
25 } // end class Increment

5
5
6

5
6
6

Fig. 4.14Fig. 4.14Fig. 4.14Fig. 4.14 The difference between preincrementing and postincrementing.

Chapter 4 Control Structures: Part 1 181

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Line 16,

System.out.println(); // skip a line

uses System.out.println to output a blank line. If println receives no arguments,
it simply outputs a newline character.

The arithmetic assignment operators and the increment and decrement operators can
be used to simplify program statements. For example, the three assignment statements in
Fig. 4.11 (lines 32, 34 and 36),

passes = passes + 1;
failures = failures + 1;
student = student + 1;

can be written more concisely with assignment operators as

passes += 1;
failures += 1;
student += 1;

with preincrement operators as

++passes;
++failures;
++student;

or with postincrement operators as

passes++;
failures++;
student++;

It is important to note here that when incrementing or decrementing a variable in a
statement by itself, the preincrement and postincrement forms have the same effect, and the
predecrement and postdecrement forms have the same effect. It is only when a variable
appears in the context of a larger expression that preincrementing and post-incrementing
the variable have different effects (and similarly for predecrementing and postdecre-
menting).

Common Programming Error 4.12
Attempting to use the increment or decrement operator on an expression other than an lvalue
is a syntax error. An lvalue is a variable or expression that can appear on the left side of an
assignment operation. For example, writing ++(x + 1) is a syntax error, because (x + 1)
is not an lvalue. 4.12

The chart in Fig. 4.15 shows the precedence and associativity of the operators that have
been introduced up to this point. The operators are shown from top to bottom in decreasing
order of precedence. The second column describes the associativity of the operators at each
level of precedence. Notice that the conditional operator (?:), the unary operators incre-
ment (++), decrement (--), plus (+), minus (-) and casts and the assignment operators =,
+=, -=, *=, /= and %= associate from right to left. All other operators in the operator pre-
cedence chart in Fig. 4.15 associate from left to right. The third column names the groups
of operators.

182 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

4.13 Primitive Data Types
The table in Fig. 4.16 lists the primitive data types in Java. The primitive types are the
building blocks for more complicated types. Like its predecessor languages C and C++,
Java requires all variables to have a type before they can be used in a program. For this rea-
son, Java is referred to as a strongly typed language.

In C and C++ programs, programmers frequently had to write separate versions of pro-
grams to support different computer platforms, because the primitive data types were not
guaranteed to be identical from computer to computer. For example, an int value on one
machine might be represented by 16 bits (2 bytes) of memory, while an int value on
another machine might be represented by 32 bits (4 bytes) of memory. In Java, int values
are always 32 bits (4 bytes).

Portability Tip 4.1
Unlike in the programming languages C and C++, the primitive types in Java are portable
across all computer platforms that support Java. This and many other portability features of
Java enable programmers to write programs once, without knowing which computer plat-
form will execute the program. This attribute is sometimes referred to as WORA (Write Once
Run Anywhere). 4.1

Each data type in Fig. 4.16 is listed with its size in bits (there are eight bits to a byte)
and its range of values. Because the designers of Java want it to be maximally portable, they
chose to use internationally recognized standards for both character formats (Unicode) and
floating-point numbers (IEEE 754).

When instance variables of the primitive data types are declared in a class, they are
automatically assigned default values unless specified otherwise by the programmer.
Instance variables of types char, byte, short, int, long, float and double are
all given the value 0 by default. Variables of type boolean are given the value false
by default.

Operators Associativity Type

() left to right parentheses

++ -- right to left unary postfix

++ -- + - (type) right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

?: right to left conditional

= += -= *= /= %= right to left assignment

Fig. 4.15Fig. 4.15Fig. 4.15Fig. 4.15 Precedence and associativity of the operators discussed so far.

Chapter 4 Control Structures: Part 1 183

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

4.14 (Optional Case Study) Thinking About Objects: Identifying
Class Attributes
In “Thinking About Objects,” Section 3.8, we began the first phase of an object-oriented
design (OOD) for our elevator simulator—identifying the classes needed to implement
the simulator. We began by listing the nouns in the problem statement and then created
a separate class for each category of noun and noun phrase that perform an important duty
in the elevator simulation. We then represented the classes and their relationships in a
UML class diagram (Fig. 3.23). Classes have attributes (data) and operations (behav-
iors). Class attributes are implemented in Java programs as variables; class behaviors are
implemented as methods. In this section, we determine many of the class attributes need-
ed to implement the elevator simulator. In Chapter 5, we examine how these attributes
represent an object’s state, or condition. In Chapter 6, we determine class behavior. In
Chapter 7, we concentrate on the interactions, often called collaborations, between the
objects in the elevator simulator.

Type Size in bits Values Standard

boolean 8 true or false

char 16 ’\u0000’ to ’\uFFFF’
(0 to 65535)

(ISO Unicode character set)

byte 8 –128 to +127

(–27 to 27 – 1)

short 16 –32,768 to +32,767

(–215 to 215 – 1)

int 32 –2,147,483,648 to +2,147,483,647

(–231 to 231 – 1)

long 64 –9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

(–263 to 263 – 1)

float 32 Negative range:
–3.4028234663852886E+38 to
–1.40129846432481707e–45
Positive range:
1.40129846432481707e–45 to
3.4028234663852886E+38

(IEEE 754 floating point)

double 64 Negative range:
–1.7976931348623157E+308 to
–4.94065645841246544e–324
Positive range:
4.94065645841246544e–324 to
1.7976931348623157E+308

(IEEE 754 floating point)

Fig. 4.16Fig. 4.16Fig. 4.16Fig. 4.16 The Java primitive data types.

184 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Consider the attributes of some real-world objects: A person’s attributes include height
and weight, for example. A radio’s attributes include its station setting, its volume setting
and whether it is set to AM or FM. A car’s attributes include its speedometer and odometer
readings, the amount of gas in its tank, what gear it is in, etc. A personal computer’s
attributes include its manufacturer (e.g., Sun, Apple, IBM or Compaq), type of screen (e.g.,
monochrome or color), main memory size (in megabytes), hard disk size (in gigabytes), etc.

We can identify the attributes of the classes in our system by looking for descriptive
words and phrases in the problem statement. For each descriptive word or phrase we find,
we create an attribute and assign that attribute to a class. We also create attributes to repre-
sent any additional data that a class may need (as the need for this data becomes clear
throughout the design process).

We begin examining the problem statement looking for attributes distinct to each class.
Figure 4.17 lists the words or phrases from the problem statement that describe each class.
The sentence “The user can create any number of people in the simulation” implies that the
model will introduce several Person objects during execution. We require an integer
value representing the number of people in the simulation at any given time, because we
may wish to track, or identify, the people in our model. As mentioned in Section 2.9, the
ElevatorModel object acts as the “representative” for the model (even though the
model consists of several classes) for interactions with other parts of the system (in this
case, the user is a part of the system), so we assign the numberOfPeople attribute to
class ElevatorModel.

Class Elevator contains several attributes. The phrases “is moving” and “is sum-
moned” describe possible states of Elevator (we introduce states in the next “Thinking
About Objects” section), so we include moving and summoned as boolean attributes.
Elevator also arrives at a “destination floor,” so we include the attribute destina-
tionFloor, representing the Floor at which the Elevator will arrive. Although the
problem statement does not mention explicitly that the Elevator leaves from a current
Floor, we may assume another attribute called currentFloor representing on which
Floor the Elevator is resting. The problem statement specifies that “both the elevator
and each floor have capacity for only one person,” so we include the capacity attribute for
class Elevator (and class Floor) and set the value to 1. Lastly, the problem statement
specifies that the elevator “takes five seconds to travel between floors,” so we introduce the
travelTime attribute and set the value to 5.

Class Person contains several attributes. The user must be able to “create a unique
person,” which implies that each Person object should have a unique identifier. We
assign integer attribute ID to the Person object. The ID attribute helps to identify that
Person object. In addition, the problem statement specifies that the Person can be
“waiting on that floor to enter the elevator.” Therefore, “waiting” is a state that Person
object may enter. Though not mentioned explicitly, if the Person is not waiting for the
Elevator, the Person is moving to (or away from) the Elevator. We assign the
boolean attribute moving to class Person. When this attribute is set to false, the
Person is “waiting.” Lastly, the phrase “on that floor” implies that the Person occupies
a floor. We cannot assign a Floor reference to class Person, because we are interested
only in attributes. However, we want to include the location of the Person object in the
model, so we include the currentFloor attribute, which may have a value of either 1
or 2.

Chapter 4 Control Structures: Part 1 185

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Class Floor has a capacity attribute. The problem statement specified that the
user could situate the person on either “the first or second floor”—therefore, a Floor
object requires a value that distinguishes that Floor object as the first or second floor, so
we include the floorNumber attribute.

According to the problem statement, the ElevatorButton and FloorButton are
“pressed” by a Person. The buttons may be “reset” as well. The state of each button is
either “pressed” or “reset.” We include the boolean attribute pressed in both button
classes. When pressed is true, the button object is pressed; when pressed is false,
the button object is reset. Classes ElevatorDoor and FloorDoor exhibit similar char-
acteristics. Both objects are either “open” or “closed,” so we include the boolean
attribute open in both door classes. Class Light also falls into this category—the light is
either “illuminated” (turned on) or “turned off,” so we include the boolean attribute on
in class Light. Note that although the problem statement mentions that the bell rings,
there is no mention of when the bell “is ringing,” so we do not include a separate ring
attribute for class Bell. As we progress through this case study, we will continue to add,
modify and delete information about the classes in our system.

Class Descriptive words and phrases

ElevatorModel number of people in the simulation

ElevatorShaft [no descriptive words or phrases]

Elevator moving
summoned
current floor
destination floor
capacity of only one person
five seconds to travel between floors

Person unique
waiting / moving
current floor

Floor first or second; capacity for only one person

FloorButton pressed / reset

ElevatorButton pressed / reset

FloorDoor door closed / door open

ElevatorDoor door closed / door open

Bell [no descriptive words or phrases]

Light illuminated / turned off

Fig. 4.17Fig. 4.17Fig. 4.17Fig. 4.17 Descriptive words and phrases from problem statement.

186 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Figure 4.18 is a class diagram that lists some of the attributes for each class in our
system—the descriptive words and phrases in Fig. 4.17 help us generate these attributes. Note
that Fig. 4.18 does not show associations among objects—we showed these associations in
Fig. 3.23. In the UML class diagram, a class’s attributes are placed in the middle compart-
ment of the class’s rectangle. Consider the open attribute of class ElevatorDoor:

open : Boolean = false

This listing contains three pieces of information about the attribute. The attribute name
is open. The attribute type is Boolean.2 The type depends on the language used to
write the software system. In Java, for example, the value can be a primitive type, such
as boolean or float, as well as a user-defined type like a class—we begin our study
of classes in Chapter 8, where we will see that each new class is a new data type.

We can also indicate an initial value for each attribute. The open attribute in class
ElevatorDoor has an initial value of false. If a particular attribute has no initial
value specified, only its name and type (separated by a colon) are shown. For example,
the ID attribute of class Person is an integer—in Java, the ID attribute is of type int.
Here we show no initial value, because the value of this attribute is a number that we do
not yet know; this number will be determined by ElevatorModel at execution time.
Integer attribute currentFloor for class Person is not determined until program
execution as well—this attribute is determined when the simulation user decides on
which Floor to place the Person. For now we do not concern ourselves with the types
or initial values of the attributes. We include only the information we can glean easily
from the problem statement.

Note that Fig. 4.18 does not include attributes for class ElevatorShaft. Actu-
ally, class ElevatorShaft contains seven attributes that we can determine from the
class diagram of Fig. 3.23—references to the Elevator object, two FloorButton
objects, two FloorDoor objects and two Light objects. Class ElevatorModel
contains three user-defined attributes—two references to Floor objects and a reference
to the ElevatorShaft object. Class Elevator also contains three user-defined
attributes—reference to the ElevatorButton object, the ElevatorDoor object
and the Bell object. To save space, we will not show these additional attributes in our
class diagrams—we will, however, include them in the code in the appendices.

The class diagram of Fig. 4.18 provides a good basis for the structure of our model
but the diagram is not fully complete. For example, the attribute currentFloor in
class Person represents the floor on which a person is currently located. However, on
what floor is the person when that person rides the elevator? These attributes do not yet
sufficiently represent the structure of the model. As we present more of the UML and
object-oriented design through Chapter 22, we will continue to strengthen the structure
of our model.

2. Note that the attribute types in Fig. 4.18 are in UML notation. We will associate the attribute
types Boolean and Integer in the UML diagram with the attribute types boolean and int
in Java, respectively. We described in Chapter 3 that Java provides a “type-wrapper class” for each
primitive data type. The Java type-wrapper classes have the same notation as the UML notation
for attribute types; however, when we implement our design in Java starting in Chapter 8, we use
primitive data types for simplification. Deciding whether to use primitive data types or type-wrap-
per classes is an implementation-specific issue that should not be mentioned in the UML.

Chapter 4 Control Structures: Part 1 187

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

SUMMARY
• A procedure for solving a problem in terms of the actions to be executed and the order in which

the actions should be executed is called an algorithm.

• Specifying the order in which statements execute in a computer program is called program control.

• Pseudocode helps the programmer “think out” a program before attempting to write it in a pro-
gramming language, such as Java.

• Top-down, stepwise refinement is a process for refining pseudocode by maintaining a complete
representation of the program during each refinement.

• Declarations are messages to the compiler telling it the names and attributes of variables and tell-
ing it to reserve space for variables.

• A selection structure chooses among alternative courses of action.

• The if selection structure executes an indicated action only when the condition is true.

• The if/else selection structure specifies separate actions to execute when the condition is true
and when the condition is false.

• When more than one statement should execute where normally only a single statement appears,
the statements must be enclosed in braces, forming a block. A block can be placed anywhere a sin-
gle statement can be placed.

• An empty statement, indicating that no action is to be taken, is indicated by placing a semicolon
(;) where a statement would normally be.

• A repetition structure specifies that an action is to be repeated while some condition remains true.

• The format for the while repetition structure is

while (condition)
statement

Fig. 4.18Fig. 4.18Fig. 4.18Fig. 4.18 Classes with attributes.

ElevatorShaft

 <none yet>

Elevator

moving : Boolean = false
summoned : Boolean = false
currentFloor : Integer = 1
destinationFloor : Integer = 2
capacity : Integer = 1
travelTime : Integer = 5

Person

ID : Integer
moving : Boolean = true
currentFloor : Integer

Floor

floorNumber : Integer
capacity : Integer = 1

FloorButton

pressed : Boolean = false

ElevatorDoor

open : Boolean = false

FloorDoor

open : Boolean = false

Light

lightOn : Boolean = false

Bell

<none yet>

ElevatorModel

numberOfPeople : Integer=0

ElevatorButton

pressed : Boolean = false

188 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

• A value that contains a fractional part is referred to as a floating-point number and is represented
by the data type float or double.

• Unary cast operator (double) creates a temporary floating-point copy of its operand.

• Java provides the arithmetic assignment operators +=, -=, *=, /= and %=, which help abbreviate
certain common types of expressions.

• The increment operator, ++, and the decrement operator, --, increment or decrement a variable
by 1, respectively. If the operator is prefixed to the variable, the variable is incremented or decre-
mented by 1 first, and then used in its expression. If the operator is postfixed to the variable, the
variable is used in its expression, and then incremented or decremented by 1.

• The primitive types (boolean, char, byte, short, int, long, float and double) are the
building blocks for more complicated types in Java.

• Java requires all variables to have a type before they can be used in a program. For this reason,
Java is referred to as a strongly typed language.

• Primitive types in Java are portable across all computer platforms that support Java.

• Java uses internationally recognized standards for both character formats (Unicode) and floating-
point numbers (IEEE 754).

• Instance variables of types char, byte, short, int, long, float and double are all given
the value 0 by default. Variables of type boolean are given the value false by default.

TERMINOLOGY
-- operator integer division
?: operator ISO Unicode character set
++ operator logic error
action loop counter
action/decision model loop-continuation condition
algorithm nested control structures
arithmetic assignment operators:
 +=, -=, *=, /= and %=

postdecrement operator
postincrement operator

block predecrement operator
body of a loop preincrement operator
cast operator, (type) promotion
conditional operator (?:) pseudocode
control structure repetition
counter-controlled repetition repetition structures
decision selection
decrement operator (--) sentinel value
definite repetition sequential execution
double single-entry/single-exit control structures
double-selection structure single-selection structure
empty statement (;) stacked control structures
if selection structure structured programming
if/else selection structure syntax error
implicit conversion top-down, stepwise refinement
increment operator (++) unary operator
indefinite repetition while repetition structure
infinite loop white-space characters
initialization

Chapter 4 Control Structures: Part 1 189

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

SELF-REVIEW EXERCISES
4.1 Fill in the blanks in each of the following statements:

a) All programs can be written in terms of three types of control structures: ,
 and .

b) The selection structure is used to execute one action when a condition is true
and another action when that condition is false.

c) Repeating a set of instructions a specific number of times is called repetition.
d) When it is not known in advance how many times a set of statements will be repeated, a

 value can be used to terminate the repetition.

4.2 Write four different Java statements that each add 1 to integer variable x.

4.3 Write Java statements to accomplish each of the following tasks:
a) Assign the sum of x and y to z, and increment the value of x by 1 after the calculation.

Use only one statement.
b) Test if the value of the variable count is greater than 10. If it is, print "Count is

greater than 10".
c) Decrement the variable x by 1, and then subtract it from the variable total. Use only

one statement.
d) Calculate the remainder after q is divided by divisor, and assign the result to q. Write

this statement in two different ways.

4.4 Write a Java statement to accomplish each of the following tasks:
a) Declare variables sum and x to be of type int.
b) Assign 1 to variable x.
c) Assign 0 to variable sum.
d) Add variable x to variable sum, and assign the result to variable sum.
e) Print "The sum is: ", followed by the value of variable sum.

4.5 Combine the statements that you wrote in Exercise 4.4 into a Java application that calculates
and prints the sum of the integers from 1 to 10. Use the while structure to loop through the calcula-
tion and increment statements. The loop should terminate when the value of x becomes 11.

4.6 Determine the value of each variable after the calculation is performed. Assume that when
each statement begins executing, all variables have the integer value 5.

a) product *= x++;
b) quotient /= ++x;

4.7 Identify and correct the errors in each of the following sets of code:
a) while (c <= 5) {

 product *= c;
 ++c;

b) if (gender == 1)
 System.out.println("Woman");
else;
 System.out.println("Man");

4.8 What is wrong with the following while repetition structure?

while (z >= 0)
 sum += z;

ANSWERS TO SELF-REVIEW EXERCISES
4.1 a) sequence, selection, repetition. b) if/else. c) counter-controlled, or definite. d) Senti-
nel, signal, flag or dummy.

190 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

4.2 x = x + 1;
x += 1;
++x;
x++;

4.3 a) z = x++ + y;
b) if (count > 10)

 System.out.println("Count is greater than 10");
c) total -= --x;
d) q %= divisor;

q = q % divisor;

4.4 a) int sum, x;
b) x = 1;
c) sum = 0;
d) sum += x; or sum = sum + x;
e) System.out.println("The sum is: " + sum);

4.5 The program is as follows:

4.6 a) product = 25, x = 6
b) quotient = 0, x = 6

4.7 a) Error: Missing the closing right brace of the while structure’s body.
Correction: Add a closing right brace after the statement ++c;.

b) Error: Semicolon after else results in a logic error. The second output statement will
always be executed.
Correction: Remove the semicolon after else.

4.8 The value of the variable z is never changed in the while structure. Therefore, if the loop-
continuation condition (z >= 0) is true, an infinite loop is created. To prevent an infinite loop from
occurring, z must be decremented so that it eventually becomes less than 0.

EXERCISES
4.9 Identify and correct the errors in each of the following sets of code. [Note: There may be more
than one error in each piece of code]:

1 // Calculate the sum of the integers from 1 to 10
2 public class Calculate {
3 public static void main(String args[])
4 {
5 int sum, x;
6
7 x = 1;
8 sum = 0;
9

10 while (x <= 10) {
11 sum += x;
12 ++x;
13 }
14
15 System.out.println("The sum is: " + sum);
16 }
17 }

Chapter 4 Control Structures: Part 1 191

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

a) if (age >= 65);
 System.out.println("Age greater than or equal to 65");
else
 System.out.println("Age is less than 65)";

b) int x = 1, total;
while (x <= 10) {
 total += x;
 ++x;
}

c) While (x <= 100)
 total += x;
 ++x;

d) while (y > 0) {
 System.out.println(y);
 ++y;

4.10 What does the following program print?

For Exercise 4.11 through Exercise 4.14, perform each of the following steps:
a) Read the problem statement.
b) Formulate the algorithm using pseudocode and top-down, stepwise refinement.
c) Write a Java program.
d) Test, debug and execute the Java program.
e) Process three complete sets of data.

4.11 Drivers are concerned with the mileage obtained by their automobiles. One driver has kept
track of several tankfuls of gasoline by recording miles driven and gallons used for each tankful. De-
velop a Java application that will input the miles driven and gallons used (both as integers) for each
tankful. The program should calculate and display the miles per gallon obtained for each tankful and
print the combined miles per gallon obtained for all tankfuls up to this point. All averaging calcula-
tions should produce floating-point results. Use input dialogs to obtain the data from the user.

4.12 Develop a Java application that will determine if a department-store customer has exceeded
the credit limit on a charge account. For each customer, the following facts are available:

a) account number,
b) balance at the beginning of the month,

1 public class Mystery {
2
3 public static void main(String args[])
4 {
5 int y, x = 1, total = 0;
6
7 while (x <= 10) {
8 y = x * x;
9 System.out.println(y);

10 total += y;
11 ++x;
12 }
13
14 System.out.println("Total is " + total);
15 }
16 }

192 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

c) total of all items charged by the customer this month,
d) total of all credits applied to the customer's account this month, and
e) allowed credit limit.

The program should input each of these facts from input dialogs as integers, calculate the new bal-
ance (= beginning balance + charges – credits), display the new balance and determine if the new
balance exceeds the customer's credit limit. For those customers whose credit limit is exceeded, the
program should display the message “Credit limit exceeded.”

4.13 A large company pays its salespeople on a commission basis. The salespeople receive $200
per week, plus 9% of their gross sales for that week. For example, a salesperson who sells $5000
worth of merchandise in a week receives $200 plus 9% of $5000, or a total of $650. You have been
supplied with a list of items sold by each salesperson. The values of these items are as follows:

Item Value
1 239.99
2 129.75
3 99.95
4 350.89

Develop a Java application that inputs one salesperson's items sold for last week and calculates and
displays that salesperson's earnings. There is no limit to the number of items that can be sold by a
salesperson.

4.14 Develop a Java application that will determine the gross pay for each of three employees. The
company pays “straight time” for the first 40 hours worked by each employee and pays “time and a
half” for all hours worked in excess of 40 hours. You are given a list of the employees of the company,
the number of hours each employee worked last week and the hourly rate of each employee. Your
program should input this information for each employee and should determine and display the em-
ployee's gross pay. Use input dialogs to input the data.

4.15 The process of finding the largest value (i.e., the maximum of a group of values) is used fre-
quently in computer applications. For example, a program that determines the winner of a sales con-
test would input the number of units sold by each salesperson. The salesperson who sells the most
units wins the contest. Write a pseudocode program and then a Java application that inputs a series of
10 single-digit numbers as characters and determines and prints the largest of the numbers. Hint: Your
program should use the following three variables:

a) counter: A counter to count to 10 (i.e., to keep track of how many numbers have been
input and to determine when all 10 numbers have been processed);

b) number: The current digit input to the program;
c) largest: The largest number found so far.

4.16 Write a Java application that uses looping to print the following table of values:

4.17 Using an approach similar to that for Exercise 4.15, find the two largest values of the 10 digits
entered. [Note: You may input each number only once.]

N 10*N 100*N 1000*N

1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000

Chapter 4 Control Structures: Part 1 193

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

4.18 Modify the program in Fig. 4.11 to validate its inputs. For any input, if the value entered is
other than 1 or 2, keep looping until the user enters a correct value.

4.19 What does the following program print?

4.20 What does the following program print?

4.21 (Dangling-Else Problem) Determine the output for each of the given sets of code when x is
9 and y is 11 and when x is 11 and y is 9. Note that the compiler ignores the indentation in a Java
program. Also, the Java compiler always associates an else with the previous if unless told to do
otherwise by the placement of braces ({}). On first glance, the programmer may not be sure which
if an else matches; this situation is referred to as the “dangling-else problem.” We have eliminated
the indentation from the following code to make the problem more challenging. [Hint: Apply inden-
tation conventions you have learned.]

a) if (x < 10)
if (y > 10)
System.out.println("*****");
else
System.out.println("#####");
System.out.println("$$$$$");

1 public class Mystery2 {
2
3 public static void main(String args[])
4 {
5 int count = 1;
6
7 while (count <= 10) {
8 System.out.println(
9 count % 2 == 1 ? "****" : "++++++++");

10 ++count;
11 }
12 }
13 }

1 public class Mystery3 {
2
3 public static void main(String args[])
4 {
5 int row = 10, column;
6
7 while (row >= 1) {
8 column = 1;
9

10 while (column <= 10) {
11 System.out.print(row % 2 == 1 ? "<" : ">");
12 ++column;
13 }
14
15 --row;
16 System.out.println();
17 }
18 }
19 }

194 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

b) if (x < 10) {
if (y > 10)
System.out.println("*****");
}
else {
System.out.println("#####");
System.out.println("$$$$$");
}

4.22 (Another Dangling-Else Problem) Modify the given code to produce the output shown in
each part of the problem. Use proper indentation techniques. You may not make any changes other
than inserting braces and changing the indentation of the code. The compiler ignores indentation in a
Java program. We have eliminated the indentation from the given code to make the problem more
challenging. [Note: It is possible that no modification is necessary for some of the parts.]

if (y == 8)
if (x == 5)
System.out.println("@@@@@");
else
System.out.println("#####");
System.out.println("$$$$$");
System.out.println("&&&&&");

a) Assuming that x = 5 and y = 8, the following output is produced:

b) Assuming that x = 5 and y = 8, the following output is produced:

c) Assuming that x = 5 and y = 8, the following output is produced:

d) Assuming that x = 5 and y = 7, the following output is produced [Note: The last three
output statements after the else are all part of a block]:]

4.23 Write an applet that reads in the size of the side of a square and displays a hollow square of
that size out of asterisks, by using the drawString method inside your applet’s paint method.

@@@@@
$$$$$
&&&&&

@@@@@

@@@@@
&&&&&

#####
$$$$$
&&&&&

Chapter 4 Control Structures: Part 1 195

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Use an input dialog to read the size from the user. Your program should work for squares of all lengths
of side between 1 and 20.

4.24 A palindrome is a number or a text phrase that reads the same backward as forward. For ex-
ample, each of the following five-digit integers are palindromes: 12321, 55555, 45554 and 11611.
Write an application that reads in a five-digit integer and determines whether or not it is a palindrome.
If the number is not five digits long, display an error message dialog indicating the problem to the
user. When the user dismisses the error dialog, allow the user to enter a new value.

4.25 Write an application that inputs an integer containing only 0s and 1s (i.e., a “binary” integer)
and prints its decimal equivalent. [Hint: Use the modulus and division operators to pick off the “bi-
nary number’s” digits one at a time, from right to left. Just as in the decimal number system, where
the rightmost digit has a positional value of 1 and the next digit to the left has a positional value of
10, then 100, then 1000, etc., in the binary number system the rightmost digit has a positional value
of 1, the next digit to the left has a positional value of 2, then 4, then 8, etc. Thus, the decimal number
234 can be interpreted as 4 * 1 + 3 * 10 + 2 * 100. The decimal equivalent of binary 1101 is 1 * 1 +
0 * 2 + 1 * 4 + 1 * 8, or 1 + 0 + 4 + 8 or, 13.]

4.26 Write an application that displays the following checkerboard pattern:

Your program may use only three output statements, one of the form

System.out.print("* ");

one of the form

System.out.print(" ");

and one of the form

System.out.println();

Note that the preceding statement indicates that the program should output a single newline charac-
ter to drop to the next line of the output. [Hint: Repetition structures are required in this exercise.]

4.27 Write an application that keeps displaying in the command window the multiples of the in-
teger 2, namely 2, 4, 8, 16, 32, 64, etc. Your loop should not terminate (i.e., you should create an in-
finite loop). What happens when you run this program?

4.28 What is wrong with the following statement? Provide the correct statement to add one to the
sum of x and y.

System.out.println(++(x + y));

4.29 Write an application that reads three nonzero values entered by the user in input dialogs and
determines and prints if they could represent the sides of a triangle.

* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *

196 Control Structures: Part 1 Chapter 4

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

4.30 Write an application that reads three nonzero integers and determines and prints if they could
represent the sides of a right triangle.

4.31 A company wants to transmit data over the telephone, but it is concerned that its phones may
be tapped. All of its data are transmitted as four-digit integers. It has asked you to write a program
that will encrypt its data so that the data may be transmitted more securely. Your application should
read a four-digit integer entered by the user in an input dialog and encrypt it as follows: Replace each
digit by (the sum of that digit plus 7) modulus 10. Then swap the first digit with the third, and swap
the second digit with the fourth. Then print the encrypted integer. Write a separate application that
inputs an encrypted four-digit integer and decrypts it to form the original number.

4.32 The factorial of a nonnegative integer n is written as n! (pronounced “n factorial”) and is de-
fined as follows:

n! = n · (n - 1) · (n - 2) · … · 1 (for values of n greater than or equal to 1)
and

n! = 1 (for n = 0).
For example, 5! = 5 · 4 · 3 · 2 · 1, which is 120.

a) Write an application that reads a nonnegative integer from an input dialog and computes
and prints its factorial.

b) Write an application that estimates the value of the mathematical constant e by using the
formula

c) Write an application that computes the value of ex by using the formula:

e 1 1
1!
----- 1

2!
----- 1

3!
----- …+ + + +=

ex 1 x
1!
----- x2

2!
----- x3

3!
----- …+ + + +=

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

5
Control Structures:

Part 2

Objectives
• To be able to use the for and do/while repetition

structures to execute statements in a program
repeatedly.

• To understand multiple selection using the switch
selection structure.

• To be able to use the break and continue
program control statements.

• To be able to use the logical operators.
Who can control his fate?
William Shakespeare, Othello

The used key is always bright.
Benjamin Franklin

Man is a tool-making animal.
Benjamin Franklin

Intelligence … is the faculty of making artificial objects,
especially tools to make tools.
Henri Bergson

198 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

5.1 Introduction
Chapter 4 began our introduction to the types of building blocks that are available for prob-
lem solving and used those building blocks to employ proven program construction princi-
ples. In this chapter, we continue our presentation of the theory and principles of structured
programming by introducing Java’s remaining control structures. As in Chapter 4, the Java
techniques you learn here are applicable to most high-level languages. When we begin our
formal treatment of object-based programming in Java in Chapter 8, we will see that the
control structures we study in this chapter and Chapter 4 are helpful in building and manip-
ulating objects.

5.2 Essentials of Counter-Controlled Repetition
Counter-controlled repetition requires the following:

1. the name of a control variable (or loop counter),

2. the initial value of the control variable,

3. the amount of increment (or decrement) by which the control variable is modified
each time through the loop (also known as each iteration of the loop), and

4. the condition that tests for the final value of the control variable (i.e., whether
looping should continue).

To see the four elements of counter-controlled repetition, consider the applet shown in
Fig. 5.1, which draws 10 lines from the applet’s paint method. Remember that an applet
requires a separate HTML document to load the applet into the appletviewer or a
browser. For the purpose of this applet, the <applet> tag specifies a width of 275 pixels
and a height of 110 pixels.

Outline

5.1 Introduction
5.2 Essentials of Counter-Controlled Repetition
5.3 The for Repetition Structure
5.4 Examples Using the for Structure
5.5 The switch Multiple-Selection Structure
5.6 The do/while Repetition Structure
5.7 Statements break and continue
5.8 Labeled break and continue Statements
5.9 Logical Operators
5.10 Structured Programming Summary
5.11 (Optional Case Study) Thinking About Objects: Identifying Objects’

States and Activities

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 5 Control Structures: Part 2 199

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

The applet’s paint method (that the applet container calls when it executes the
applet) operates as follows: The declaration on line 18 names the control variable
(counter), declares it to be an integer, reserves space for it in memory and sets it to an
initial value of 1. Declarations that include initialization are, in effect, executable state-
ments. The declaration and initialization of counter could also have been accomplished
with the declaration and statement

int counter; // declare counter
counter = 1; // initialize counter to 1

The declaration is not executable, but the assignment statement is. We use both methods of
initializing variables throughout this book.

1 // Fig. 5.1: WhileCounter.java
2 // Counter-controlled repetition
3
4 // Java core packages
5 import java.awt.Graphics;
6
7 // Java extension packages
8 import javax.swing.JApplet;
9

10 public class WhileCounter extends JApplet {
11
12 // draw lines on applet’s background
13 public void paint(Graphics g)
14 {
15 // call inherited version of method paint
16 super.paint(g);
17
18 int counter = 1; // initialization
19
20 while (counter <= 10) { // repetition condition
21 g.drawLine(10, 10, 250, counter * 10);
22 ++counter; // increment
23
24 } // end while structure
25
26 } // end method paint
27
28 } // end class WhileCounter

Fig. 5.1Fig. 5.1Fig. 5.1Fig. 5.1 Counter-controlled repetition.

200 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Line 21 in the while structure uses Graphics reference g, which refers to the
applet’s Graphics object, to send the drawLine message to the Graphics object,
asking it to draw a line. Remember that “sending a message to an object” actually means
calling a method to perform a task. One of the Graphics object’s many services is to
draw lines. In previous chapters, we also saw that the Graphics object’s other services
include drawing rectangles, strings and ovals. Graphics method drawLine requires
four arguments, representing the line’s first x-coordinate, first y-coordinate, second x-coor-
dinate and second y-coordinate. In this example, the second y-coordinate changes value
during each iteration of the loop with the calculation counter * 10. This change causes
the second point (the end point of the line) in each call to drawLine to move 10 pixels
down the applet’s display area.

Line 22 in the while structure increments the control variable by 1 for each iteration
of the loop. The loop-continuation condition in the while structure tests whether the value
of the control variable is less than or equal to 10 (the final value for which the condition is
true). Note that the program performs the body of this while structure even when the
control variable is 10. The loop terminates when the control variable exceeds 10 (i.e.,
counter becomes 11).

The program in Fig. 5.1 can be made more concise by initializing counter to 0 and
preincrementing counter in the while structure condition as follows:

while (++counter <= 10) // repetition condition
 g.drawLine(10, 10, 250, counter * 10);

This code saves a statement (and eliminates the need for braces around the loop’s body),
because the while condition performs the increment before testing the condition. (Re-
member that the precedence of ++ is higher than that of <=.) Coding in such a condensed
fashion takes practice.

Good Programming Practice 5.1
Programs should control counting loops with integer values. 5.1

Common Programming Error 5.1
Because floating-point values may be approximate, controlling the counting of loops with
floating-point variables may result in imprecise counter values and inaccurate tests for ter-
mination. 5.1

Good Programming Practice 5.2
Indent the statements in the body of each control structure. 5.2

Good Programming Practice 5.3
Put a blank line before and after each major control structure to make it stand out in the pro-
gram. 5.3

Good Programming Practice 5.4
Too many levels of nesting can make a program difficult to understand. As a general rule, try
to avoid using more than three levels of nesting. 5.4

Chapter 5 Control Structures: Part 2 201

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Good Programming Practice 5.5
Vertical spacing above and below control structures, and indentation of the bodies of control
structures within the control structures’ headers, gives programs a two-dimensional appear-
ance that enhances readability. 5.5

5.3 The for Repetition Structure
The for repetition structure handles all of the details of counter-controlled repetition. To
illustrate the power of the for structure, let us rewrite the applet of Fig. 5.1. The result is
shown in Fig. 5.2. Remember that this program requires a separate HTML document to
load the applet into the appletviewer. For the purpose of this applet, the <applet>
tag specifies a width of 275 pixels and a height of 110 pixels.

1 // Fig. 5.2: ForCounter.java
2 // Counter-controlled repetition with the for structure
3
4 // Java core packages
5 import java.awt.Graphics;
6
7 // Java extension packages
8 import javax.swing.JApplet;
9

10 public class ForCounter extends JApplet {
11
12 // draw lines on applet’s background
13 public void paint(Graphics g)
14 {
15 // call inherited version of method paint
16 super.paint(g);
17
18 // Initialization, repetition condition and incrementing
19 // are all included in the for structure header.
20 for (int counter = 1; counter <= 10; counter++)
21 g.drawLine(10, 10, 250, counter * 10);
22
23 } // end method paint
24
25 } // end class ForCounter

Fig. 5.2Fig. 5.2Fig. 5.2Fig. 5.2 Counter-controlled repetition with the for structure.

202 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

The applet’s paint method operates as follows: When the for structure (lines 20–
21) begins executing, the control variable counter is initialized to 1. (The first two ele-
ments of counter-controlled repetition and the name of the control variable and its initial
value.) Next, the program checks the loop-continuation condition, counter <= 10. The
condition contains the final value (10) of the control variable. Because the initial value of
counter is 1, the condition is satisfied (true), so the body statement (line 21) draws a
line. After executing the body of the loop, the program increments variable counter in
the expression counter++. Then, the program performs the loop-continuation test again
to determine whether the program should continue with the next iteration of the loop or
whether it should terminate the loop. At this point, the control variable value is 2, so the
condition is true (i.e., the final value is not exceeded), and thus the program performs the
body statement again (i.e., the next iteration of the loop). This process continues until the
counter’s value becomes 11, causing the loop-continuation test to fail and repetition to
terminate. Then, the program performs the first statement after the for structure. (In this
case, method paint terminates, because the program reaches the end of paint.)

Notice that Fig. 5.2 uses the loop-continuation condition counter <= 10. If the pro-
grammer incorrectly specified counter < 10 as the condition, the loop would be exe-
cuted only nine times. This mistake is a common logic error called an off-by-one error.

Common Programming Error 5.2
Using an incorrect relational operator or using an incorrect final value of a loop counter in
the condition of a while, for or do/while structure can cause an off-by-one error. 5.2

Good Programming Practice 5.6
Using the final value in the condition of a while or for structure and using the <= rela-
tional operator will help avoid off-by-one errors. For a loop that prints the values 1 to 10,
the loop-continuation condition should be counter <= 10 rather than counter < 10
(which causes an off-by-one error) or counter < 11 (which is correct). Many program-
mers prefer so-called zero-based counting, in which to count 10 times, counter would be
initialized to zero and the loop-continuation test would be counter < 10. 5.6

Figure 5.3 takes a closer look at the for structure of Fig. 5.2. The for structure’s first
line (including the keyword for and everything in parentheses after for) is sometimes
called the for structure header. Notice that the for structure “does it all”: It specifies
each of the items needed for counter-controlled repetition with a control variable. If there
is more than one statement in the body of the for structures, braces ({ and }) are required
to define the body of the loop.

Fig. 5.3Fig. 5.3Fig. 5.3Fig. 5.3 Components of a typical for structure header.

for (int counter = 1; counter <= 10; counter++)

Initial value of control variable Increment of control variable

Control variable name Final value of control variablefor keyword

Loop-continuation condition

Chapter 5 Control Structures: Part 2 203

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

The general format of the for structure is

for (expression1; expression2; expression3)
statement

where expression1 names the loop’s control variable and provides its initial value,
expression2 is the loop-continuation condition (containing the control variable’s final val-
ue) and expression3 modifies the value of the control variable, so that the loop-continuation
condition eventually becomes false. In most cases, the for structure can be represented
with an equivalent while structure, with expression1, expression2 and expression3 placed
as follows:

expression1;

while (expression2) {
statement
expression3;

}

In Section 5.7, we show a case in which a for structure cannot be represented with an
equivalent while structure.

If expression1 (the initialization section) declares the control variable inside the paren-
theses of the header of the for structure (i.e., the control variable’s type is specified before
the name of the variable), the control variable can be used only in the for structure. This
restricted use of the name of the control variable is known as the variable’s scope. The
scope of a variable defines where the program can use the variable. For example, we men-
tioned previously that a program can use a local variable only in the method that declares
the variable. Scope is discussed in detail in Chapter 6, “Methods.”

Common Programming Error 5.3
When the control variable of a for structure is initially defined in the initialization section
of the header of the for structure, using the control variable after the body of the structure
is a syntax error. 5.3

Sometimes, expression1 and expression3 in a for structure are comma-separated lists
of expressions that enable the programmer to use multiple initialization expressions and/or
multiple increment expressions. For example, there may be several control variables in a
single for structure that must be initialized and incremented.

Good Programming Practice 5.7
Place only expressions involving the control variables in the initialization and increment sec-
tions of a for structure. Manipulations of other variables should appear either before the
loop (if they execute only once, like initialization statements) or in the body of the loop (if
they execute once per iteration of the loop, like incrementing or decrementing statements). 5.7

The three expressions in the for structure are optional. If expression2 is omitted, Java
assumes that the loop-continuation condition is true, thus creating an infinite loop. One
might omit expression1 if the program initializes the control variable before the loop. One
might omit expression3 if the program calculates the increment with statements in the
loop’s body or if the loop does not require an increment. The increment expression in the
for structure acts as a stand-alone statement at the end of the body of the for structure,
so the expressions

204 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

counter = counter + 1
counter += 1
++counter
counter++

are equivalent in the increment portion of the for structure. Many programmers prefer the
form counter++, because a for structure increments its control variable after the body
of the loop executes and placing ++ after the variable name increments the variable after
the program uses its value. Therefore, the postincrementing form seems more natural. Pre-
incrementing and postincrementing have the same effect in the increment expression, be-
cause the increment does not appear in a larger expression. The two semicolons in the for
structure are required.

Common Programming Error 5.4
Using commas instead of the two required semicolons in a for header is a syntax error. 5.4

Common Programming Error 5.5
Placing a semicolon immediately to the right of the right parenthesis of a for header makes
the body of that for structure an empty statement. This is normally a logic error. 5.5

The initialization, loop-continuation condition and increment portions of a for struc-
ture can contain arithmetic expressions. For example, assume that x = 2 and y = 10. If x
and y are not modified in the body of the loop, the statement

for (int j = x; j <= 4 * x * y; j += y / x)

is equivalent to the statement

for (int j = 2; j <= 80; j += 5)

The increment of a for structure may also be negative, in which case it is really a dec-
rement, and the loop actually counts downward.

If the loop-continuation condition is initially false, the program does not perform
the body of the for structure. Instead, execution proceeds with the statement following the
for structure.

Programs frequently display the control variable value or use it in calculations in loop
body. However, this use is not required. It is common to use the control variable for control-
ling repetition while never mentioning it in the body of the for structure.

Testing and Debugging Tip 5.1
Although the value of the control variable can be changed in the body of a for loop, avoid
doing so, because this practice can lead to subtle errors. 5.1

We flowchart the for structure much as we do the while structure. For example, the
flowchart of the for statement

for (int counter = 1; counter <= 10; counter++)
 g.drawLine(10, 10, 250, counter * 10);

is shown in Fig. 5.4. This flowchart makes it clear that the initialization occurs only once
and that the increment occurs each time after the program performs the body statement.

Chapter 5 Control Structures: Part 2 205

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Note that, besides small circles and arrows, the flowchart contains only rectangle symbols
and a diamond symbol. The programmer fills the rectangles and diamonds with actions and
decisions appropriate to the algorithm.

5.4 Examples Using the for Structure
The examples given next show methods of varying the control variable in a for structure.
In each case, we write the appropriate for structure header. Note the change in the rela-
tional operator for loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.

for (int i = 1; i <= 100; i++)

b) Vary the control variable from 100 to 1 in increments of -1 (i.e., decrements of
1).

for (int i = 100; i >= 1; i--)

c) Vary the control variable from 7 to 77 in steps of 7.

for (int i = 7; i <= 77; i += 7)

d) Vary the control variable from 20 to 2 in steps of -2.

for (int i = 20; i >= 2; i -= 2)

e) Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14,
17, 20.

for (int j = 2; j <= 20; j += 3)

f) Vary the control variable over the following sequence of values: 99, 88, 77, 66,
55, 44, 33, 22, 11, 0.

for (int j = 99; j >= 0; j -= 11)

Fig. 5.4Fig. 5.4Fig. 5.4Fig. 5.4 Flowcharting a typical for repetition structure.

counter <= 10

g.drawLine(
 10, 10, 250,
 counter * 10
);

true

false

int counter = 1

counter++

Establish initial value
of control variable.

Determine if final
value of control
variable has been
reached.

Body of loop
(this may be many
statements)

Increment
the control
variable.

206 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Common Programming Error 5.6
Not using the proper relational operator in the loop-continuation condition of a loop that
counts downward (such as using i <= 1 in a loop counting down to 1) is usually a logic error
and will yield incorrect results when the program runs. 5.6

The next two sample programs demonstrate simple applications of the for repetition
structure. The application in Fig. 5.5 uses the for structure to sum all the even integers
from 2 to 100. Remember that the java interpreter is used to execute an application from
the command window.

Note that the body of the for structure in Fig. 5.5 could actually be merged into the
rightmost portion of the for header by using a comma as follows:

for (int number = 2;
 number <= 100;
 sum += number, number += 2)
 ; // empty statement

1 // Fig. 5.5: Sum.java
2 // Counter-controlled repetition with the for structure
3
4 // Java extension packages
5 import javax.swing.JOptionPane;
6
7 public class Sum {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 int sum = 0;
13
14 // sum even integers from 2 through 100
15 for (int number = 2; number <= 100; number += 2)
16 sum += number;
17
18 // display results
19 JOptionPane.showMessageDialog(null, "The sum is " + sum,
20 "Sum Even Integers from 2 to 100",
21 JOptionPane.INFORMATION_MESSAGE);
22
23 System.exit(0); // terminate the application
24
25 } // end method main
26
27 } // end class Sum

Fig. 5.5Fig. 5.5Fig. 5.5Fig. 5.5 Summation with the for structure.

Chapter 5 Control Structures: Part 2 207

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Similarly, the initialization sum = 0 could be merged into the initialization section of the
for structure.

Good Programming Practice 5.8
Although statements preceding a for structure and statements in the body of a for struc-
ture can often be merged into the header of the for structure, avoid doing so, because it
makes the program more difficult to read. 5.8

Good Programming Practice 5.9
Limit the size of control structure headers to a single line. if possible. 5.9

The next example uses the for structure to compute compound interest. Consider the
following problem:

A person invests $1000.00 in a savings account yielding 5% interest. Assuming that all
interest is left on deposit, calculate and print the amount of money in the account at the end
of each year for 10 years. Use the following formula to determine the amounts:

a = p (1 + r) n

where

p is the original amount invested (i.e., the principal)
r is the annual interest rate
n is the number of years
a is the amount on deposit at the end of the nth year.

This problem involves a loop that performs the indicated calculation for each of the 10
years the money remains on deposit. The solution is the application shown in Fig. 5.6.

1 // Fig. 5.6: Interest.java
2 // Calculating compound interest
3
4 // Java core packages
5 import java.text.NumberFormat;
6 import java.util.Locale;
7
8 // Java extension packages
9 import javax.swing.JOptionPane;

10 import javax.swing.JTextArea;
11
12 public class Interest {
13
14 // main method begins execution of Java application
15 public static void main(String args[])
16 {
17 double amount, principal = 1000.0, rate = 0.05;
18
19 // create DecimalFormat to format floating-point numbers
20 // with two digits to the right of the decimal point
21 NumberFormat moneyFormat =
22 NumberFormat.getCurrencyInstance(Locale.US);
23

Fig. 5.6Fig. 5.6Fig. 5.6Fig. 5.6 Calculating compound interest with the for structure (part 1 of 2).

208 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Line 17 in method main declares three double variables and initializes two of
them—principal to 1000.0 and rate to .05. Java treats floating-point constants,
like 1000.0 and .05 in Fig. 5.6, as type double. Similarly, Java treats whole number
constants, like 7 and -22, as type int. Lines 21–22 declare NumberFormat reference
moneyFormat and initialize it by calling static method getCurrencyInstance
of class NumberFormat. This method returns a NumberFormat object that can format
numeric values as currency (e.g., in the United States, currency values normally are pre-
ceded with a dollar sign, $). The argument to the method—Locale.US—indicates that

24 // create JTextArea to display output
25 JTextArea outputTextArea = new JTextArea();
26
27 // set first line of text in outputTextArea
28 outputTextArea.setText("Year\tAmount on deposit\n");
29
30 // calculate amount on deposit for each of ten years
31 for (int year = 1; year <= 10; year++) {
32
33 // calculate new amount for specified year
34 amount = principal * Math.pow(1.0 + rate, year);
35
36 // append one line of text to outputTextArea
37 outputTextArea.append(year + "\t" +
38 moneyFormat.format(amount) + "\n");
39
40 } // end for structure
41
42 // display results
43 JOptionPane.showMessageDialog(null, outputTextArea,
44 "Compound Interest", JOptionPane.INFORMATION_MESSAGE);
45
46 System.exit(0); // terminate the application
47
48 } // end method main
49
50 } // end class Interest

Fig. 5.6Fig. 5.6Fig. 5.6Fig. 5.6 Calculating compound interest with the for structure (part 2 of 2).

Chapter 5 Control Structures: Part 2 209

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

the currency values should be displayed starting with a dollar sign ($), use a decimal point
to separate dollars and cents and use a comma to delineate thousands (e.g., $1,234.56).
Class Locale provides constants that can be used to customize this program to represent
currency values for other countries, so that currency formats are displayed properly for each
locale (i.e., each country’s local-currency format). Class NumberFormat (imported at
line 5) is located in package java.text, and class Locale (imported at line 6) is located
in package java.util.

Line 25 declares JTextArea reference outputTextArea and initializes it with a
new object of class JTextArea (from package javax.swing). A JTextArea is a
GUI component that can display many lines of text. The message dialog that displays the
JTextArea determines the width and height of the JTextArea, based on the String
it contains. We introduce this GUI component now because we will see many examples
throughout the text in which the program outputs contain too many lines to display on the
screen. This GUI component allows us to scroll through the lines of text so we can see all
the program output. The methods for placing text in a JTextArea include setText and
append.

Line 28 uses JTextArea method setText to place a String in the JTextArea
to which outputTextArea refers. Initially, a JTextArea contains an empty String
(i.e., a String with no characters in it). The preceding statement replaces the empty
String with one containing the column heads for our two columns of output—“Year”
and “Amount on Deposit.” The column heads are separated with a tab character (escape
sequence \t). Also, the string contains the newline character (escape sequence \n), indi-
cating that any additional text appended to the JTextArea should begin on the next line.

The for structure (lines 31–40) executes its body 10 times, varying control variable
year from 1 to 10 in increments of 1. (Note that year represents n in the statement of the
problem.) Java does not include an exponentiation operator. Instead, we use static
method pow of class Math for this purpose. Math.pow(x, y) calculates the value of x
raised to the yth power. Method pow takes two arguments of type double and returns a
double value. Line 34 performs the calculation from the statement of the problem,

a = p (1 + r) n

where a is amount, p is principal, r is rate and n is year.
Lines 37–38 append more text to the end of the outputTextArea. The text

includes the current value of year, a tab character (to position to the second column), the
result of the method call moneyFormat.format(amount)—which formats the
amount as U. S. currency—and a newline character (to position the cursor in the JTex-
tArea at the beginning of the next line).

Lines 43–44 display the results in a message dialog. Until now, the message displayed
has always been a String. In this example, the second argument is outputText-
Area—a GUI component. An interesting feature of class JOptionPane is that the mes-
sage it displays with showMessageDialog can be a String or a GUI component, such
as a JTextArea. In this example, the message dialog sizes itself to accommodate the
JTextArea. We use this technique several times early in this chapter to display large text-
based outputs. Later in this chapter, we demonstrate how to add a scrolling capability to the
JTextArea, so the user can view a program’s output that is too large to display in full on
the screen.

210 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Notice that the variables amount, principal and rate are of type double. We
did this for simplicity, because we are dealing with fractional parts of dollars and thus need
a type that allows decimal points in its values. Unfortunately, this setting can cause trouble.
Here is a simple explanation of what can go wrong when using float or double to rep-
resent dollar amounts (assuming that dollar amounts are displayed with two digits to the
right of the decimal point): Two double dollar amounts stored in the machine could be
14.234 (which would normally be rounded to 14.23 for display purposes) and 18.673
(which would normally be rounded to 18.67 for display purposes). When these amounts are
added, they produce the internal sum 32.907, which would normally be rounded to 32.91
for display purposes. Thus, your printout could appear as

 14.23
+ 18.67

 32.91

but a person adding the individual numbers as printed would expect the sum to be 32.90.
You have been warned!

Good Programming Practice 5.10
Do not use variables of type float or double to perform precise monetary calculations.
The imprecision of floating-point numbers can cause errors that will result in incorrect mon-
etary values. In the exercises, we explore the use of integers to perform monetary calcula-
tions. [Note: Some third-party vendors provide for-sale class libraries that perform precise
monetary calculations.] 5.10

Note that the body of the for structure contains the calculation 1.0 + rate, which
appears as an argument to the Math.pow method. In fact, this calculation produces the
same result each time through the loop, so repeating the calculation every iteration of the
loop is wasteful.

Performance Tip 5.1
Avoid placing expressions whose values do not change inside loops. But even if you do, many
of today’s sophisticated optimizing compilers will place such expressions outside loops in the
generated compiled code. 5.1

Performance Tip 5.2
Many compilers contain optimization features that improve the code that you write, but it is
still better to write good code from the start. 5.2

5.5 The switch Multiple-Selection Structure
We have discussed the if single-selection structure and the if/else double-selection
structure. Occasionally, an algorithm contains a series of decisions in which the algorithm
tests a variable or expression separately for each of the constant integral values (i.e., values
of types byte, short, int and char) the variable or expression may assume and takes
different actions based on those values. Java provides the switch multiple-selection
structure to handle such decision making. The applet of Fig. 5.7 demonstrates drawing
lines, rectangles or ovals, based on an integer the user inputs via an input dialog.

Chapter 5 Control Structures: Part 2 211

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

1 // Fig. 5.7: SwitchTest.java
2 // Drawing lines, rectangles or ovals based on user input.
3
4 // Java core packages
5 import java.awt.Graphics;
6
7 // Java extension packages
8 import javax.swing.*;
9

10 public class SwitchTest extends JApplet {
11 int choice; // user's choice of which shape to draw
12
13 // initialize applet by obtaining user's choice
14 public void init()
15 {
16 String input; // user's input
17
18 // obtain user’s choice
19 input = JOptionPane.showInputDialog(
20 "Enter 1 to draw lines\n" +
21 "Enter 2 to draw rectangles\n" +
22 "Enter 3 to draw ovals\n");
23
24 // convert user's input to an int
25 choice = Integer.parseInt(input);
26 }
27
28 // draw shapes on applet's background
29 public void paint(Graphics g)
30 {
31 // call inherited version of method paint
32 super.paint(g);
33
34 // loop 10 times, counting from 0 through 9
35 for (int i = 0; i < 10; i++) {
36
37 // determine shape to draw based on user's choice
38 switch (choice) {
39
40 case 1:
41 g.drawLine(10, 10, 250, 10 + i * 10);
42 break; // done processing case
43
44 case 2:
45 g.drawRect(10 + i * 10, 10 + i * 10,
46 50 + i * 10, 50 + i * 10);
47 break; // done processing case
48
49 case 3:
50 g.drawOval(10 + i * 10, 10 + i * 10,
51 50 + i * 10, 50 + i * 10);
52 break; // done processing case
53

Fig. 5.7Fig. 5.7Fig. 5.7Fig. 5.7 An example using switch (part 1 of 3).

212 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

54 default:
55 g.drawString("Invalid value entered",
56 10, 20 + i * 15);
57
58 } // end switch structure
59
60 } // end for structure
61
62 } // end paint method
63
64 } // end class SwitchTest

Fig. 5.7Fig. 5.7Fig. 5.7Fig. 5.7 An example using switch (part 2 of 3).

Chapter 5 Control Structures: Part 2 213

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Line 11 in applet SwitchTest defines instance variable choice of type int. This
variable stores the user’s input that determines which type of shape to draw in paint.

Method init (lines 14–26) declares local variable input of type String in line 16.
This variable stores the String the user types in the input dialog. Lines 19–22 display the
input dialog with static method JOptionPane.showInputDialog and prompt the
user to enter 1 to draw lines, 2 to draw rectangles or 3 to draw ovals. Line 25 converts input
from a String to an int and assigns the result to choice.

Method paint (lines 29–62) contains a for structure (lines 35–60) that loops 10
times. In this example, the for structure’s header, in line 35, uses zero-based counting. The
values of i for the 10 iterations of the loop are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9, and the loop
terminates when i’s value becomes 10. [Note: As you know, the applet container calls
method paint after methods init and start. The applet container also calls method
paint whenever the applet’s screen area must be refreshed—e.g., after another window
that covered the applet’s area is moved to a different location on the screen.]

Nested in the for structure’s body is a switch structure (lines 38–58) that draws
shapes based on the integer value input by the user in method init. The switch structure
consists of a series of case labels and an optional default case.

When the flow of control reaches the switch structure, the program evaluates the
controlling expression (choice) in the parentheses following keyword switch. The pro-
gram compares the value of the controlling expression (which must evaluate to an integral
value of type byte, char, short or int) with each case label. Assume that the user
entered the integer 2 as his or her choice. The program compares 2 with each case in the
switch. If a match occurs (case 2:), the program executes the statements for that case.
For the integer 2, lines 44–47 draw a rectangle, using four arguments, representing the
upper left x-coordinate, upper left y-coordinate, width and height of the rectangle, and the
switch structure exits immediately with the break statement. Then, the program incre-
ments the counter variable in the for structure and reevaluates the loop-continuation con-
dition to determine whether to perform another iteration of the loop.

The break statement causes program control to proceed with the first statement after
the switch structure. (In this case, we reach the end of the for structure’s body, so con-

Fig. 5.7Fig. 5.7Fig. 5.7Fig. 5.7 An example using switch (part 3 of 3).

214 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

trol flows to the control variable’s increment expression in the header of the for structure.)
Without break, the cases in a switch statement would run together. Each time a match
occurs in the structure, the statements for all the remaining cases will execute. (This fea-
ture is perfect for programming the iterative song “The Twelve Days of Christmas.”) If no
match occurs between the controlling expression’s value and a case label, the default
case executes, and the program draws an error message on the applet.

Each case can have multiple actions. The switch structure differs from other struc-
tures in that it does not require braces around multiple actions in each case. Figure 5.8
shows the general switch structure flowchart (using a break in each case). [Note: As
an exercise, make a flowchart of the general switch structure without breaks.]

The flowchart makes it clear that each break statement at the end of a case causes
control to exit the switch structure immediately. The break statement is not required
for the last case in the switch structure (or the default case, when it appears last),
because the program continues with the next statement after the switch.

Again, note that, besides small circles and arrows, the flowchart contains only rect-
angle and diamond symbols. It is the programmer’s responsibility to fill the rectangles and
diamonds with actions and decisions appropriate to the algorithm. Although nested control
structures are common, it is rare to find nested switch structures in a program.

Fig. 5.8Fig. 5.8Fig. 5.8Fig. 5.8 The switch multiple-selection structure.

case a case a action(s)
true

false

.

.

.

break

case b action(s) break

false

false

case z case z action(s) break

default action(s)

true

true

case b

Chapter 5 Control Structures: Part 2 215

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Common Programming Error 5.7
Forgetting a break statement when one is needed in a switch structure is a logic error. 5.7

Good Programming Practice 5.11
Provide a default case in switch statements. Cases not explicitly tested in a switch
statement without a default case are ignored. Including a default case focuses the pro-
grammer on the need to process exceptional conditions. There are situations in which no
default processing is needed. 5.11

Good Programming Practice 5.12
Although the cases and the default case in a switch structure can occur in any order,
it is considered a good programming practice to place the default clause last. 5.12

Good Programming Practice 5.13
In a switch structure, when the default clause is listed last, the break for that case
statement is not required. Some programmers include this break for clarity and symmetry
with other cases. 5.13

Note that listing case labels together (such as case 1: case 2: with no statements
between the cases) performs the same set of actions for each case.

When using the switch structure, remember that the expression after each case can
be only a constant integral expression (i.e., any combination of character constants and
integer constants that evaluates to a constant integer value). A character constant is repre-
sented as the specific character in single quotes, such as 'A'. An integer constant is simply
an integer value. The expression after each case also can be a constant variable—i.e., a
variable that contains a value which does not change for the entire program. Such a variable
is declared with keyword final (discussed in Chapter 6). When we discuss object-ori-
ented programming in Chapter 9, we present a more elegant way to implement switch
logic. We use a technique called polymorphism to create programs that are often clearer,
easier to maintain and easier to extend than programs using switch logic.

5.6 The do/while Repetition Structure
The do/while repetition structure is similar to the while structure. In the while struc-
ture, the program tests the loop-continuation condition at the beginning of the loop, before
performing the body of the loop. The do/while structure tests the loop-continuation con-
dition after performing the body of the loop; therefore, the loop body always executes at
least once. When a do/while structure terminates, execution continues with the statement
after the while clause. Note that it is not necessary to use braces in the do/while struc-
ture if there is only one statement in the body. However, most programmers include the
braces, to avoid confusion between the while and do/while structures. For example,

while (condition)

normally is the first line of a while structure. A do/while structure with no braces
around a single-statement body appears as

do
statement

while (condition);

216 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

which can be confusing. Reader may misinterpret the last line—while(condition);—
as a while structure containing an empty statement (the semicolon by itself). Thus, to
avoid confusion, the do/while structure with one statement often is written as follows:

do {
statement

} while (condition);

Good Programming Practice 5.14
Some programmers always include braces in a do/while structure, even if the braces are
not necessary. This helps eliminate ambiguity between the while structure and the do/
while structure containing only one statement. 5.14

Common Programming Error 5.8
Infinite loops occur when the loop-continuation condition in a while, for or do/while
structure never becomes false. To prevent this situation, make sure that there is not a semi-
colon immediately after the header of a while or for structure. In a counter-controlled
loop, ensure that the control variable is incremented (or decremented) in the body of the
loop. In a sentinel-controlled loop, ensure that the sentinel value is eventually input. 5.8

The applet in Fig. 5.9 uses a do/while structure to draw 10 nested circles, using
Graphics method drawOval.

1 // Fig. 5.9: DoWhileTest.java
2 // Using the do/while repetition structure.
3
4 // Java core packages
5 import java.awt.Graphics;
6
7 // Java extension packages
8 import javax.swing.JApplet;
9

10 public class DoWhileTest extends JApplet {
11
12 // draw lines on applet’s background
13 public void paint(Graphics g)
14 {
15 // call inherited version of method paint
16 super.paint(g);
17
18 int counter = 1;
19
20 do {
21 g.drawOval(110 - counter * 10, 110 - counter * 10,
22 counter * 20, counter * 20);
23 ++counter;
24 } while (counter <= 10); // end do/while structure
25
26 } // end method paint
27
28 } // end class DoWhileTest

Fig. 5.9Fig. 5.9Fig. 5.9Fig. 5.9 Using the do/while repetition structure (part 1 of 2).

Chapter 5 Control Structures: Part 2 217

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

In method paint (lines 13–26), line 18 declares control variable counter and ini-
tializes it to 1. Upon entering the do/while structure, lines 21–22 send the drawOval
message to the Graphics object to which g refers. The four arguments that represent the
upper left x-coordinate, upper left y-coordinate, width and height of the oval’s bounding
box (an imaginary rectangle in which the oval touches the center of all four sides of the rect-
angle) are calculated based on the value of counter. The program draws the innermost
oval first. The bounding box’s upper left corner for each subsequent oval moves closer to
the upper left corner of the applet. At the same time, the width and height of the bounding
box are increased, to ensure that each new oval contains all the previous ovals. Line 23
increments counter. Then, the program evaluates the loop-continuation test at the
bottom of the loop. The do/while flowchart in Fig. 5.10 makes it clear that the program
does not evaluate the loop-continuation condition until after the action executes once.

Fig. 5.10Fig. 5.10Fig. 5.10Fig. 5.10 Flowcharting the do/while repetition structure.

Fig. 5.9Fig. 5.9Fig. 5.9Fig. 5.9 Using the do/while repetition structure (part 2 of 2).

condition
true

action(s)

false

218 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

5.7 Statements break and continue
The break and continue statements alter the flow of control. The break statement,
when executed in a while, for, do/while or switch structure, causes immediate exit
from that structure. Execution continues with the first statement after the structure. Com-
mon uses of the break statement are to escape early from a loop or skip the remainder of
a switch structure (as in Fig. 5.7). Figure 5.11 demonstrates the break statement in a
for repetition structure.

1 // Fig. 5.11: BreakTest.java
2 // Using the break statement in a for structure
3
4 // Java extension packages
5 import javax.swing.JOptionPane;
6
7 public class BreakTest {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 String output = "";
13 int count;
14
15 // loop 10 times
16 for (count = 1; count <= 10; count++) {
17
18 // if count is 5, terminate loop
19 if (count == 5)
20 break; // break loop only if count == 5
21
22 output += count + " ";
23
24 } // end for structure
25
26 output += "\nBroke out of loop at count = " + count;
27 JOptionPane.showMessageDialog(null, output);
28
29 System.exit(0); // terminate application
30
31 } // end method main
32
33 } // end class BreakTest

Fig. 5.11Fig. 5.11Fig. 5.11Fig. 5.11 Using the break statement in a for structure.

Chapter 5 Control Structures: Part 2 219

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

When the if structure at line 19 in the for structure detects that count is 5, the
break statement at line 20 executes. This statement terminates the for structure, and the
program proceeds to line 26 (immediately after the for). Line 26 completes the string to
display in a message dialog at line 27. The loop fully executes its body only four times.

The continue statement, when executed in a while, for or do/while structure,
skips the remaining statements in the loop body and proceeds with the next iteration of the
loop. In while and do/while structures, the program evaluates the loop-continuation
test immediately after the continue statement executes. In for structures, the increment
expression executes, then the program evaluates the loop-continuation test. Earlier, we
stated that the while structure could be used in most cases to represent the for structure.
The one exception occurs when the increment expression in the while structure follows
the continue statement. In this case, the increment does not execute before the program
evaluates the repetition-continuation condition, so the while structure does not execute in
the same manner as does the for structure. Figure 5.12 uses the continue statement in
a for structure to skip the string concatenation statement (line 22) when the if structure
(line 18) determines that the value of count is 5. When the continue statement exe-
cutes, program control continues with the increment of the control variable in the for
structure.

Good Programming Practice 5.15
Some programmers feel that break and continue violate structured programming. Be-
cause the effects of these statements are achievable with structured programming techniques,
these programmers do not use break and continue. 5.15

1 // Fig. 5.12: ContinueTest.java
2 // Using the continue statement in a for structure
3
4 // Java extension packages
5 import javax.swing.JOptionPane;
6
7 public class ContinueTest {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 String output = "";
13
14 // loop 10 times
15 for (int count = 1; count <= 10; count++) {
16
17 // if count is 5, continue with next iteration of loop
18 if (count == 5)
19 continue; // skip remaining code in loop
20 // only if count == 5
21
22 output += count + " ";
23
24 } // end for structure
25

Fig. 5.12Fig. 5.12Fig. 5.12Fig. 5.12 Using the continue statement in a for structure (part 1 of 2).

220 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Performance Tip 5.3
The break and continue statements, when used properly, perform faster than the cor-
responding structured techniques. 5.3

Software Engineering Observation 5.1
There is a tension between achieving quality software engineering and achieving the best
performing software. Often, one of these goals is achieved at the expense of the other. For
all but the most performance-intensive situations, apply the following rule of thumb: First,
make your code simple and correct; then make it fast and small, but only if necessary. 5.1

5.8 Labeled break and continue Statements
The break statement can break out of only an immediately enclosing while, for, do/
while or switch structure. To break out of a nested set of structures, you can use the
labeled break statement. This statement, when executed in a while, for, do/while or
switch structure, causes immediate exit from that structure and any number of enclosing
repetition structures; program execution resumes with the first statement after the enclosing
labeled block (i.e., a set of statements enclosed in curly braces and preceded by a label).
The block can be either a repetition structure (the body would be the block) or a block in
which the repetition structure is the first executable code. Labeled break statements are
commonly used to terminate nested looping structures containing while, for, do/
while or switch structures. Figure 5.13 demonstrates the labeled break statement in
a nested for structure.

The block (lines 14–37) begins with a label (an identifier followed by a colon) at line
14; here, we use the label “stop:.” The block is enclosed in braces at the end of line 14
and line 37 and includes the nested for structure (lines 17–32) and the string-concatena-
tion statement at line 35. When the if structure at line 23 detects that row is equal to 5,
the break statement at line 24 executes. This statement terminates both the for structure
at line 20 and its enclosing for structure at line 17. The program proceeds immediately to

26 output += "\nUsed continue to skip printing 5";
27 JOptionPane.showMessageDialog(null, output);
28
29 System.exit(0); // terminate application
30
31 } // end method main
32
33 } // end class ContinueTest

}

Fig. 5.12Fig. 5.12Fig. 5.12Fig. 5.12 Using the continue statement in a for structure (part 2 of 2).

Chapter 5 Control Structures: Part 2 221

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

line 39—the first statement after the labeled block. The outer for structure fully executes
its body only four times. Notice that the string-concatenation statement at line 35 never exe-
cutes, because it is in the labeled block’s body, and the outer for structure never com-
pletes.

1 // Fig. 5.13: BreakLabelTest.java
2 // Using the break statement with a label
3
4 // Java extension packages
5 import javax.swing.JOptionPane;
6
7 public class BreakLabelTest {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 String output = "";
13
14 stop: { // labeled block
15
16 // count 10 rows
17 for (int row = 1; row <= 10; row++) {
18
19 // count 5 columns
20 for (int column = 1; column <= 5 ; column++) {
21
22 // if row is 5, jump to end of "stop" block
23 if (row == 5)
24 break stop; // jump to end of stop block
25
26 output += "* ";
27
28 } // end inner for structure
29
30 output += "\n";
31
32 } // end outer for structure
33
34 // the following line is skipped
35 output += "\nLoops terminated normally";
36
37 } // end labeled block
38
39 JOptionPane.showMessageDialog(
40 null, output,"Testing break with a label",
41 JOptionPane.INFORMATION_MESSAGE);
42
43 System.exit(0); // terminate application
44
45 } // end method main
46
47 } // end class BreakLabelTest

Fig. 5.13Fig. 5.13Fig. 5.13Fig. 5.13 Using a labeled break statement in a nested for structure (part 1 of 2).

222 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

The continue statement proceeds with the next iteration (repetition) of the immedi-
ately enclosing while, for or do/while structure. The labeled continue statement,
when executed in a repetition structure (while, for or do/while), skips the remaining
statements in that structure’s body and any number of enclosing repetition structures and
proceeds with the next iteration of the enclosing labeled repetition structure (i.e., a repeti-
tion structure preceded by a label). In labeled while and do/while structures, the pro-
gram evaluates the loop-continuation test immediately after the continue statement
executes. In a labeled for structure, the increment expression is executed, and then the
loop-continuation test is evaluated. Figure 5.14 uses the labeled continue statement in a
nested for structure to enable execution to continue with the next iteration of the outer
for structure.

The labeled for structure (lines 14–32) starts at the nextRow label. When the if
structure at line 24 in the inner for structure detects that column is greater than row, the
continue statement at line 25 executes, and program control continues with the incre-
ment of the control variable of the outer for loop. Even though the inner for structure
counts from 1 to 10, the number of * characters output on a row never exceeds the value of
row.

Performance Tip 5.4
The program in Fig. 5.14 can be made simpler and more efficient by replacing the condition
in the for structure at line 21 with column <= row and removing the if structure at lines
24–25 from the program. 5.4

5.9 Logical Operators
So far, we have studied only simple conditions, such as count <= 10, total > 1000
and number != sentinelValue. These conditions were expressed in terms of the re-
lational operators >, <, >= and <= and the equality operators == and !=. Each decision
tested one condition. To test multiple conditions in the process of making a decision, we
performed these tests in separate statements or in nested if or if/else structures.

Java provides logical operators to enable programmers to form more complex condi-
tions by combining simple conditions. The logical operators are && (logical AND), &
(boolean logical AND), || (logical OR), | (boolean logical inclusive OR), ^ (boolean log-
ical exclusive OR) and ! (logical NOT, also called logical negation).

Fig. 5.13Fig. 5.13Fig. 5.13Fig. 5.13 Using a labeled break statement in a nested for structure (part 2 of 2).

Chapter 5 Control Structures: Part 2 223

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

1 // Fig. 5.14: ContinueLabelTest.java
2 // Using the continue statement with a label
3
4 // Java extension packages
5 import javax.swing.JOptionPane;
6
7 public class ContinueLabelTest {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 String output = "";
13
14 nextRow: // target label of continue statement
15
16 // count 5 rows
17 for (int row = 1; row <= 5; row++) {
18 output += "\n";
19
20 // count 10 columns per row
21 for (int column = 1; column <= 10; column++) {
22
23 // if column greater than row, start next row
24 if (column > row)
25 continue nextRow; // next iteration of
26 // labeled loop
27
28 output += "* ";
29
30 } // end inner for structure
31
32 } // end outer for structure
33
34 JOptionPane.showMessageDialog(
35 null, output,"Testing continue with a label",
36 JOptionPane.INFORMATION_MESSAGE);
37
38 System.exit(0); // terminate application
39
40 } // end method main
41
42 } // end class ContinueLabelTest

Fig. 5.14Fig. 5.14Fig. 5.14Fig. 5.14 Using a labeled continue statement in a nested for structure .

224 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Suppose we wish to ensure at some point in a program that two conditions are both
true before we choose a certain path of execution. In this case, we can use the logical &&
operator, as follows:

if (gender == 1 && age >= 65)
 ++seniorFemales;

This if statement contains two simple conditions. The condition gender == 1 might be
evaluated, for example, to determine if a person is a female. The condition age >= 65 is
evaluated to determine if a person is a senior citizen. The two simple conditions are evalu-
ated first, because the precedences of == and >= are both higher than the precedence of &&.
The if statement then considers the combined condition

gender == 1 && age >= 65

This condition is true if and only if both of the simple conditions are true. If this com-
bined condition is indeed true, the if structure’s body statement increments variable
seniorFemales by 1. If either or both of the simple conditions are false, the program
skips the increment and proceeds to the statement following the if structure. The preced-
ing combined condition can be made more readable by adding redundant parentheses:

(gender == 1) && (age >= 65)

The table in Fig. 5.15 summarizes the && operator. The table shows all four possible
combinations of false and true values for expression1 and expression2. Such tables are
often called truth tables. Java evaluates to false or true all expressions that include
relational operators, equality operators and/or logical operators.

Now let us consider the || (logical OR) operator. Suppose we wish to ensure that
either or both of two conditions are true before we choose a certain path of execution. In
this case, we use the || operator, as in the following program segment:

if (semesterAverage >= 90 || finalExam >= 90)
 System.out.println ("Student grade is A");

This statement also contains two simple conditions. The condition semesterAverage
>= 90 evaluates to determine if the student deserves an “A” in the course because of a solid
performance throughout the semester. The condition finalExam >= 90 evaluates to de-
termine if the student deserves an “A” in the course because of an outstanding performance
on the final exam. The if statement then considers the combined condition

expression1 expression2 expression1 && expression2

false false false

false true false

true false false

true true true

Fig. 5.15Fig. 5.15Fig. 5.15Fig. 5.15 Truth table for the && (logical AND) operator.

Chapter 5 Control Structures: Part 2 225

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

semesterAverage >= 90 || finalExam >= 90

and awards the student an “A” if either or both of the simple conditions are true. Note that
the only time the message “Student grade is A” is not printed is when both of the sim-
ple conditions are false. Figure 5.16 is a truth table for the logical OR operator (||).

The && operator has a higher precedence than the || operator. Both operators asso-
ciate from left to right. An expression containing && or || operators is evaluated only until
truth or falsity is known. Thus, evaluation of the expression

gender == 1 && age >= 65

stops immediately if gender is not equal to 1 (i.e., the entire expression is false) and
continues if gender is equal to 1 (i.e., the entire expression could still be true if the con-
dition age >= 65 is true). This performance feature for evaluation of logical AND and
logical OR expressions is called short-circuit evaluation.

Common Programming Error 5.9
In expressions using operator &&, it is possible that a condition—we will call this the depen-
dent condition—may require another condition to be true for it to be meaningful to evalu-
ate the dependent condition. In this case, the dependent condition should be placed after the
other condition, or an error might occur. 5.9

Performance Tip 5.5
In expressions using operator &&, if the separate conditions are independent of one another,
make the condition that is most likely to be false the leftmost condition. In expressions us-
ing operator ||, make the condition that is most likely to be true the leftmost condition.
This can reduce a program’s execution time. 5.5

The boolean logical AND (&) and boolean logical inclusive OR (|) operators work
identically to the regular logical AND and logical OR operators, with one exception: The
boolean logical operators always evaluate both of their operands (i.e., there is no short-cir-
cuit evaluation). Therefore, the expression

gender == 1 & age >= 65

evaluates age >= 65 regardless of whether gender is equal to 1. This method is useful
if the right operand of the boolean logical AND or boolean logical inclusive OR operator
has a required side effect—a modification of a variable’s value. For example, the expres-
sion

expression1 expression2 expression1 || expression2

false false false

false true true

true false true

true true true

Fig. 5.16Fig. 5.16Fig. 5.16Fig. 5.16 Truth table for the || (logical OR) operator.

226 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

birthday == true | ++age >= 65

guarantees that the condition ++age >= 65 will be evaluated. Thus, the variable age is
incremented in the preceding expression, regardless of whether the overall expression is
true or false.

Good Programming Practice 5.16
For clarity, avoid expressions with side effects in conditions. The side effects may look clever,
but they are often more trouble than they are worth. 5.16

A condition containing the boolean logical exclusive OR (^) operator is true if and
only if one of its operands results in a true value and one results in a false value. If
both operands are true or both are false, the result of the entire condition is false.
Figure 5.17 is a truth table for the boolean logical exclusive OR operator (^). This operator
is also guaranteed to evaluate both of its operands (i.e., there is no short-circuit evaluation).

Java provides the ! (logical negation) operator to enable a programmer to “reverse”
the meaning of a condition. Unlike the logical operators &&, &, ||, | and ̂ , which combine
two conditions (i.e., they are binary operators), the logical negation operator has only a
single condition as an operand (i.e., they are unary operator). The logical negation operator
is placed before a condition to choose a path of execution if the original condition (without
the logical negation operator) is false, such as in the following program segment:

if (! (grade == sentinelValue))
 System.out.println("The next grade is " + grade);

The parentheses around the condition grade == sentinelValue are needed, because
the logical negation operator has a higher precedence than the equality operator.
Figure 5.18 is a truth table for the logical negation operator.

In most cases, the programmer can avoid using logical negation by expressing the con-
dition differently with an appropriate relational or equality operator. For example, the pre-
vious statement may also be written as follows:

expression1 expression2 expression1 ^ expression2

false false false

false true true

true false true

true true false

Fig. 5.17Fig. 5.17Fig. 5.17Fig. 5.17 Truth table for the boolean logical exclusive OR (^) operator .

expression !expression

false true

true false

Fig. 5.18Fig. 5.18Fig. 5.18Fig. 5.18 Truth table for operator ! (logical negation, or logical NOT).

Chapter 5 Control Structures: Part 2 227

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

if (grade != sentinelValue)
 System.out.println("The next grade is " + grade);

This flexibility can help a programmer express a condition in a more convenient manner.
The application in Fig. 5.19 demonstrates all of the logical operators and boolean log-

ical operators by producing their truth tables. The program uses string concatenation to
create the string that is displayed in a JTextArea.

1 // Fig. 5.19: LogicalOperators.java
2 // Demonstrating the logical operators
3
4 // Java extension packages
5 import javax.swing.*;
6
7 public class LogicalOperators {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 // create JTextArea to display results
13 JTextArea outputArea = new JTextArea(17, 20);
14
15 // attach JTextArea to a JScrollPane so user can
16 // scroll through results
17 JScrollPane scroller = new JScrollPane(outputArea);
18
19 String output;
20
21 // create truth table for && operator
22 output = "Logical AND (&&)" +
23 "\nfalse && false: " + (false && false) +
24 "\nfalse && true: " + (false && true) +
25 "\ntrue && false: " + (true && false) +
26 "\ntrue && true: " + (true && true);
27
28 // create truth table for || operator
29 output += "\n\nLogical OR (||)" +
30 "\nfalse || false: " + (false || false) +
31 "\nfalse || true: " + (false || true) +
32 "\ntrue || false: " + (true || false) +
33 "\ntrue || true: " + (true || true);
34
35 // create truth table for & operator
36 output += "\n\nBoolean logical AND (&)" +
37 "\nfalse & false: " + (false & false) +
38 "\nfalse & true: " + (false & true) +
39 "\ntrue & false: " + (true & false) +
40 "\ntrue & true: " + (true & true);
41
42 // create truth table for | operator
43 output += "\n\nBoolean logical inclusive OR (|)" +
44 "\nfalse | false: " + (false | false) +
45 "\nfalse | true: " + (false | true) +

Fig. 5.19Fig. 5.19Fig. 5.19Fig. 5.19 Demonstrating the logical operators (part 1 of 2).

228 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

In the output of Fig. 5.19, the strings “true” and “false” indicate true and false for
the operands in each condition. The result of the condition is shown as true or false.
Note that when you concatenate a boolean value with a String, Java automatically
adds the string “false” or “true,” based on the boolean value.

Line 13 in method main creates a JTextArea. The numbers in the parentheses indi-
cate that the JTextArea has 17 rows and 20 columns. Line 17 declares JScrollPane
reference scroller and initializes it with a new JScrollPane object. Class

46 "\ntrue | false: " + (true | false) +
47 "\ntrue | true: " + (true | true);
48
49 // create truth table for ^ operator
50 output += "\n\nBoolean logical exclusive OR (^)" +
51 "\nfalse ^ false: " + (false ^ false) +
52 "\nfalse ^ true: " + (false ^ true) +
53 "\ntrue ^ false: " + (true ^ false) +
54 "\ntrue ^ true: " + (true ^ true);
55
56 // create truth table for ! operator
57 output += "\n\nLogical NOT (!)" +
58 "\n!false: " + (!false) +
59 "\n!true: " + (!true);
60
61 outputArea.setText(output); // place results in JTextArea
62
63 JOptionPane.showMessageDialog(null, scroller,
64 "Truth Tables", JOptionPane.INFORMATION_MESSAGE);
65
66 System.exit(0); // terminate application
67
68 } // end method main
69
70 } // end class LogicalOperators

Fig. 5.19Fig. 5.19Fig. 5.19Fig. 5.19 Demonstrating the logical operators (part 2 of 2).

Scrollbar

The scroll
box (also
called the
thumb)

Chapter 5 Control Structures: Part 2 229

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

JScrollPane (from package javax.swing) provides a GUI component with
scrolling functionality. A JScrollPane object is initialized with the GUI component for
which it will provide scrolling functionality (outputArea in this example). This initial-
ization attaches the GUI component to the JScrollPane. When you execute this appli-
cation, notice the scrollbar on the right side of the JTextArea. You can click the arrows
at the top or bottom of the scrollbar to scroll up or down, respectively, through the text in
the JTextArea one line at a time. You can also drag the scroll box (also called the thumb)
up or down to scroll through the text rapidly.

Lines 22–59 build the output string that is displayed in the outputArea. Line 61
uses method setText to replace the text in outputArea with the output string. Lines
63–64 display a message dialog. The second argument, scroller, indicates that the
scroller (and the outputArea attached to it) should be displayed as the message in
the message dialog.

The chart in Fig. 5.20 shows the precedence and associativity of the Java operators
introduced up to this point. The operators are shown from top to bottom in decreasing order
of precedence.

5.10 Structured Programming Summary
Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design programs. Our field is younger than architecture is, and our
collective wisdom is considerably sparser. We have learned that structured programming
produces programs that are easier than unstructured programs to understand and hence are
easier to test, debug, modify and even prove correct in a mathematical sense.

Operators Associativity Type

() left to right parentheses

++ -- right to left unary postfix

++ -- + - ! (type) right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

& left to right boolean logical AND

^ left to right boolean logical exclusive OR

| left to right boolean logical inclusive OR

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

Fig. 5.20Fig. 5.20Fig. 5.20Fig. 5.20 Precedence and associativity of the operators discussed so far.

230 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Figure 5.21 summarizes Java’s control structures. Small circles are used in the figure
to indicate the single entry and single exit points of each structure. Connecting individual
flowchart symbols arbitrarily can lead to unstructured programs. Therefore, the program-
ming profession has chosen to combine flowchart symbols to form a limited set of control
structures, and to build structured programs by properly combining control structures in
two simple ways.

Fig. 5.21Fig. 5.21Fig. 5.21Fig. 5.21 Java’s single-entry/single-exit control structures.

SS SS ee ee
qq qq

uu uu
ee ee

nn nn
cc cc

ee ee

T

F

i
f

 s
tr

u
c

tu
re

(s
in

g
le

 s
e

le
c

tio
n

)
T

F

i
f
/
e
l
s
e

 s
tr

u
c

tu
re

(d
o

u
b

le
 s

e
le

c
tio

n
)

T

F

s
w
i
t
c
h

 s
tr

u
c

tu
re

(m
u

lti
p

le
 s

e
le

c
tio

n
) b
r
e
a
k

T

F

b
r
e
a
k

T

F

b
r
e
a
k

. . .

T

F

w
h
i
l
e

 s
tr

u
c

tu
re

T

F

f
o
r

 s
tr

u
c

tu
re

T

F

d
o
/
w
h
i
l
e

 s
tr

u
c

tu
re

. . .

SS SS ee ee
ll ll ee ee

cc cc
tt tt ii ii

oo oo
nn nn

RR RR
ee ee

pp pp
ee ee

tt tt ii ii
tt tt ii ii

oo oo
nn nn

Chapter 5 Control Structures: Part 2 231

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

For simplicity, only single-entry/single-exit control structures are used; there is only
one way to enter and only one way to exit each control structure. Connecting control struc-
tures in sequence to form structured programs is simple: The exit point of one control struc-
ture is connected to the entry point of the next control structure (i.e., the control structures
are simply placed one after another in a program); we have called this method “control-
structure stacking.” The rules for forming structured programs also allow for control-struc-
ture nesting.

Figure 5.22 shows the rules for forming properly structured programs. The rules
assume that the rectangle flowchart symbol may be used to indicate any action, including
input/output.

Applying the rules of Fig. 5.22 always results in a structured flowchart with a neat,
building-block-like appearance (Fig. 5.23). For example, repeatedly applying Rule 2 to the
simplest flowchart results in a structured flowchart containing many rectangles in sequence
(Fig. 5.24). Rule 2 generates a stack of control structures; so let us call Rule 2 the stacking
rule. [Note: The symbols at the top and bottom of Fig. 5.23 represent the beginning and end
of a program, respectively.]

Rule 3 is called the nesting rule. Repeatedly applying Rule 3 to the simplest flowchart
results in a flowchart with neatly nested control structures. For example, in Fig. 5.25, the
rectangle in the simplest flowchart is first replaced with a double-selection (if/else)
structure. Then, Rule 3 is applied again to both of the rectangles in the double-selection
structure, replacing each of the rectangles with double-selection structures. The dashed
boxes around each of the double-selection structures represent the rectangle that was
replaced with a double-selection structure.

Rules for Forming Structured Programs

1) Begin with the “simplest flowchart” (Fig. 5.23).

2) Any rectangle (action) can be replaced by two rectangles (actions) in sequence.

3) Any rectangle (action) can be replaced by any control structure (sequence, if, if/else,
switch, while, do/while or for).

4) Rules 2 and 3 may be applied as often as you like and in any order.

Fig. 5.22Fig. 5.22Fig. 5.22Fig. 5.22 Rules for forming structured programs.

Fig. 5.23Fig. 5.23Fig. 5.23Fig. 5.23 The simplest flowchart.

232 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Fig. 5.24Fig. 5.24Fig. 5.24Fig. 5.24 Repeatedly applying Rule 2 of Fig. 5.22 to the simplest flowchart.

Fig. 5.25Fig. 5.25Fig. 5.25Fig. 5.25 Applying Rule 3 of Fig. 5.22 to the simplest flowchart.

.

.

.

Rule 2 Rule 2 Rule 2

Rule 3

Rule 3Rule 3

Chapter 5 Control Structures: Part 2 233

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Rule 4 generates larger, more involved and more deeply nested structures. The flow-
charts that emerge from applying the rules in Fig. 5.22 constitute the set of all possible
structured flowcharts and hence the set of all possible structured programs.

The beauty of the structured approach is that we use only seven simple single-entry/
single-exit pieces and we assemble them in only two simple ways. Figure 5.26 shows the
kinds of stacked building blocks that emerge from applying Rule 2 and the kinds of nested
building blocks that emerge from applying Rule 3. The figure also shows the kind of over-
lapped building blocks that cannot appear in structured flowcharts (because of the elimina-
tion of the goto statement).

If the rules in Fig. 5.22 are followed, you cannot create an unstructured flowchart (such
as that in Fig. 5.27). If you are uncertain if a particular flowchart is structured, apply the
rules of Fig. 5.22 in reverse to try to reduce the flowchart to the simplest flowchart. If the
flowchart is reducible to the simplest flowchart, the original flowchart is structured; other-
wise, it is not.

Structured programming promotes simplicity. Bohm and Jacopini have shown that
only three forms of control are needed—sequence, selection and repetition.

Fig. 5.26Fig. 5.26Fig. 5.26Fig. 5.26 Stacked, nested and overlapped building blocks.

Fig. 5.27Fig. 5.27Fig. 5.27Fig. 5.27 An unstructured flowchart.

Stacked building blocks Nested building blocks

Overlapping building blocks
(Illegal in structured programs)

234 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Sequence is trivial. Selection is implemented in one of three ways:

• an if structure (single selection),

• an if/else structure (double selection), or

• a switch structure (multiple selection).

In fact, it is straightforward to prove that the if structure is sufficient for any form of se-
lection; everything that can be done with the if/else structure and the switch structure
can be implemented by combining if structures (although perhaps not as elegantly).

Repetition is implemented in one of three ways:

• a while structure,

• a do/while structure, or

• a for structure.

It is straightforward to prove that the while structure is sufficient to provide any form of
repetition. Everything that can be done with the do/while structure and the for structure
can be done with the while structure (although perhaps not as elegantly).

Combining these results illustrates that any form of control ever needed in a Java pro-
gram can be expressed in terms of

• a sequence,

• a if structure (selection), or

• a while structure (repetition).

And these control structures can be combined in only two ways—stacking and nesting. In-
deed, structured programming promotes simplicity.

In this chapter, we have discussed how to compose programs from control structures
containing actions and decisions. In Chapter 6, we introduce another program structuring
unit, called the method. We will learn to compose large programs by combining methods
that, in turn, are composed of control structures. We will also discuss how methods promote
software reusability. In Chapter 8, we discuss in more detail Java’s other program-struc-
turing unit, called the class. We will then create objects from classes and proceed with our
treatment of object-oriented programming.

5.11 (Optional Case Study) Thinking About Objects: Identifying
Objects’ States and Activities
In “Thinking About Objects,” Section 4.14, we determined many of the class attributes
needed to implement the elevator simulator and added them to the class diagram of
Fig. 4.18. In this section, we show how these attributes represent an object’s state, or con-
dition. We identify the set of possible states that our objects may occupy and discuss how
these objects change state in response to messages. We also discuss the workflow, or the
activities, that an object performs in our elevator simulation.

Statechart Diagrams
Objects in a system have states. A state describes the condition of an object at a given
time. Statechart diagrams (also called state diagrams) give us a way to express how, and
under what conditions, the objects in a system change state. Unlike the class and object

Chapter 5 Control Structures: Part 2 235

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

diagrams presented in earlier case-study sections, statechart diagrams model the behavior
of the system.

Figure 5.28 is a simple statechart diagram that models the states of an object of either
class FloorButton or class ElevatorButton. The UML represents each state in a
statechart diagram as a rounded rectangle with the name of the state placed inside the rect-
angle. A solid circle with an attached arrowhead designates the initial state (in this case, the
“Not pressed” state). Notice that this statechart diagram models the boolean attribute
pressed in the class diagram of Fig. 4.18. The attribute is initialized to false, or the
“Not pressed” state according to the statechart diagram.

 The arrows indicate transitions between states. An object can transition from one state
to another in response to a message. For example, the FloorButton and Elevator-
Button objects change from the “Not pressed” state to the “Pressed” state in response to
a buttonPressed message, and the pressed attribute changes to a value of true.
The name of the message that causes a transition is written near the line that corresponds
to that transition. (We explain messages in Section 7.10 and Section 10.22.)

Objects from other classes, such as Light, Elevator and Person, have similar
statechart diagrams. Class Light has an “on” state or an “off” state—transitions between
these states occur as a result of “turn on” and “turn off” events, respectively. Class Ele-
vator and class Person each have a “moving” state and a “waiting” state—transitions
between these states occur as a result of “start moving” and “stop moving” events, respec-
tively.

Activity Diagrams
The activity diagram is similar to the statechart diagram in that they both model aspects of
system behavior. Unlike a statechart diagram, an activity diagram models an object’s work-
flow during program execution. An activity diagram is a flowchart that models the actions
the object will perform and in what order. The activity diagram in Fig. 5.29 models the ac-
tivities of a person. The diagram begins with the person moving toward the floor button. If
the door is open, the person waits for the current elevator passenger (if one exists) to exit
then enters the elevator.1 If the door is closed, the person presses the floor button and waits
for the elevator to open the door. When the door opens, the person waits for the elevator
passenger to exit (if one exists) then enters the elevator. The person presses the elevator but-
ton, which causes the elevator to move to the other floor, unless the elevator already ser-
vices that floor; the person then waits for the doors to re-open and exits the elevator after
the doors open.

1. We use multithreading and synchronized methods in Section 15.12 to guarantee that the pas-
senger riding the elevator will exit before the person waiting for the elevator will enter.

Fig. 5.28Fig. 5.28Fig. 5.28Fig. 5.28 Statechart diagram for FloorButton and ElevatorButton
objects.

Not pressed Pressed

buttonReset

buttonPressed

236 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

The UML represents activities as ovals in activity diagrams. The name of the activity
is placed inside the oval. An arrow connects two activities, indicating the order in which
the activities are performed. As with statechart diagrams, the solid circle indicates the
starting activity. In this case, the person moving toward the floor button is the starting
activity. The activity flow arrives at a branch (indicated by the small diamond symbol) after
the person moves to the floor button. This point determines the next activity based on the
associated guard condition (in square brackets above the transition), which states that the
transition occurs if this condition is met. For example, in Fig. 5.29, if the floor door is
closed, the person presses the floor button, waits for the door to open, waits for the pas-
senger (if there is one) to exit the elevator, then enters the elevator. However, if the floor
door is open, the person waits for the passenger (if there is one) to exit the elevator, then
enters the elevator. Regardless of whether the floor door was open or closed at the last dia-
mond symbol, the person now presses the elevator button (which causes the doors to close
and the elevator to move to the other floor), the person waits for the elevator door to open—
when this door opens, the person exits the elevator. Activity diagrams are similar to the
flowcharts for control structures presented in Chapters 4 and 5—both diagram types
employ diamond symbols to alter the flow of control between activities.

Fig. 5.29Fig. 5.29Fig. 5.29Fig. 5.29 Activity diagram for a Person object.

move toward floor button

enter elevator

press elevator button

press floor button

wait for door to open

wait for door to open

[floor door closed]

[floor door open]

exit elevator

wait for passenger (if there is one) to exit elevator

Chapter 5 Control Structures: Part 2 237

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

Figure 5.30 shows an activity diagram for the elevator. The diagram begins when a
button is pressed. If the button is an elevator button, the elevator sets summoned to false
(we explain this boolean variable in a moment), closes the elevator door, moves to the
other floor, resets the elevator button, rings the bell and opens the elevator door. If the
button is a floor button, the next branch determines the next transition, based on whether
the elevator is moving. If the elevator is idle, the next branch determines which floor button
generated the request. If the request originated from the current floor on which the elevator
is located, the elevator resets its button, rings its bell and opens its door. If the request orig-
inated from the opposite floor, the elevator closes the door and moves to the opposite (des-
tination) floor, where the elevator resets its button, rings its bell and opens its door. Now
consider the activity if the elevator is moving. A separate branch determines which floor
button generated the request. If the request originated from the destination floor, the ele-
vator continues traveling to that floor. If the request originated from the floor from which
the elevator departed, the elevator continues traveling to the destination floor, but must
remember to return to the requesting floor. The summoned attribute, originally displayed
in Fig. 4.18, is set to true so that the elevator knows to return to the other floor after the
elevator opens its door.

Fig. 5.30Fig. 5.30Fig. 5.30Fig. 5.30 Activity diagram for the Elevator object.

move to destination floor

close elevator door

ring bell

reset elevator button

[elevator idle][button on
destination

floor
pressed]

open elevator door

[elevator moving]

[button on
current floor

pressed]

[floor button
pressed]

[elevator button
pressed]

[summoned] [not summoned]

set summoned to true

set summoned to false

[button on
destination

floor
pressed]

[button on
current floor

pressed]

238 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

We have taken the first steps to modeling the behavior of the system and have shown
how the attributes of an object determine that object’s activity. In “Thinking About
Objects,” Section 6.17, we investigate the behaviors for all classes to give a more accurate
interpretation of the system behavior by “filling in” the final compartment for the classes
in our class diagram.

SUMMARY
• The for repetition structure handles all of the details of counter-controlled repetition. The general

format of the for structure is

for (expression1; expression2; expression3)
statement

where expression1 initializes the loop’s control variable, expression2 is the loop-continuation con-
dition and expression3 modifies the control variable, so that the loop-continuation condition even-
tually becomes false.

• A JTextArea is a GUI component that is capable of displaying many lines of text.

• Method setText replaces the text in a JTextArea. Method append adds text to the end of
the text in a JTextArea.

• NumberFormat static method getCurrencyInstance returns a NumberFormat ob-
ject that can format numeric values as currency. The argument Locale.US indicates that the cur-
rency values should be displayed starting with a dollar sign ($), use a decimal point to separate
dollars and cents and use a comma to delineate thousands.

• Class Locale provides constants that can be used to customize programs to represent currency
values for other countries, so that currency formats are displayed properly for each locale.

• Class NumberFormat is located in package java.text.

• Class Locale is located in package java.util.

• An interesting feature of class JOptionPane is that the message it displays with showMessa-
geDialog can be a String or a GUI component, such as a JTextArea.

• The switch structure handles a series of decisions in which a particular variable or expression is
tested for values it may assume, and different actions are taken. In most programs, it is necessary
to include a break statement after the statements for each case. Several cases can execute the
same statements by listing the case labels together before the statements. The switch structure
can only test for constant integral expressions.

• The do/while repetition structure tests the loop-continuation condition at the end of the loop, so
the body of the loop will be executed at least once. The format for the do/while structure is

do {
statement

} while (condition);

• The break statement, when executed in one of the repetition structures (for, while and do/
while), causes immediate exit from the structure.

• The continue statement, when executed in one of the repetition structures (for, while and
do/while), skips any remaining statements in the body of the structure and proceeds with the test
for the next iteration of the loop.

• To break out of a nested set of structures, use the labeled break statement. This statement, when
executed in a while, for, do/while or switch structure, causes immediate exit from that

Chapter 5 Control Structures: Part 2 239

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

structure and any number of enclosing repetition structures; program execution resumes with the
first statement after the enclosing labeled block.

• The labeled continue statement, when executed in a repetition structure (while, for or do/
while), skips the remaining statements in that structure’s body and any number of enclosing rep-
etition structures and proceeds with the next iteration of the enclosing labeled repetition structure.

• Logical operators may be used to form complex conditions by combining conditions. The logical op-
erators are &&, &, ||, |, ^ and !, meaning logical AND, boolean logical AND, logical OR, boolean
logical inclusive OR, boolean logical exclusive OR and logical NOT (negation), respectively.

• Class JScrollPane provides a GUI component with scrolling functionality.

TERMINOLOGY

SELF-REVIEW EXERCISES
5.1 State whether each of the following is true or false. If false, explain why.

a) The default case is required in the switch selection structure.
b) The break statement is required in the default case of a switch selection structure.
c) The expression (x > y && a < b) is true if either x > y is true or a < b is true.
d) An expression containing the || operator is true if either or both of its operands is true.

5.2 Write a Java statement or a set of Java statements to accomplish each of the following tasks:
a) Sum the odd integers between 1 and 99, using a for structure. Assume that the integer

variables sum and count have been declared.
b) Calculate the value of 2.5 raised to the power of 3, using the pow method.
c) Print the integers from 1 to 20, using a while loop and the counter variable x. Assume

that the variable x has been declared, but not initialized. Print only five integers per line.
[Hint: Use the calculation x % 5. When the value of this expression is 0, print a newline
character; otherwise, print a tab character. Assume that this code is an application; use

! operator labeled repetition structure
&& operator Locale class
|| operator Locale.US
append method of class JTextArea logical AND (&&)
boolean logical AND (&) logical negation (!)
boolean logical exclusive OR (^) logical operators
boolean logical inclusive OR (|) logical OR (||)
break long
case label loop-continuation condition
continue multiple selection
counter-controlled repetition nested control structures
default case in switch NumberFormat class
definite repetition off-by-one error
do/while repetition structure repetition structures
for repetition structure scroll box
infinite loop scrollbar
java.text package short-circuit evaluation
java.util package single-entry/single-exit control structures
JScrollPane class stacked control structures
JTextArea class switch selection structure
labeled break statement thumb of a scrollbar
labeled block while repetition structure
labeled continue statement

240 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

the System.out.println() method to output the newline character, and use the
System.out.print('\t') method to output the tab character.]

d) Repeat Exercise 5.2 (c), using a for structure.

5.3 Find the error in each of the following code segments, and explain how to correct it:
a) x = 1;

while (x <= 10);
 x++;
}

b) for (y = .1; y != 1.0; y += .1)
 System.out.println(y);

c) switch (n) {
case 1:

 System.out.println("The number is 1");
case 2:

 System.out.println("The number is 2");
 break;

default:
 System.out.println("The number is not 1 or 2");
 break;
}

d) The following code should print the values 1 to 10.
n = 1;

while (n < 10)
 System.out.println(n++);

ANSWERS TO SELF-REVIEW EXERCISES
5.1 a) False. The default case is optional. If no default action is needed, then there is no need
for a default case. b) False. The break statement is used to exit the switch structure. The break
statement is not required for the last case in a switch structure. c) False. Both of the relational expres-
sions must be true for the entire expression to be true when using the && operator. d) True.

5.2 The answers to Exercise 5.2 are as follows:
a) sum = 0;

for (count = 1; count <= 99; count += 2)
 sum += count;

b) Math.pow(2.5, 3)
c) x = 1;

while (x <= 20) {
 System.out.print(x);

if (x % 5 == 0)
 System.out.println();

else
 System.out.print('\t');

 ++x;
}

Chapter 5 Control Structures: Part 2 241

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

d) for (x = 1; x <= 20; x++) {
System.out.print(x);

if (x % 5 == 0)
 System.out.println();

else
 System.out.print('\t');
}

or

for (x = 1; x <= 20; x++)

if (x % 5 == 0)
 System.out.println(x);

else
 System.out.print(x + "\t");

5.3 The answers to Exercise 5.3 are as follows:
a) Error: The semicolon after the while header causes an infinite loop, and there is a miss-

ing left brace.
Correction: Replace the semicolon by a {, or remove both the ; and the }.

b) Error: Using a floating-point number to control a for repetition structure may not work,
because floating-point numbers are represented only approximately by most computers.
Correction: Use an integer, and perform the proper calculation in order to get the values
you desire:

for (y = 1; y != 10; y++)
 System.out.println((float) y / 10);

c) Error: Missing break statement in the statements for the first case.
Correction: Add a break statement at the end of the statements for the first case. Note
that this omission is not necessarily an error if the programmer wants the statement of
case 2: to execute every time the case 1: statement executes.

d) Error: Improper relational operator used in the while repetition-continuation condition.
Correction: Use <= rather than <, or change 10 to 11.

EXERCISES
5.4 Find the error(s) in each of the following segments of code:

a) For (x = 100, x >= 1, x++)
 System.out.println(x);

b) The following code should print whether integer value is odd or even:
switch (value % 2) {

case 0:
 System.out.println("Even integer");

case 1:
 System.out.println("Odd integer");
}

c) The following code should output the odd integers from 19 to 1:
for (x = 19; x >= 1; x += 2)
 System.out.println(x);

242 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

d) The following code should output the even integers from 2 to 100:

counter = 2;

do {
 System.out.println(counter);
 counter += 2;
} While (counter < 100);

5.5 What does the following program do?

5.6 Write an application that finds the smallest of several integers. Assume that the first value
read specifies the number of values to input from the user.

5.7 Write an application that calculates the product of the odd integers from 1 to 15, and then
displays the results in a message dialog.

5.8 The factorial method is used frequently in probability problems. The factorial of a positive
integer n (written n! and pronounced “n factorial”) is equal to the product of the positive integers from
1 to n. Write an application that evaluates the factorials of the integers from 1 to 5. Display the results
in tabular format in a JTextArea that is displayed on a message dialog. What difficulty might pre-
vent you from calculating the factorial of 20?

5.9 Modify the compound-interest program of Fig. 5.6 to repeat its steps for interest rates of 5,
6, 7, 8, 9 and 10%. Use a for loop to vary the interest rate. Add scrolling functionality to the JText-
Area, so you can scroll through all the output.

5.10 Write an application that displays the following patterns separately one below the other. Use
for loops to generate the patterns. All asterisks (*) should be printed by a single statement of the
form System.out.print('*');. (This statement causes the asterisks to print side by side.) A
statement of the form System.out.println(); can be used to position to the next line. A state-
ment of the form System.out.print(' '); can be used to display a space for the last two
patterns. There should be no other output statements in the program. [Hint: The last two patterns re-
quire that each line begin with an appropriate number of blank spaces.]

1 public class Printing {
2
3 public static void main(String args[])
4 {
5 for (int i = 1; i <= 10; i++) {
6
7 for (int j = 1; j <= 5; j++)
8 System.out.print('@');
9

10 System.out.println();
11
12 }
13
14 }
15
16 }

Chapter 5 Control Structures: Part 2 243

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

(a) (b) (c) (d)

* ********** ********** *
** ********* ********* **
*** ******** ******** ***
**** ******* ******* ****
***** ****** ****** *****
****** ***** ***** ******
******* **** **** *******
******** *** *** ********
********* ** ** *********
********** * * **********

5.11 One interesting application of computers is drawing graphs and bar charts (sometimes called
“histograms”). Write an applet that reads five numbers, each between 1 and 30. For each number read,
your program should draw a line containing that number of adjacent asterisks. For example, if your
program reads the number 7, it should display *******.

5.12 A mail-order house sells five different products whose retail prices are as follows: product 1,
$2.98; product 2, $4.50; product 3, $9.98; product 4, $4.49; and product 5, $6.87. Write an application
that reads a series of pairs of numbers as follows:

a) product number;
b) quantity sold for one day.

Your program should use a switch structure to help determine the retail price for each product. It
should calculate and display the total retail value of all products sold last week. Use a TextField
to obtain the product number from the user. Use a sentinel-controlled loop to determine when the
program should stop looping and display the final results.

5.13 Modify the program in Fig. 5.6 to use only integers to calculate the compound interest. [Hint:
Treat all monetary amounts as integral numbers of pennies. Then “break” the result into its dollar por-
tion and cents portion by using the division and modulus operations, respectively. Insert a period be-
tween the dollars and the cents portions.]

5.14 Assume that i =1, j =2, k =3 and m =2. What does each of the following statements print?
a) System.out.println(i == 1);
b) System.out.println(j == 3);
c) System.out.println(i >= 1 && j < 4);
d) System.out.println(m <= 99 & k < m);
e) System.out.println(j >= i || k == m);
f) System.out.println(k + m < j | 3 - j >= k);
g) System.out.println(!(k > m));

5.15 Write an application that prints a table of the binary, octal, and hexadecimal equivalents of
the decimal numbers in the range 1 through 256. If you are not familiar with these number systems,
read Appendix E first. Place the results in a JTextArea with scrolling functionality. Display the
JTextArea in a message dialog.

5.16 Calculate the value of π from the infinite series

Print a table that shows the value of π approximated by one term of this series, by two terms, by three
terms, etc. How many terms of this series do you have to use before you first get 3.14? 3.141?
3.1415? 3.14159?

π 4 4
3
---– 4

5
--- 4

7
---– 4

9
--- 4

11
------– …+ + +=

244 Control Structures: Part 2 Chapter 5

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

5.17 (Pythagorean Triples) A right triangle can have sides whose lengths are all integers. The set
of three integer values for the lengths of the sides of a right triangle is called a Pythagorean triple. The
lengths of the three sides must satisfy the relationship that the sum of the squares of two of the sides
is equal to the square of the hypotenuse. Write an application to find all Pythagorean triples for
side1, side2 and the hypotenuse, all no larger than 500. Use a triple-nested for loop that tries
all possibilities. This method is an example of “brute force” computing. You will learn in more ad-
vanced computer science courses that there are large numbers of interesting problems for which there
is no known algorithmic approach other than using sheer brute force.

5.18 Modify Exercise 5.10 to combine your code from the four separate triangles of asterisks into
a single application that prints all four patterns side by side, making clever use of nested for loops.

5.19 (De Morgan’s Laws) In this chapter, we have discussed the logical operators &&, &, ||, |,
^ and !. De Morgan’s Laws can sometimes make it more convenient for us to express a logical ex-
pression. These laws state that the expression !(condition1 && condition2) is logically equivalent to
the expression (!condition1 || !condition2). Also, the expression !(condition1 || condition2)
is logically equivalent to the expression (!condition1 && !condition2). Use De Morgan’s Laws to
write equivalent expressions for each of the following, and then write a program to show that both the
original expression and the new expression in each case are equivalent:

a) !(x < 5) && !(y >= 7)
b) !(a == b) || !(g != 5)
c) !((x <= 8) && (y > 4))
d) !((i > 4) || (j <= 6))

5.20 Write an application that prints the following diamond shape. You may use output statements
that print a single asterisk (*), a single space or a single newline character. Maximize your use of rep-
etition (with nested for structures,) and minimize the number of output statements.

* ********** ********** *
** ********* ********* **
*** ******** ******** ***
**** ******* ******* ****
***** ****** ****** *****
****** ***** ***** ******
******* **** **** *******
******** *** *** ********
********* * ** *********
********** * * **********

*

*

Chapter 5 Control Structures: Part 2 245

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/2/01

5.21 Modify the program you wrote in Exercise 5.20 to read an odd number in the range 1 to 19
to specify the number of rows in the diamond. Your program should then display a diamond of the
appropriate size.

5.22 A criticism of the break statement and the continue statement is that each is unstruc-
tured. Actually, break statements and continue statements can always be replaced by structured
statements, although doing so can be awkward. Describe in general how you would remove any
break statement from a loop in a program and replace that statement with some structured equiva-
lent. [Hint: The break statement leaves a loop from within the body of the loop. The other way to
leave is by failing the loop-continuation test. Consider using in the loop-continuation test a second
test that indicates “early exit because of a ‘break’ condition.”] Use the technique you developed here
to remove the break statement from the program in Fig. 5.11.

5.23 What does the following program segment do?

for (i = 1; i <= 5; i++) {

for (j = 1; j <= 3; j++) {

 for (k = 1; k <= 4; k++)
 System.out.print('*');

 System.out.println();
 }

 System.out.println();
}

5.24 Describe in general how you would remove any continue statement from a loop in a pro-
gram and replace that statement with some structured equivalent. Use the technique you developed
here to remove the continue statement from the program in Fig. 5.12.

5.25 (“The Twelve Days of Christmas” Song) Write an application that uses repetition and
switch structures to print the song “The Twelve Days of Christmas.” One switch structure should
be used to print the day (i.e., “First,” “Second,” etc.). A separate switch structure should be used to
print the remainder of each verse. Visit the Web site www.12days.com/library/carols/
12daysofxmas.htm for the complete lyrics to the song.

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6
Methods

Objectives
• To understand how to construct programs modularly

from small pieces called methods.
• To introduce the common math methods available in

the Java API.
• To be able to create new methods.
• To understand the mechanisms for passing

information between methods.
• To introduce simulation techniques that use random-

number generation.
• To understand how the visibility of identifiers is

limited to specific regions of programs.
• To understand how to write and use methods that call

themselves.
Form ever follows function.
Louis Henri Sullivan

E pluribus unum.
(One composed of many.)
Virgil

O! call back yesterday, bid time return.
William Shakespeare, Richard II

Call me Ishmael.
Herman Melville, Moby Dick

When you call me that, smile.
Owen Wister

Chapter 6 Methods 247

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.1 Introduction
Most computer programs that solve real-world problems are much larger than the programs
presented in the first few chapters of this text. Experience has shown that the best way to
develop and maintain a large program is to construct it from small, simple pieces, or mod-
ules. This technique is called divide and conquer. This chapter describes many key features
of the Java language that facilitate the design, implementation, operation and maintenance
of large programs.

6.2 Program Modules in Java
Modules in Java are called methods and classes. Java programs are written by combining
new methods and classes the programmer writes with “prepackaged” methods and classes
available in the Java API (also referred to as the Java class library) and in various other
method and class libraries. In this chapter, we concentrate on methods; we begin to discuss
classes in detail in Chapter 8.

The Java API provides a rich collection of classes and methods for performing
common mathematical calculations, string manipulations, character manipulations, input/
output operations, error checking and many other useful operations. This set of modules
makes the programmer’s job easier, because the modules provide many of the capabilities

Outline

6.1 Introduction
6.2 Program Modules in Java
6.3 Math Class Methods
6.4 Methods
6.5 Method Definitions
6.6 Argument Promotion
6.7 Java API Packages
6.8 Random-Number Generation
6.9 Example: A Game of Chance
6.10 Duration of Identifiers
6.11 Scope Rules
6.12 Recursion
6.13 Example Using Recursion: The Fibonacci Series
6.14 Recursion vs. Iteration
6.15 Method Overloading
6.16 Methods of Class JApplet
6.17 (Optional Case Study) Thinking About Objects: Identifying Class

Operations

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

248 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

programmers need. The Java API methods are provided as part of the Java 2 Software
Development Kit (J2SDK).

Good Programming Practice 6.1
Familiarize yourself with the rich collection of classes and methods in the Java API and with
the rich collections of classes available in various class libraries. 6.1

Software Engineering Observation 6.1
Avoid reinventing the wheel. When possible, use Java API classes and methods instead of
writing new classes and methods. This reduces program development time and avoids intro-
ducing programming errors. 6.1

Performance Tip 6.1
Do not try to rewrite existing Java API classes and methods to make them more efficient. You
usually will not be able to increase the performance of these classes and methods. 6.1

The programmer can write methods to define specific tasks that a program may use
many times during its execution. These are sometimes referred to as programmer-defined
methods. The actual statements defining the methods are written only once and are hidden
from other methods.

A method is invoked (i.e., made to perform its designated task) by a method call. The
method call specifies the name of the method and provides information (as arguments) that
the called method requires to perform its task. When the method call completes, the method
either returns a result to the calling method (or caller) or simply returns control to the
calling method. A common analogy for this program structure is the hierarchical form of
management. A boss (the calling method, or caller) asks a worker (the called method) to
perform a task and report back (i.e., return) the results after completing the task. The boss
method does not know how the worker method performs its designated tasks. The worker
may also call other worker methods, and the boss will be unaware of this occurrence. We
will soon see how this “hiding” of implementation details promotes good software engi-
neering. Figure 6.1 shows the boss method communicating with several worker methods
in a hierarchical manner. Note that worker1 acts as a “boss method” to worker4 and
worker5. Relationships among methods may also be different than the hierarchical struc-
ture shown in this figure.

Fig. 6.1Fig. 6.1Fig. 6.1Fig. 6.1 Hierarchical boss-method/worker-method relationship.

main

worker1 worker2 worker3

worker4 worker5

Chapter 6 Methods 249

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.3 Math Class Methods
Math class methods allow the programmer to perform certain common mathematical cal-
culations. We use various Math class methods here to introduce the concept of methods.
Throughout the book, we discuss many other methods from the classes of the Java API.

Methods are called by writing the name of the method, followed by a left parenthesis,
followed by the argument (or a comma-separated list of arguments) of the method, fol-
lowed by a right parenthesis. For example, a programmer desiring to calculate the square
root of 900.0 might write

Math.sqrt(900.0)

When this statement executes, it calls static Math method sqrt to calculate the square
root of the number contained in the parentheses (900.0). The number 900.0 is the argu-
ment of method sqrt. The preceding expression evaluates to 30.0. Method sqrt meth-
od takes an argument of type double and returns a result of type double. Note that all
Math class methods are static; therefore, they are invoked by preceding the name of the
method with the class name Math and a dot (.) operator. To output the value of the pre-
ceding method call in the command window, a programmer might write

System.out.println(Math.sqrt(900.0));

In this statement, the value that sqrt returns becomes the argument to method println.

Software Engineering Observation 6.2
It is not necessary to import class Math to use its methods. Math is part of the java.lang
package, which is automatically imported by the compiler. 6.2

Common Programming Error 6.1
Forgetting to invoke a Math class method by preceding the name of the method with the
class name Math and a dot operator (.) results in a syntax error. 6.1

Method arguments may be constants, variables or expressions. If c1 = 13.0, d = 3.0
and f = 4.0, then the statement

System.out.println(Math.sqrt(c1 + d * f));

calculates and prints the square root of 13.0 + 3.0 * 4.0 = 25.0, namely 5.0.
Some Math class methods are summarized in Fig. 6.2. In the figure, the variables x

and y are of type double. The Math class also defines two commonly used mathematical
constants: Math.PI and Math.E. The constant Math.PI (3.14159265358979323846)
of class Math is the ratio of a circle’s circumference to its diameter. The constant Math.E
(2.7182818284590452354) is the base value for natural logarithms (calculated with static
Math method log).

6.4 Methods
Methods allow the programmer to modularize a program. Variables declared in method
definitions are local variables—only the method that defines them knows they exist. Most
methods have a list of parameters that provide the means for communicating information
between methods via method calls. A method’s parameters are also local variables.

250 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

There are several motivations for modularizing a program with methods. The divide-
and-conquer approach makes program development more manageable. Another motivation
is software reusability—using existing methods as building blocks to create new programs.
With good method naming and definition, you can create programs from standardized
methods rather than by building customized code. For example, we did not have to define
how to convert Strings to integers and floating-point numbers; Java already provides
such methods for us in class Integer (parseInt) and class Double (parse-
Double). A third motivation is to avoid repeating code in a program. Packaging code as a
method allows a program to execute that code from several locations in a program simply
by calling the method.

Software Engineering Observation 6.3
To promote software reusability, each method should be limited to performing a single, well-
defined task, and the name of the method should express that task effectively. 6.3

Method Description Example

abs(x) absolute value of x
(this method also has versions for
float, int and long values)

abs(23.7) is 23.7
abs(0.0) is 0.0
abs(-23.7) is 23.7

ceil(x) rounds x to the smallest integer not less
than x

ceil(9.2) is 10.0
ceil(-9.8) is -9.0

cos(x) trigonometric cosine of x
(x is in radians)

cos(0.0) is 1.0

exp(x) exponential method ex exp(1.0) is 2.71828
exp(2.0) is 7.38906

floor(x) rounds x to the largest integer not
greater than x

floor(9.2) is 9.0
floor(-9.8) is -10.0

log(x) natural logarithm of x (base e) log(2.718282) is 1.0
log(7.389056) is 2.0

max(x, y) larger value of x and y
(this method also has versions for
float, int and long values)

max(2.3, 12.7) is 12.7
max(-2.3, -12.7) is -2.3

min(x, y) smaller value of x and y
(this method also has versions for
float, int and long values)

min(2.3, 12.7) is 2.3
min(-2.3, -12.7) is -12.7

pow(x, y) x raised to power y (xy) pow(2.0, 7.0) is 128.0
pow(9.0, .5) is 3.0

sin(x) trigonometric sine of x
(x is in radians)

sin(0.0) is 0.0

sqrt(x) square root of x sqrt(900.0) is 30.0
sqrt(9.0) is 3.0

tan(x) trigonometric tangent of x
(x is in radians)

tan(0.0) is 0.0

Fig. 6.2Fig. 6.2Fig. 6.2Fig. 6.2 Math class methods.

Chapter 6 Methods 251

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Software Engineering Observation 6.4
If you cannot choose a concise name that expresses a method’s task, it is possible that your
method is attempting to perform too many diverse tasks. It is usually best to break such a
method into several smaller method definitions. 6.4

6.5 Method Definitions
The programs presented up to this point each consisted of a class definition containing at
least one method definition that called Java API methods to accomplish its tasks. We now
consider how programmers write their own customized methods. Until we discuss more of
the details of class definitions in Chapter 8, we use applets for all programs that contain two
or more method definitions, for simplicity.

Consider an applet that uses a method square (invoked from the applet’s init
method) to calculate the squares of the integers from 1 to 10 (Fig. 6.3).

When the applet begins execution, the applet container calls the applet’s init
method. Line 16 declares JTextArea reference outputArea and initializes it with a
new JTextArea. This JTextArea will display the program’s results.

This program is the first in which we display a GUI component on an applet. The on-
screen display area for a JApplet has a content pane, to which the GUI components must
be attached so they can be displayed at execution time. The content pane is an object of
class Container from the java.awt package. This class was imported on line 5 for
use in the applet. Line 19 declares Container reference container and assigns to it
the result of a call to method getContentPane—one of the many methods that our class
SquareInt inherits from class JApplet. Method getContentPane returns a refer-
ence to the applet’s content pane. The program uses that reference to attach GUI compo-
nents, like a JTextArea, to the applet’s user interface.

Line 22 places the JTextArea GUI component object to which outputArea refers
on the applet. When the applet executes, any GUI components attached to it are displayed.
Container method add attaches a GUI component to a container. For the moment, we
can attach only one GUI component to the applet’s content pane, and that GUI component
will occupy the applet’s entire drawing area on the screen (as defined by the width and
height of the applet, in pixels, in the applet’s HTML document). Later, we will discuss
how to attach many GUI components to an applet by changing the applet’s layout. The
layout controls how the applet positions GUI components in its area on the screen.

Line 24 declares int variable result to store the result of each square calculation.
Line 25 declares String reference output and initializes it with the empty string. This
String will contain the results of squaring the values from 1 to 10. Lines 28–37 define a
for repetition structure. Each iteration of this loop calculates the square of the current
value of control variable x, stores the value in result and concatenates the result to
the end of output.

The applet invokes (or calls) its square method on line 31 with the statement

result = square(counter);

The () after square represent the method-call operator, which has high precedence. At
this point, the program makes a copy of the value of counter (the argument to the method
call) and transfers program control to the first line of method square (defined at lines 44–

252 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

48). Method square receives the copy of the value of counter in the parameter y. Then,
square calculates y * y (line 46). Method square uses a return statement to return
(i.e., give back) the result of the calculation to the statement in init that invoked
square. In method init, the return value is assigned to variable result. Lines 34–35
concatenate "The square of ", the value of counter, " is ", the value of result
and a newline character to the end of output. This process repeats for each iteration of
the for repetition structure. Line 39 uses method setText to set outputArea’s text to
the String output.

1 // Fig. 6.3: SquareIntegers.java
2 // A programmer-defined square method
3
4 // Java core packages
5 import java.awt.Container;
6
7 // Java extension packages
8 import javax.swing.*;
9

10 public class SquareIntegers extends JApplet {
11
12 // set up GUI and calculate squares of integers from 1 to 10
13 public void init()
14 {
15 // JTextArea to display results
16 JTextArea outputArea = new JTextArea();
17
18 // get applet's content pane (GUI component display area)
19 Container container = getContentPane();
20
21 // attach outputArea to container
22 container.add(outputArea);
23
24 int result; // store result of call to method square
25 String output = ""; // String containing results
26
27 // loop 10 times
28 for (int counter = 1; counter <= 10; counter++) {
29
30 // calculate square of counter and store in result
31 result = square(counter);
32
33 // append result to String output
34 output += "The square of " + counter +
35 " is " + result + "\n";
36
37 } // end for structure
38
39 outputArea.setText(output); // place results in JTextArea
40
41 } // end method init
42

Fig. 6.3Fig. 6.3Fig. 6.3Fig. 6.3 Using programmer-defined method square (part 1 of 2).

Chapter 6 Methods 253

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Note that we declared references output, outputArea and container and vari-
able result as local variables in init, because they are used only in init. Variables
should be declared as instance variables only if they are required for use in more than one
method of the class or if the program should save their values between calls to the class’s
methods. Also, note that method init calls method square directly without preceding
the method name with a class name and a dot operator or a reference name and a dot oper-
ator. Each method in a class is able to call the class’s other methods directly. However,
there is an exception to this rule. A class’s static methods can call only other static
methods of the class directly. Chapter 8 discusses static methods in detail.

The definition of method square (line 44) shows that square expects an integer
parameter y; square uses this name to manipulate the value it receives. Keyword int
preceding the name of the method indicates that square returns an integer result. The
return statement in square passes the result of the calculation y * y back to the calling
method. Note that the entire method definition appears between the braces of the class
SquareInt. All methods must be defined inside a class definition.

Good Programming Practice 6.2
Place a blank line between method definitions to separate the methods and enhance program
readability. 6.2

Common Programming Error 6.2
Defining a method outside the braces of a class definition is a syntax error. 6.2

43 // square method definition
44 public int square(int y)
45 {
46 return y * y; // return square of y
47
48 } // end method square
49
50 } // end class SquareIntegers

a

Fig. 6.3Fig. 6.3Fig. 6.3Fig. 6.3 Using programmer-defined method square (part 2 of 2).

254 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The general format of a method definition is

return-value-type method-name(parameter-list)
{

declarations and statements
}

The method-name is any valid identifier. The return-value-type is the data type of the result
returned from the method to the caller. The return-value-type void indicates that a method
does not return a value. Methods can return at most one value.

The parameter-list is a comma-separated list in which the method declares each
parameter’s type and name. There must be one argument in the method call for each param-
eter in the method definition. Each argument also must be compatible with the type of the
corresponding parameter in the method definition. For example, a parameter of type
double can receive values of 7.35, 22 or –0.03546, but not "hello" (because a String
cannot be assigned to a double variable). If a method does not receive any values, the
parameter-list is empty (i.e., the name of the method is followed by an empty set of paren-
theses). Each parameter in the parameter list of a method must be declared with a data type;
otherwise, a syntax error occurs.

Following the first line of the method definition (also known as the method header),
declarations and statements in braces form the method body. The method body is also
referred to as a block. Variables can be declared in any block, and blocks can be nested. A
method cannot be defined inside another method.

There are three ways to return control to the statement that invoked a method. If the
method does not return a result, control returns when the program flow reaches the method-
ending right brace or when the statement

return;

is executed. If the method returns a result, the statement

return expression;

evaluates the expression, then returns the resulting value to the caller. When a return
statement executes, control returns immediately to the statement that invoked the method.

Note that the example in Fig. 6.3 actually contains two method definitions—init
(lines 13–41) and square (line 44–48). Remember that the applet container calls method
init to initialize the applet. In this example, method init repeatedly invokes the
square method to perform a calculation, then places the results in the JTextArea that
is attached to the applet’s content pane. When the applet appears on the screen, the results
are displayed in the JTextArea.

Notice the syntax used to invoke method square—we use just the name of the
method, followed by the arguments to the method in parentheses. Methods in a class defi-
nition are allowed to invoke other methods in the same class definition by using this syntax.
(There is an exception to this rule, discussed in Chapter 8.) Methods in the same class def-
inition are both the methods defined in that class and the inherited methods (the methods
from the class that the current class extends—JApplet in Fig. 6.3). We have now seen
three ways to call a method: A method name by itself (as shown with square(x) in this
example), a reference to an object followed by the dot (.) operator and the method name

Chapter 6 Methods 255

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

(such as g.drawLine(x1, y1, x2, y2)), and a class name followed by a method
name (such as Integer.parseInt(stringToConvert)). The last syntax is only
for static methods of a class (discussed in detail in Chapter 8).

Common Programming Error 6.3
Omitting the return-value-type in a method definition is a syntax error. 6.3

Common Programming Error 6.4
Forgetting to return a value from a method that should return a value is a syntax error. If a
return value type other than void is specified, the method must contain a return statement. 6.4

Common Programming Error 6.5
Returning a value from a method whose return type has been declared void is a syntax er-
ror. 6.5

Common Programming Error 6.6
Declaring method parameters of the same type as floatx, y instead of float x,float
y is a syntax error, because types are required for each parameter in the parameter list. 6.6

Common Programming Error 6.7
Placing a semicolon after the right parenthesis enclosing the parameter list of a method def-
inition is a syntax error. 6.7

Common Programming Error 6.8
Redefining a method parameter in the method’s body is a syntax error. 6.8

Common Programming Error 6.9
Passing to a method an argument that is not compatible with the corresponding parameter’s
type is a syntax error. 6.9

Common Programming Error 6.10
Defining a method inside another method is a syntax error. 6.10

Good Programming Practice 6.3
Avoid using the same names for instance variables and local variables. This helps readers of
your program distinguish variables used in different parts of a class definition. 6.3

Good Programming Practice 6.4
Choosing meaningful method names and meaningful parameter names makes programs
more readable and helps avoid excessive use of comments. 6.4

Software Engineering Observation 6.5
A method should usually be no longer than one page. Better yet, a method should usually be
no longer than half a page. Regardless of how long a method is, it should perform one task
well. Small methods promote software reusability. 6.5

Software Engineering Observation 6.6
Programs should be written as collections of small methods. This makes programs easier to
write, debug, maintain and modify. 6.6

256 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Software Engineering Observation 6.7
A method requiring a large number of parameters may be performing too many tasks. Con-
sider dividing the method into smaller methods that perform the separate tasks. The method
header should fit on one line if possible. 6.7

Software Engineering Observation 6.8
The method header and method calls must all agree in the number, type and order of param-
eters and arguments. 6.8

Testing and Debugging Tip 6.1
Small methods are easier to test, debug and understand than large ones. 6.1

The applet in our next example (Fig. 6.4) uses a programmer-defined method called
maximum to determine and return the largest of three floating-point values.

1 // Fig. 6.4: Maximum.java
2 // Finding the maximum of three doubles
3
4 // Java core packages
5 import java.awt.Container;
6
7 // Java extension packages
8 import javax.swing.*;
9

10 public class Maximum extends JApplet {
11
12 // initialize applet by obtaining user input and creating GUI
13 public void init()
14 {
15 // obtain user input
16 String s1 = JOptionPane.showInputDialog(
17 "Enter first floating-point value");
18 String s2 = JOptionPane.showInputDialog(
19 "Enter second floating-point value");
20 String s3 = JOptionPane.showInputDialog(
21 "Enter third floating-point value");
22
23 // convert user input to double values
24 double number1 = Double.parseDouble(s1);
25 double number2 = Double.parseDouble(s2);
26 double number3 = Double.parseDouble(s3);
27
28 // call method maximum to determine largest value
29 double max = maximum(number1, number2, number3);
30
31 // create JTextArea to display results
32 JTextArea outputArea = new JTextArea();
33

Fig. 6.4Fig. 6.4Fig. 6.4Fig. 6.4 Programmer-defined maximum method (part 1 of 2).

Chapter 6 Methods 257

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The three floating-point values are input by the user via input dialogs (lines 16–21 of
init). Lines 24–26 use method Double.parseDouble to convert the Strings input
by the user to double values. Line 29 calls method maximum (defined on lines 49–53) to
determine the largest double value of the three double values passed as arguments to
the method. Method maximum returns the result to method init, using a return state-
ment. The program assigns the result to variable max. Lines 35–37 use String concate-
nation to form a String containing the three double values input by the user and the
max value and place the result in JTextArea outputArea.

Notice the implementation of the method maximum (lines 49–53). The first line indi-
cates that the method returns a double floating-point value, that the method’s name is
maximum and that the method takes three double parameters (x, y and z) to accomplish
its task. Also, the statement (line 51) in the body of the method returns the largest of the

34 // display numbers and maximum value
35 outputArea.setText("number1: " + number1 +
36 "\nnumber2: " + number2 + "\nnumber3: " + number3 +
37 "\nmaximum is: " + max);
38
39 // get the applet's GUI component display area
40 Container container = getContentPane();
41
42 // attach outputArea to Container c
43 container.add(outputArea);
44
45 } // end method init
46
47 // maximum method uses Math class method max to help
48 // determine maximum value
49 public double maximum(double x, double y, double z)
50 {
51 return Math.max(x, Math.max(y, z));
52
53 } // end method maximum
54
55 } // end class Maximum

Fig. 6.4Fig. 6.4Fig. 6.4Fig. 6.4 Programmer-defined maximum method (part 2 of 2).

258 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

three floating-point values, using two calls to the Math.max method. First, the statement
invokes method Math.max with the values of variables y and z to determine the larger of
the two values. Next, the statement passes the value of variable x and the result of the first
call to Math.max to method Math.max. Finally, the statement returns the result of the
second call to Math.max to line 29 (the point at which method init invoked method
maximum).

6.6 Argument Promotion
Another important feature of method definitions is the coercion of arguments (i.e., the forc-
ing of arguments to the appropriate type to pass to a method). For example, a program can
call Math method sqrt with an integer argument even though the method expects to re-
ceive a double argument. For example, the statement

System.out.println(Math.sqrt(4));

correctly evaluates Math.sqrt(4) and prints the value 2. The method definition’s pa-
rameter list causes Java to convert the integer value 4 to the double value 4.0 before
passing the value to sqrt. In some cases, attempting these conversions leads to compiler
errors if Java’s promotion rules are not satisfied. The promotion rules specify how to con-
vert types to other types without losing data. In our sqrt example above, an int is con-
verted to a double without changing its value. However, converting a double to an int
truncates the fractional part of the double value. Converting large integer types to small
integer types (e.g., long to int) may also result in changed values.

The promotion rules apply to expressions containing values of two or more data types
(also referred to as mixed-type expressions) and to primitive-data-type values passed as
arguments to methods. The type of each value in a mixed-type expression is promoted to
the “highest” type in the expression (actually, the expression uses a temporary copy of each
value; the original values remain unchanged). The type of a method argument can be pro-
moted to any “higher” type. Figure 6.5 lists the primitive data types and the types to which
each is allowed to be promoted automatically.

Type Allowed promotions

double None

float double

long float or double

int long, float or double

char int, long, float or double

short int, long, float or double

byte short, int, long, float or double

boolean None (boolean values are not considered to be numbers in Java)

Fig. 6.5Fig. 6.5Fig. 6.5Fig. 6.5 Allowed promotions for primitive data types.

Chapter 6 Methods 259

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Converting values to lower types can result in different values. Therefore, in cases
where information may be lost due to conversion, the Java compiler requires the pro-
grammer to use a cast operator to force the conversion to occur. To invoke our square
method, which uses an integer parameter with the double variable y (Fig. 6.3), we write
the method call as square((int) y). This method call explicitly casts (converts) the
value of y to an integer for use in method square. Thus, if y’s value is 4.5, method
square returns 16, not 20.25.

Common Programming Error 6.11
Converting a primitive-data-type value to another primitive data type may change the value
if the new data type is not an allowed promotion (e.g., double to int). Also, converting
any integral value to a floating-point value and back to an integral value may introduce
rounding errors into the result. 6.11

6.7 Java API Packages
As we have seen, Java contains many predefined classes that are grouped into categories of
related classes, called packages. Together, we refer to these packages as the Java applica-
tions programming interface (Java API), or the Java class library.

Throughout the text, import statements specify the classes required to compile a Java
program. For example, a program uses the statement

import javax.swing.JApplet;

to tell the compiler to load the JApplet class from the javax.swing package. One of
the great strengths of Java is the large number of classes in the packages of the Java API
that programmers can reuse rather than “reinventing the wheel.” We exercise a large num-
ber of these classes in this book. Figure 6.6 lists a subset of the many packages in the Java
API and provides a brief description of each package. We use classes from these packages
and others throughout this book. We provide this table to begin introducing you the variety
of reusable components available in the Java API. When learning Java, you should spend
time reading the descriptions of the packages and classes in the Java API documentation
(java.sun.com/j2se/1.3/docs/api).

Package Description

java.applet The Java Applet Package.
This package contains the Applet class and several interfaces that
enable the creation of applets, interaction of applets with the browser
and playing audio clips. In Java 2, class javax.swing.JApplet
is used to define an applet that uses the Swing GUI components.

java.awt The Java Abstract Windowing Toolkit Package.
This package contains the classes and interfaces required to create and
manipulate graphical user interfaces in Java 1.0 and 1.1. In Java 2,
these classes can still be used, but the Swing GUI components of the
javax.swing packages are often used instead.

Fig. 6.6Fig. 6.6Fig. 6.6Fig. 6.6 Packages of the Java API (part 1 of 2).

260 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The set of packages available in the Java 2 Software Development Kit (J2SDK) is quite
large. In addition to the packages summarized in Fig. 6.6, the J2SDK includes packages for
complex graphics, advanced graphical user interfaces, printing, advanced networking,
security, database processing, multimedia, accessibility (for people with disabilities) and
many other functions. For an overview of the packages in the J2SDK version 1.3, visit

java.sun.com/j2se/1.3/docs/api/overview-summary.html

Also, many other packages are available for download at java.sun.com.

java.awt.event The Java Abstract Windowing Toolkit Event Package.
This package contains classes and interfaces that enable event han-
dling for GUI components in both the java.awt and
javax.swing packages.

java.io The Java Input/Output Package.
This package contains classes that enable programs to input and out-
put data (see Chapter 16, Files and Streams).

java.lang The Java Language Package.
This package contains classes and interfaces required by many Java
programs (many are discussed throughout this text) and is automati-
cally imported by the compiler into all programs.

java.net The Java Networking Package.
This package contains classes that enable programs to communicate
via networks (see Chapter 17, Networking).

java.text The Java Text Package.
This package contains classes and interfaces that enable a Java program
to manipulate numbers, dates, characters and strings. It provides many
of Java’s internationalization capabilities i.e., features that enable a pro-
gram to be customized to a specific locale (e.g., an applet may display
strings in different languages, based on the user’s country).

java.util The Java Utilities Package.
This package contains utility classes and interfaces, such as: date and
time manipulations, random-number processing capabilities (Ran-
dom), storing and processing large amounts of data, breaking strings
into smaller pieces called tokens (StringTokenizer) and other
capabilities (see Chapter 19, Data Structures, Chapter 20, Java Utilities
Package and Bit Manipulation, and Chapter 21, The Collections API).

javax.swing The Java Swing GUI Components Package.
This package contains classes and interfaces for Java’s Swing GUI
components that provide support for portable GUIs.

javax.swing.event The Java Swing Event Package.
This package contains classes and interfaces that enable event han-
dling for GUI components in the javax.swing package.

Package Description

Fig. 6.6Fig. 6.6Fig. 6.6Fig. 6.6 Packages of the Java API (part 2 of 2).

Chapter 6 Methods 261

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.8 Random-Number Generation
We now take a brief and, hopefully, entertaining diversion into a popular programming ap-
plication, namely, simulation and game playing. In this section and the next section, we will
develop a nicely structured game-playing program that includes multiple methods. The
program uses most of the control structures we have studied to this point in the book and
introduces several new concepts.

There is something in the air of a gambling casino that invigorates people—from the
high rollers at the plush mahogany-and-felt craps tables to the quarter poppers at the one-
armed bandits. It is the element of chance, the possibility that luck will convert a pocketful
of money into a mountain of wealth. The element of chance can be introduced through the
random method from the Math class. [Note: Java also provides a Random class in
package java.util. Class Random is covered in Chapter 20.]

Consider the following statement:

double randomValue = Math.random();

The random method of class Math generates a random double value from 0.0 up to, but
not including, 1.0. If method random truly produces values at random, then every value
from 0.0 up to, but not including, 1.0 should have an equal chance (or probability) of being
chosen each time method random is called. Note that the values returned by random are
actually pseudo-random numbers—a sequence of values produced by a complex mathe-
matical calculation. That calculation uses the current time of day to seed the random num-
ber generator, such that each execution of a program yields a different sequence of random
values.

The range of values produced directly by method random often is different from the
range of values required in a particular Java application. For example, a program that sim-
ulates coin tossing might require only 0 for “heads” and 1 for “tails.” A program that sim-
ulates rolling a six-sided die would require random integers in the range from 1 to 6. A
program that randomly predicts the next type of spaceship (out of four possibilities) that
will fly across the horizon in a video game would require random integers in the range from
1 to 4.

To demonstrate method random, let us develop a program that simulates 20 rolls of
a six-sided die and displays the value of each roll. We use the multiplication operator (*)
in conjunction with method random as follows to produce integers in the range from 0
to 5:

(int) (Math.random() * 6)

This manipulation is called scaling the range of values produced by Math method ran-
dom. The number 6 in the preceding expression is called the scaling factor. The integer cast
operator truncates the floating-point part (the part after the decimal point) of each value
produced by the expression. Next, we shift the range of numbers produced by adding 1 to
our previous result, as in

1 + (int) (Math.random() * 6)

Figure 6.7 confirms that the results of the preceding calculation are integers in the range
from 1 to 6.

262 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

1 // Fig. 6.7: RandomIntegers.java
2 // Shifted, scaled random integers.
3
4 // Java extension packages
5 import javax.swing.JOptionPane;
6
7 public class RandomIntegers {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 int value;
13 String output = "";
14
15 // loop 20 times
16 for (int counter = 1; counter <= 20; counter++) {
17
18 // pick random integer between 1 and 6
19 value = 1 + (int) (Math.random() * 6);
20
21 output += value + " "; // append value to output
22
23 // if counter divisible by 5,
24 // append newline to String output
25 if (counter % 5 == 0)
26 output += "\n";
27
28 } // end for structure
29
30 JOptionPane.showMessageDialog(null, output,
31 "20 Random Numbers from 1 to 6",
32 JOptionPane.INFORMATION_MESSAGE);
33
34 System.exit(0); // terminate application
35
36 } // end method main
37
38 } // end class RandomIntegers

Fig. 6.7Fig. 6.7Fig. 6.7Fig. 6.7 Shifted and scaled random integers .

Chapter 6 Methods 263

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

To show that these numbers occur with approximately equal likelihood, let us simulate
6000 rolls of a die with the program in Fig. 6.8. Each integer from 1 to 6 should appear
approximately 1000 times.

1 // Fig. 6.8: RollDie.java
2 // Roll a six-sided die 6000 times.
3
4 // Java extension packages
5 import javax.swing.*;
6
7 public class RollDie {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 int frequency1 = 0, frequency2 = 0, frequency3 = 0,
13 frequency4 = 0, frequency5 = 0, frequency6 = 0, face;
14
15 // summarize results
16 for (int roll = 1; roll <= 6000; roll++) {
17 face = 1 + (int) (Math.random() * 6);
18
19 // determine roll value and increment appropriate counter
20 switch (face) {
21
22 case 1:
23 ++frequency1;
24 break;
25
26 case 2:
27 ++frequency2;
28 break;
29
30 case 3:
31 ++frequency3;
32 break;
33
34 case 4:
35 ++frequency4;
36 break;
37
38 case 5:
39 ++frequency5;
40 break;
41
42 case 6:
43 ++frequency6;
44 break;
45
46 } // end switch structure
47
48 } // end for structure

Fig. 6.8Fig. 6.8Fig. 6.8Fig. 6.8 Rolling a six-sided die 6000 times (part 1 of 2).

264 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

As the program output shows, scaling and shifting the values produced by method
random enables the program to simulate realistically the rolling of a six-sided die. Note
that the use of nested control structures in the program to determine the number of times
each side of the six-sided die occurred. The for structure at lines 16–48 iterates 6000
times. During each iteration of the loop, line 17 produces a value from 1 to 6. The nested
switch structure at lines 20–46 uses as its controlling expression the face value that was
randomly chosen. Based on the value of face, the switch structure increments one of
the six counter variables during each iteration of the loop. Note that the switch structure
has no default case. When we study arrays in Chapter 7, we show how to replace the
entire switch structure in this program with a single statement. Run the program several
times, and observe the results. Notice that the program produces different results each time
the program executes.

The values produced directly by random are always in the range

0.0 ≤ Math.random() < 1.0

Previously, we demonstrated how to write a single statement to simulate the rolling of a six-
sided die with the statement

face = 1 + (int) (Math.random() * 6);

49
50 JTextArea outputArea = new JTextArea();
51
52 outputArea.setText("Face\tFrequency" +
53 "\n1\t" + frequency1 + "\n2\t" + frequency2 +
54 "\n3\t" + frequency3 + "\n4\t" + frequency4 +
55 "\n5\t" + frequency5 + "\n6\t" + frequency6);
56
57 JOptionPane.showMessageDialog(null, outputArea,
58 "Rolling a Die 6000 Times",
59 JOptionPane.INFORMATION_MESSAGE);
60
61 System.exit(0); // terminate application
62
63 } // end method main
64
65 } // end class RollDie

Fig. 6.8Fig. 6.8Fig. 6.8Fig. 6.8 Rolling a six-sided die 6000 times (part 2 of 2).

Chapter 6 Methods 265

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

which always assigns an integer (at random) to variable face in the range 1 ≤ face ≤ 6.
Note that the width of this range (i.e., the number of consecutive integers in the range) is 6,
and the starting number in the range is 1. Referring to the preceding statement, we see that
the width of the range is determined by the number used to scale random with the multi-
plication operator (i.e., 6), and the starting number of the range is equal to the number (i.e.,
1) added to (int) (Math.random() * 6). We can generalize this result as

n = a + (int) (Math.random() * b);

where a is the shifting value (which is equal to the first number in the desired range of con-
secutive integers) and b is the scaling factor (which is equal to the width of the desired
range of consecutive integers). In the exercises, we will see that it is possible to choose in-
tegers at random from sets of values other than ranges of consecutive integers.

6.9 Example: A Game of Chance
One of the most popular games of chance is a dice game known as “craps,” which is played
in casinos and back alleys throughout the world. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain one, two, three, four, five
and six spots, respectively. After the dice have come to rest, the sum of the spots on the two
upward faces is calculated. If the sum is 7 or 11 on the first throw, the player wins. If the
sum is 2, 3 or 12 on the first throw (called “craps”), the player loses (i.e., the “house”
wins). If the sum is 4, 5, 6, 8, 9 or 10 on the first throw, that sum becomes the player’s
“point.” To win, you must continue rolling the dice until you “make your point” (i.e., roll
your point value). The player loses by rolling a 7 before making the point.

The applet in Fig. 6.9 simulates the game of craps.

1 // Fig. 6.9: Craps.java
2 // Craps
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class Craps extends JApplet implements ActionListener {
12
13 // constant variables for game status
14 final int WON = 0, LOST = 1, CONTINUE = 2;
15
16 // other variables used
17 boolean firstRoll = true; // true if first roll of dice
18 int sumOfDice = 0; // sum of the dice
19 int myPoint = 0; // point if no win/loss on first roll
20 int gameStatus = CONTINUE; // game not over yet
21

Fig. 6.9Fig. 6.9Fig. 6.9Fig. 6.9 Program to simulate the game of craps (part 1 of 5).

266 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

22 // graphical user interface components
23 JLabel die1Label, die2Label, sumLabel, pointLabel;
24 JTextField die1Field, die2Field, sumField, pointField;
25 JButton rollButton;
26
27 // set up GUI components
28 public void init()
29 {
30 // obtain content pane and change its layout to
31 // a FlowLayout
32 Container container = getContentPane();
33 container.setLayout(new FlowLayout());
34
35 // create label and text field for die 1
36 die1Label = new JLabel("Die 1");
37 container.add(die1Label);
38 die1Field = new JTextField(10);
39 die1Field.setEditable(false);
40 container.add(die1Field);
41
42 // create label and text field for die 2
43 die2Label = new JLabel("Die 2");
44 container.add(die2Label);
45 die2Field = new JTextField(10);
46 die2Field.setEditable(false);
47 container.add(die2Field);
48
49 // create label and text field for sum
50 sumLabel = new JLabel("Sum is");
51 container.add(sumLabel);
52 sumField = new JTextField(10);
53 sumField.setEditable(false);
54 container.add(sumField);
55
56 // create label and text field for point
57 pointLabel = new JLabel("Point is");
58 container.add(pointLabel);
59 pointField = new JTextField(10);
60 pointField.setEditable(false);
61 container.add(pointField);
62
63 // create button user clicks to roll dice
64 rollButton = new JButton("Roll Dice");
65 rollButton.addActionListener(this);
66 container.add(rollButton);
67 }
68
69 // process one roll of dice
70 public void actionPerformed(ActionEvent actionEvent)
71 {
72 // first roll of dice
73 if (firstRoll) {
74 sumOfDice = rollDice(); // roll dice

Fig. 6.9Fig. 6.9Fig. 6.9Fig. 6.9 Program to simulate the game of craps (part 2 of 5).

Chapter 6 Methods 267

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

75
76 switch (sumOfDice) {
77
78 // win on first roll
79 case 7: case 11:
80 gameStatus = WON;
81 pointField.setText(""); // clear point field
82 break;
83
84 // lose on first roll
85 case 2: case 3: case 12:
86 gameStatus = LOST;
87 pointField.setText(""); // clear point field
88 break;
89
90 // remember point
91 default:
92 gameStatus = CONTINUE;
93 myPoint = sumOfDice;
94 pointField.setText(Integer.toString(myPoint));
95 firstRoll = false;
96 break;
97
98 } // end switch structure
99
100 } // end if structure body
101
102 // subsequent roll of dice
103 else {
104 sumOfDice = rollDice(); // roll dice
105
106 // determine game status
107 if (sumOfDice == myPoint) // win by making point
108 gameStatus = WON;
109 else
110 if (sumOfDice == 7) // lose by rolling 7
111 gameStatus = LOST;
112 }
113
114 // display message indicating game status
115 displayMessage();
116
117 } // end method actionPerformed
118
119 // roll dice, calculate sum and display results
120 public int rollDice()
121 {
122 int die1, die2, sum;
123
124 // pick random die values
125 die1 = 1 + (int) (Math.random() * 6);
126 die2 = 1 + (int) (Math.random() * 6);
127

Fig. 6.9Fig. 6.9Fig. 6.9Fig. 6.9 Program to simulate the game of craps (part 3 of 5).

268 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

128 sum = die1 + die2; // sum die values
129
130 // display results
131 die1Field.setText(Integer.toString(die1));
132 die2Field.setText(Integer.toString(die2));
133 sumField.setText(Integer.toString(sum));
134
135 return sum; // return sum of dice
136
137 } // end method rollDice
138
139 // determine game status and display appropriate message
140 // in status bar
141 public void displayMessage()
142 {
143 // game should continue
144 if (gameStatus == CONTINUE)
145 showStatus("Roll again.");
146
147 // game won or lost
148 else {
149
150 if (gameStatus == WON)
151 showStatus("Player wins. " +
152 "Click Roll Dice to play again.");
153 else
154 showStatus("Player loses. " +
155 "Click Roll Dice to play again.");
156
157 // next roll is first roll of new game
158 firstRoll = true;
159 }
160
161 } // end method displayMessage
162
163 } // end class Craps

Fig. 6.9Fig. 6.9Fig. 6.9Fig. 6.9 Program to simulate the game of craps (part 4 of 5).

A JLabel object A JTextField object A JButton object

Chapter 6 Methods 269

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Notice that the player must roll two dice on the first and all subsequent rolls. When you
execute the applet, click the Roll Dice button to play the game. The lower left corner of
the appletviewer window displays the result of each roll. The screen captures show
four separate executions of the applet (a win and a loss on the first roll, and a win and a loss
after the first roll).

Until now, most user interactions in our programs have been through either an input
dialog (in which the user could type an input value for the program) or a message dialog (in
which a message was displayed to the user, and the user could click OK to dismiss the
dialog). Although these dialogs are valid ways to receive input from a user and display
output in a Java program, their capabilities are fairly limited—an input dialog can obtain
only one value at a time from the user and a message dialog can display only one message.
It is much more common to receive multiple inputs from the user at once (such as the user
entering name and address information) or display many pieces of data at once (such as the
values of the dice, the sum of the dice and the point, in this example). To begin our intro-
duction to more elaborate user interfaces, this program illustrates two new graphical user
interface concepts: Attaching several GUI components to an applet and GUI event han-
dling. We discuss each of the new issues as they are encountered in the program.

The import statements in lines 5–9 enable the compiler to load the classes used in
this applet. Line 5 specifies that the program uses classes from package java.awt (spe-
cifically, classes Container and FlowLayout). Line 6 specifies that the program uses
classes from package java.awt.event. This package contains many data types that
enable a program to process a user’s interactions with a program’s GUI. In this program,
we use the ActionListener and ActionEvent data types from package
java.awt.event. Line 9 specifies that the program uses classes from package
javax.swing (specifically, JApplet, JLabel, JTextField and JButton).

As stated earlier, every Java program is based on at least one class definition that
extends and enhances an existing class definition via inheritance. Remember that applets
inherit from class JApplet. Line 11 indicates that class Craps inherits from JApplet

Fig. 6.9Fig. 6.9Fig. 6.9Fig. 6.9 Program to simulate the game of craps (part 5 of 5).

270 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

and implements ActionListener. A class can inherit existing attributes and behaviors
(data and methods) from another class specified to the right of keyword extends in the
class definition. In addition, a class can implement one or more interfaces. An interface
specifies one or more behaviors (i.e., methods), which you must define in your class defi-
nition. Implementing interface ActionListener forces us to define a method with the
first line

public void actionPerformed(ActionEvent actionEvent)

in our Craps class. This method’s task is to process a user’s interaction with the JButton
(called Roll Dice on the user interface). When the user presses the button, this method will
be called automatically in response to the user interaction. This process is called event han-
dling. The event is the user interaction (i.e., pressing the button). The event handler is meth-
od actionPerformed. We discuss the details of this interaction and method
actionPerformed shortly. Chapter 9, Object-Oriented Programming, discusses inter-
faces in detail. For now, as you develop your own applets that have graphical user interfac-
es, mimic the features that support event handling of the GUI components we present.

The game of craps is reasonably involved. The player may win or lose on the first roll,
or may win or lose on any roll. Line 14 creates variables that define the three states of a
game of craps: Game won (WON), game lost (LOST) or continue rolling the dice (CON-
TINUE). Keyword final at the beginning of the declaration indicates that these are con-
stant variables. When a program declares a final variable, the program must initialize
the variable before using the variable and cannot modify the variable thereafter. If the vari-
able is an instance variable, this initialization normally occurs in the variable’s declaration.
The initialization also can occur in a special method of a class called a constructor (dis-
cussed in Chapter 8). Constant variables are often called named constants or read-only
variables. We provide more details on keyword final in Chapter 7 and Chapter 8.

Common Programming Error 6.12
After declaring and initializing a final variable, attempting to assign another value to that
variable is a syntax error. 6.12

Good Programming Practice 6.5
Use only uppercase letters (with underscores between words) in the names of final vari-
ables. This format makes these constants stand out in a program. 6.5

Good Programming Practice 6.6
Using meaningfully named final variables rather than integer constants (such as 2) makes
programs more readable. 6.6

Lines 17–20 declare several instance variables that are used throughout the Craps
applet. Variable firstRoll is a boolean variable that indicates whether the next roll
of the dice is the first roll in the current game. Variable sumOfDice maintains the sum of
the dice for the last roll. Variable myPoint stores the “point” if the player does not win or
lose on the first roll. Variable gameStatus keeps track of the current state of the game
(WON, LOST or CONTINUE).

Lines 23–25 declare references to the GUI components used in this applet’s graphical
user interface. References die1Label, die2Label, sumLabel and pointLabel all
refer to JLabel objects. A JLabel contains a string of characters to be displayed on the

Chapter 6 Methods 271

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

screen. Normally, a JLabel indicates the purpose of another GUI component on the
screen. In the screen captures of Fig. 6.9, the JLabel objects are the text to the left of each
rectangle in the first two rows of the user interface. References die1Field,
die2Field, sumField and pointField all refer to JTextField objects. JTex-
tFields are used to get a single line of information from the user at the keyboard or to
display information on the screen. The JTextField objects are the rectangles to the right
of each JLabel in the first two rows of the user interface. Reference rollButton refers
to a JButton object. When the user presses a JButton, the program normally responds
by performing a task (rolling the dice, in this example). The JButton object is the rect-
angle containing the words Roll Dice at the bottom of the user interface shown in Fig. 6.9.
We have seen JButtons in prior programs—every message dialog and every input dialog
contained an OK button to dismiss the message dialog or send the user’s input to the pro-
gram. We also have seen JTextFields in prior programs—every input dialog contains
a JTextField in which the user types an input value.

Method init (lines 28–67) creates the GUI component objects and attaches them to
the user interface. Line 32 declares Container reference container and assigns to it
the result method getContentPane. Remember, method getContentPane returns a
reference to the applet’s content pane that can be used to attach GUI components to the
applet’s user interface.

Line 33 uses Container method setLayout to specify the layout manager for the
applet’s user interface. Layout managers arrange GUI components on a Container for
presentation purposes. The layout managers determine the position and size of every GUI
component attached to the container, thereby processing most of the layout details and
enabling the programmer to concentrate on the basic look and feel of the programs.

FlowLayout is the simplest layout manager. GUI components are placed from left
to right in the order in which they are attached to the Container (the applet’s content
pane in this example) with method add. When the layout manager reaches the edge of the
container, it begins a new row of components and continues laying out the components on
that row. Line 33 creates a new object of class FlowLayout and passes it as the argument
to method setLayout. Normally, the layout is set before any GUI components are added
to a Container.

Common Programming Error 6.13
If a Container is not large enough to display the GUI component attached to it, some or
all of the GUI components simply will not display. 6.13

[Note: Each Container can have only one layout manager at a time. Separate Con-
tainers in the same program can have different layout managers. Most Java program-
ming environments provide GUI design tools that help a programmer graphically design a
GUI; then the tools write Java code to create the GUI. Some of these GUI design tools also
allow the programmer to use layout managers. Chapter 12 and Chapter 13 discuss several
layout managers that allow more precise control over the layout of the GUI components.]

Lines 36–40, 43–47, 50–54 and 57–61 each create a JLabel and JTextField pair
and attach them to the user interface. Since these sets of lines are all quite similar, we con-
centrate on lines 36–40. Line 36 creates a new JLabel object, initializes it with the string
"Die 1" and assigns the object to reference die1Label. This procedure labels the corre-
sponding JTextField (named die1Field) in the user interface, so the user can deter-

272 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

mine the purpose of the value displayed in die1Field. Line 37 attaches the JLabel to
which die1Label refers to the applet’s content pane. Line 38 creates a new JText-
Field object, initializes it to be 10 characters wide and assigns the object to reference
die1Field. This JTextField displays the value of the first die after each roll of the
dice. Line 39 uses JTextField method setEditable with the argument false to
indicate that the user should not be able to type in the JTextField. This setting makes the
JTextField uneditable and causes it to be displayed with a gray background by default.
An editable JTextField has a white background (as seen in input dialogs). Line 32
attaches the JTextField to which die1Field refers to the applet’s content pane.

Line 64 creates a new JButton object, initializes it with the string "Roll Dice"
(this string will appear on the button) and assigns the object to reference rollButton.

Line 65 specifies that this applet should listen for events from the rollButton.
The this keyword enables the applet to refer to itself. (We discuss this in detail in
Chapter 8.) When the user interacts with a GUI component an event is sent to the applet.
GUI events are messages (method calls) indicating that the user of the program has inter-
acted with one of the program’s GUI components. For example, when you press roll-
Button in this program, a message indicating the event that occurred is sent to the applet
to notify the applet that you pressed the button. For a JButton, the message indicates to
the applet that an action was performed by the user on the JButton and automatically
calls method actionPerformed to process the user’s interaction.

This style of programming is known as event-driven programming—the user interacts
with a GUI component, the program is notified of the event and the program processes the
event. The user’s interaction with the GUI “drives” the program. The methods that are
called when an event occurs are also known as event-handling methods. When a GUI event
occurs in a program, Java creates an object containing information about the event that
occurred and calls an appropriate event-handling method. Before any event can be pro-
cessed, each GUI component must know which object in the program defines the event-
handling method that will be called when an event occurs. In line 65, JButton method
addActionListener is used to tell rollButton that the applet (this) can listen for
action events and defines method actionPerformed. This procedure is called regis-
tering the event handler with the GUI component. (We also like to call it the start-listening
line, because the applet is now listening for events from the button.) To respond to an action
event, we must define a class that implements ActionListener (this requires that the
class also define method actionPerformed), and we must register the event handler
with the GUI component. Finally, the last line in init attaches the JButton to which
roll refers to the applet’s content pane, thus completing the user interface.

Method actionPerformed (lines 70–117) is one of several methods that process
interactions between the user and GUI components. The first line of the method indicates
that actionPerformed is a public method that returns nothing (void) when it com-
pletes its task. Method actionPerformed receives one argument—an Action-
Event—when it is called in response to an action performed on a GUI component by the
user (in this case, pressing the JButton). The ActionEvent argument contains infor-
mation about the action that occurred.

We define method rollDice (lines 120–137) to roll the dice and compute and dis-
play their sum. Method rollDice is defined once, but it is called from two places in the
program (lines 74 and 104). Method rollDice takes no arguments, so it has an empty

Chapter 6 Methods 273

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

parameter list. Method rollDice returns the sum of the two dice, so a return type of int
is indicated in the method’s header.

The user clicks Roll Dice to roll the dice. This action invokes method action-
Performed (line 70) of the applet. Method actionPerformed checks the boolean
variable firstRoll (line 73) to determine if it is true or false. If it is true, this roll
is the first roll of the game. Line 74 calls rollDice, which picks two random values from
1 to 6, displays the value of the first die, second die and the sum of the dice in the first three
JTextFields, respectively, and returns the sum of the dice. Note that the integer values
are converted to Strings (lines 131–133) with static method Integer.toString,
because JTextFields can display only Strings. After the first roll, the nested
switch structure at line 76 in actionPerformed determines if the game has been won
or lost, or if the game should continue with another roll. After the first roll, if the game is
not over, sumOfDice is saved in myPoint and displayed in pointField.

Line 115 calls method displayMessage (defined at lines 141–161) to display the
current status of the game. The if/else structure at line 144 uses applet method show-
Status to display a String in the applet container’s status bar. Line 145 displays

Roll again.

if gameStatus is equal to CONTINUE. Lines 150–151 display

Player wins. Click Roll Dice to play again.

if gameStatus is equal to WON. Lines 153–154 display

Player loses. Click Roll Dice to play again.

if gameStatus is equal to LOST. Method showStatus receives a String argument
and displays it in the status bar of the applet container. If the game is over (i.e., it has been
won or lost) line 158 sets firstRoll to true to indicate that the next roll of the dice is
the first roll of the next game.

The program then waits for the user to click the Roll Dice button again. Each time the
user presses Roll Dice button, method actionPerformed invokes method rollDice
to produce a new sumOfDice. If the current roll is a continuation of an incomplete game,
the code in lines 103–112 executes. In line 107, if sumOfDice matches myPoint, line
108 sets gameStatus to WON, and the game is complete. In line 110, if sumOfDice is
equal to 7, line 111 sets gameStatus to LOST, and the game is complete. When the game
completes, displayMessage displays an appropriate message, and the user can click
the Roll Dice button to begin a new game. Throughout the program, the four JText-
Fields are updated with the new values of the dice and the sum on each roll, and the
pointField is updated each time a new game begins.

Note the interesting use of the various program control mechanisms we have dis-
cussed. The craps program uses four methods—init, actionPerformed, rollDice
and displayMessage—and the switch, if/else and nested if structures. Note also
the use of multiple case labels in the switch structure to execute the same statements
(lines 79 and 85). Also, note that the event-handling mechanism acts as a form of program
control. In this program, event-handling enables user-controlled repetition—each time the
user clicks Roll Dice, the program rolls the dice again. In the exercises, we investigate var-
ious interesting characteristics of the game of craps.

274 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.10 Duration of Identifiers
Chapter 2 through Chapter 5 used identifiers for variable names and reference names. The
attributes of variables and references include name, type, size and value. We also use iden-
tifiers as names for user-defined methods and classes. Actually, each identifier in a program
has other attributes, including duration and scope.

An identifier’s duration (also called its lifetime) is the period during which the identi-
fier exists in memory. Some identifiers exist for brief periods of time and others exist for
the entire execution of a program.

An identifier’s scope defines where the identifier can be referenced in a program.
Some identifiers can be referenced throughout a program, while others can be referenced
only from limited portions of a program. This section discusses duration of identifiers.
Section 6.11 discusses the scope of identifiers.

Identifiers that represent local variables in a method (i.e., parameters and variables
declared in the body of the method) have automatic duration. Automatic-duration variables
are created when program control reaches their declaration; they exist while the block in
which they are declared is active; and they are destroyed when the block in which they are
declared is exited. We will continue to refer to variables of automatic duration as local vari-
ables.

Performance Tip 6.2
Automatic duration is a means of conserving memory, because automatic-duration variables
are created when program control reaches their declaration and are destroyed when the
block in which they are declared is exited. 6.2

The instance variables of a class are initialized automatically by the compiler if the
programmer does not provide explicit initial values. Variables of the primitive data types
are initialized to zero, except boolean variables, which are initialized to false. Refer-
ences are initialized to null. Unlike instance variables of a class, automatic variables must
be initialized by the programmer before they can be used.

Testing and Debugging Tip 6.2
If an automatic variable is not initialized before it is used in a method, the compiler issues
an error message. 6.2

Java also has identifiers of static duration. Variables and references of static duration
exist from the point at which the class that defines them is loaded into memory for execu-
tion until the program terminates. Their storage is allocated and initialized when their
classes are loaded into memory. Even though static-duration variables and reference names
exist when their classes are loaded into memory, these identifiers cannot necessarily be
used throughout a program. Duration (an identifier’s lifetime) and scope (where an identi-
fier can be used) are separate issues, as shown in Section 6.11.

Software Engineering Observation 6.9
Automatic duration is an example of the principle of least privilege. This principle states that
each component of a system should have sufficient rights and privileges to accomplish its
designated task, but no additional rights or privileges. This constraint helps prevent acciden-
tal and/or malicious errors from occurring in systems. Why have variables stored in memory
and accessible when they are not needed? 6.9

Chapter 6 Methods 275

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.11 Scope Rules
The scope of an identifier for a variable, reference or method is the portion of the program
that can reference the identifier. A local variable or reference declared in a block can be
used only in that block or in blocks nested within that block. The scopes for an identifier
are class scope and block scope. There is also a special scope for labels used with the
break and continue statements (introduced in Chapter 5, “Control Structures: Part
2”). A label is visible only in the body of the repetition structure that immediately follows
the label.

Methods and instance variables of a class have class scope. Class scope begins at the
opening left brace, {, of the class definition and terminates at the closing right brace, }, of
the class definition. Class scope enables methods of a class to invoke directly all methods
defined in that same class or inherited into that class (such as the methods inherited into our
applets from class JApplet) and to access directly all instance variables defined in the
class. In Chapter 8, we will see that static methods are an exception to this rule. In a
sense, all instance variables and methods of a class are global to the methods of the class
in which they are defined (i.e., the methods can modify the instance variables directly and
invoke other methods of the class). [Note: One of the reasons we use mainly applets in this
chapter is to simplify our discussions. We have not as yet introduced a true windowed
application in which the methods of our application class will have access to all the other
methods of the class and the instance variables of the class.]

Identifiers declared inside a block have block scope. Block scope begins at the iden-
tifier’s declaration and ends at the terminating right brace (}) of the block. Local vari-
ables of a method have block scope, as do method parameters, which are also local
variables of the method. Any block may contain variable or reference declarations. When
blocks are nested in a method’s body and an identifier declared in an outer block has the
same name as an identifier declared in an inner block, the compiler generates a syntax
error stating that the variable is already defined. If a local variable in a method has the
same name as an instance variable, the instance variable is “hidden” until the block ter-
minates execution. In Chapter 8, we discuss how to access such “hidden” instance vari-
ables.

Common Programming Error 6.14
Accidentally using the same name for an identifier in an inner block of a method as is used
for an identifier in an outer block of the same method results in a syntax error from the com-
piler. 6.14

Good Programming Practice 6.7
Avoid local-variable names that hide instance-variable names. This can be accomplished by
avoiding the use of duplicate identifiers in a class. 6.7

The applet of Fig. 6.10 demonstrates scoping issues with instance variables and local
variables.

This example uses the applet’s start method (lines 27–40) for the first time.
Remember, when an applet container loads an applet, the container first creates an
instance of the applet class. It then calls the applet’s init, start and paint methods.
Method start always is defined with the line shown on line 27 as its first line.

276 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

1 // Fig. 6.10: Scoping.java
2 // A scoping example.
3
4 // Java core packages
5 import java.awt.Container;
6
7 // Java extension packages
8 import javax.swing.*;
9

10 public class Scoping extends JApplet {
11 JTextArea outputArea;
12
13 // instance variable accessible to all methods of this class
14 int x = 1;
15
16 // set up applet’s GUI
17 public void init()
18 {
19 outputArea = new JTextArea();
20 Container container = getContentPane();
21 container.add(outputArea);
22
23 } // end method init
24
25 // method start called after init completes; start calls
26 // methods useLocal and useInstance
27 public void start()
28 {
29 int x = 5; // variable local to method start
30
31 outputArea.append("local x in start is " + x);
32
33 useLocal(); // useLocal has local x
34 useInstance(); // useInstance uses instance variable x
35 useLocal(); // useLocal reinitializes local x
36 useInstance(); // instance variable x retains its value
37
38 outputArea.append("\n\nlocal x in start is " + x);
39
40 } // end method start
41
42 // useLocal reinitializes local variable x during each call
43 public void useLocal()
44 {
45 int x = 25; // initialized each time useLocal is called
46
47 outputArea.append("\n\nlocal x in useLocal is " + x +
48 " after entering useLocal");
49 ++x;
50 outputArea.append("\nlocal x in useLocal is " + x +
51 " before exiting useLocal");
52
53 } // end method useLocal

Fig. 6.10Fig. 6.10Fig. 6.10Fig. 6.10 A scoping example (part 1 of 2).

Chapter 6 Methods 277

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Line 14 declares and initializes instance variable x to 1. This instance variable is
hidden in any block (or method) that declares a variable named x. Method start declares
a local variable x (line 29) and initializes it to 5. This variable’s value is displayed in the
JTextArea outputArea to show that the instance variable x is hidden in start. The
program defines two other methods—useLocal (lines 43–53) and useInstance
(lines 56–64)—that each take no arguments and do not return results. Method start calls
each of these methods twice. Method useLocal defines local (automatic) variable x (line
45). When useLocal is called (line 33), it creates local variable x and initializes x to 25,
displays the value of x in outputArea, increments x and displays the value of x again.
When uselLocal is called again (line 35), it recreates local variable x and initializes x
to 25. Method useInstance does not declare any variables. Therefore, when it refers to
variable x, the instance variable x is used. When useInstance is called (line 34), it dis-
plays the instance variable x in outputArea, multiplies the instance variable x by 10
and displays instance variable x again before returning. The next time method useIn-
stance is called (line 36), the instance variable has its modified value, 10. Finally, the
program displays the local variable x in start again to show that none of the method calls
modified the value of x, because the methods all referred to variables in other scopes.

54
55 // useInstance modifies instance variable x during each call
56 public void useInstance()
57 {
58 outputArea.append("\n\ninstance variable x is " + x +
59 " on entering useInstance");
60 x *= 10;
61 outputArea.append("\ninstance variable x is " + x +
62 " on exiting useInstance");
63
64 } // end method useInstance
65
66 } // end class Scoping

Fig. 6.10Fig. 6.10Fig. 6.10Fig. 6.10 A scoping example (part 2 of 2).

278 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.12 Recursion
The programs we have discussed thus far are generally structured as methods that call one
another in a disciplined, hierarchical manner. For some problems, however, it is useful to
have methods call themselves. A recursive method is a method that calls itself either direct-
ly or indirectly through another method. Recursion is an important topic discussed at length
in upper-level computer science courses. In this and the next section, simple examples of
recursion are presented. This book contains an extensive treatment of recursion.
Figure 6.15 (at the end of Section 6.14) summarizes the recursion examples and exercises
in this book.

We consider recursion conceptually first. Then we examine several programs con-
taining recursive methods. Recursive problem-solving approaches have a number of ele-
ments in common. A recursive method is called to solve a problem. The method actually
knows how to solve only the simplest case(s) or so-called base case(s). If the method is
called with a base case, the method returns a result. If the method is called with a more com-
plex problem, the method divides the problem into two conceptual pieces: a piece that the
method knows how to do (base case) and a piece that the method does not know how to do.
To make recursion feasible, the latter piece must resemble the original problem, but be a
slightly simpler or slightly smaller version of the original problem. Because this new
problem looks like the original problem, the method invokes (calls) a fresh copy of itself to
go to work on the smaller problem; this procedure is referred to as a recursive call and is
also called the recursion step. The recursion step also normally includes the keyword
return, because its result will be combined with the portion of the problem the method
knew how to solve to form a result that will be passed back to the original caller.

The recursion step executes while the original call to the method is still open (i.e.,
while it has not finished executing). The recursion step can result in many more recursive
calls, as the method divides each new subproblem into two conceptual pieces. For the recur-
sion eventually to terminate, each time the method calls itself with a slightly simpler ver-
sion of the original problem, the sequence of smaller and smaller problems must converge
on the base case. At that point, the method recognizes the base case, and returns a result to
the previous copy of the method, and a sequence of returns ensues up the line until the orig-
inal method call eventually returns the final result to the caller. This process sounds exotic
when compared with the conventional problem solving we have performed to this point. As
an example of these concepts at work, let us write a recursive program to perform a popular
mathematical calculation.

The factorial of a nonnegative integer n, written n! (and pronounced “n factorial”), is
the product

n · (n - 1) · (n - 2) · … · 1

where 1! is equal to 1 and 0! is defined to be 1. For example, 5! is the product 5 · 4 · 3 · 2 ·
1, which is equal to 120.

The factorial of an integer, number, greater than or equal to 0, can be calculated iter-
atively (nonrecursively) using the for structure as follows:

factorial = 1;

for (int counter = number; counter >= 1; counter--)
 factorial *= counter;

Chapter 6 Methods 279

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

A recursive definition of the factorial method is arrived at by observing the following
relationship:

n! = n · (n - 1)!

For example, 5! is clearly equal to 5 * 4!, as is shown by the following equations:

5! = 5 · 4 · 3 · 2 · 1
5! = 5 · (4 · 3 · 2 · 1)
5! = 5 · (4!)

The evaluation of 5! would proceed as shown in Fig. 6.11. Figure 6.11 (a) shows how
the succession of recursive calls proceeds until 1! is evaluated to be 1, which terminates the
recursion. Figure 6.11 (b) shows the values returned from each recursive call to its caller
until the final value is calculated and returned.

Figure 6.12 uses recursion to calculate and print the factorials of the integers from 0 to
10. (The choice of the data type long will be explained momentarily.) The recursive
method factorial (lines 29–39) first tests to determine whether a terminating condition
(line 32) is true. If number is less than or equal to 1 (the base case), factorial returns
1, no further recursion is necessary and the method returns. If number is greater than 1,
line 37 expresses the problem as the product of number and a recursive call to facto-
rial evaluating the factorial of number - 1. Note that factorial(number - 1) is
a slightly simpler problem than the original calculation factorial(number).

Fig. 6.11Fig. 6.11Fig. 6.11Fig. 6.11 Recursive evaluation of 5!.

1 // Fig. 6.12: FactorialTest.java
2 // Recursive factorial method
3
4 // Java core packages
5 import java.awt.*;
6

Fig. 6.12Fig. 6.12Fig. 6.12Fig. 6.12 Calculating factorials with a recursive method (part 1 of 2).

5!

5 * 4!

 4 * 3!

 3 * 2!

 2 * 1!

 1

5!

5 * 4!

 4 * 3!

 3 * 2!

 2 * 1!

 1

(a) Procession of recursive calls. (b) Values returned from each recursive call.

Final value = 120

5! = 5 * 24 = 120 is returned

4! = 4 * 6 = 24 is returned

2! = 2 * 1 = 2 is returned

3! = 3 * 2 = 6 is returned

1 returned

280 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Method factorial (line 29) receives a parameter of type long and returns a result
of type long. As can be seen in Fig. 6.12, factorial values become large quickly. We chose
data type long so the program can calculate factorials greater than 20!. Unfortunately, the

7 // Java extension packages
8 import javax.swing.*;
9

10 public class FactorialTest extends JApplet {
11 JTextArea outputArea;
12
13 // initialize applet by creating GUI and calculating factorials
14 public void init()
15 {
16 outputArea = new JTextArea();
17
18 Container container = getContentPane();
19 container.add(outputArea);
20
21 // calculate the factorials of 0 through 10
22 for (long counter = 0; counter <= 10; counter++)
23 outputArea.append(counter + "! = " +
24 factorial(counter) + "\n");
25
26 } // end method init
27
28 // Recursive definition of method factorial
29 public long factorial(long number)
30 {
31 // base case
32 if (number <= 1)
33 return 1;
34
35 // recursive step
36 else
37 return number * factorial(number - 1);
38
39 } // end method factorial
40
41 } // end class FactorialTest

Fig. 6.12Fig. 6.12Fig. 6.12Fig. 6.12 Calculating factorials with a recursive method (part 2 of 2).

Chapter 6 Methods 281

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

factorial method produces large values so quickly that even long does not help us
print many factorial values before the values exceed the size that can be stored in a long
variable.

We explore in the exercises the fact that float and double may ultimately be
needed by users desiring to calculate factorials of larger numbers. This situation points to
a weakness in most programming languages, namely, that the languages are not easily
extended to handle the unique requirements of various applications. As we will see in
Chapter 9, Object-Oriented Programming, Java is an extensible language that allows us to
create arbitrarily large integers if we wish. In fact, package java.math provides two
classes—BigInteger and BigDecimal—explicitly for mathematical calculations of
arbitrary precision that cannot be represented with Java’s primitive data types.

Common Programming Error 6.15
Either omitting the base case or writing the recursion step incorrectly so that it does not con-
verge on the base case will cause infinite recursion, eventually exhausting memory. This er-
ror is analogous to the problem of an infinite loop in an iterative (nonrecursive) solution. 6.15

6.13 Example Using Recursion: The Fibonacci Series
The Fibonacci series,

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with 0 and 1 and has the property that each subsequent Fibonacci number is the sum
of the previous two Fibonacci numbers.

The series occurs in nature and, in particular, describes a form of spiral. The ratio of
successive Fibonacci numbers converges on a constant value of 1.618…. This number, too,
repeatedly occurs in nature and has been called the golden ratio, or the golden mean.
Humans tend to find the golden mean aesthetically pleasing. Architects often design win-
dows, rooms and buildings whose length and width are in the ratio of the golden mean.
Postcards are often designed with a golden-mean length/width ratio.

The Fibonacci series may be defined recursively as follows:

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n – 1) + fibonacci(n – 2)

Note that there are two base cases for the Fibonacci calculation: fibonacci(0) is defined to
be 0, and fibonacci(1) is defined to be 1. The applet of Fig. 6.13 calculates the ith Fibonacci
number recursively, using method fibonacci (lines 68–78). The applet enables the user
to input an integer in a JTextField. The value input indicates the ith Fibonacci number
to calculate. When the user presses the Enter key, method actionPerformed executes
in response to the user interface event and calls method fibonacci to calculate the spec-
ified Fibonacci number. Fibonacci numbers tend to become large quickly. Therefore, we
use data type long as the parameter type and the return type of fibonacci. In Fig. 6.13,
the screen captures show the results of calculating several Fibonacci numbers.

Once again, method init of this applet creates the GUI components and attaches
them to the applet’s content pane. The layout manager for the content pane is set to Flow-
Layout at line 22.

282 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The event handling in this example is similar to the event handling of the Craps
applet in Fig. 6.9. Line 34 specifies that this applet should listen for events from the
JTextField numberField. Remember, the this keyword enables the applet to refer
to itself. So, in line 34, the applet is telling numberField that the applet should be noti-
fied (with a call to the applet’s actionPerformed method) when an action event occurs
in the numberField. In this example, the user presses the Enter key while typing in the
numberField to generate the action event. A message is then sent to the applet (i.e., a
method—actionPerformed—is called on the applet) indicating that the user of the
program has interacted with one of the program’s GUI components (numberField).
Remember that the statement to register the applet as the numberField’s listener will
compile only if the applet class also implements ActionListener (line l2).

1 // Fig. 6.13: FibonacciTest.java
2 // Recursive fibonacci method
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class FibonacciTest extends JApplet
12 implements ActionListener {
13
14 JLabel numberLabel, resultLabel;
15 JTextField numberField, resultField;
16
17 // set up applet’s GUI
18 public void init()
19 {
20 // obtain content pane and set its layout to FlowLayout
21 Container container = getContentPane();
22 container.setLayout(new FlowLayout());
23
24 // create numberLabel and attach it to content pane
25 numberLabel =
26 new JLabel("Enter an integer and press Enter");
27 container.add(numberLabel);
28
29 // create numberField and attach it to content pane
30 numberField = new JTextField(10);
31 container.add(numberField);
32
33 // register this applet as numberField’s ActionListener
34 numberField.addActionListener(this);
35
36 // create resultLabel and attach it to content pane
37 resultLabel = new JLabel("Fibonacci value is");
38 container.add(resultLabel);
39

Fig. 6.13Fig. 6.13Fig. 6.13Fig. 6.13 Recursively generating Fibonacci numbers (part 1 of 3).

Chapter 6 Methods 283

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

40 // create numberField, make it uneditable
41 // and attach it to content pane
42 resultField = new JTextField(15);
43 resultField.setEditable(false);
44 container.add(resultField);
45
46 } // end method init
47
48 // obtain user input and call method fibonacci
49 public void actionPerformed(ActionEvent e)
50 {
51 long number, fibonacciValue;
52
53 // obtain user’s input and conver to long
54 number = Long.parseLong(numberField.getText());
55
56 showStatus("Calculating ...");
57
58 // calculate fibonacci value for number user input
59 fibonacciValue = fibonacci(number);
60
61 // indicate processing complete and display result
62 showStatus("Done.");
63 resultField.setText(Long.toString(fibonacciValue));
64
65 } // end method actionPerformed
66
67 // Recursive definition of method fibonacci
68 public long fibonacci(long n)
69 {
70 // base case
71 if (n == 0 || n == 1)
72 return n;
73
74 // recursive step
75 else
76 return fibonacci(n - 1) + fibonacci(n - 2);
77
78 } // end method fibonacci
79
80 } // end class FibonacciTest

Fig. 6.13Fig. 6.13Fig. 6.13Fig. 6.13 Recursively generating Fibonacci numbers (part 2 of 3).

284 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The call to fibonacci (line 59) from actionPerformed is not a recursive call,
but all subsequent calls to fibonacci performed from the body of fibonacci are
recursive. Each time fibonacci is invoked, it immediately tests for the base case—n
equal to 0 or 1. If this condition is true, fibonacci returns n (fibonacci(0) is 0, and
fibonacci(1) is 1). Interestingly, if n is greater than 1, the recursion step generates two
recursive calls, each for a slightly simpler problem than the original call to fibonacci.

Fig. 6.13Fig. 6.13Fig. 6.13Fig. 6.13 Recursively generating Fibonacci numbers (part 3 of 3).

Chapter 6 Methods 285

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Figure 6.14 shows how method fibonacci evaluates fibonacci(3). In the figure, f
is an abbreviation for fibonacci.

Figure 6.14 raises some interesting issues about the order in which Java compilers eval-
uate the operands of operators. This issue is different than the order in which operators are
applied to their operands, namely the order dictated by the rules of operator precedence.
From Fig. 6.14, it appears that while f(3)is being evaluated, two recursive calls will be
made, namely f(2) and f(1). But in what order will these calls be made? Most program-
mers assume that the operands will be evaluated left to right. In Java, this assumption is true.

The C and C++ languages (on which many of Java’s features are based) do not specify
the order in which the operands of most operators (including +) are evaluated. Therefore,
the programmer can make no assumption in those languages about the order in which the
calls in this example execute. The calls could, in fact, execute f(2) first andf(1)second,
or the calls could be executed in the reverse order: f(1), then f(2). In this program and
in most other programs, it turns out that the final result would be the same for either case.
But in some programs, the evaluation of an operand may have side effects that could affect
the final result of the expression.

The Java language specifies that the order of evaluation of the operands is from left to
right. Thus, the method calls are in fact f(2) first andf(1)second.

Good Programming Practice 6.8
Do not write expressions that depend on the order of evaluation of the operands of an oper-
ator. Use of such expressions often results in programs that are difficult to read, debug, mod-
ify and maintain. 6.8

A word of caution is in order about recursive programs like the one we use here to gen-
erate Fibonacci numbers. Each invocation of the fibonacci method that does not match
one of the base cases (i.e., 0 or 1) results in two more recursive calls to the fibonacci
method. This set of recursive calls rapidly gets out of hand. Calculating the Fibonacci value
of 20 using the program in Fig. 6.13 requires 21,891 calls to the fibonacci method; cal-
culating the Fibonacci value of 30 requires 2,692,537 calls to the fibonacci method.

Fig. 6.14Fig. 6.14Fig. 6.14Fig. 6.14 Set of recursive calls to method fibonacci (f in this diagram).

f(3)

f(1)f(2)

f(1) f(0) return 1

return 1 return 0

return +

+return

286 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

As you try calculate larger Fibonacci values, you will notice that each consecutive
Fibonacci number you ask the applet to calculate results in a substantial increase in calcu-
lation time and number of calls to the fibonacci method. For example, the Fibonacci
value of 31 requires 4,356,617 calls, and the Fibonacci value of 32 requires 7,049,155 calls.
As you can see, the number of calls to fibonacci is increasing quickly—1,664,080 addi-
tional calls between Fibonacci values of 30 and 31 and 2,692,538 additional calls between
Fibonacci values of 31 and 32. This difference in number of calls made between Fibonacci
values of 31 and 32 is more than 1.5 times the number of calls for Fibonacci values between
30 and 31. Problems of this nature humble even the world’s most powerful computers! In
the field of complexity theory, computer scientists study how hard algorithms work to com-
plete their tasks. Complexity issues are discussed in detail in the upper-level computer sci-
ence curriculum course generally called “Algorithms.”

Performance Tip 6.3
Avoid Fibonacci-style recursive programs, which result in an exponential “explosion” of
calls. 6.3

Testing and Debugging Tip 6.3
Try enhancing the Fibonacci program of Fig. 6.13 such that it calculates the approximate
amount of time required to perform the calculation. For this purpose, call static System
method getCurrentTimeMillis, which takes no arguments and returns the computer’s
current time in milliseconds. Call this method twice—once before the call to fibonacci
and once after the call to fibonacci. Save each of these values and calculate the differ-
ence in the times to determine how many milliseconds were required to perform the calcula-
tion. Display this result. 6.3

6.14 Recursion vs. Iteration
In the previous sections, we studied two methods that can easily be implemented either re-
cursively or iteratively. In this section,we compare the two approaches and discuss why the
programmer might choose one approach over the other in a particular situation.

Both iteration and recursion are based on a control structure: Iteration uses a repetition
structure (such as for, while or do/while); recursion uses a selection structure (such
as if, if/else or switch). Both iteration and recursion involve repetition: Iteration
explicitly uses a repetition structure; recursion achieves repetition through repeated method
calls. Iteration and recursion each involve a termination test: Iteration terminates when the
loop-continuation condition fails; recursion terminates when a base case is recognized. Iter-
ation with counter-controlled repetition and recursion each gradually approach termination:
Iteration keeps modifying a counter until the counter assumes a value that makes the loop-
continuation condition fail; recursion keeps producing simpler versions of the original
problem until the base case is reached. Both iteration and recursion can occur infinitely: An
infinite loop occurs with iteration if the loop-continuation test never becomes false; infinite
recursion occurs if the recursion step does not reduce the problem each time in a manner
that converges on the base case.

Recursion has many negatives. It repeatedly invokes the mechanism and, consequently
the overhead, of method calls. This repetition can be expensive in terms of both processor
time and memory space. Each recursive call causes another copy of the method (actually,
only the method’s variables) to be created; this set of copies can consume considerable

Chapter 6 Methods 287

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

memory space. Iteration normally occurs within a method, so the overhead of repeated
method calls and extra memory assignment is omitted. So why choose recursion?

Software Engineering Observation 6.10
Any problem that can be solved recursively can also be solved iteratively (nonrecursively).
A recursive approach is normally preferred over an iterative approach when the recursive
approach more naturally mirrors the problem and results in a program that is easier to un-
derstand and debug. Often, a recursive approach can be implemented with few lines of code
and a corresponding iterative approach may take large amounts of code. Another reason to
choose a recursive solution is that an iterative solution may not be apparent. 6.10

Performance Tip 6.4
Avoid using recursion in situations requiring performance. Recursive calls take time and
consume additional memory. 6.4

Common Programming Error 6.16
Accidentally having a nonrecursive method call itself either directly or indirectly through an-
other method can cause infinite recursion. 6.16

Most programming textbooks introduce recursion much later than we have done here.
We feel that recursion is a sufficiently rich and complex topic that it is better to introduce
it earlier and spread examples of it over the remainder of the text. Figure 6.15 summarizes
the recursion examples and exercises in this text.

Chapter Recursion examples and exercises

6 Factorial method
Fibonacci method
Greatest common divisor
Sum of two integers
Multiply two integers
Raising an integer to an integer power
Towers of Hanoi
Visualizing recursion

7 Sum the elements of an array
Print an array
Print an array backward
Check if a string is a palindrome
Minimum value in an array
Selection sort
Eight Queens
Linear search
Binary search
Quicksort
Maze traversal

10 Printing a string input at the keyboard backward

Fig. 6.15Fig. 6.15Fig. 6.15Fig. 6.15 Summary of recursion examples and exercises in this text (part 1 of 2).

288 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Let us reconsider some observations we make repeatedly throughout this book. Good
software engineering is important. High performance is often important. Unfortunately,
these goals are often at odds with one another. Good software engineering is key to
making more manageable the task of developing larger and more complex software sys-
tems. High performance in these systems is key to realizing the systems of the future, which
will place ever greater computing demands on hardware. Where do methods fit in here?

Software Engineering Observation 6.11
Modularizing programs in a neat, hierarchical manner promotes good software engineering.
But it has a price. 6.11

Performance Tip 6.5
A heavily modularized program—as compared with a monolithic (i.e., one-piece) program
without methods—makes potentially large numbers of method calls, which consume execu-
tion time and space on a computer’s processor(s). But monolithic programs are difficult to
program, test, debug, maintain and evolve. 6.5

So modularize your programs judiciously, always keeping in mind the delicate balance
between performance and good software engineering.

6.15 Method Overloading
Java enables several methods of the same name to be defined, as long as the methods have
different sets of parameters (based on the number of parameters, the types of the parameters
and the order of the parameters). This characteristic is called method overloading. When
an overloaded method is called, the Java compiler selects the proper method by examining
the number, types and order of the arguments in the call. Method overloading is commonly
used to create several methods with the same name that perform similar tasks, but on dif-
ferent data types.

Good Programming Practice 6.9
Overloading methods that perform closely related tasks can make programs more readable
and understandable. 6.9

Figure 6.16 uses overloaded method square to calculate the square of an int and
the square of a double.

19 Linked-list insert
Linked-list delete
Search a linked list
Print a linked list backward
Binary-tree insert
Preorder traversal of a binary tree
Inorder traversal of a binary tree
Postorder traversal of a binary tree

Chapter Recursion examples and exercises

Fig. 6.15Fig. 6.15Fig. 6.15Fig. 6.15 Summary of recursion examples and exercises in this text (part 2 of 2).

Chapter 6 Methods 289

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

1 // Fig. 6.16: MethodOverload.java
2 // Using overloaded methods
3
4 // Java core packages
5 import java.awt.Container;
6
7 // Java extension packages
8 import javax.swing.*;
9

10 public class MethodOverload extends JApplet {
11
12 // set up GUI and call versions of method square
13 public void init()
14 {
15 JTextArea outputArea = new JTextArea();
16 Container container = getContentPane();
17 container.add(outputArea);
18
19 outputArea.setText(
20 "The square of integer 7 is " + square(7) +
21 "\nThe square of double 7.5 is " + square(7.5));
22 }
23
24 // square method with int argument
25 public int square(int intValue)
26 {
27 System.out.println(
28 "Called square with int argument: " + intValue);
29
30 return intValue * intValue;
31
32 } // end method square with int argument
33
34 // square method with double argument
35 public double square(double doubleValue)
36 {
37 System.out.println(
38 "Called square with double argument: " + doubleValue);
39
40 return doubleValue * doubleValue;
41
42 } // end method square with double argument
43
44 } // end class MethodOverload

Fig. 6.16Fig. 6.16Fig. 6.16Fig. 6.16 Using overloaded methods (part 1 of 2).

290 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Overloaded methods are distinguished by their signature—a combination of the
method’s name and its parameter types. If the Java compiler looked only at method names
during compilation, the code in Fig. 6.16 would be ambiguous—the compiler would not
know how to distinguish between the two square methods. Logically, the compiler uses
longer “mangled” or “decorated” names that include the original method name, the types
of each parameter and the exact order of the parameters to determine if the methods in a
class are unique in that class.

For example, in Fig. 6.16, the compiler might use the logical name “square of int” for
the square method that specifies an int parameter and “square of double” for the
square method that specifies a double parameter. If a method foo’s definition begins
as

void foo(int a, float b)

then the compiler might use the logical name “foo of int and float.” If the parameters are
specified as

void foo(float a, int b)

then the compiler might use the logical name “foo of float and int.” Note that the order of
the parameters is important to the compiler. The preceding two foo methods are consid-
ered to be distinct by the compiler.

The logical names of methods used by the compiler did not mention the return types
of the methods, because methods cannot be distinguished by return type. The program in
Fig. 6.17 illustrates the compiler errors generated when two methods have the same signa-
ture and different return types. Overloaded methods can have different return types, but
must have different parameter lists. Also, overloaded methods need not have the same
number of parameters.

Common Programming Error 6.17
Creating overloaded methods with identical parameter lists and different return types is a
syntax error. 6.17

.

Called square with int argument: 7
Called square with double argument: 7.5

Fig. 6.16Fig. 6.16Fig. 6.16Fig. 6.16 Using overloaded methods (part 2 of 2).

1 // Fig. 6.17: MethodOverload.java
2 // Overloaded methods with identical signatures and
3 // different return types.
4
5 // Java extension packages
6 import javax.swing.JApplet;
7

Fig. 6.17Fig. 6.17Fig. 6.17Fig. 6.17 Compiler error messages generated from overloaded methods with
identical parameter lists and different return types (part 1 of 2).

Chapter 6 Methods 291

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.16 Methods of Class JApplet
We have written many applets to this point in the text, but we have not yet discussed the
key methods of class JApplet that the applet container calls during the execution of an
applet. Figure 6.18 lists the key methods of class JApplet, specifies when they get called
and explains the purpose of each method.

These JApplet methods are defined by the Java API to do nothing unless you pro-
vide a definition in your applet’s class definition. If you would like to use one of these
methods in an applet you are defining, you must define the first line of each method as
shown in Fig. 6.18. Otherwise, the applet container will not call your versions of the
methods during the applet’s execution. Defining the methods as discussed here is known as
overriding the original method definition. The applet container will call the overridden ver-
sion of a method for your applet before it attempts to call the default versions inherited from
JApplet. Overriding is discussed in detail in Chapter 9.

Common Programming Error 6.18
Providing a definition for one of the JApplet methods init, start, paint, stop or
destroy that does not match the method headers shown in Figure 6.18 results in a method
that will not be called automatically during execution of the applet. 6.18

8 public class MethodOverload extends JApplet {
9

10 // first definition of method square with double argument
11 public int square(double x)
12 {
13 return x * x;
14 }
15
16 // second definition of method square with double argument
17 // causes syntax error
18 public double square(double y)
19 {
20 return y * y;
21 }
22
23 } // end class MethodOverload

MethodOverload.java:18: square(double) is already defined in
MethodOverload
 public double square(double y)
 ^
MethodOverload.java:13: possible loss of precision
found : double
required: int
 return x * x;
 ^
2 errors

Fig. 6.17Fig. 6.17Fig. 6.17Fig. 6.17 Compiler error messages generated from overloaded methods with
identical parameter lists and different return types (part 2 of 2).

292 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Method repaint is also of interest to many applet programmers. The applet’s paint
method normally is called by the applet container. What if you would like to change the
appearance of the applet in response to the user’s interactions with the applet? In such situa-
tions, you may want to call paint directly. However, to call paint, we must pass it the
Graphics parameter it expects. This requirement poses a problem for us. We do not have
a Graphics object at our disposal to pass to paint. (We discuss this issue in Chapter 18,
Multimedia.) For this reason, class JApplet provides method repaint. The statement

repaint();

Method When the method is called and its purpose

public void init()

This method is called once by the appletviewer or browser when an applet is
loaded for execution. It performs initialization of an applet. Typical actions per-
formed here are initialization of instance variables and GUI components of the
applet, loading of sounds to play or images to display (see Chapter 18, Multimedia)
and creation of threads (see Chapter 15, Multithreading).

public void start()

This method is called after the init method completes execution and every time the
user of the browser returns to the HTML page on which the applet resides (after
browsing another HTML page). This method performs any tasks that must be com-
pleted when the applet is loaded for the first time into the browser and that must be
performed every time the HTML page on which the applet resides is revisited. Typi-
cal actions performed here include starting an animation see (Chapter 18, Multime-
dia) and starting other threads of execution (see Chapter 15, Multithreading).

public void paint(Graphics g)

This method is called after the init method completes execution and the start
method has started executing to draw on the applet. It is also called automatically
every time the applet needs to be repainted. For example, if the user covers the applet
with another open window on the screen then uncovers the applet, the paint
method is called. Typical actions performed here involve drawing with the Graph-
ics object g that is automatically passed to the paint method for you.

public void stop()

This method is called when the applet should stop executing—normally, when the
user of the browser leaves the HTML page on which the applet resides. This method
performs any tasks that are required to suspend the applet’s execution. Typical actions
performed here are to stop execution of animations and threads.

public void destroy()

This method is called when the applet is being removed from memory—normally,
when the user of the browser exits the browsing session. This method performs any
tasks that are required to destroy resources allocated to the applet.

Fig. 6.18Fig. 6.18Fig. 6.18Fig. 6.18 JApplet methods that the applet container calls during an applet’s
execution .

Chapter 6 Methods 293

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

obtains the Graphics object for you and invokes another method, called update. Meth-
od update invokes method paint and passes to it the Graphics object. The repaint
method is discussed in detail in Chapter 18, “Multimedia.”

6.17 (Optional Case Study) Thinking About Objects: Identifying
Class Operations
In the “Thinking About Objects” sections at the ends of Chapters 3, 4 and 5, we performed
the first few steps in the object-oriented design for our elevator simulator. In Chapter 3, we
identified the classes we need to implement. In Chapter 4, we created a class diagram that
models the structure of our system. In Chapter 5, we examined objects’ states and modeled
objects’ activities and state transitions.

In this section, we concentrate on determining the class operations (or behaviors)
needed to implement the elevator simulator. In Chapter 7, we concentrate on the collabo-
rations (interactions) between objects of our classes.

An operation of a class is a service that the class provides to “clients” (users) of that
class. Consider the operations of some real-world classes. A radio’s operations include set-
ting its station and volume (typically invoked by a person adjusting the radio’s controls). A
car’s operations include accelerating (invoked by the driver pressing the accelerator pedal),
decelerating (invoked by the driver pressing the brake pedal and/or releasing the gas pedal),
turning and shifting gears.

We can derive many of the operations of each class directly from the problem state-
ment. To do so, we examine the verbs and verb phrases in the problem statement. We then
relate each of these to particular classes in our system (Fig. 6.20). Many of the verb phrases
in Fig. 6.20 help us determine the operations of our classes.

Class Verb phrases

Elevator moves to other floor, arrives at a floor, resets elevator button, rings
elevator bell, signals its arrival, opens its door, closes its door

ElevatorShaft turns off light, turns on light, resets floor button

Person walks on floor, presses floor button, presses elevator button, rides
elevator, enters elevator, exits elevator

Floor [none in the problem statement]

FloorButton requests elevator

ElevatorButton closes elevator door, signals elevator to move to opposite floor

FloorDoor signals person to enter elevator (by opening)

ElevatorDoor signals person to exit elevator (by opening), opens floor door, closes
floor door

Bell [none in the problem statement]

Light [none in the problem statement]

ElevatorModel creates person

Fig. 6.20Fig. 6.20Fig. 6.20Fig. 6.20 Verb phrases for each class in simulator.

294 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

To create operations, we examine the verb phrases listed with each class. The phrase
“moves to other floor” listed with class Elevator refers to the activity in which the ele-
vator moves between floors. Should “moves” be an operation of class Elevator? The
elevator decides to move in response to a button press. A button signals the elevator to
move, but a button does not actually move the elevator—therefore, “moves to other floor”
does not correspond to an operation. (We include the operations for informing the elevator
to move to the other floor later in the discussion, when we discuss the verb phrases associ-
ated with the buttons.) The “arrives at a floor” phrase is also not an operation, because the
elevator itself decides when to arrive on the floor after five seconds of travel.

The “resets elevator button” phrase associated with class Elevator implies that the
elevator informs the elevator button to reset. Therefore, class ElevatorButton needs an
operation to provide this service to the elevator. We place this operation (resetButton) in
the bottom compartment of class ElevatorButton in our class diagram (Fig. 6.21).

We represent the names of the operations as method names (by following the names
with a pair of parentheses) and include the return type after the colon:

resetButton() : void

The parentheses can contain a comma-separated list of the parameters that the operation
takes—in this case, none. For the moment, most of our operations have no parameters and a
void return type; this might change as our design and implementation processes proceed.

Fig. 6.21Fig. 6.21Fig. 6.21Fig. 6.21 Classes with attributes and operations.

Floor

floorNumber : Integer
capacity : Integer = 1

<none yet>

Person

ID : Integer
moving : Boolean = true

doorOpened() : void

ElevatorDoor

open : Boolean = false

openDoor() : void
closeDoor() : void

ElevatorShaft

<none yet>

<none yet>

Elevator

moving : Boolean = false
summoned : Boolean = false
currentFloor : Integer = 1
destinationFloor : Integer = 2
capacity : Integer = 1
travelTime : Integer = 5

Bell

<none yet>

ElevatorModel

numberOfPeople : Integer=0

ringBell() : void

Light

lightOn : Boolean = false

turnOnLight() : void
turnOffLight() : void

ElevatorButton

pressed : Boolean = false

resetButton() : void
pressButton() : void

FloorButton

pressed : Boolean = false

resetButton() : void
pressButton() : void

ride() : void
requestElevator() : void
enterElevator() : void
exitElevator() : void
departElevator() : void

addPerson() : void

FloorDoor

open : Boolean = false

openDoor() : void
closeDoor() : void

Chapter 6 Methods 295

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

From the “ring the elevator bell” phrase listed with class Elevator, we conclude that
class Bell should have an operation that provides a service—namely, ringing. We list the
ringBell operation under class Bell.

When arriving at a floor, the elevator “signals its arrival” to the doors. The elevator
door responds by opening, as implied by the phrase “opens [the elevator’s] door” associated
with class Elevator. Therefore, class ElevatorDoor needs an operation that opens
its door. We place the openDoor operation in the bottom compartment of this class. The
phrase “closes [the elevator’s] door” indicates that class ElevatorDoor needs an oper-
ation that closes its door, so we place the closeDoor operation in the same compartment.

Class ElevatorShaft lists “turns off light” and “turns on light” in its verb-phrases
column, so we create the turnOffLight and turnOnLight operations and list them
under class Light. The “resets floor button” phrase implies that the elevator instructs a
floor button to reset. Therefore, class FloorButton needs a resetButton operation.

The phrase “walks on floor” listed by class Person is not an operation, because a
person decides to walk across the floor in response to that person’s creation. However, the
phrases “presses floor button” and “presses elevator button” are operations pertaining to the
button classes. We therefore place the pressButton operation under classes Floor-
Button and ElevatorButton in our class diagram (Fig. 6.21). The phrase “rides ele-
vator” implies that Elevator needs a method that allows a person to ride the elevator, so
we place operation ride in the bottom compartment of Elevator. The “enters elevator”
and “exits elevator” phrases listed with class Person suggest that class Elevator needs
operations that correspond to these actions.1 We place operations enterElevator and
exitElevator in the bottom compartment of class Elevator.

The “requests elevator” phrase listed under class FloorButton implies that class
Elevator needs a requestElevator operation. The phrase “signals elevator to
move to opposite floor” listed with class ElevatorButton implies that Elevator-
Button informs Elevator to depart. Therefore, the Elevator needs to provide a
“departure” service; we place a departElevator operation in the bottom compartment
of Elevator.

The phrases listed with classes FloorDoor and ElevatorDoor mention that the
doors—by opening—signal a Person object to enter or exit the elevator. Specifically, a
door informs a person that the door has opened. (The person then enters or exits the ele-
vator, accordingly.) We place the doorOpened operation in the bottom compartment for
class Person. In addition, the ElevatorDoor opens and closes the FloorDoor, so we
assign openDoor and closeDoor to the bottom compartment of class FloorDoor.

Lastly, the “creates person” action associated with class ElevatorModel refers to
creating a Person object and adding it to the simulation. Although we can require Ele-
vatorModel to send a “create person” and an “add person” message, an object of class
Person cannot respond to these messages, because that object does not yet exist. We dis-
cuss new objects when we consider implementation in Chapter 8. We place the operation
addPerson in the bottom compartment of ElevatorModel in the class diagram of
Fig. 6.21 and anticipate that the application user will invoke this operation.

1. At this point, we can only guess what these operations do. For example, perhaps these operations
model real-world elevators, some of which have sensors that detect when passengers enter and ex-
it. For now, we simply list these operations. We will discover what, if any, actions these operations
perform as we continue our design process.

296 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

 For now, we do not concern ourselves with operation parameters or return types; we
attempt to gain only a basic understanding of the operations of each class. As we continue
our design process, the number of operations belonging to each class may vary—we might
find that new operations are needed or that some current operations are unnecessary—and
we might determine that some of our class operations need non-void return types.

SUMMARY
• The best way to develop and maintain a large program is to divide it into several smaller modules.

Modules are written in Java as classes and methods.

• A method is invoked by a method call. The method call mentions the method by name and pro-
vides arguments in parentheses that the called method requires to perform its task. If the method
is in another class, the call must be preceded by a reference name and a dot operator. If the method
is static, it must be preceded by a class name and a dot operator.

• Each argument of a method may be a constant, a variable or an expression.

• A local variable is known only in a method definition. Methods are not allowed to know the im-
plementation details of any other method (including its local variables).

• The on-screen display area for a JApplet has a content pane to which the GUI components must
be attached so they can be displayed at execution time. The content pane is an object of class Con-
tainer from the java.awt package.

• Method getContentPane of class JApplet returns a reference to the applet’s content pane.

• The general format for a method definition is

return-value-type method-name(parameter-list)
{

declarations and statements
}

The return-value-type states the type of the value returned to the calling method. If a method does
not return a value, the return-value-type is void. The method-name is any valid identifier. The
parameter-list is a comma-separated list containing the declarations of the variables that will be
passed to the method. If a method does not receive any values, parameter-list is empty. The meth-
od body is the set of declarations and statements that constitute the method.

• The arguments passed to a method should match in number, type and order with the parameters in
the method definition.

• When a program encounters a method, control transfers from the point of invocation to the called
method, the method executes and control returns to the caller.

• A called method can return control to the caller in one of three ways. If the method does not return
a value, control returns at the method-ending right brace or by executing the statement

return;

If the method does return a value, the statement

return expression;

returns the value of expression.

• There are three ways to call a method—the method name by itself, a reference to an object fol-
lowed by the dot (.) operator and the method name, and a class name followed by the dot (.) op-
erator and a method name. The last syntax is for static methods of a class.

Chapter 6 Methods 297

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

• An important feature of method definitions is the coercion of arguments. In many cases, argument
values that do not correspond precisely to the parameter types in the method definition are con-
verted to the proper type before the method is called. In some cases, these conversions can lead to
compiler errors if Java’s promotion rules are not followed.

• The promotion rules specify how types can be converted to other types without losing data. The
promotion rules apply to mixed-type expressions. The type of each value in a mixed-type expres-
sion is promoted to the “highest” type in the expression.

• Method Math.random generates a double value from 0.0 up to, but not including, 1.0. Values
produced by Math.random can be scaled and shifted to produce values in a range.

• The general equation for scaling and shifting a random number is

n = a + (int) (Math.random() * b);

where a is the shifting value (the first number in the desired range of consecutive integers) and b
is the scaling factor (the width of the desired range of consecutive integers).

• A class can inherit existing attributes and behaviors (data and methods) from another class speci-
fied to the right of keyword extends in the class definition. In addition, a class can implement
one or more interfaces. An interface specifies one or more behaviors (i.e., methods) that you must
define in your class definition.

• The interface ActionListener specifies that a class must define a method with the first line

public void actionPerformed(ActionEvent actionEvent)

• The task of method actionPerformed is to process a user’s interaction with a GUI component
that generates an action event. This method is called in response to the user interaction (the event).
This process is called event handling. The event handler is the actionPerformed method,
which is called in response to the event. This style of programming is known as event-driven pro-
gramming.

• Keyword final declares constant variables. Constant variables must be initialized before they
are used in a program. Constant variables are often called named constants or read-only variables.

• A JLabel contains a string of characters to be displayed on the screen. Normally, a JLabel in-
dicates the purpose of another GUI element on the screen.

• JTextFields get information from the user or displays information on the screen.

• When the user presses a JButton, the program normally responds by performing a task.

• Container method setLayout defines the layout manager for the applet’s user interface.
Layout managers are provided to arrange GUI components on a Container for presentation pur-
poses.

• FlowLayout is the simplest layout manager. GUI components are placed on a Container
from left to right in the order in which they are attached to the Container with method add.
When the edge of the container is reached, components are continued on the next line.

• Before any event can be processed, each GUI component must know which object in the program
defines the event-handling method that will be called when an event occurs. Method addAc-
tionListener is used to tell a JButton or JTextField that another object is listening for
action events and defines method actionPerformed. This procedure is called registering the
event handler with the GUI component. To respond to an action event, we must define a class that
implements ActionListener and defines method actionPerformed. Also, we must reg-
ister the event handler with the GUI component.

• Method showStatus displays a String in the applet container’s status bar.

298 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

• Each variable identifier has the attributes duration (lifetime) and scope. An identifier’s duration
determines when that identifier exists in memory. An identifier’s scope is where the identifier can
be referenced in a program.

• Identifiers that represent local variables in a method have automatic duration. Automatic-duration
variables are created when program control reaches their declaration; they exist while the block in
which they are declared is active; and they are destroyed when the block in which they are declared
is exited.

• Java also has identifiers of static duration. Variables and references of static duration exist from
the point at which the class in which they are defined is loaded into memory for execution until
the program terminates.

• The scopes for an identifier are class scope and block scope. An instance variable declared outside
any method has class scope. Such an identifier is “known” in all methods of the class. Identifiers
declared inside a block have block scope. Block scope ends at the terminating right brace (}) of
the block.

• Local variables declared at the beginning of a method have block scope, as do method parameters,
which are considered to be local variables of the method.

• Any block may contain variable declarations.

• A recursive method is a method that calls itself, either directly or indirectly.

• If a recursive method is called with a base case, the method returns a result. If the method is called
with a more complex problem, the method divides the problem into two or more conceptual piec-
es: A piece that the method knows how to do and a slightly smaller version of the original problem.
Because this new problem looks like the original problem, the method launches a recursive call to
work on the smaller problem.

• For recursion to terminate, the sequence of smaller and smaller problems must converge to the
base case. When the method recognizes the base case, the result is returned to the previous method
call, and a sequence of returns ensues all the way up the line until the original call of the method
returns the final result.

• Both iteration and recursion are based on a control structure: Iteration uses a repetition structure;
recursion uses a selection structure.

• Both iteration and recursion involve repetition: Iteration explicitly uses a repetition structure; re-
cursion achieves repetition through repeated method calls.

• Iteration and recursion each involve a termination test: Iteration terminates when the loop-contin-
uation condition fails; recursion terminates when a base case is recognized.

• Iteration and recursion can occur infinitely: An infinite loop occurs with iteration if the loop-con-
tinuation test never becomes false; infinite recursion occurs if the recursion step does not reduce
the problem in a manner that converges to the base case.

• Recursion repeatedly invokes the mechanism and, consequently the overhead, of method calls.
This repetition can be expensive in terms of both processor time and memory space.

• The user presses the Enter key while typing in a JTextField to generate an action event. The
event handling for this GUI component is set up like a JButton: Aclass must be defined that im-
plements ActionListener and defines method actionPerformed. Also, the JText-
Field’s addActionListener method must be called to register the event.

• It is possible to define methods with the same name, but different parameter lists. This feature is
called method overloading. When an overloaded method is called, the compiler selects the proper
method by examining the arguments in the call.

• Overloaded methods can have different return values and must have different parameter lists. Two
methods differing only by return type will result in a syntax error.

Chapter 6 Methods 299

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

• The applet’s init method is called once by the applet container when an applet is loaded for ex-
ecution. It performs initialization of an applet. The applet’s start method is called after the
init method completes execution and every time the user of the browser returns to the HTML
page on which the applet resides (after browsing another HTML page).

• The applet’s paint method is called after the init method completes execution and the start
method has started executing to draw on the applet. It is also called every time the applet needs to
be repainted.

• The applet’s stop method is called when the applet should suspend execution—normally, when
the user of the browser leaves the HTML page on which the applet resides.

• The applet’s destroy method is called when the applet is being removed from memory—nor-
mally, when the user of the browser exits the browsing session.

• Method repaint can be called in an applet to cause a fresh call to paint. Method repaint
invokes another method called update and passes it the Graphics object. The update meth-
od invokes the paint method and passes it the Graphics object.

TERMINOLOGY
ActionEvent class Math class methods
ActionListener interface Math.E
actionPerformed method Math.PI
argument in a method call Math.random method
automatic duration method
automatic variable method call
base case in recursion method-call operator, ()
block method declaration
block scope method definition
call a method method overloading
called method mixed-type expression
caller modular program
calling method named constant
class overloading
class scope paint method of JApplet
coercion of arguments parameter in a method definition
constant variable programmer-defined method
copy of a value promotion rules
destroy method of JApplet random-number generation
divide and conquer read-only variable
duration recursion
element of chance recursion step
factorial method recursive call
final recursive method
FlowLayout class reference parameter
init method of JApplet reference types
invoke a method repaint method of JApplet
iteration return
Java API (Java class library) return-value type
JButton class of package javax.swing scaling
JLabel class of package javax.swing scope
JTextField class of package javax.swing setLayout method of JApplet
local variable shifting

300 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

SELF-REVIEW EXERCISES
6.1 Fill in the blanks in each of the following statements:

a) Program modules in Java are called and .
b) A method is invoked with a .
c) A variable known only within the method in which it is defined is called a .
d) The statement in a called method can be used to pass the value of an expres-

sion back to the calling method.
e) The keyword indicates that a method does not return a value.
f) The of an identifier is the portion of the program in which the identifier can

be used.
g) The three ways to return control from a called method to a caller are ,

 and .
h) The method is invoked once when an applet begins execution.
i) The method produces random numbers.
j) The method is invoked each time the user of a browser revisits the HTML

page on which an applet resides.
k) The method is invoked to draw on an applet.
l) Variables declared in a block or in a method’s parameter list are of duration.
m) The method invokes the applet’supdate method, which in turn invokes the

applet’s paint method.
n) The method is invoked for an applet each time the user of a browser leaves

an HTML page on which the applet resides.
o) A method that calls itself either directly or indirectly is a method.
p) A recursive method typically has two components: one that provides a means for the re-

cursion to terminate by testing for a case and one that expresses the problem
as a recursive call for a slightly simpler problem than does the original call.

q) In Java, it is possible to have various methods with the same name that each operate on
different types and/or numbers of arguments. This feature is called method .

r) The qualifier is used to declare read-only variables.

6.2 For the following program, state the scope (either class scope or block scope) of each of the
following elements:

a) the variable x.
b) the variable y.
c) the method cube.
d) the method paint.
e) the variable yPos.

showStatus method of JApplet start method of JApplet
signature static storage duration
simulation stop method of JApplet
software engineering update method of JApplet
software reusability void

1 public class CubeTest extends JApplet {
2 int x;
3
4 public void paint(Graphics g)
5 {
6 int yPos = 25;

Chapter 6 Methods 301

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.3 Write an application that tests if the examples of the math-library method calls shown in
Fig. 6.2 actually produce the indicated results.

6.4 Give the method header for each of the following methods:
a) Method hypotenuse, which takes two double-precision, floating-point arguments

side1 and side2 and returns a double-precision, floating-point result.
b) Method smallest, which takes three integers x, y and z and returns an integer.
c) Method instructions, which does not take any arguments and does not return a val-

ue. [Note: Such methods are commonly used to display instructions to a user.]
d) Method intToFloat, which takes an integer argument number and returns a floating-

point result.

6.5 Find the error in each of the following program segments. Explain how to correct the error.
a) int g() {

 System.out.println("Inside method g");
 int h() {
 System.out.println("Inside method h");
 }
}

b) int sum(int x, int y) {
int result;

 result = x + y;
}

c) int sum(int n) {
if (n == 0)

 return 0;
else

 n + sum(n - 1);
}

d) void f(float a); {
float a;

 System.out.println(a);
}

e) void product() {
int a = 6, b = 5, c = 4, result;

 result = a * b * c;
 System.out.println("Result is " + result);

return result;
}

7
8 for (x = 1; x <= 10; x++) {
9 g.drawString(cube(x), 25, yPos);

10 yPos += 15;
11 }
12 }
13
14 public int cube(int y)
15 {
16 return y * y * y;
17 }
18 }

302 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.6 Write a complete Java applet to prompt the user for the double radius of a sphere, and call
method sphereVolume to calculate and display the volume of that sphere using the assignment

volume = (4.0 / 3.0) * Math.PI * Math.pow(radius, 3)

The user should input the radius through a JTextField.

ANSWERS TO SELF-REVIEW EXERCISES
6.1 a) methods and classes. b) method call. c) local variable. d) return. e) void. f) scope.
g) return; or return expression; or encountering the closing right brace of a method. h) init.
i) Math.random. j) start. k) paint. l) automatic. m) repaint. n) stop. o) recursive.
p) base. q) overloading. r) final.

6.2 a) Class scope. b) Block scope. c) Class scope. d) Class scope. e) Block scope.

6.3 The following solution demonstrates the Math class methods in Fig. 6.2:

1 // Exercise 6.3: MathTest.java
2 // Testing the Math class methods
3
4 public class MathTest {
5 public static void main(String args[])
6 {
7 System.out.println("Math.abs(23.7) = " +
8 Math.abs(23.7));
9 System.out.println("Math.abs(0.0) = " +

10 Math.abs(0.0));
11 System.out.println("Math.abs(-23.7) = " +
12 Math.abs(-23.7));
13 System.out.println("Math.ceil(9.2) = " +
14 Math.ceil(9.2));
15 System.out.println("Math.ceil(-9.8) = " +
16 Math.ceil(-9.8));
17 System.out.println("Math.cos(0.0) = " +
18 Math.cos(0.0));
19 System.out.println("Math.exp(1.0) = " +
20 Math.exp(1.0));
21 System.out.println("Math.exp(2.0) = " +
22 Math.exp(2.0));
23 System.out.println("Math.floor(9.2) = " +
24 Math.floor(9.2));
25 System.out.println("Math.floor(-9.8) = " +
26 Math.floor(-9.8));
27 System.out.println("Math.log(2.718282) = " +
28 Math.log(2.718282));
29 System.out.println("Math.log(7.389056) = " +
30 Math.log(7.389056));
31 System.out.println("Math.max(2.3, 12.7) = v +
32 Math.max(2.3, 12.7));
33 System.out.println("Math.max(-2.3, -12.7) = " +
34 Math.max(-2.3, -12.7));
35 System.out.println("Math.min(2.3, 12.7) = " +
36 Math.min(2.3, 12.7));
37 System.out.println("Math.min(-2.3, -12.7) = " +
38 Math.min(-2.3, -12.7));

Chapter 6 Methods 303

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.4 a) double hypotenuse(double side1, double side2)
b) int smallest(int x, int y, int z)
c) void instructions()
d) float intToFloat(int number)

6.5 a) Error: Method h is defined in method g.
Correction: Move the definition of h outside the definition of g.

b) Error: The method is supposed to return an integer, but does not.
Correction: Delete variable result, and place the statement

return x + y;
in the method, or add the following statement at the end of the method body:

return result;
c) Error: The result of n + sum(n - 1) is not returned by this recursive method, resulting

in a syntax error.
Correction: Rewrite the statement in the else clause as

return n + sum(n - 1);

39 System.out.println("Math.pow(2, 7) = " +
40 Math.pow(2, 7));
41 System.out.println("Math.pow(9, .5) = " +
42 Math.pow(9, .5));
43 System.out.println("Math.sin(0.0) = " +
44 Math.sin(0.0));
45 System.out.println("Math.sqrt(25.0) = " +
46 Math.sqrt(25.0));
47 System.out.println("Math.tan(0.0) = " +
48 Math.tan(0.0));
49 }
50 }

Math.abs(23.7) = 23.7
Math.abs(0.0) = 0
Math.abs(-23.7) = 23.7
Math.ceil(9.2) = 10
Math.ceil(-9.8) = -9
Math.cos(0.0) = 1
Math.exp(1.0) = 2.71828
Math.exp(2.0) = 7.38906
Math.floor(9.2) = 9
Math.floor(-9.8) = -10
Math.log(2.718282) = 1
Math.log(7.389056) = 2
Math.max(2.3, 12.7) = 12.7
Math.max(-2.3, -12.7) = -2.3
Math.min(2.3, 12.7) = 2.3
Math.min(-2.3, -12.7) = -12.7
Math.pow(2, 7) = 128
Math.pow(9, .5) = 3
Math.sin(0.0) = 0
Math.sqrt(25.0) = 5
Math.tan(0.0) = 0

304 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

d) Error: Both the semicolon after the right parenthesis that encloses the parameter list and
redefining the parameter a in the method definition are incorrect.
Correction: Delete the semicolon after the right parenthesis of the parameter list, and de-
lete the declaration float a;.

e) Error: The method returns a value when it is not supposed to.
Correction: Change the return type to int.

6.6 The following solution calculates the volume of a sphere using the radius entered by the user:

1 // Exercise 6.6: SphereTest.java
2
3 // Java core packages
4 import java.awt.*;
5 import java.awt.event.*;
6
7 // Java extension packages
8 import javax.swing.*;
9

10 public class SphereTest extends JApplet
11 implements ActionListener {
12
13 JLabel promptLabel;
14 JTextField inputField;
15
16 public void init()
17 {
18 Container container = getContentPane();
19 container.setLayout(new FlowLayout());
20
21 promptLabel = new JLabel("Enter sphere radius: ");
22 inputField = new JTextField(10);
23 inputField.addActionListener(this);
24 container.add(promptLabel);
25 container.add(inputField);
26 }
27
28 public void actionPerformed(ActionEvent actionEvent)
29 {
30 double radius =
31 Double.parseDouble(actionEvent.getActionCommand());
32
33 showStatus("Volume is " + sphereVolume(radius));
34 }
35
36 public double sphereVolume(double radius)
37 {
38 double volume =
39 (4.0 / 3.0) * Math.PI * Math.pow(radius, 3);
40
41 return volume;
42 }
43 }

Chapter 6 Methods 305

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

EXERCISES
6.7 What is the value of x after each of the following statements is performed?

a) x = Math.abs(7.5);
b) x = Math.floor(7.5);
c) x = Math.abs(0.0);
d) x = Math.ceil(0.0);
e) x = Math.abs(-6.4);
f) x = Math.ceil(-6.4);
g) x = Math.ceil(-Math.abs(-8 + Math.floor(-5.5)));

6.8 A parking garage charges a $2.00 minimum fee to park for up to three hours. The garage
charges an additional $0.50 per hour for each hour or part thereof in excess of three hours. The max-
imum charge for any given 24-hour period is $10.00. Assume that no car parks for longer than 24
hours at a time. Write an applet that calculates and displays the parking charges for each customer
who parked a car in this garage yesterday. You should enter in a JTextField the hours parked for
each customer. The program should display the charge for the current customer and should calculate
and display the running total of yesterday’s receipts. The program should use the method calcu-
lateCharges to determine the charge for each customer.

6.9 An application of method Math.floor is rounding a value to the nearest integer. The state-
ment

y = Math.floor(x + .5);

will round the number x to the nearest integer and assign the result to y. Write an applet that reads
double values and uses the preceding statement to round each of the numbers to the nearest inte-
ger. For each number processed, display both the original number and the rounded number.

6.10 Math.floor may be used to round a number to a specific decimal place. The statement

y = Math.floor(x * 10 + .5) / 10;

rounds x to the tenths position (i.e., the first position to the right of the decimal point). The statement

y = Math.floor(x * 100 + .5) / 100;

rounds x to the hundredths position (i.e., the second position to the right of the decimal point). Write
an applet that defines four methods to round a number x in various ways:

a) roundToInteger(number)
b) roundToTenths(number)
c) roundToHundredths(number)
d) roundToThousandths(number)

For each value read, your program should display the original value, the number rounded to the near-
est integer, the number rounded to the nearest tenth, the number rounded to the nearest hundredth
and the number rounded to the nearest thousandth.

306 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.11 Answer each of the following questions:
a) What does it mean to choose numbers “at random?”
b) Why is the Math.random method useful for simulating games of chance?
c) Why is it often necessary to scale and/or shift the values produced by Math.random?
d) Why is computerized simulation of real-world situations a useful technique?

6.12 Write statements that assign random integers to the variable n in the following ranges:
a) 1 ≤ n ≤ 2
b) 1 ≤ n ≤ 100
c) 0 ≤ n ≤ 9
d) 1000 ≤ n ≤ 1112
e) –1 ≤ n ≤ 1
f) –3 ≤ n ≤ 11

6.13 For each of the following sets of integers, write a single statement that will print a number at
random from the set:

a) 2, 4, 6, 8, 10.
b) 3, 5, 7, 9, 11.
c) 6, 10, 14, 18, 22.

6.14 Write a method integerPower(base, exponent) that returns the value of

base exponent

For example, integerPower(3, 4) calculates 34 (or 3 * 3 * 3 * 3). Assume that exponent
is a positive, nonzero integer and that base is an integer. Method integerPower should use for
or while to control the calculation. Do not use any math library methods. Incorporate this method
into an applet that reads integer values from JTextFields for base and exponent from the
user and performs the calculation with the integerPower method. [Note: Register for event han-
dling on only the second JTextField. The user should interact with the program by typing num-
bers in both JTextFields and pressing Enter only in the second JTextField.]

6.15 Define a method hypotenuse that calculates the length of the hypotenuse of a right trian-
gle when the other two sides are given (sample data appear in Fig. 6.22). The method should take two
arguments of type double and return the hypotenuse as a double. Incorporate this method into an
applet that reads values for side1 and side2 from JTextFields and performs the calculation
with the hypotenuse method. Determine the length of the hypotenuse for each of the following
triangles. [Note: Register for event handling on only the second JTextField. The user should in-
teract with the program by typing numbers in both JTextFields and pressing Enter only in the sec-
ond JTextField.]

Triangle Side 1 Side 2

1 3.0 4.0

2 5.0 12.0

3 8.0 15.0

Fig. 6.22Fig. 6.22Fig. 6.22Fig. 6.22 Values for the sides of triangles in Exercise 6.15.

Chapter 6 Methods 307

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.16 Write a method multiple that determines for a pair of integers whether the second integer
is a multiple of the first. The method should take two integer arguments and return true if the second
is a multiple of the first and false otherwise. Incorporate this method into an applet that inputs a
series of pairs of integers (one pair at a time using JTextFields). [Note: Register for event han-
dling on only the second JTextField. The user should interact with the program by typing num-
bers in both JTextFields and pressing Enter only in the second JTextField.]

6.17 Write a method isEven that uses the modulus operator to determine if an integer is even.
The method should take an integer argument and return true if the integer is even and false oth-
erwise. Incorporate this method into an applet that inputs a series integers (one at a time using a
JTextField).

6.18 Write a method squareOfAsterisks that displays a solid square of asterisks whose side
is specified in integer parameter side. For example, if side is 4, the method displays

Incorporate this method into an applet that reads an integer value for side from the user at the key-
board and performs the drawing with the squareOfAsterisks method. Note that this method
should be called from the applet’s paint method and should be passed the Graphics object from
paint.

6.19 Modify the method created in Exercise 6.18 to form the square out of whatever character is
contained in character parameter fillCharacter. Thus, if side is 5 and fillCharacter is
“#”, the method should print

#####
#####
#####
#####
#####

6.20 Use techniques similar to those developed in Exercise 6.18 and Exercise 6.19 to produce a
program that graphs a wide range of shapes.

6.21 Modify the program of Exercise 6.18 to draw a solid square with the fillRect method of
the Graphics class. Method fillRect receives four arguments: x-coordinate, y-coordinate,
width and height. Allow the user to input the coordinates at which the square should appear.

6.22 Write program segments that accomplish each of the following tasks:
a) Calculate the integer part of the quotient when integer a is divided by integer b.
b) Calculate the integer remainder when integer a is divided by integer b.
c) Use the program pieces developed in parts a) and b) to write a method displayDig-

its that receives an integer between 1 and 99999 and prints it as a series of digits, each
pair of which is separated by two spaces. For example, the integer 4562 should be print-
ed as

4 5 6 2

d) Incorporate the method developed in part c) into an applet that inputs an integer from an
input dialog and invokes displayDigits by passing the method the integer entered.
Display the results in a message dialog.

308 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.23 Implement the following integer methods:
a) Method celsius returns the Celsius equivalent of a Fahrenheit temperature, using the

calculation

C = 5.0 / 9.0 * (F - 32);

b) Method fahrenheit returns the Fahrenheit equivalent of a Celsius temperature, using
the calculation

F = 9.0 / 5.0 * C + 32;

c) Use these methods to write an applet that enables the user to enter either a Fahrenheit
temperature and display the Celsius equivalent or enter a Celsius temperature and display
the Fahrenheit equivalent.

[Note: This applet will require two JTextField objects that have registered action events. When
actionPerformed is invoked, the ActionEvent parameter has method getSource() to
determine the GUI component with which the user interacted. Your actionPerformed method
should contain an if/else structure of the form

if (actionEvent.getSource() == input1) {
// process input1 interaction here

}
else { // e.getSource() == input2

 // process input2 interaction here
}

where input1 and input2 are JTextField references.]

6.24 Write a method minimum3 that returns the smallest of three floating-point numbers. Use the
Math.min method to implement minimum3. Incorporate the method into an applet that reads three
values from the user and determines the smallest value. Display the result in the status bar.

6.25 An integer number is said to be a perfect number if its factors, including 1 (but not the number
itself), sum to the number. For example, 6 is a perfect number, because 6 = 1 + 2 + 3. Write a method
perfect that determines if parameter number is a perfect number. Use this method in an applet
that determines and displays all the perfect numbers between 1 and 1000. Print the factors of each
perfect number to confirm that the number is indeed perfect. Challenge the computing power of your
computer by testing numbers much larger than 1000. Display the results in a JTextArea that has
scrolling functionality.

6.26 An integer is said to be prime if it is divisible only by 1 and itself. For example, 2, 3, 5 and 7
are prime, but 4, 6, 8 and 9 are not.

a) Write a method that determines if a number is prime.
b) Use this method in an applet that determines and prints all the prime numbers between 1

and 10,000. How many of these 10,000 numbers do you really have to test before being
sure that you have found all the primes? Display the results in a JTextArea that has
scrolling functionality.

c) Initially, you might think that n/2 is the upper limit for which you must test to see if a
number is prime, but you need only go as high as the square root of n. Why? Rewrite the
program, and run it both ways. Estimate the performance improvement.

6.27 Write a method that takes an integer value and returns the number with its digits reversed.
For example, given the number 7631, the method should return 1367. Incorporate the method into an
applet that reads a value from the user. Display the result of the method in the status bar.

Chapter 6 Methods 309

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.28 The greatest common divisor (GCD) of two integers is the largest integer that evenly divides
each of the two numbers. Write a method gcd that returns the greatest common divisor of two inte-
gers. Incorporate the method into an applet that reads two values from the user. Display the result of
the method in the status bar.

6.29 Write a method qualityPoints that inputs a student’s average and returns 4 if a student's
average is 90–100, 3 if the average is 80–89, 2 if the average is 70–79, 1 if the average is 60–69 and
0 if the average is lower than 60. Incorporate the method into an applet that reads a value from the
user. Display the result of the method in the status bar.

6.30 Write an applet that simulates coin tossing. Let the program toss a coin each time the user
presses the “Toss” button. Count the number of times each side of the coin appears. Display the re-
sults. The program should call a separate method flip that takes no arguments and returns false
for tails and true for heads. [Note: If the program realistically simulates coin tossing, each side of
the coin should appear approximately half the time.]

6.31 Computers are playing an increasing role in education. Write a program that will help an el-
ementary school student learn multiplication. Use Math.random to produce two positive one-digit
integers. The program should then display a question in the status bar, such as

How much is 6 times 7?

The student then types the answer into a JTextField. Next, the program checks the student's
answer. If it is correct, draw the string "Very good!" on the applet and ask another multiplication
question. If the answer is wrong, draw the string "No. Please try again." on the applet and
let the student try the same question again repeatedly until the student finally gets it right. A separate
method should be used to generate each new question. This method should be called once when the
applet begins execution and each time the user answers the question correctly. All drawing on the
applet should be performed by the paint method.

6.32 The use of computers in education is referred to as computer-assisted instruction (CAI). One
problem that develops in CAI environments is student fatigue. This problem can be eliminated by
varying the computer's dialogue to hold the student's attention. Modify the program of Exercise 6.31
so the various comments are printed for each correct answer and each incorrect answer as follows:

Responses to a correct answer

Very good!
Excellent!
Nice work!
Keep up the good work!

Responses to an incorrect answer

No. Please try again.
Wrong. Try once more.
Don't give up!
No. Keep trying.

Use random-number generation to choose a number from 1 to 4 that will be used to select an
appropriate response to each answer. Use a switch structure in the paint method to issue the
responses.

6.33 More sophisticated computer-aided instruction systems monitor the student’s performance
over a period of time. The decision to begin a new topic is often based on the student’s success with
previous topics. Modify the program of Exercise 6.32 to count the number of correct and incorrect

310 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

responses typed by the student. After the student types 10 answers, your program should calculate the
percentage of correct responses. If the percentage is lower than 75%, print Please ask your in-
structor for extra help and reset the program so another student can try the program.

6.34 Write an applet that plays the “guess the number” game as follows: Your program chooses
the number to be guessed by selecting a random integer in the range 1 to 1000. The applet displays
the prompt Guess a number between 1 and 1000 next to a JTextField. The player types a
first guess into the JTextField and presses the Enter key. If the player's guess is incorrect, your
program should display Too high. Try again. or Too low. Try again. in the status bar to
help the player “zero in” on the correct answer and should clear the JTextField so the user can
enter the next guess. When the user enters the correct answer, display Congratulations. You
guessed the number! in the status bar and clear the JTextField so the user can play again.
[Note: The guessing technique employed in this problem is similar to a binary search.]

6.35 Modify the program of Exercise 6.34 to count the number of guesses the player makes. If the
number is 10 or fewer, print Either you know the secret or you got lucky! If the player
guesses the number in 10 tries, print Aha! You know the secret! If the player makes more than
10 guesses, print You should be able to do better! Why should it take no more than 10
guesses? Well, with each “good guess” the player should be able to eliminate half of the numbers.
Now show why any number from 1 to 1000 can be guessed in 10 or fewer tries.

6.36 Write a recursive method power(base, exponent) that when invoked returns

base exponent

For example, power(3, 4) = 3 * 3 * 3 * 3. Assume that exponent is an integer greater than
or equal to 1. (Hint: The recursion step should use the relationship

base exponent = base · base exponent - 1

and the terminating condition occurs when exponent is equal to 1, because

base1 = base

Incorporate this method into an applet that enables the user to enter the base and exponent.)

6.37 (Towers of Hanoi) Every budding computer scientist must grapple with certain classic prob-
lems, and the Towers of Hanoi (see Fig. 6.23) is one of the most famous. Legend has it that in a temple
in the Far East, priests are attempting to move a stack of disks from one peg to another. The initial
stack has 64 disks threaded onto one peg and arranged from bottom to top by decreasing size. The
priests are attempting to move the stack from this peg to a second peg under the constraints that ex-
actly one disk is moved at a time and at no time may a larger disk be placed above a smaller disk. A
third peg is available for temporarily holding disks. Supposedly, the world will end when the priests
complete their task, so there is little incentive for us to facilitate their efforts.

Let us assume that the priests are attempting to move the disks from peg 1 to peg 3. We wish to
develop an algorithm that will print the precise sequence of peg-to-peg disk transfers.

If we were to approach this problem with conventional methods, we would rapidly find our-
selves hopelessly knotted up in managing the disks. Instead, if we attack the problem with recursion
in mind, it immediately becomes tractable. Moving n disks can be viewed in terms of moving only
n – 1 disks (and hence the recursion) as follows:

a) Move n – 1 disks from peg 1 to peg 2, using peg 3 as a temporary holding area.
b) Move the last disk (the largest) from peg 1 to peg 3.
c) Move the n – 1 disks from peg 2 to peg 3, using peg 1 as a temporary holding area.

The process ends when the last task involves moving n = 1 disk (i.e., the base case). This task is
accomplished by simply moving the disk, without the need for a temporary holding area.

Chapter 6 Methods 311

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Write an applet to solve the Towers of Hanoi problem. Allow the user to enter the number of
disks in a JTextField. Use a recursive tower method with four parameters:

a) the number of disks to be moved,
b) the peg on which these disks are initially threaded,
c) the peg to which this stack of disks is to be moved, and
d) the peg to be used as a temporary holding area.

Your program should display in a JTextArea with scrolling functionality the precise instruc-
tions it will take to move the disks from the starting peg to the destination peg. For example, to move
a stack of three disks from peg 1 to peg 3, your program should print the following series of moves:

1 → 3 (This notation means move one disk from peg 1 to peg 3.)
1 → 2
3 → 2
1 → 3
2 → 1
2 → 3
1 → 3

6.38 Any program that can be implemented recursively can be implemented iteratively, although
sometimes with more difficulty and less clarity. Try writing an iterative version of the Towers of Ha-
noi. If you succeed, compare your iterative version with the recursive version you developed in
Exercise 6.37. Investigate issues of performance, clarity and your ability to demonstrate the correct-
ness of the programs.

6.39 (Visualizing Recursion) It is interesting to watch recursion “in action.” Modify the factorial
method of Fig. 6.12 to print its local variable and recursive-call parameter. For each recursive call,
display the outputs on a separate line, and add a level of indentation. Do your utmost to make the out-
puts clear, interesting and meaningful. Your goal here is to design and implement an output format
that helps a person understand recursion better. You may want to add such display capabilities to the
many other recursion examples and exercises throughout the text.

6.40 The greatest common divisor of integers x and y is the largest integer that evenly divides into
both x and y. Write a recursive method gcd that returns the greatest common divisor of x and y. The
gcd of x and y is defined recursively as follows: If y is equal to 0, then gcd(x, y) is x; otherwise,
gcd(x, y) is gcd(y, x % y), where % is the modulus operator. Use this method to replace the
one you wrote in the applet of Exercise 6.28.

Fig. 6.23Fig. 6.23Fig. 6.23Fig. 6.23 The Towers of Hanoi for the case with four disks.

312 Methods Chapter 6

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6.41 Exercise 6.31 through Exercise 6.33 developed a computer-assisted instruction program to
teach an elementary school student multiplication. This exercise suggests enhancements to that pro-
gram.

a) Modify the program to allow the user to enter a grade-level capability. A grade level of
1 means to use only single-digit numbers in the problems, a grade level of 2 means to use
numbers as large as two digits, etc.

b) Modify the program to allow the user to pick the type of arithmetic problems he or she
wishes to study. An option of 1 means addition problems only, 2 means subtraction prob-
lems only, 3 means multiplication problems only, 4 means division problems only and
5 means to intermix randomly problems of all these types.

6.42 Write method distance, to calculate the distance between two points (x1, y1) and (x2, y2).
All numbers and return values should be of type double. Incorporate this method into an applet that
enables the user to enter the coordinates of the points.

6.43 What does the following method do?

// Parameter b must be a positive
// integer to prevent infinite recursion
public int mystery(int a, int b)
{

if (b == 1)
 return a;

else
 return a + mystery(a, b - 1);
}

6.44 After you determine what the program in Exercise 6.43 does, modify the method to operate
properly after removing the restriction of the second argument being nonnegative. Also, incorporate
the method into an applet that enables the user to enter two integers, and test the method.

6.45 Write an application that tests as many of the math-library methods in Fig. 6.2 as you can.
Exercise each of the methods by having your program print out tables of return values for a diversity
of argument values.

6.46 Find the error in the following recursive method, and explain how to correct it:

public int sum(int n)
{

if (n == 0)
 return 0;

else
 return n + sum(n);
}

6.47 Modify the craps program of Fig. 6.9 to allow wagering. Initialize variable bankBalance
to 1000 dollars. Prompt the player to enter a wager. Check that wager is less than or equal to
bankBalance, and if not, have the user reenter wager until a valid wager is entered. After a cor-
rect wager is entered, run one game of craps. If the player wins, increase bankBalance by wa-
ger, and print the new bankBalance. If the player loses, decrease bankBalance by wager,
print the new bankBalance, check if bankBalance has become zero, and if so, print the mes-
sage "Sorry. You busted!" As the game progresses, print various messages to create some
“chatter,” such as "Oh, you're going for broke, huh?" or "Aw c'mon, take a
chance!" or "You're up big. Now's the time to cash in your chips!". Implement
the “chatter” as a separate method that randomly chooses the string to display.

6.48 Write an applet that uses a method circleArea to prompt the user for the radius of a circle
and to calculate and print the area of that circle.

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7
Arrays

Objectives
• To introduce the array data structure.
• To understand the use of arrays to store, sort and

search lists and tables of values.
• To understand how to declare an array, initialize an

array and refer to individual elements of an array.
• To be able to pass arrays to methods.
• To understand basic sorting techniques.
• To be able to declare and manipulate multiple-

subscript arrays.
With sobs and tears he sorted out
Those of the largest size …
Lewis Carroll

Attempt the end, and never stand to doubt;
Nothing’s so hard, but search will find it out.
Robert Herrick

Now go, write it before them in a table,
and note it in a book.
Isaiah 30:8

‘Tis in my memory lock’d,
And you yourself shall keep the key of it.
William Shakespeare

314 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.1 Introduction
This chapter serves as an introduction to the important topic of data structures. Arrays are
data structures consisting of related data items of the same type. Arrays are “static” entities,
in that they remain the same size once they are created, although an array reference may be
reassigned to a new array of a different size. Chapter 19, “Data Structures,” introduces dy-
namic data structures, such as lists, queues, stacks and trees, that can grow and shrink as
programs execute. Chapter 20, “Java Utilities Package and Bit Manipulation,” discusses
class Vector, which is an array-like class whose objects can grow and shrink in response
to a Java program’s changing storage requirements. Chapter 21, “The Collections API,” in-
troduces Java’s predefined data structures that enable the programmer to use existing data
structures for lists, queues, stacks and trees rather than “reinventing the wheel.” The Col-
lections API also provides class Arrays, which defines a set of utility methods for array
manipulation.

Outline

7.1 Introduction
7.2 Arrays
7.3 Declaring and Allocating Arrays
7.4 Examples Using Arrays

7.4.1 Allocating an Array and Initializing Its Elements
7.4.2 Using an Initializer List to Initialize Elements of an Array
7.4.3 Calculating the Value to Store in Each Array Element
7.4.4 Summing the Elements of an Array
7.4.5 Using Histograms to Display Array Data Graphically
7.4.6 Using the Elements of an Array as Counters
7.4.7 Using Arrays to Analyze Survey Results

7.5 References and Reference Parameters
7.6 Passing Arrays to Methods
7.7 Sorting Arrays
7.8 Searching Arrays: Linear Search and Binary Search

7.8.1 Searching an Array with Linear Search
7.8.2 Searching a Sorted Array with Binary Search

7.9 Multiple-Subscripted Arrays
7.10 (Optional Case Study) Thinking About Objects: Collaboration

Among Objects

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Recursion Exercises • Special Section: Building Your own Computer

Chapter 7 Arrays 315

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.2 Arrays
An array is a group of contiguous memory locations that all have the same name and the
same type. To refer to a particular location or element in the array, we specify the name of
the array and the position number (or index or subscript) of the particular element in the
array.

Figure 7.1 shows an integer array called c. This array contains 12 elements. A program
refers to any one of these elements by giving the name of the array followed by the position
number of the particular element in square brackets ([]). The first element in every array
has position number zero (sometimes called the zeroth element). Thus, the first element of
array c is c[0], the second element of array c is c[1], the seventh element of array c
is c[6], and, in general, the ith element of array c is c[i - 1]. Array names follow the
same conventions as other variable names.

Formally, the position number in square brackets is called a subscript (or an index). A
subscript must be an integer or an integer expression. If a program uses an expression as a
subscript, the program evaluates the expression to determine the subscript. For example, if
we assume that variable a is 5 and that variable b is 6, then the statement

c[a + b] += 2;

adds 2 to array element c[11]. Note that a subscripted array name is an lvalue—it can
be used on the left side of an assignment to place a new value into an array element.

Fig. 7.1Fig. 7.1Fig. 7.1Fig. 7.1 A 12-element array.

c[6]

-45

6

0

72

1543

-89

0

62

-3

1

6453

78

Name of array (Note
that all elements of
this array have the
same name, c)

c[0]

c[1]

c[2]

c[3]

c[11]

c[10]

c[9]

c[8]

c[7]

c[5]

c[4]

Position number (index
or subscript) of the
element within array c

316 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Let us examine array c in Figure 7.1 more closely. The name of the array is c. Every
array in Java knows its own length and maintains this information in a variable called
length. The expression c.length accesses array c’s length variable to determine
the length of the array. The array’s 12 elements are referred to as c[0], c[1], c[2],
…, c[11]. The value of c[0] is -45, the value of c[1] is 6, the value of c[2] is
0, the value of c[7] is 62 and the value of c[11] is 78. To calculate the sum of the
values contained in the first three elements of array c and store the result in variable sum,
we would write

sum = c[0] + c[1] + c[2];

To divide the value of the seventh element of array c by 2 and assign the result to the vari-
able x, we would write

x = c[6] / 2;

Common Programming Error 7.1
It is important to note the difference between the “seventh element of the array” and “array
element seven.” Because array subscripts begin at 0, the “seventh element of the array” has
a subscript of 6, while “array element seven” has a subscript of 7 and is actually the eighth
element of the array. This confusion is a source of “off-by-one” errors. 7.1

The brackets used to enclose the subscript of an array are one of Java’s many operators.
Brackets are in the highest level of precedence in Java. The chart in Fig. 7.2 shows the pre-
cedence and associativity of the operators introduced so far. They are shown top to bottom
in decreasing order of precedence with their associativity and type. See Appendix C for the
complete operator precedence chart.

Operators Associativity Type

() [] . left to right highest

++ -- right to left unary postfix

++ -- + - ! (type) right to left unary

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

& left to right boolean logical AND

^ left to right boolean logical exclusive OR

| left to right boolean logical inclusive OR

&& left to right logical AND

|| left to right logical OR

?: right to left conditional

= += -= *= /= %= right to left assignment

Fig. 7.2Fig. 7.2Fig. 7.2Fig. 7.2 Precedence and associativity of the operators discussed so far.

Chapter 7 Arrays 317

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.3 Declaring and Allocating Arrays
Arrays are objects that occupy space in memory. All objects in Java (including arrays) must
be allocated dynamically with operator new. For an array, the programmer specifies the
type of the array elements and the number of elements as part of the new operation. To al-
locate 12 elements for integer array c in Fig. 7.1, use the declaration

int c[] = new int[12];

The preceding declaration also can be performed in two steps as follows:

int c[]; // declares the array
c = new int[12]; // allocates the array

When allocating an array, each element of the array receives a default value–zero for the
numeric primitive-data-type elements, false for boolean elements or null for refer-
ences (any nonprimitive type).

Common Programming Error 7.2
Unlike array declarations in several other programming languages (such as C and C++),
Java array declarations must not specify the number of array elements in the square brackets
after the array name; otherwise, a syntax error occurs. For example, the declaration
int c[12]; causes a syntax error. 7.2

A program can allocate memory for several arrays with a single declaration. The fol-
lowing declaration reserves 100 elements for String array b and 27 elements for
String array x:

String b[] = new String[100], x[] = new String[27];

When declaring an array, the type of the array and the square brackets can be combined
at the beginning of the declaration to indicate that all identifiers in the declaration represent
arrays, as in

double[] array1, array2;

which declares both array1 and array2 as arrays of double values. As shown previ-
ously, the declaration and initialization of the array can be combined in the declaration. The
following declaration reserves 10 elements for array1 and 20 elements for array2:

double[] array1 = new double[10],
 array2 = new double[20];

A program can declare arrays of any data type. It is important to remember that every
element of a primitive data type array contains one value of the declared data type. For
example, every element of an int array contains an int value. However, in an array of a
nonprimitive type, every element of the array is a reference to an object of the array’s
declared data type. For example, every element of a String array is a reference to a
String. In arrays that store references, the references have the value null by default.

7.4 Examples Using Arrays
This section presents several examples using arrays that demonstrate declaring arrays, al-
locating arrays, initializing arrays and manipulating array elements in various ways. For

318 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

simplicity, the examples in this section use arrays that contain elements of type int. Please
remember that a program can declare an array of any data type.

7.4.1 Allocating an Array and Initializing Its Elements

The application of Figure 7.3 uses operator new to allocate dynamically an array of 10 int
elements, which are initially zero (the default value in an array of type int). The program
displays the array elements in tabular format in a JTextArea.

Line 12 declares array—a reference capable of referring to an array of int ele-
ments. Line 14 allocates the 10 elements of the array with new and initializes the reference.
The program builds its output in the String called output that will be displayed in a
JTextArea on a message dialog. Line 16 appends to output the headings for the col-
umns displayed by the program. The columns represent the subscript for each array element
and the value of each array element, respectively.

Lines 19–20 use a for structure to append the subscript number (represented by
counter) and value of each array element to output. Note the use of zero-based
counting (remember, subscripts start at 0), so that the loop can access every array element.
Also, note the expression array.length in the for structure condition to determine the
length of the array. In this example, the length of the array is 10, so the loop continues exe-
cuting as long as the value of control variable counter is less than 10. For a 10-element
array, the subscript values are 0 through 9, so using the less than operator < guarantees that
the loop does not attempt to access an element beyond the end of the array.

1 // Fig. 7.3: InitArray.java
2 // Creating an array.
3
4 // Java extension packages
5 import javax.swing.*;
6
7 public class InitArray {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 int array[]; // declare reference to an array
13
14 array = new int[10]; // dynamically allocate array
15
16 String output = "Subscript\tValue\n";
17
18 // append each array element's value to String output
19 for (int counter = 0; counter < array.length; counter++)
20 output += counter + "\t" + array[counter] + "\n";
21
22 JTextArea outputArea = new JTextArea();
23 outputArea.setText(output);
24

Fig. 7.3Fig. 7.3Fig. 7.3Fig. 7.3 Initializing the elements of an array to zeros (part 1 of 2).

Chapter 7 Arrays 319

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.4.2 Using an Initializer List to Initialize Elements of an Array
A program can allocate and initialize the elements of an array in the array declaration by
following the declaration with an equal sign and a comma-separated initializer list enclosed
in braces ({ and }). In this case, the array size is determined by the number of elements in
the initializer list. For example, the declaration

int n[] = { 10, 20, 30, 40, 50 };

creates a five-element array with subscripts of 0, 1, 2, 3 and 4. Note that the preceding dec-
laration does not require the new operator to create the array object. When the compiler
encounters an array declaration that includes an initializer list, the compiler counts the num-
ber of initializers in the list and sets up a new operation to allocate the appropriate number
of array elements.

The application of Fig. 7.4 initializes an integer array with 10 values (line 14) and dis-
plays the array in tabular format in a JTextArea on a message dialog. The code for dis-
playing the array elements is identical to that of Fig. 7.3.

25 JOptionPane.showMessageDialog(null, outputArea,
26 "Initializing an Array of int Values",
27 JOptionPane.INFORMATION_MESSAGE);
28
29 System.exit(0);
30 }
31 }

Fig. 7.3Fig. 7.3Fig. 7.3Fig. 7.3 Initializing the elements of an array to zeros (part 2 of 2).

1 // Fig. 7.4: InitArray.java
2 // Initializing an array with a declaration.
3
4 // Java extension packages
5 import javax.swing.*;
6

Fig. 7.4Fig. 7.4Fig. 7.4Fig. 7.4 Initializing the elements of an array with a declaration (part 1 of 2).

320 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.4.3 Calculating the Value to Store in Each Array Element
Some programs calculate the value stored in each array element. The application of Fig. 7.5
initializes the elements of a 10-element array to the even integers from 2 to 20 (2, 4, 6, …,
20) and displays the array in tabular format. The for structure at lines 18–19 generates an
array element’s value by multiplying the current value of counter (the control variable
of the loop) by 2 and adding 2.

7 public class InitArray {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 // initializer list specifies number of elements and
13 // value for each element
14 int array[] = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };
15
16 String output = "Subscript\tValue\n";
17
18 // append each array element's value to String output
19 for (int counter = 0; counter < array.length; counter++)
20 output += counter + "\t" + array[counter] + "\n";
21
22 JTextArea outputArea = new JTextArea();
23 outputArea.setText(output);
24
25 JOptionPane.showMessageDialog(null, outputArea,
26 "Initializing an Array with a Declaration",
27 JOptionPane.INFORMATION_MESSAGE);
28
29 System.exit(0);
30 }
31 }

Fig. 7.4Fig. 7.4Fig. 7.4Fig. 7.4 Initializing the elements of an array with a declaration (part 2 of 2).

Chapter 7 Arrays 321

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

1 // Fig. 7.5: InitArray.java
2 // Initialize array with the even integers from 2 to 20.
3
4 // Java extension packages
5 import javax.swing.*;
6
7 public class InitArray {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 final int ARRAY_SIZE = 10;
13 int array[]; // reference to int array
14
15 array = new int[ARRAY_SIZE]; // allocate array
16
17 // calculate value for each array element
18 for (int counter = 0; counter < array.length; counter++)
19 array[counter] = 2 + 2 * counter;
20
21 String output = "Subscript\tValue\n";
22
23 for (int counter = 0; counter < array.length; counter++)
24 output += counter + "\t" + array[counter] + "\n";
25
26 JTextArea outputArea = new JTextArea();
27 outputArea.setText(output);
28
29 JOptionPane.showMessageDialog(null, outputArea,
30 "Initializing to Even Numbers from 2 to 20",
31 JOptionPane.INFORMATION_MESSAGE);
32
33 System.exit(0);
34 }
35 }

Fig. 7.5Fig. 7.5Fig. 7.5Fig. 7.5 Generating values to be placed into elements of an array.

322 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Line 12 uses the final qualifier to declare constant variable ARRAY_SIZE, whose
value is 10. Remember that constant variables must be initialized before they are used and
cannot be modified thereafter. If an attempt is made to modify a final variable after it is
declared as shown on line 12, the compiler issues a message like

cannot assign a value to final variable variableName

If an attempt is made to use a final variable before it is initialized, the compiler issues
the error message

Variable variableName may not have been initialized

Constant variables also are called named constants or read-only variables. Such vari-
ables often can make programs more readable. Note that the term “constant variable” is an
oxymoron—a contradiction in terms—like “jumbo shrimp” or “freezer burn.”

Common Programming Error 7.3
Assigning a value to a constant variable after the variable has been initialized is a syntax
error. 7.3

7.4.4 Summing the Elements of an Array

Often, the elements of an array represent a series of values to use in a calculation. For ex-
ample, if the elements of an array represent the grades for an exam in a class, the professor
may wish to total the elements of an array, then calculate the class average for the exam.

The application of Fig. 7.6 sums the values contained in the 10-element integer array.
The program declares, allocates and initializes the array at line 12. The for structure at
lines 16–17 performs the calculations. [Note: It is important to remember that the values
being supplied as initializers for array normally would be read into the program. For
example, in an applet the user could enter the values through a JTextField, or in an
application the values could be read from a file on disk (discussed in Chapter 16). Reading
the data into a program makes the program more flexible, because it can be used with dif-
ferent sets of data.]

1 // Fig. 7.6: SumArray.java
2 // Total the values of the elements of an array.
3
4 // Java extension packages
5 import javax.swing.*;
6
7 public class SumArray {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
13 int total = 0;
14

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 Computing the sum of the elements of an array (part 1 of 2).

Chapter 7 Arrays 323

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.4.5 Using Histograms to Display Array Data Graphically
Many programs present data to users in a graphical manner. For example, numeric values
are often displayed as bars in a bar chart. In such a chart, longer bars represent larger nu-
meric values. One simple way to display numeric data graphically is with a histogram that
shows each numeric value as a bar of asterisks (*).

Our next application (Fig. 7.7) reads numbers from an array and graphs the informa-
tion in the form of a bar chart (or histogram). The program displays each number followed
by a bar consisting of that many asterisks. The nested for loop (lines 17–24) appends the
bars to the String that will be displayed in JTextArea outputArea on a message
dialog. Note the loop continuation condition of the inner for structure at line 22
(stars <= array[counter]). Each time the program reaches the inner for struc-
ture, the loop counts from 1 to array[counter], thus using a value in array to deter-
mine the final value of the control variable stars and the number of asterisks to display.

15 // add each element's value to total
16 for (int counter = 0; counter < array.length; counter++)
17 total += array[counter];
18
19 JOptionPane.showMessageDialog(null,
20 "Total of array elements: " + total,
21 "Sum the Elements of an Array",
22 JOptionPane.INFORMATION_MESSAGE);
23
24 System.exit(0);
25 }
26 }

1 // Fig. 7.7: Histogram.java
2 // Histogram printing program.
3
4 // Java extension packages
5 import javax.swing.*;
6
7 public class Histogram {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 int array[] = { 19, 3, 15, 7, 11, 9, 13, 5, 17, 1 };
13
14 String output = "Element\tValue\tHistogram";

Fig. 7.7Fig. 7.7Fig. 7.7Fig. 7.7 A program that prints histograms (part 1 of 2).

Fig. 7.6Fig. 7.6Fig. 7.6Fig. 7.6 Computing the sum of the elements of an array (part 2 of 2).

324 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.4.6 Using the Elements of an Array as Counters
Sometimes programs use a series of counter variables to summarize data, such as the results
of a survey. In Chapter 6, we used a series of counters in our die-rolling program to track
the number of occurrences of each side on a six-sided die as the program rolled the die 6000
times. We also indicated that there is a more elegant method of writing the program of
Fig. 6.8. An array version of this application is shown in Fig. 7.8.

15
16 // for each array element, output a bar in histogram
17 for (int counter = 0; counter < array.length; counter++) {
18 output +=
19 "\n" + counter + "\t" + array[counter] + "\t";
20
21 // print bar of asterisks
22 for (int stars = 0; stars < array[counter]; stars++)
23 output += "*";
24 }
25
26 JTextArea outputArea = new JTextArea();
27 outputArea.setText(output);
28
29 JOptionPane.showMessageDialog(null, outputArea,
30 "Histogram Printing Program",
31 JOptionPane.INFORMATION_MESSAGE);
32
33 System.exit(0);
34 }
35 }

1 // Fig. 7.8: RollDie.java
2 // Roll a six-sided die 6000 times
3
4 // Java extension packages
5 import javax.swing.*;
6

Fig. 7.8Fig. 7.8Fig. 7.8Fig. 7.8 Die-rolling program using arrays instead of switch (part 1 of 2).

Fig. 7.7Fig. 7.7Fig. 7.7Fig. 7.7 A program that prints histograms (part 2 of 2).

Chapter 7 Arrays 325

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The program uses the seven-element array frequency to count the occurrences of
each side of the die. This program replaces lines 20–46 of Fig. 6.8 with line 19 of this pro-
gram. Line 19 uses the random face value as the subscript for array frequency to deter-
mine which element the program should increment during each iteration of the loop. Since
the random number calculation on line 19 produces numbers from 1 to 6 (the values for a
six-sided die), the frequency array must be large enough to store six counters. However,
in this program, we chose to use a seven-element array. We ignore the first array element,
frequency[0], because it is more logical to have the face value 1 increment

7 public class RollDie {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 int face, frequency[] = new int[7];
13
14 // roll die 6000 times
15 for (int roll = 1; roll <= 6000; roll++) {
16 face = 1 + (int) (Math.random() * 6);
17
18 // use face value as subscript for frequency array
19 ++frequency[face];
20 }
21
22 String output = "Face\tFrequency";
23
24 // append frequencies to String output
25 for (face = 1; face < frequency.length; face++)
26 output += "\n" + face + "\t" + frequency[face];
27
28 JTextArea outputArea = new JTextArea();
29 outputArea.setText(output);
30
31 JOptionPane.showMessageDialog(null, outputArea,
32 "Rolling a Die 6000 Times",
33 JOptionPane.INFORMATION_MESSAGE);
34
35 System.exit(0);
36 }
37 }

Fig. 7.8Fig. 7.8Fig. 7.8Fig. 7.8 Die-rolling program using arrays instead of switch (part 2 of 2).

326 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

frequency[1] than frequency[0]. This allows us to use each face value directly
as a subscript for the frequency array.

Good Programming Practice 7.1
Strive for program clarity. It is sometimes worthwhile to trade off the most efficient use of
memory or processor time in favor of writing clearer programs. 7.1

Performance Tip 7.1
Sometimes performance considerations far outweigh clarity considerations. 7.1

Also, lines 25–26 of this program replace lines 52–55 from Fig. 6.8. We can loop
through array frequency, so we do not have to enumerate each line of text to display in
the JTextArea as we did in Fig. 6.8.

7.4.7 Using Arrays to Analyze Survey Results

Our next example uses arrays to summarize the results of data collected in a survey. Con-
sider the problem statement:

Forty students were asked to rate the quality of the food in the student cafeteria on a scale of
1 to 10 (1 means awful and 10 means excellent). Place the 40 responses in an integer array
and summarize the results of the poll.

This is a typical array processing application (see Fig. 7.9). We wish to summarize the
number of responses of each type (i.e., 1 through 10). The array responses is a 40-ele-
ment integer array of the students’ responses to the survey. We use an 11-element array
frequency to count the number of occurrences of each response. As in Fig. 7.8, we
ignore the first element (frequency[0]) because it is more logical to have the response
1 increment frequency[1] than frequency[0]. This allows us to use each
response directly as a subscript on the frequency array. Each element of the array is used
as a counter for one of the survey responses.

1 // Fig. 7.9: StudentPoll.java
2 // Student poll program
3
4 // Java extension packages
5 import javax.swing.*;
6
7 public class StudentPoll {
8
9 // main method begins execution of Java application

10 public static void main(String args[])
11 {
12 int responses[] = { 1, 2, 6, 4, 8, 5, 9, 7, 8, 10,
13 1, 6, 3, 8, 6, 10, 3, 8, 2, 7,
14 6, 5, 7, 6, 8, 6, 7, 5, 6, 6,
15 5, 6, 7, 5, 6, 4, 8, 6, 8, 10 };
16 int frequency[] = new int[11];
17

Fig. 7.9Fig. 7.9Fig. 7.9Fig. 7.9 A simple student-poll analysis program (part 1 of 2).

Chapter 7 Arrays 327

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The for loop (lines 21–22) takes the responses one at a time from array responses
and increments one of the 10 counters in the frequency array (frequency[1] to
frequency[10]). The key statement in the loop is line 22, which increments the appro-
priate frequency counter, depending on the value of responses[answer].

Let’s consider several iterations of the for loop. When counter answer is 0,
responses[answer] is the value of the first element of array responses (i.e., 1),
so the program interprets ++frequency[responses[answer]]; as

++frequency[1];

which increments the value in array element one. To evaluate the expression, start with the
value in the innermost set of square brackets (answer). Once you know the value of an-
swer, plug that value into the expression and evaluate the next outer set of square brackets

18 // for each answer, select value of an element of
19 // responses array and use that value as subscript in
20 // frequency array to determine element to increment
21 for (int answer = 0; answer < responses.length; answer++)
22 ++frequency[responses[answer]];
23
24 String output = "Rating\tFrequency\n";
25
26 // append frequencies to String output
27 for (int rating = 1; rating < frequency.length; rating++)
28 output += rating + "\t" + frequency[rating] + "\n";
29
30 JTextArea outputArea = new JTextArea();
31 outputArea.setText(output);
32
33 JOptionPane.showMessageDialog(null, outputArea,
34 "Student Poll Program",
35 JOptionPane.INFORMATION_MESSAGE);
36
37 System.exit(0);
38 }
39 }

Fig. 7.9Fig. 7.9Fig. 7.9Fig. 7.9 A simple student-poll analysis program (part 2 of 2).

328 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

(responses[answer]). Then, use that value as the subscript for the frequency ar-
ray to determine which counter to increment.

When answer is 1, responses[answer] is the value of responses’ second
element (2), so the program interprets ++frequency[responses[answer]]; as

++frequency[2];

which increments array element two (the third element of the array).
When answer is 2, responses[answer] is the value of responses’ third ele-

ment (6), so the program interprets ++frequency[responses[answer]]; as

++frequency[6];

which increments array element six (the seventh element of the array), and so on. Regard-
less of the number of responses processed in the survey, the program requires only an 11-
element array (ignoring element zero) to summarize the results, because all the response
values are between 1 and 10 and the subscript values for an 11-element array are 0 through
10. Also, note that the summarized results are correct, because the elements of array fre-
quency were initialized to zero when the array was allocated with new.

If the data contained invalid values, such as 13, the program would attempt to add 1 to
frequency[13]. This is outside the bounds of the array. In the C and C++ program-
ming languages, such a reference would be allowed by the compiler and at execution time.
The program would “walk” past the end of the array to where it thought element number
13 was located and add 1 to whatever happened to be at that location in memory. This could
potentially modify another variable in the program or even result in premature program ter-
mination. Java provides mechanisms to prevent accessing elements outside the bounds of
the array.

Common Programming Error 7.4
Referring to an element outside the array bounds is a logic error. 7.4

Testing and Debugging Tip 7.1
When a Java program executes, the Java interpreter checks array element subscripts to be
sure they are valid (i.e., all subscripts must be greater than or equal to 0 and less than the
length of the array). If there is an invalid subscript, Java generates an exception. 7.1

Testing and Debugging Tip 7.2
Exceptions indicate that an error occurred in a program. A programmer can write code to
recover from an exception and continue program execution instead of abnormally terminat-
ing the program. When an invalid array reference occurs, Java generates an Array-
IndexOutOfBoundsException. Chapter 14 covers exception handling in detail. 7.2

Testing and Debugging Tip 7.3
When looping through an array, the array subscript should never go below 0 and should al-
ways be less than the total number of elements in the array (one less than the size of the ar-
ray). The loop terminating condition should prevent accessing elements outside this range. 7.3

Testing and Debugging Tip 7.4
Programs should validate all input values to prevent erroneous information from affecting a
program’s calculations. 7.4

Chapter 7 Arrays 329

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.5 References and Reference Parameters
Two ways to pass arguments to methods (or functions) in many programming languages
(like C and C++) are pass-by-value and pass-by-reference (also called call-by-value and
call-by-reference). When an argument is passed by value, a copy of the argument’s value
is made and passed to the called method.

Testing and Debugging Tip 7.5
With pass-by-value, changes to the called method’s copy do not affect the original variable’s
value in the calling method. This prevents the accidental side effects that so greatly hinder
the development of correct and reliable software systems. 7.5

When an argument is passed by reference, the caller gives the called method the ability
to access the caller’s data directly and to modify that data if the called method so chooses.
Pass-by-reference improves performance, because it eliminates the overhead of copying
large amounts of data.

Software Engineering Observation 7.1
Unlike other languages, Java does not allow the programmer to choose whether to pass
each argument by value or by reference. Primitive data type variables are always passed
by value. Objects are not passed to methods; rather, references to objects are passed to
methods. The references themselves are passed by value—a copy of a reference is passed
to a method. When a method receives a reference to an object, the method can manipulate
the object directly. 7.1

Software Engineering Observation 7.2
When returning information from a method via a return statement, primitive-data-type
variables are always returned by value (i.e., a copy is returned) and objects are always re-
turned by reference (i.e., a reference to the object is returned). 7.2

To pass a reference to an object into a method, simply specify the reference name in
the method call. Mentioning the reference by its parameter name in the body of the called
method actually refers to the original object in memory, and the original object can be
accessed directly by the called method.

Arrays are treated as objects by Java; therefore, arrays are passed to methods by refer-
ence—a called method can access the elements of the caller’s original arrays. The name of
an array is actually a reference to an object that contains the array elements and the
length instance variable, which indicates the number of elements in the array. In the next
section, we demonstrate pass-by-value and pass-by-reference using arrays.

Performance Tip 7.2
Passing arrays by reference makes sense for performance reasons. If arrays were passed by
value, a copy of each element would be passed. For large, frequently passed arrays, this
would waste time and would consume considerable storage for the copies of the arrays. 7.2

7.6 Passing Arrays to Methods
To pass an array argument to a method, specify the name of the array without any brackets.
For example, if array hourlyTemperatures is declared as

int hourlyTemperatures[] = new int[24];

330 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

the method call

modifyArray(hourlyTemperatures);

passes array hourlyTemperatures to method modifyArray. In Java, every array
object “knows” its own size (via the length instance variable). Thus, when we pass an
array object into a method, we are not required to pass the size of the array as an additional
argument.

Although entire arrays and objects referred to by individual elements of a nonprimi-
tive-type array are passed by reference, individual array elements of primitive data types
are passed by value exactly as simple variables are. Such simple single pieces of data are
called scalars or scalar quantities. To pass an array element to a method, use the sub-
scripted name of the array element as an argument in the method call.

For a method to receive an array through a method call, the method’s parameter list
must specify an array parameter (or several if more than one array is to be received). For
example, the method header for method modifyArray might be written as

void modifyArray(int b[])

indicating that modifyArray expects to receive an integer array in parameter b. Since
arrays are passed by reference, when the called method uses the array name b, it refers to
the actual array in the caller (array hourlyTemperatures in the preceding call).

The applet of Fig. 7.10 demonstrates the difference between passing an entire array
and passing an array element. Once again, we use an applet here, because we have not yet
defined an application that contains methods other than main. We are still taking advan-
tage of some of the features provided for free in an applet (such as the automatic creation
of an applet object and the automatic calls to init, start and paint by the applet con-
tainer). In Chapter 9, Object-Oriented Programming, we introduce applications that exe-
cute in their own windows. At that point, we will begin to see application classes containing
several methods.

Lines 15–17 in method init define the JTextArea called outputArea and attach
it to the applet’s content pane. The for structure at lines 26–27 appends the five elements of
array (an array of int values) to the String called output. Line 29 invokes method
modifyArray and passes it array as an argument. Method modifyArray (lines 50–
54) multiplies each element by 2. To illustrate that array’s elements were modified, the
for structure at lines 34–35 appends the five elements of array to output again. As the
screen capture shows, method modifyArray did change the value of each element.

1 // Fig. 7.10: PassArray.java
2 // Passing arrays and individual array elements to methods
3
4 // Java core packages
5 import java.awt.Container;
6
7 // Java extension packages
8 import javax.swing.*;
9

Fig. 7.10Fig. 7.10Fig. 7.10Fig. 7.10 Passing arrays and individual array elements to methods (part 1 of 3).

Chapter 7 Arrays 331

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

10 public class PassArray extends JApplet {
11
12 // initialize applet
13 public void init()
14 {
15 JTextArea outputArea = new JTextArea();
16 Container container = getContentPane();
17 container.add(outputArea);
18
19 int array[] = { 1, 2, 3, 4, 5 };
20
21 String output =
22 "Effects of passing entire array by reference:\n" +
23 "The values of the original array are:\n";
24
25 // append original array elements to String output
26 for (int counter = 0; counter < array.length; counter++)
27 output += " " + array[counter];
28
29 modifyArray(array); // array passed by reference
30
31 output += "\n\nThe values of the modified array are:\n";
32
33 // append modified array elements to String output
34 for (int counter = 0; counter < array.length; counter++)
35 output += " " + array[counter];
36
37 output += "\n\nEffects of passing array " +
38 "element by value:\n" +
39 "a[3] before modifyElement: " + array[3];
40
41 // attempt to modify array[3]
42 modifyElement(array[3]);
43
44 output += "\na[3] after modifyElement: " + array[3];
45 outputArea.setText(output);
46
47 } // end method init
48
49 // multiply each element of an array by 2
50 public void modifyArray(int array2[])
51 {
52 for (int counter = 0; counter < array2.length; counter++)
53 array2[counter] *= 2;
54 }
55
56 // multiply argument by 2
57 public void modifyElement(int element)
58 {
59 element *= 2;
60 }
61
62 } // end class PassArray

Fig. 7.10Fig. 7.10Fig. 7.10Fig. 7.10 Passing arrays and individual array elements to methods (part 2 of 3).

332 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Next, the program demonstrates that individual elements of primitive-type arrays are
passed to methods by value. To show the value of array[3] before calling method
modifyElement, lines 37–39 append the value of array[3] (and other information)
to output. Line 42 invokes method modifyElement and passes array[3] as an
argument. Remember that array[3] is actually one int value in array. Also,
remember that values of primitive types are passed to methods by value. Therefore, the pro-
gram passes a copy of array[3]. Method modifyElement multiplies its argument
by 2 and stores the result in its parameter element. Method parameters are local vari-
ables, so when modifyElement terminates, the local variable element is destroyed.
Thus, when the program returns control to init, line 44 appends the unmodified value of
array[3] output. Line 45 displays the results in the JTextArea.

7.7 Sorting Arrays
Sorting data (i.e., placing the data into some particular order such as ascending or descending)
is one of the most important computing applications. A bank sorts all checks by account num-
ber so that it can prepare individual bank statements at the end of each month. Telephone
companies sort their lists of accounts by last name and, within that, by first name, to make it
easy to find phone numbers. Virtually every organization must sort some data and in many
cases massive amounts of data. Sorting data is an intriguing problem that has attracted some
of the most intense research efforts in the field of computer science. In this chapter, we discuss
one of the simplest sorting schemes. In the exercises in this chapter, Chapter 19 and
Chapter 21, we investigate more complex schemes that yield superior performance.

Performance Tip 7.3
Sometimes, the simplest algorithms perform poorly. Their virtue is that they are easy to pro-
gram, test and debug. Sometimes, more complex algorithms are required to realize maximum
performance. 7.3

Figure 7.11 sorts the values of array (a the 10-element array of int values) into
ascending order. The technique we use is called the bubble sort or the sinking sort, because
the smaller values gradually “bubble” their way to the top of the array (i.e., toward the first
element) like air bubbles rising in water, while the larger values sink to the bottom (end) of
the array. The technique uses nested loops to make several passes through the array. Each
pass compares successive pairs of elements. If a pair is in increasing order (or the values

Fig. 7.10Fig. 7.10Fig. 7.10Fig. 7.10 Passing arrays and individual array elements to methods (part 3 of 3).

Chapter 7 Arrays 333

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

are equal), the bubble sort leaves the values as they are. If a pair is in decreasing order, the
bubble sort swaps their values in the array. The applet contains methods init, bubble-
Sort and swap. Method init (lines 13–36) initializes the applet. Method bubble-
Sort (lines 39–58) is called from init to sort the elements of array. Method
bubbleSort calls method swap (lines 61–68) as necessary to exchange two elements of
the array.

Lines 24–25 append the original values of array to the String called output.
Line 27 invokes method bubbleSort and passes array as the array to sort.

Method bubbleSort receives the array as parameter array2. The nested for
structure at lines 42–56 performs the sort. The outer loop controls the number of passes of
the array. The inner loop controls the comparisons and swapping (if necessary) of the ele-
ments during each pass.

1 // Fig. 7.11: BubbleSort.java
2 // Sort an array's values into ascending order.
3
4 // Java core packages
5 import java.awt.*;
6
7 // Java extension packages
8 import javax.swing.*;
9

10 public class BubbleSort extends JApplet {
11
12 // initialize applet
13 public void init()
14 {
15 JTextArea outputArea = new JTextArea();
16 Container container = getContentPane();
17 container.add(outputArea);
18
19 int array[] = { 2, 6, 4, 8, 10, 12, 89, 68, 45, 37 };
20
21 String output = "Data items in original order\n";
22
23 // append original array values to String output
24 for (int counter = 0; counter < array.length; counter++)
25 output += " " + array[counter];
26
27 bubbleSort(array); // sort array
28
29 output += "\n\nData items in ascending order\n";
30
31 // append sorted\ array values to String output
32 for (int counter = 0; counter < array.length; counter++)
33 output += " " + array[counter];
34
35 outputArea.setText(output);
36 }
37

Fig. 7.11Fig. 7.11Fig. 7.11Fig. 7.11 Sorting an array with bubble sort (part 1 of 2).

334 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Method bubbleSort first compares array2[0] to array2[1], then
array2[1] to array2[2], then array2[2] to array2[3]so on until it com-
pletes the pass by comparing array2[8] to array2[9]. Although there are 10 ele-
ments, the comparison loop performs only nine comparisons. The comparisons performed
in a bubble sort could cause a large value to move down the array (sink) many positions on
a single pass. However, a small value may move up (bubble) only one position per pass. On
the first pass, the largest value is guaranteed to sink to the bottom element of the array,

38 // sort elements of array with bubble sort
39 public void bubbleSort(int array2[])
40 {
41 // loop to control number of passes
42 for (int pass = 1; pass < array2.length; pass++) {
43
44 // loop to control number of comparisons
45 for (int element = 0;
46 element < array2.length - 1;
47 element++) {
48
49 // compare side-by-side elements and swap them if
50 // first element is greater than second element
51 if (array2[element] > array2[element + 1])
52 swap(array2, element, element + 1);
53
54 } // end loop to control comparisons
55
56 } // end loop to control passes
57
58 } // end method bubbleSort
59
60 // swap two elements of an array
61 public void swap(int array3[], int first, int second)
62 {
63 int hold; // temporary holding area for swap
64
65 hold = array3[first];
66 array3[first] = array3[second];
67 array3[second] = hold;
68 }
69
70 } // end class BubbleSort

Fig. 7.11Fig. 7.11Fig. 7.11Fig. 7.11 Sorting an array with bubble sort (part 2 of 2).

Chapter 7 Arrays 335

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

array2[9]. On the second pass, the second largest value is guaranteed to sink to
array2[8]. On the ninth pass, the ninth largest value sinks to array2[1]. This
leaves the smallest value in array2[0], so only nine passes are required to sort a 10-
element array.

If a comparison reveals that the two elements are in descending order, bubbleSort
calls method swap to exchange the two elements, so they will be in ascending order in the
array. Method swap receives a reference to the array (which it calls array3) and two inte-
gers representing the subscripts of the two elements of the array to exchange. The exchange
is performed by the three assignments

hold = array3[first];
array3[first] = array3[second];
array3[second] = hold;

where the extra variable hold temporarily stores one of the two values being swapped. The
swap cannot be performed with only the two assignments

array3[first] = array3[second];
array3[second] = array3[first];

If array3[first] is 7 and array3[second] is 5, after the first assignment both
array elements contain 5 and the value 7 is lost, hence the need for the extra variable hold.

The chief virtue of the bubble sort is that it is easy to program. However, the bubble
sort runs slowly. This becomes apparent when sorting large arrays. In Exercise 7.11, we ask
you to develop more efficient versions of the bubble sort. Other exercises investigate some
sorting algorithms that are far more efficient than the bubble sort. More advanced courses
(often titled “Data Structures,” “Algorithms” or “Computational Complexity”) investigate
sorting and searching in greater depth.

7.8 Searching Arrays: Linear Search and Binary Search
Often, a programmer will be working with large amounts of data stored in arrays. It may be
necessary to determine whether an array contains a value that matches a certain key value.
The process of locating a particular element value in an array is called searching. In this
section, we discuss two searching techniques—the simple linear search technique and the
more efficient binary search technique. Exercise 7.31 and Exercise 7.32 at the end of this
chapter ask you to implement recursive versions of the linear search and the binary search.

7.8.1 Searching an Array with Linear Search

In the applet of Fig. 7.12, method linearSearch (defined at lines 52–62) uses a for
structure (lines 55–59) containing an if structure to compare each element of an array with
a search key. If the search key is found, the method returns the subscript value for the ele-
ment to indicate the exact position of the search key in the array. If the search key is not
found, the method returns –1 to indicate that the search key was not found. We return –1
because it is not a valid subscript number. If the array being searched is not in any particular
order, it is just as likely that the search key will be found in the first element as the last. On
average, therefore, the program will have to compare the search key with half the elements
of the array.

336 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Figure 7.12 contains a 100-element array filled with the even integers from 0 to 198.
The user types the search key in a JTextField and presses Enter to start the search.
[Note: We pass the array to linearSearch even though the array is an instance variable
of the class. We do this because an array normally is passed to a method of another class
for sorting. For example, class Arrays (see Chapter 21) contains a variety of static
methods for sorting arrays, searching arrays, comparing the contents of arrays and filling
arrays of all the primitive types, Objects and Strings.]

1 // Fig. 7.12: LinearSearch.java
2 // Linear search of an array
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class LinearSearch extends JApplet
12 implements ActionListener {
13
14 JLabel enterLabel, resultLabel;
15 JTextField enterField, resultField;
16 int array[];
17
18 // set up applet's GUI
19 public void init()
20 {
21 // get content pane and set its layout to FlowLayout
22 Container container = getContentPane();
23 container.setLayout(new FlowLayout());
24
25 // set up JLabel and JTextField for user input
26 enterLabel = new JLabel("Enter integer search key");
27 container.add(enterLabel);
28
29 enterField = new JTextField(10);
30 container.add(enterField);
31
32 // register this applet as enterField's action listener
33 enterField.addActionListener(this);
34
35 // set up JLabel and JTextField for displaying results
36 resultLabel = new JLabel("Result");
37 container.add(resultLabel);
38
39 resultField = new JTextField(20);
40 resultField.setEditable(false);
41 container.add(resultField);
42
43 // create array and populate with even integers 0 to 198
44 array = new int[100];

Fig. 7.12Fig. 7.12Fig. 7.12Fig. 7.12 Linear search of an array (part 1 of 2).

Chapter 7 Arrays 337

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The linear search method works well for small arrays or for unsorted arrays. However,
for large arrays, linear searching is inefficient. If the array is sorted, the high-speed binary
search technique presented in the next section can be used.

45
46 for (int counter = 0; counter < array.length; counter++)
47 array[counter] = 2 * counter;
48
49 } // end method init
50
51 // Search array for specified key value
52 public int linearSearch(int array2[], int key)
53 {
54 // loop through array elements
55 for (int counter = 0; counter < array2.length; counter++)
56
57 // if array element equals key value, return location
58 if (array2[counter] == key)
59 return counter;
60
61 return -1; // key not found
62 }
63
64 // obtain user input and call method linearSearch
65 public void actionPerformed(ActionEvent actionEvent)
66 {
67 // input also can be obtained with enterField.getText()
68 String searchKey = actionEvent.getActionCommand();
69
70 // Array a is passed to linearSearch even though it
71 // is an instance variable. Normally an array will
72 // be passed to a method for searching.
73 int element =
74 linearSearch(array, Integer.parseInt(searchKey));
75
76 // display search result
77 if (element != -1)
78 resultField.setText("Found value in element " +
79 element);
80 else
81 resultField.setText("Value not found");
82 }
83
84 } // end class LinearSearch

Fig. 7.12Fig. 7.12Fig. 7.12Fig. 7.12 Linear search of an array (part 2 of 2).

338 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.8.2 Searching a Sorted Array with Binary Search
The binary search algorithm eliminates half of the elements in the array being searched af-
ter each comparison. The algorithm locates the middle array element and compares it to the
search key. If they are equal, the search key has been found and binary search returns the
subscript of that element. Otherwise, binary search reduces the problem to searching half
of the array. If the search key is less than the middle array element, the first half of the array
will be searched; otherwise, the second half of the array will be searched. If the search key
is not the middle element in the specified subarray (piece of the original array), the algo-
rithm repeats on one quarter of the original array. The search continues until the search key
is equal to the middle element of a subarray or until the subarray consists of one element
that is not equal to the search key (i.e., the search key is not found).

In a worst-case scenario, searching a sorted array of 1024 elements will take only 10
comparisons using a binary search. Repeatedly dividing 1024 by 2 (because after each com-
parison we are able to eliminate half of the array) yields the values 512, 256, 128, 64, 32,
16, 8, 4, 2 and 1. The number 1024 (210) is divided by 2 only ten times to get the value 1.
Dividing by 2 is equivalent to one comparison in the binary search algorithm. An array of
1,048,576 (220) elements takes a maximum of 20 comparisons to find the key. An array of
one billion elements takes a maximum of 30 comparisons to find the key. This is a tremen-
dous increase in performance over the linear search that required comparing the search key
to an average of half the elements in the array. For a one-billion-element array, this is a dif-
ference between an average of 500 million comparisons and a maximum of 30 compari-
sons! The maximum number of comparisons needed for the binary search of any sorted
array is the exponent of the first power of 2 greater than the number of elements in the array.

Figure 7.13 presents the iterative version of method binarySearch (lines 85–116).
The method receives two arguments—an integer array called array2 (the array to search)
and an integer key (the search key). The program passes the array to binarySearch
even though the array is an instance variable of the class. Once again, we do this because
an array normally is passed to a method of another class for sorting. If key matches the
middle element of a subarray, binarySearch returns middle (the subscript of the
current element) to indicate that the value was found and the search is complete. If key
does not match the middle element of a subarray, binarySearch adjusts the low sub-
script or high subscript (both declared in the method), to continue the search using a
smaller subarray. If key is less than the middle element, the high subscript is set to
middle - 1 and the search continues on the elements from low to middle - 1. If key
is greater than the middle element, the low subscript is set to middle + 1 and the search
continues on the elements from middle + 1 to high. Method binarySearch performs
these comparisons in the nested if/else structure at lines 102–111.

1 // Fig. 7.13: BinarySearch.java
2 // Binary search of an array
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.text.*;

Fig. 7.13Fig. 7.13Fig. 7.13Fig. 7.13 Binary search of a sorted array (part 1 of 5)

Chapter 7 Arrays 339

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class BinarySearch extends JApplet
13 implements ActionListener {
14
15 JLabel enterLabel, resultLabel;
16 JTextField enterField, resultField;
17 JTextArea output;
18
19 int array[];
20 String display = "";
21
22 // set up applet's GUI
23 public void init()
24 {
25 // get content pane and set its layout to FlowLayout
26 Container container = getContentPane();
27 container.setLayout(new FlowLayout());
28
29 // set up JLabel and JTextField for user input
30 enterLabel = new JLabel("Enter integer search key");
31 container.add(enterLabel);
32
33 enterField = new JTextField(10);
34 container.add(enterField);
35
36 // register this applet as enterField's action listener
37 enterField.addActionListener(this);
38
39 // set up JLabel and JTextField for displaying results
40 resultLabel = new JLabel("Result");
41 container.add(resultLabel);
42
43 resultField = new JTextField(20);
44 resultField.setEditable(false);
45 container.add(resultField);
46
47 // set up JTextArea for displaying comparison data
48 output = new JTextArea(6, 60);
49 output.setFont(new Font("Monospaced", Font.PLAIN, 12));
50 container.add(output);
51
52 // create array and fill with even integers 0 to 28
53 array = new int[15];
54
55 for (int counter = 0; counter < array.length; counter++)
56 array[counter] = 2 * counter;
57
58 } // end method init
59

Fig. 7.13Fig. 7.13Fig. 7.13Fig. 7.13 Binary search of a sorted array (part 2 of 5)

340 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

60 // obtain user input and call method binarySearch
61 public void actionPerformed(ActionEvent actionEvent)
62 {
63 // input also can be obtained with enterField.getText()
64 String searchKey = actionEvent.getActionCommand();
65
66 // initialize display string for new search
67 display = "Portions of array searched\n";
68
69 // perform binary search
70 int element =
71 binarySearch(array, Integer.parseInt(searchKey));
72
73 output.setText(display);
74
75 // display search result
76 if (element != -1)
77 resultField.setText(
78 "Found value in element " + element);
79 else
80 resultField.setText("Value not found");
81
82 } // end method actionPerformed
83
84 // method to perform binary search of an array
85 public int binarySearch(int array2[], int key)
86 {
87 int low = 0; // low element subscript
88 int high = array.length - 1; // high element subscript
89 int middle; // middle element subscript
90
91 // loop until low subscript is greater than high subscript
92 while (low <= high) {
93
94 // determine middle element subscript
95 middle = (low + high) / 2;
96
97 // display subset of array elements used in this
98 // iteration of binary search loop
99 buildOutput(array2, low, middle, high);
100
101 // if key matches middle element, return middle location
102 if (key == array[middle])
103 return middle;
104
105 // if key less than middle element, set new high element
106 else if (key < array[middle])
107 high = middle - 1;
108
109 // key greater than middle element, set new low element
110 else
111 low = middle + 1;
112 }

Fig. 7.13Fig. 7.13Fig. 7.13Fig. 7.13 Binary search of a sorted array (part 3 of 5)

Chapter 7 Arrays 341

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

113
114 return -1; // key not found
115
116 } // end method binarySearch
117
118 // build row of output showing subset of array elements
119 // currently being processed
120 void buildOutput(int array3[],
121 int low, int middle, int high)
122 {
123 // create 2-digit integer number format
124 DecimalFormat twoDigits = new DecimalFormat("00");
125
126 // loop through array elements
127 for (int counter = 0; counter < array3.length;
128 counter++) {
129
130 // if counter outside current array subset, append
131 // padding spaces to String display
132 if (counter < low || counter > high)
133 display += " ";
134
135 // if middle element, append element to String display
136 // followed by asterisk (*) to indicate middle element
137 else if (counter == middle)
138 display +=
139 twoDigits.format(array3[counter]) + "* ";
140
141 // append element to String display
142 else
143 display +=
144 twoDigits.format(array3[counter]) + " ";
145
146 } // end for structure
147
148 display += "\n";
149
150 } // end method buildOutput
151
152 } // end class BinarySearch

Fig. 7.13Fig. 7.13Fig. 7.13Fig. 7.13 Binary search of a sorted array (part 4 of 5)

342 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The program uses a 15-element array. The first power of 2 greater than the number of
array elements is 16 (24); therefore, binarySearch requires at most four comparisons
to find the key. To illustrate this, line 99 of method binarySearch calls method
buildOutput (defined at lines 120–150) to output each subarray during the binary
search process. Method buildOutput marks the middle element in each subarray with
an asterisk (*) to indicate the element to which the key is compared. Each search in this
example results in a maximum of four lines of output—one per comparison.

JTextArea output uses Monospaced font (a fixed-width font—i.e., all characters
are the same width) to help align the displayed text in each line of output. Line 49 uses
method setFont to change the font displayed in output. Method setFont can change
the font of text displayed on most GUI components. The method requires a Font (package
java.awt) object as its argument. A Font object is initialized with three arguments—
the String name of the font ("Monospaced"), an int representing the style of the font
(Font.PLAIN is a constant integer defined in class Font that indicates plain font) and an
int representing the point size of the font (12). Java provides generic names for several
fonts available on every Java platform. Monospaced font is also called Courier. Other
common fonts include Serif (also called TimesRoman) and SansSerif (also called Hel-
vetica). Java 2 actually provides access to all fonts on your system through methods of class
GraphicsEnvironment. The style can also be Font.BOLD, Font.ITALIC or
Font.BOLD + Font.ITALIC. The point size represents the size of the font—there are
72 points to an inch. The actual size of the text as it appears on the screen may vary based
on the size of the screen and the screen resolution. We discuss font manipulation again in
Chapter 11.

Fig. 7.13Fig. 7.13Fig. 7.13Fig. 7.13 Binary search of a sorted array (part 5 of 5)

Chapter 7 Arrays 343

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.9 Multiple-Subscripted Arrays
Multiple-subscripted arrays with two subscripts are often used to represent tables of values
consisting of information arranged in rows and columns. To identify a particular table ele-
ment, we must specify the two subscripts—by convention, the first identifies the element’s
row and the second identifies the element’s column. Arrays that require two subscripts to
identify a particular element are called double-subscripted arrays or two-dimensional ar-
rays. Note that multiple-subscripted arrays can have more than two subscripts. Java does
not support multiple-subscripted arrays directly, but does allow the programmer to specify
single-subscripted arrays whose elements are also single-subscripted arrays, thus achieving
the same effect. Figure 7.14 illustrates a double-subscripted array, a, containing three rows
and four columns (i.e., a 3-by-4 array). In general, an array with m rows and n columns is
called an m-by-n array.

Every element in array a is identified in Fig. 7.14 by an element name of the form
a[row][column]; a is the name of the array and row and column are the subscripts
that uniquely identify the row and column of each element in a. Notice that the names of
the elements in the first row all have a first subscript of 0; the names of the elements in the
fourth column all have a second subscript of 3.

Multiple-subscripted arrays can be initialized with initializer lists in declarations like
a single-subscripted array. A double-subscripted array b[2][2] could be declared and
initialized with

int b[][] = { { 1, 2 }, { 3, 4 } };

The values are grouped by row in braces. So, 1 and 2 initialize b[0][0] and
b[0][1], and 3 and 4 initialize b[1][0] and b[1][1]. The compiler deter-
mines the number of rows by counting the number of initializer sublists (represented by sets
of braces) in the initializer list. The compiler determines the number of columns in each row
by counting the number of initializer values in the initializer sublist for that row.

Multiple-subscripted arrays are maintained as arrays of arrays. The declaration

int b[][] = { { 1, 2 }, { 3, 4, 5 } };

Fig. 7.14Fig. 7.14Fig. 7.14Fig. 7.14 A double-subscripted array with three rows and four columns.

a[1][0] a[1][1] a[1][2] a[1][3]

Row 0

Row 1

Row 2

Column 0 Column 1 Column 2 Column 3

Row subscript (or index)

Array name

Column subscript (or index)

a[0][0] a[0][1] a[0][2] a[0][3]

a[2][0] a[2][1] a[2][2] a[2][3]

344 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

creates integer array b with row 0 containing two elements (1 and 2) and row 1 containing
three elements (3, 4 and 5).

A multiple-subscripted array with the same number of columns in every row can be
allocated dynamically. For example, a 3-by-4 array is allocated as follows:

int b[][];
b = new int[3][4];

In this case, we the literal values 3 and 4 to specify the number of rows and number of col-
umns, respectively. Note that programs also can use variables to specify array dimensions.
As with single-subscripted arrays, the elements of a double-subscripted array are initialized
when new creates the array object.

A multiple-subscripted array in which each row has a different number of columns can
be allocated dynamically as follows:

int b[][];
b = new int[2][]; // allocate rows
b[0] = new int[5]; // allocate columns for row 0
b[1] = new int[3]; // allocate columns for row 1

The preceding code creates a two-dimensional array with two rows. Row 0 has five col-
umns and row 1 has three columns.

The applet of Fig. 7.15 demonstrates initializing double-subscripted arrays in declara-
tions and using nested for loops to traverse the arrays (i.e., manipulate every element of
the array).

1 // Fig. 7.15: InitArray.java
2 // Initializing multidimensional arrays
3
4 // Java core packages
5 import java.awt.Container;
6
7 // Java extension packages
8 import javax.swing.*;
9

10 public class InitArray extends JApplet {
11 JTextArea outputArea;
12
13 // set up GUI and initialize applet
14 public void init()
15 {
16 outputArea = new JTextArea();
17 Container container = getContentPane();
18 container.add(outputArea);
19
20 int array1[][] = { { 1, 2, 3 }, { 4, 5, 6 } };
21 int array2[][] = { { 1, 2 }, { 3 }, { 4, 5, 6 } };
22
23 outputArea.setText("Values in array1 by row are\n");
24 buildOutput(array1);

Fig. 7.15Fig. 7.15Fig. 7.15Fig. 7.15 Initializing multidimensional arrays (part 1 of 2).

Chapter 7 Arrays 345

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The program declares two arrays in method init. The declaration of array1 (line
20) provides six initializers in two sublists. The first sublist initializes the first row of the
array to the values 1, 2 and 3. The second sublist initializes the second row of the array to
the values 4, 5 and 6. The declaration of array2 (line 21) provides six initializers in three
sublists. The sublist for the first row explicitly initializes the first row to have two elements
with values 1 and 2, respectively. The sublist for the second row initializes the second row
to have one element with value 3. The sublist for the third row initializes the third row to
the values 4, 5 and 6.

Line 24 of method init calls method buildOutput (defined at lines 31–44) to
append each array’s elements to outputArea (a JTextArea). Method buildOutput
specifies the array parameter as int array[][] to indicate that the method receives a
double-subscripted array as an argument. Note the use of a nested for structure (lines 34–
43) to output the rows of a double-subscripted array. In the outer for structure, the expres-
sion array.length determines the number of rows in the array. In the inner for struc-
ture, the expression array[row].length determines the number of columns in the
current row of the array. This condition enables the loop to determine the exact number of
columns in each row.

25
26 outputArea.append("\nValues in array2 by row are\n");
27 buildOutput(array2);
28 }
29
30 // append rows and columns of an array to outputArea
31 public void buildOutput(int array[][])
32 {
33 // loop through array's rows
34 for (int row = 0; row < array.length; row++) {
35
36 // loop through columns of current row
37 for (int column = 0;
38 column < array[row].length;
39 column++)
40 outputArea.append(array[row][column] + " ");
41
42 outputArea.append("\n");
43 }
44 }
45 }

Fig. 7.15Fig. 7.15Fig. 7.15Fig. 7.15 Initializing multidimensional arrays (part 2 of 2).

346 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Many common array manipulations use for repetition structures. For example, the
following for structure sets all the elements in the third row of array a in Fig. 7.14 to zero:

for (int column = 0; column < a[2].length; column++)
 a[2][column] = 0;

We specified the third row; therefore, we know that the first subscript is always 2 (0 is the
first row and 1 is the second row). The for loop varies only the second subscript (i.e., the
column subscript). The preceding for structure is equivalent to the assignment statements

a[2][0] = 0;
a[2][1] = 0;
a[2][2] = 0;
a[2][3] = 0;

The following nested for structure totals the values of all the elements in array a.

int total = 0;

for (int row = 0; row < a.length; row++)

for (int column = 0; column < a[row].length; column++)

 total += a[row][column];

The for structure totals the elements of the array one row at a time. The outer for struc-
ture begins by setting the row subscript to 0 so that the elements of the first row may be
totaled by the inner for structure. The outer for structure then increments row to 1 so
that the second row can be totaled. Then, the outer for structure increments row to 2 so
that the third row can be totaled. The result can be displayed when the nested for structure
terminates.

The applet of Fig. 7.16 performs several other common array manipulations on 3-by-
4 array grades. Each row of the array represents a student, and each column represents a
grade on one of the four exams the students took during the semester. Four methods per-
form the array manipulations. Method minimum (lines 52–69) determines the lowest grade
of any student for the semester. Method maximum (lines 72–89) determines the highest
grade of any student for the semester. Method average (lines 93–103) determines a par-
ticular student’s semester average. Method buildString (lines 106–121) appends the
double-subscripted array to String output in a tabular format.

Methods minimum, maximum and buildString each use array grades and the
variables students (number of rows in the array) and exams (number of columns in the
array). Each method loops through array grades by using nested for structures—for
example, the nested for structure from the definition of method minimum (lines 58–66).
The outer for structure sets row (the row subscript) to 0 so that the elements of the first
row can be compared to variable lowGrade in the body of the inner for structure. The
inner for structure loops through the four grades of a particular row and compares each
grade to lowGrade. If a grade is less than lowGrade, lowGrade is set to that grade.
The outer for structure then increments the row subscript by 1. The elements of the second
row are compared to variable lowGrade. The outer for structure then increments the row
subscript to 2. The elements of the third row are compared to variable lowGrade. When

Chapter 7 Arrays 347

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

execution of the nested structure is complete, lowGrade contains the smallest grade in the
double-subscripted array. Method maximum works similarly to method minimum.

1 // Fig. 7.16: DoubleArray.java
2 // Double-subscripted array example
3
4 // Java core packages
5 import java.awt.*;
6
7 // Java extension packages
8 import javax.swing.*;
9

10 public class DoubleArray extends JApplet {
11 int grades[][] = { { 77, 68, 86, 73 },
12 { 96, 87, 89, 81 },
13 { 70, 90, 86, 81 } };
14
15 int students, exams;
16 String output;
17 JTextArea outputArea;
18
19 // initialize instance variables
20 public void init()
21 {
22 students = grades.length; // number of students
23 exams = grades[0].length; // number of exams
24
25 // create JTextArea and attach to applet
26 outputArea = new JTextArea();
27 Container container = getContentPane();
28 container.add(outputArea);
29
30 // build output string
31 output = "The array is:\n";
32 buildString();
33
34 // call methods minimum and maximum
35 output += "\n\nLowest grade: " + minimum() +
36 "\nHighest grade: " + maximum() + "\n";
37
38 // call method average to calculate each student's average
39 for (int counter = 0; counter < students; counter++)
40 output += "\nAverage for student " + counter + " is " +
41 average(grades[counter]);
42
43 // change outputArea's display font
44 outputArea.setFont(
45 new Font("Courier", Font.PLAIN, 12));
46
47 // place output string in outputArea
48 outputArea.setText(output);
49 }

Fig. 7.16Fig. 7.16Fig. 7.16Fig. 7.16 Example of using double-subscripted arrays (part 1 of 3).

348 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

50
51 // find minimum grade
52 public int minimum()
53 {
54 // assume first element of grages array is smallest
55 int lowGrade = grades[0][0];
56
57 // loop through rows of grades array
58 for (int row = 0; row < students; row++)
59
60 // loop through columns of current row
61 for (int column = 0; column < exams; column++)
62
63 // Test if current grade is less than lowGrade.
64 // If so, assign current grade to lowGrade.
65 if (grades[row][column] < lowGrade)
66 lowGrade = grades[row][column];
67
68 return lowGrade; // return lowest grade
69 }
70
71 // find maximum grade
72 public int maximum()
73 {
74 // assume first element of grages array is largest
75 int highGrade = grades[0][0];
76
77 // loop through rows of grades array
78 for (int row = 0; row < students; row++)
79
80 // loop through columns of current row
81 for (int column = 0; column < exams; column++)
82
83 // Test if current grade is greater than highGrade.
84 // If so, assign current grade to highGrade.
85 if (grades[row][column] > highGrade)
86 highGrade = grades[row][column];
87
88 return highGrade; // return highest grade
89 }
90
91 // determine average grade for particular
92 // student (or set of grades)
93 public double average(int setOfGrades[])
94 {
95 int total = 0; // initialize total
96
97 // sum grades for one student
98 for (int count = 0; count < setOfGrades.length; count++)
99 total += setOfGrades[count];
100

Fig. 7.16Fig. 7.16Fig. 7.16Fig. 7.16 Example of using double-subscripted arrays (part 2 of 3).

Chapter 7 Arrays 349

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Method average takes one argument—a single-subscripted array of test results for a
particular student. When line 41 calls average, the argument is grades[counter],
which specifies that a particular row of the double-subscripted array grades should be
passed to average. For example, the argument grades[1] represents the four values
(a single-subscripted array of grades) stored in the second row of the double-subscripted
array grades. Remember that, in Java, a double-subscripted array is an array with ele-
ments that are single-subscripted arrays. Method average calculates the sum of the array
elements, divides the total by the number of test results and returns the floating-point result
as a double value.

101 // return average of grades
102 return (double) total / setOfGrades.length;
103 }
104
105 // build output string
106 public void buildString()
107 {
108 output += " "; // used to align column heads
109
110 // create column heads
111 for (int counter = 0; counter < exams; counter++)
112 output += "[" + counter + "] ";
113
114 // create rows/columns of text representing array grades
115 for (int row = 0; row < students; row++) {
116 output += "\ngrades[" + row + "] ";
117
118 for (int column = 0; column < exams; column++)
119 output += grades[row][column] + " ";
120 }
121 }
122 }

Fig. 7.16Fig. 7.16Fig. 7.16Fig. 7.16 Example of using double-subscripted arrays (part 3 of 3).

350 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.10 (Optional Case Study) Thinking About Objects:
Collaboration Among Objects
In this section, we concentrate on the collaborations (interactions) among objects. When
two objects communicate with each other to accomplish a task, they are said to collabo-
rate—objects do this by invoking one another’s operations. We say that objects send mes-
sages to other objects. We explain how messages are sent and received in Java in
Section 10.22. A collaboration consists of an object of one class sending a particular mes-
sage to an object of another class.

The message sent by the first object invokes an operation of the second object. In
“Thinking About Objects” Section 6.17, we determined many of the operations of the
classes in our system. In this section, we concentrate on the messages that invoke these
operations. Figure 7.22 is the table of classes and verb phrases from Section 6.17. We have
removed all the verb phrases in classes Elevator and Person that do not correspond to
operations. The remaining phrases are our first estimate of the collaborations in our system.
As we proceed through this and the remaining “Thinking About Objects” sections, we will
discover additional collaborations.

We examine the list of verb phrases to determine the collaborations in our system. For
example, class Elevator lists the phrase “resets elevator button.” To accomplish this task,
an object of class Elevator sends the resetButton message to an object of class Ele-
vatorButton (invoking the resetButton operation of ElevatorButton).
Figure 7.23 lists all the collaborations that can be gleaned from our table of verb phrases.
According to Fig. 7.22, the Elevator1 rings the Bell and opens (and closes) the Eleva-
torDoor, so we include a ringBell, openDoor and closeDoor message in Fig. 7.23.
However, we must consider how the FloorDoors open and close. According to the class
diagram of Fig. 3.23, ElevatorShaft is the only class that associates with FloorDoor.
The Elevator signals its arrival (we assume to the ElevatorShaft) by sending an
elevatorArrived message. The ElevatorShaft responds to this message by reset-
ting the appropriate FloorButton and turning on the appropriate Light—the Eleva-
torShaft sends resetButton and turnOnLight messages. At this point in the
design, we may assume that the Elevator also signals its departure—that is, the Eleva-
torShaft sends an elevatorDeparted message to the ElevatorShaft, which
then turns off the appropriate Light by sending it a turnOffLight message.

1. We refer to an object by using that object’s class name preceded by an article (“a,” “an” or “the”)—
for example, the Elevator refers to the object of class Elevator. Our syntax avoids redun-
dancy—i.e., we avoid repeating the phrase “an object of class....”

Class Verb phrases

Elevator Resets elevator button, rings elevator bell, signals its arrival, signals
its departure, opens its door, closes its door.

ElevatorShaft Turns off light, turns on light, resets floor button.

Fig. 7.22Fig. 7.22Fig. 7.22Fig. 7.22 Verb phrases for each class exhibiting behaviors in simulation (part 1 of 2).

Chapter 7 Arrays 351

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

A Person may press either a FloorButton or the ElevatorButton. A
Person object may enter and exit the Elevator. Therefore, a Person may send
pressButton, enterElevator and exitElevator messages. A FloorButton
requests, or summons, the Elevator, so a FloorButton may send a requestEle-
vator message. The ElevatorButton signals the Elevator to begin moving to the
other floor, so the ElevatorButton may send a moveElevator message.

Person Presses floor button, presses elevator button, rides elevator, enters
elevator, exits elevator.

FloorButton Summons (requests) elevator.

ElevatorButton Signals elevator to move to opposite floor.

FloorDoor Signals person to enter elevator (by opening).

ElevatorDoor Signals person to exit elevator (by opening), opens floor door, closes
floor door.

ElevatorModel Creates person.

An object of class... Sends the message... To an object of class...

Elevator resetButton
ringBell
elevatorArrived
elevatorDeparted
openDoor
closeDoor

ElevatorButton
Bell
ElevatorShaft
ElevatorShaft
ElevatorDoor
ElevatorDoor

ElevatorShaft resetButton
turnOnLight
turnOffLight

FloorButton
Light
Light

Person pressButton
enterElevator
exitElevator

FloorButton, ElevatorButton
Elevator
Elevator

FloorButton requestElevator Elevator

ElevatorButton moveElevator Elevator

FloorDoor doorOpened
doorClosed

Person
Person

ElevatorDoor doorOpened
doorClosed
openDoor
closeDoor

Person
Person
FloorDoor
FloorDoor

Fig. 7.23Fig. 7.23Fig. 7.23Fig. 7.23 Collaborations in the elevator system.

Class Verb phrases

Fig. 7.22Fig. 7.22Fig. 7.22Fig. 7.22 Verb phrases for each class exhibiting behaviors in simulation (part 2 of 2).

352 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Both a FloorDoor and the ElevatorDoor inform a Person that they have
opened or closed, so both objects send doorOpened and doorClosed messages.2

Finally, the ElevatorModel creates a Person, but the ElevatorModel cannot send
a personCreated message, because that Person does not yet exist. We discover, in
Section 8.6, how to use a special method that creates, or instantiates, new objects. This
method is referred to as an constructor—the ElevatorModel will create a Person by
calling that Person’s constructor (which is similar to sending the personCreated
message).

Lastly, the ElevatorDoor must send openDoor and closeDoor messages to a
FloorDoor to guarantee that these doors open and close together.

Collaboration Diagrams
Now let us consider the objects that must interact so that people in our simulation can enter
and exit the elevator when it arrives on a floor. The UML provides the collaboration dia-
gram to model such interactions. Collaboration diagrams are a type of interaction diagram;
they model the behavioral aspects of the system by providing information about how ob-
jects interact. Collaboration diagrams emphasize which objects participate in the interac-
tions. The other type of interaction diagram is the sequence diagram, which we present in
Chapter 15. Figure 7.24 shows a collaboration diagram that models a person who is press-
ing a floor button. An object in a collaboration diagram is represented as a rectangle that
encloses the object’s name. We write object names in the collaboration diagram by using
the convention we introduced in the object diagram of Fig. 3.24—objects are written in the
form objectName : ClassName. In this example, we disregard the object name, be-
cause we care only about the object type. Collaborating objects are connected with solid
lines, and messages are passed between objects along these lines in the direction shown by
arrows. The name of the message, which appears next to the arrow, is the name of a method
belonging to the receiving object—think of the name as a “service” that the receiving object
(a “server”) provides for its sending objects (its “clients”).

The arrow in Fig. 7.24 represents a message in the UML and a method—or synchro-
nous call—in Java. This arrow indicates that the flow of control is from the sending object
to the receiving object—the sending object may not send another message until the
receiving object processes the message and returns control to the sending object. For
example, in Fig. 7.24, a Person calls method pressButton of a FloorButton and

2. Note that most of the messages perform some specific action on the receiving object; for example,
the Elevator resets the ElevatorButton. However, other messages inform receiving ob-
jects of events that have already happened; for example, the FloorDoor informs the Person
that the FloorDoor has opened. In Section 10.22, we elaborate on the topic of events—for now,
however, we proceed as if the two types of messages are indistinguishable.

Fig. 7.24Fig. 7.24Fig. 7.24Fig. 7.24 Collaboration diagram of a person pressing a floor button

: Person : FloorButton

pressButton()

Chapter 7 Arrays 353

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

may not send another message to an object until pressButton has finished and returns
control to that Person. If our program contains a FloorButton object called first-
FloorButton, and we assume that the Person manages the flow of control, the Java
code implementation in class Person that represents this collaboration diagram is

firstFloorButton.pressButton();

Figure 7.25 shows a collaboration diagram that models the interactions among objects
in the system while objects of class Person enter and exit the elevator. The collaboration
begins when the Elevator arrives on a Floor. The number to the left of the message
name indicates the order in which the message is passed. The sequence of messages in a
collaboration diagram progresses in numerical order from least to greatest. In this diagram,
the numbering starts with message 1 and ends with message 4.2. The sequence of passing
messages follows a nested structure—for example, message 1.1 is the first message nested
in message 1, and message 3.2 is the second message nested in message 3. Message
3.2.1 would be the first message nested in message 3.2. A message may be passed only
when all nested messages from the previous message have been passed. For example, in
Fig. 7.25, the Elevator passes message 4 after message 3, message 3.1, message
3.1.1, message 3.1.1.1, message 3.2 and message 3.2.1 are passed.

Fig. 7.25Fig. 7.25Fig. 7.25Fig. 7.25 Collaboration diagram for passengers exiting and entering the elevator.

: Light

: ElevatorDoor

: ElevatorShaft

: Elevator

: Bell

: FloorButton

: ElevatorButton

waitingPassenger : Person

: FloorDoor

ridingPassenger : Person

3.1.1 doorOpened()

4.2 : turnOnLight()4.1 : resetButton()

3.2.1 : exitElevator()3.1.1.1 : enterElevator()

4 : elevatorArrived()

3.1 : openDoor()

3.2 : doorOpened()

3: openDoor()
1: resetButton() 2: ringBell()

354 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The Elevator sends the resetButton message (message 1) to the Elevator-
Button to reset the ElevatorButton. The Elevator sends the ringBell message
(message 2) to the Bell, then opens the ElevatorDoor by passing the openDoor
message (message 3). The ElevatorDoor then opens the FloorDoor by sending an
openDoor message (message 3.1 at the top of the diagram) to that FloorDoor. The
FloorDoor informs the waitingPassenger that the FloorDoor has opened (mes-
sage 3.1.1), and the waitingPassenger enters the Elevator (message
3.1.1.1). The ElevatorDoor then informs the ridingPassenger that the Ele-
vatorDoor has opened (message 3.2), so that the ridingPassenger may exit the
Elevator (message 3.2.1). Lastly, the Elevator informs the ElevatorShaft of
the arrival (message 4), so that the ElevatorShaft can reset the FloorButton (mes-
sage 4.1) and turn on the Light (message 4.2).

Unfortunately, this design creates a problem. According to the diagram, the wait-
ingPassenger enters the Elevator (message 3.1.1.1) before the ridingPas-
senger (message 3.2.1) exits. In “Thinking About Objects” Section 15.12, we apply
multithreading, synchronization and active classes to our collaboration diagram, to force
the waitingPassenger to wait for the ridingPassenger to exit the Elevator.
Before we correct this problem, we modify this diagram to indicate more accurately the
message passing in Section 10.22 when we discuss event handling.

SUMMARY
• Java stores lists of values in arrays. An array is a contiguous group of related memory locations.

These locations are related by the fact that they all have the same name and the same type. To refer
to a particular location or element within the array, we specify the name of the array and the sub-
script (or index or position number) of the element.

• Each array a length member that is set to the number of elements in the array at the time the
program creates the array object.

• A subscript may be an integer or an integer expression. If a program uses an expression as a sub-
script, the program evaluates the expression to determine the particular element of the array.

• Java arrays always begin with element 0; thus, it is important to note the difference when referring
to the “seventh element of the array” as opposed to “array element seven.” The seventh element
has a subscript of 6, while array element seven has a subscript of 7 (actually the eighth element
of the array).

• Arrays occupy space in memory and are considered to be objects. Operator new must be used to
reserve space for an array. For example, the following creates an array of 100 int values:

int b[] = new int[100];

• When declaring an array, the type of the array and the square brackets can be combined at the be-
ginning of the declaration to indicate that all identifiers in the declaration represent arrays, as in

double[] array1, array2;

• The elements of an array can be initialized with initializer lists in a declaration and by input.

• Java prevents referencing elements beyond the bounds of an array. If this occurs during program
execution, an ArrayIndexOutOfBoundsException occurs.

• Constant variables must be initialized with a constant expression before they are used and cannot
be modified thereafter.

Chapter 7 Arrays 355

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

• To pass an array to a method, pass the name of the array. To pass a single element of an array to a
method, simply pass the name of the array followed by the subscript of the particular element.

• Arrays are passed to methods as references—therefore, the called methods can modify the element
values in the caller’s original arrays. Single elements of primitive-data-type arrays are passed to
methods by value.

• To receive an array argument, the method must specify an array parameter in the parameter list.

• An array can be sorted by using the bubble-sort technique. Several passes of the array are made. On
each pass, successive pairs of elements are compared. If a pair is in order (or the values are identical),
it is left as is. If a pair is out of order, the values are swapped. For small arrays, the bubble sort is
acceptable, but for larger arrays it is inefficient compared to more sophisticated sorting algorithms.

• The linear search compares each element of the array with the search key. If the array is not in any
particular order, it is just as likely that the value will be found in the first element as the last. On
average, therefore, the program will have to compare the search key with half the elements of the
array. Linear search works well for small arrays and is acceptable even for large unsorted arrays.

• For sorted arrays, the binary search eliminates from consideration one half of the elements in the
array after each comparison. The algorithm locates the middle element of the array and compares
it with the search key. If they are equal, the search key is found and the array subscript of that el-
ement is returned. Otherwise, the problem is reduced to searching one half of the array that is still
under consideration. In a worst-case scenario, searching a sorted array of 1024 elements will take
only 10 comparisons using a binary search.

• Most GUI components have method setFont to change the font of the text on the GUI compo-
nent. The method requires a Font (package java.awt) object as its argument.

• A Font object is initialized with three arguments—a String representing the name of the font,
an int representing the style of the font and an int representing the point size of the font. The
style can be Font.PLAIN, Font.BOLD, Font.ITALIC or Font.BOLD + Font.ITALIC.
The point size represents the size of the font—there are 72 points to an inch. The actual screen size
may vary based on the size of the screen and the screen resolution.

• Arrays may be used to represent tables of values consisting of information arranged in rows and
columns. To identify a particular element of a table, two subscripts are specified: The first identi-
fies the row in which the element is contained, and the second identifies the column in which the
element is contained. Tables or arrays that require two subscripts to identify a particular element
are called double-subscripted arrays.

• A double-subscripted array can be initialized with an initializer list of the form

arrayType arrayName[][] = { { row1 sublist }, { row2 sublist }, ... };

• To dynamically create an array with a fixed number of rows and columns, use

arrayType arrayName[][] = new arrayType[numRows][numColumns];

• To pass one row of a double-subscripted array to a method that receives a single-subscripted array,
simply pass the name of the array followed by only the row subscript.

TERMINOLOGY
a[i] bubble sort
a[i][j] column subscript
array constant variable
array initializer list declare an array
binary search of an array double-subscripted array
bounds checking element of an array

356 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

SELF-REVIEW EXERCISES
7.1 Fill in the blank(s) in each of the following statements:

a) Lists and tables of values can be stored in .
b) The elements of an array are related by the fact that they have the same and

.
c) The number used to refer to a particular element of an array is called its .
d) The process of placing the elements of an array in order is called the array.
e) Determining if an array contains a certain key value is called the array.
f) An array that uses two subscripts is referred to as a array.

7.2 State whether each of the following is true or false. If false, explain why.
a) An array can store many different types of values.
b) An array subscript should normally be of data type float.
c) An individual array element that is passed to a method and modified in that method will

contain the modified value when the called method completes execution.

7.3 Answer the following questions regarding an array called fractions:
a) Define a constant variable ARRAY_SIZE initialized to 10.
b) Declare an array with ARRAY_SIZE elements of type float and initialize the elements

to 0.
c) Name the fourth element of the array.
d) Refer to array element 4.
e) Assign the value 1.667 to array element 9.
f) Assign the value 3.333 to the seventh element of the array.
g) Sum all the elements of the array using a for repetition structure. Define the integer vari-

able x as a control variable for the loop.

7.4 Answer the following questions regarding an array called table:
a) Declare and create the array as an integer array and with 3 rows and 3 columns. Assume

the constant variable ARRAY_SIZE has been defined to be 3.
b) How many elements does the array contain?
c) Use a for repetition structure to initialize each element of the array to the sum of its sub-

scripts. Assume the integer variables x and y are declared as control variables.

final passing arrays to methods
Font class from java.awt position number
Font.BOLD row subscript
Font.ITALIC search key
Font.PLAIN searching an array
index setFont method
initialize an array single-subscripted array
initializer sinking sort
linear search of an array sorting
lvalue sorting an array
m-by-n array square brackets, []
multiple-subscripted array subscript
name of an array table of values
named constant tabular format
off-by-one error temporary area for exchange of values
pass of a bubble sort value of an element
pass-by-reference zeroth element
pass-by-value

Chapter 7 Arrays 357

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.5 Find the error in each of the following program segments and correct the error:
a) final int ARRAY_SIZE = 5;

ARRAY_SIZE = 10;
b) Assume int b[] = new int[10];

for (int i = 0; i <= b.length; i++)
 b[i] = 1;

c) Assume int a[][] = { { 1, 2 }, { 3, 4 } };
 a[1, 1] = 5;

ANSWERS TO SELF-REVIEW EXERCISES
7.1 a) arrays. b) name, type. c) subscript (or index or position number). d) sorting. e) search-
ing. f) double-subscripted (or two-dimensional).

7.2 a) False. An array can store only values of the same type.
b) False. An array subscript must be an integer or an integer expression.
c) False for individual primitive-data-type elements of an array because they are passed by

value. If a reference to an array is passed, then modifications to the array elements are
reflected in the original. Also, an individual element of a nonprimitive type is passed by
reference, and changes to the object will be reflected in the original array element.

7.3 a) final int ARRAY_SIZE = 10;
b) float fractions[] = new float[ARRAY_SIZE];
c) fractions[3]
d) fractions[4]
e) fractions[9] = 1.667;
f) fractions[6] = 3.333;
g) float total = 0;

for (int x = 0; x < fractions.length; x++)
 total += fractions[x];

7.4 a) int table[][] = new int[ARRAY_SIZE][ARRAY_SIZE];
b) Nine.
c) for (int x = 0; x < table.length; x++)

for (int y = 0; y < table[x].length; y++)
 table[x][y] = x + y;

7.5 The solutions to Exercise 7.5 are as follows:
a) Error: Assigning a value to a constant variable after it has been initialized.

Correction: Assign the correct value to the constant variable in a final int
ARRAY_SIZE declaration or create another variable.

b) Error: Referencing an array element outside the bounds of the array (b[10]).
Correction: Change the <= operator to <.

c) Error: Array subscripting performed incorrectly.
Correction: Change the statement to a[1][1] = 5;.

EXERCISES
7.6 Fill in the blanks in each of the following:

a) Java stores lists of values in .
b) The elements of an array are related by the fact that they .
c) When referring to an array element, the position number contained within brackets is

called a .

358 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

d) The names of the four elements of array p are , , and
.

e) Naming an array, stating its type and specifying the number of dimensions in the array is
called the array.

f) The process of placing the elements of an array into either ascending or descending order
is called .

g) In a double-subscripted array, the first subscript identifies the of an element
and the second subscript identifies the of an element.

h) An m-by-n array contains rows, columns and ele-
ments.

i) The name of the element in row 3 and column 5 of array d is .

7.7 State whether each of the following is true or false. If false, explain why.
a) To refer to a particular location or element within an array, we specify the name of the

array and the value of the particular element.
b) An array declaration reserves space for the array.
c) To indicate that 100 locations should be reserved for integer array p, the programmer

writes the declaration
 p[100];

d) A Java program that initializes the elements of a 15-element array to zero must contain
at least one for statement.

e) A Java program that totals the elements of a double-subscripted array must contain nested
for statements.

7.8 Write Java statements to accomplish each of the following:
a) Display the value of the seventh element of character array f.
b) Initialize each of the five elements of single-subscripted integer array g to 8.
c) Total the elements of floating-point array c of 100 elements.
d) Copy 11-element array a into the first portion of array b, containing 34 elements.
e) Determine and print the smallest and largest values contained in 99-element floating-

point array w.

7.9 Consider a 2-by-3 integer array t.
a) Write a statement that declares and creates t.
b) How many rows does t have?
c) How many columns does t have?
d) How many elements does t have?
e) Write the names of all the elements in the second row of t.
f) Write the names of all the elements in the third column of t.
g) Write a single statement that sets the element of t in row 1 and column 2 to zero.
h) Write a series of statements that initializes each element of t to zero. Do not use a repe-

tition structure.
i) Write a nested for structure that initializes each element of t to zero.
j) Write a nested for structure that inputs the values for the elements of t from the key-

board.
k) Write a series of statements that determines and prints the smallest value in array t.
l) Write a statement that displays the elements of the first row of t.
m) Write a statement that totals the elements of the fourth column of t.
n) Write a series of statements that prints the array t in neat, tabular format. List the column

subscripts as headings across the top and list the row subscripts at the left of each row.

7.10 Use a single-subscripted array to solve the following problem: A company pays its salespeo-
ple on a commission basis. The salespeople receive $200 per week plus 9% of their gross sales for

Chapter 7 Arrays 359

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

that week. For example, a salesperson who grosses $5000 in sales in a week receives $200 plus 9%
of $5000 or a total of $650. Write an applet (using an array of counters) that determines how many
of the salespeople earned salaries in each of the following ranges (assume that each salesperson’s sal-
ary is truncated to an integer amount):

a) $200-$299
b) $300-$399
c) $400-$499
d) $500-$599
e) $600-$699
f) $700-$799
g) $800-$899
h) $900-$999
i) $1000 and over

The applet should use the GUI techniques introduced in Chapter 6. Display the results in a JText-
Area. Use JTextArea method setText to update the results after each value input by the user.

7.11 The bubble sort presented in Fig. 7.11 is inefficient for large arrays. Make the following sim-
ple modifications to improve the performance of the bubble sort:

a) After the first pass, the largest number is guaranteed to be in the highest-numbered ele-
ment of the array; after the second pass, the two highest numbers are “in place”; and so
on. Instead of making nine comparisons on every pass, modify the bubble sort to make
eight comparisons on the second pass, seven on the third pass and so on.

b) The data in the array may already be in the proper order or near-proper order, so why
make nine passes if fewer will suffice? Modify the sort to check at the end of each pass
if any swaps have been made. If none have been made, the data must already be in the
proper order, so the program should terminate. If swaps have been made, at least one
more pass is needed.

7.12 Write statements that perform the following single-subscripted array operations:
a) Set the 10 elements of integer array counts to zeros.
b) Add 1 to each of the 15 elements of integer array bonus.
c) Print the five values of integer array bestScores in column format.

7.13 Use a single-subscripted array to solve the following problem: Write an applet that inputs 20
numbers, each of which is between 10 and 100, inclusive. As each number is read, display it only if
it is not a duplicate of a number already read. Provide for the “worst case” in which all 20 numbers
are different. Use the smallest possible array to solve this problem. The applet should use the GUI
techniques introduced in Chapter 6. Display the results in a JTextArea. Use JTextArea method
setText to update the results after each value input by the user.

7.14 Label the elements of 3-by-5 double-subscripted array sales to indicate the order in which
they are set to zero by the following program segment:

for (int row = 0; row < sales.length; row++)

for (int col = 0; col < sales[row].length; col++)

 sales[row][col] = 0;

7.15 Write an applet to simulate the rolling of two dice. The program should use Math.random
to roll the first die and should use Math.random again to roll the second die. The sum of the two
values should then be calculated. [Note: Each die can show an integer value from 1 to 6, so the sum
of the values will vary from 2 to 12, with 7 being the most frequent sum and 2 and 12 being the least
frequent sums. Figure 7.26 shows the 36 possible combinations of the two dice. Your program should

360 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

roll the dice 36,000 times. Use a single-subscripted array to tally the numbers of times each possible
sum appears. Display the results in a JTextArea in tabular format. Also, determine whether the to-
tals are reasonable (i.e., there are six ways to roll a 7, so approximately one sixth of all the rolls should
be 7). The applet should use the GUI techniques introduced in Chapter 6. Provide a JButton to al-
low the user of the applet to roll the dice another 36,000 times. The applet should reset the elements
of the single-subscripted array to 0 before rolling the dice again.

7.16 What does the program of Fig. 7.27 do?

Fig. 7.26Fig. 7.26Fig. 7.26Fig. 7.26 The 36 possible outcomes of rolling two dice.

1 // Exercise 7.16: WhatDoesThisDo.java
2
3 // Java core packages
4 import java.awt.*;
5
6 // Java extension packages
7 import javax.swing.*;
8
9 public class WhatDoesThisDo extends JApplet {

10 int result;
11
12 public void init()
13 {
14 int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
15
16 result = whatIsThis(array, array.length);
17
18 Container container = getContentPane();
19 JTextArea output = new JTextArea();
20 output.setText("Result is: " + result);
21 container.add(output);
22 }
23
24 public int whatIsThis(int array2[], int size)
25 {
26 if (size == 1)
27 return array2[0];

Fig. 7.27Fig. 7.27Fig. 7.27Fig. 7.27 Determine what this program does.

1 2 3 4 5 6

1

2

3

4

5

6

876543

765432

1098765

987654

987

6 7 8

10

9 10 11

11 12

Chapter 7 Arrays 361

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.17 Write a program that runs 1000 games of craps (Fig. 6.9) and answers the following ques-
tions:

a) How many games are won on the first roll, second roll, …, twentieth roll and after the
twentieth roll?

b) How many games are lost on the first roll, second roll, …, twentieth roll and after the
twentieth roll?

c) What are the chances of winning at craps? [Note: You should discover that craps is one
of the fairest casino games. What do you suppose this means?]

d) What is the average length of a game of craps?
e) Do the chances of winning improve with the length of the game?

7.18 (Airline Reservations System) A small airline has just purchased a computer for its new au-
tomated reservations system. You have been asked to program the new system. You are to write an
applet to assign seats on each flight of the airline’s only plane (capacity: 10 seats).

Your program should display the following alternatives:

Please type 1 for "smoking"
Please type 2 for "nonsmoking"

If the person types 1, your program should assign a seat in the smoking section (seats 1-5). If
the person types 2, your program should assign a seat in the nonsmoking section (seats 6-10). Your
program should then print a boarding pass indicating the person’s seat number and whether it is in
the smoking or nonsmoking section of the plane.

Use a single-subscripted array of primitive type boolean to represent the seating chart of the
plane. Initialize all the elements of the array to false to indicate that all seats are empty. As each
seat is assigned, set the corresponding elements of the array to true to indicate that the seat is no
longer available.

Your program should, of course, never assign a seat that has already been assigned. When the
smoking section is full, your program should ask the person if it is acceptable to be placed in the
nonsmoking section (and vice versa). If yes, make the appropriate seat assignment. If no, print the
message "Next flight leaves in 3 hours."

7.19 What does the program of Fig. 7.28 do?

28 else
29 return array2[size - 1] +
30 whatIsThis(array2, size - 1);
31 }
32 }

Fig. 7.27Fig. 7.27Fig. 7.27Fig. 7.27 Determine what this program does.

1 // Exercise 7.19: WhatDoesThisDo2.java
2
3 // Java core packages
4 import java.awt.*;
5
6 // Java extension packages
7 import javax.swing.*;
8

Fig. 7.28Fig. 7.28Fig. 7.28Fig. 7.28 Determine what this program does.

362 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.20 Use a double-subscripted array to solve the following problem. A company has four sales-
people (1 to 4) who sell five different products (1 to 5). Once a day, each salesperson passes in a slip
for each different type of product sold. Each slip contains the following:

a) The salesperson number
b) The product number
c) The total dollar value of that product sold that day

Thus, each salesperson passes in between 0 and 5 sales slips per day. Assume that the information
from all of the slips for last month is available. Write an applet that will read all this information for
last month’s sales and summarize the total sales by salesperson by product. All totals should be
stored in the double-subscripted array sales. After processing all the information for last month,
display the results in tabular format with each of the columns representing a particular salesperson
and each of the rows representing a particular product. Cross total each row to get the total sales of
each product for last month; cross total each column to get the total sales by salesperson for last
month. Your tabular printout should include these cross totals to the right of the totaled rows and to
the bottom of the totaled columns. Display the results in a JTextArea.

7.21 (Turtle Graphics) The Logo language, which is popular among young computer users, made
the concept of turtle graphics famous. Imagine a mechanical turtle that walks around the room under
the control of a Java program. The turtle holds a pen in one of two positions, up or down. While the
pen is down, the turtle traces out shapes as it moves; while the pen is up, the turtle moves about freely
without writing anything. In this problem you will simulate the operation of the turtle and create a
computerized sketchpad as well.

Use a 20-by-20 array floor that is initialized to zeros. Read commands from an array that
contains them. Keep track of the current position of the turtle at all times and whether the pen is cur-
rently up or down. Assume that the turtle always starts at position 0,0 of the floor with its pen up.
The set of turtle commands your program must process are shown in Fig. 7.29.

9 public class WhatDoesThisDo2 extends JApplet {
10
11 public void init()
12 {
13 int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
14 JTextArea outputArea = new JTextArea();
15
16 someFunction(array, 0, outputArea);
17
18 Container container = getContentPane();
19 container.add(outputArea);
20 }
21
22 public void someFunction(int array2[], int x, JTextArea out)
23 {
24 if (x < array2.length) {
25 someFunction(array2, x + 1, out);
26 out.append(array2[x] + " ");
27 }
28 }
29 }

Fig. 7.28Fig. 7.28Fig. 7.28Fig. 7.28 Determine what this program does.

Chapter 7 Arrays 363

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Suppose that the turtle is somewhere near the center of the floor. The following “program”
would draw and print a 12-by-12 square, leaving the pen in the up position:

2
5,12
3
5,12
3
5,12
3
5,12
1
6
9

As the turtle moves with the pen down, set the appropriate elements of array floor to 1s. When
the 6 command (print) is given, wherever there is a 1 in the array, display an asterisk or some
other character you choose. Wherever there is a zero, display a blank. Write a Java applet to
implement the turtle graphics capabilities discussed here. The applet should display the turtle
graphics in a JTextArea, using Monospaced font. Write several turtle graphics programs to
draw interesting shapes. Add other commands to increase the power of your turtle graphics lan-
guage.

7.22 (Knight’s Tour) One of the more interesting puzzlers for chess buffs is the Knight’s Tour
problem, originally proposed by the mathematician Euler. The question is this: Can the chess piece
called the knight move around an empty chessboard and touch each of the 64 squares once and only
once? We study this intriguing problem in depth here.

The knight makes L-shaped moves (over two in one direction and then over one in a perpendic-
ular direction). Thus, from a square in the middle of an empty chessboard, the knight can make eight
different moves (numbered 0 through 7) as shown in Fig. 7.30.

a) Draw an 8-by-8 chessboard on a sheet of paper and attempt a Knight’s Tour by hand. Put
a 1 in the first square you move to, a 2 in the second square, a 3 in the third, etc. Before
starting the tour, estimate how far you think you will get, remembering that a full tour
consists of 64 moves. How far did you get? Was this close to your estimate?

Command Meaning

1 Pen up

2 Pen down

3 Turn right

4 Turn left

5,10 Move forward 10 spaces (or a number other than 10)

6 Print the 20-by-20 array

9 End of data (sentinel)

Fig. 7.29Fig. 7.29Fig. 7.29Fig. 7.29 Turtle graphics commands.

364 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

b) Now let us develop an applet that will move the knight around a chessboard. The board
is represented by an 8-by-8 double-subscripted array board. Each of the squares is ini-
tialized to zero. We describe each of the eight possible moves in terms of both their hor-
izontal and vertical components. For example, a move of type 0 as shown in Fig. 7.30
consists of moving two squares horizontally to the right and one square vertically up-
ward. Move 2 consists of moving one square horizontally to the left and two squares ver-
tically upward. Horizontal moves to the left and vertical moves upward are indicated with
negative numbers. The eight moves may be described by two single-subscripted arrays,
horizontal and vertical, as follows:

horizontal[0] = 2
horizontal[1] = 1
horizontal[2] = -1
horizontal[3] = -2
horizontal[4] = -2
horizontal[5] = -1
horizontal[6] = 1
horizontal[7] = 2

vertical[0] = -1
vertical[1] = -2
vertical[2] = -2
vertical[3] = -1
vertical[4] = 1
vertical[5] = 2
vertical[6] = 2
vertical[7] = 1

Fig. 7.30Fig. 7.30Fig. 7.30Fig. 7.30 The eight possible moves of the knight.

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

2 1

0

7

65

4

3

K

Chapter 7 Arrays 365

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Let the variables currentRow and currentColumn indicate the row and col-
umn of the knight’s current position. To make a move of type moveNumber, where
moveNumber is between 0 and 7, your program uses the statements

currentRow += vertical[moveNumber];
currentColumn += horizontal[moveNumber];

Keep a counter that varies from 1 to 64. Record the latest count in each square the
knight moves to. Test each potential move to see if the knight already visited that square.
Test every potential move to ensure that the knight does not land off the chessboard.
Write a program to move the knight around the chessboard. Run the program. How
many moves did the knight make?

c) After attempting to write and run a Knight’s Tour program, you have probably developed
some valuable insights. We will use these to develop a heuristic (or strategy) for moving
the knight. Heuristics do not guarantee success, but a carefully developed heuristic great-
ly improves the chance of success. You may have observed that the outer squares are
more troublesome than the squares nearer the center of the board. In fact, the most trou-
blesome or inaccessible squares are the four corners.

Intuition may suggest that you should attempt to move the knight to the most trou-
blesome squares first and leave open those that are easiest to get to so when the board
gets congested near the end of the tour there will be a greater chance of success.

We could develop an “accessibility heuristic” by classifying each of the squares
according to how accessible they are, then always moving the knight (using the knight’s
L-shaped moves) to the most inaccessible square. We label a double-subscripted array
accessibility with numbers indicating from how many squares each particular
square is accessible. On a blank chessboard, each center square is rated as 8, each corner
square is rated as 2 and the other squares have accessibility numbers of 3, 4 or 6 as fol-
lows:

2 3 4 4 4 4 3 2
3 4 6 6 6 6 4 3
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
4 6 8 8 8 8 6 4
3 4 6 6 6 6 4 3
2 3 4 4 4 4 3 2

Write a version of the Knight’s Tour using the accessibility heuristic. The knight
should always move to the square with the lowest accessibility number. In case of a tie,
the knight may move to any of the tied squares. Therefore, the tour may begin in any of
the four corners. [Note: As the knight moves around the chessboard, your program
should reduce the accessibility numbers as more squares become occupied. In this way,
at any given time during the tour, each available square’s accessibility number will
remain equal to precisely the number of squares from which that square may be
reached.] Run this version of your program. Did you get a full tour? Modify the program
to run 64 tours, one starting from each square of the chessboard. How many full tours
did you get?

d) Write a version of the Knight’s Tour program that, when encountering a tie between two
or more squares, decides what square to choose by looking ahead to those squares reach-
able from the “tied” squares. Your program should move to the square for which the next
move would arrive at a square with the lowest accessibility number.

366 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.23 (Knight’s Tour: Brute Force Approaches) In Exercise 7.22, we developed a solution to the
Knight’s Tour problem. The approach used, called the “accessibility heuristic,” generates many so-
lutions and executes efficiently.

As computers continue increasing in power, we will be able to solve more problems with sheer
computer power and relatively unsophisticated algorithms. Let us call this approach “brute force”
problem solving.

a) Use random number generation to enable the knight to walk around the chessboard (in
its legitimate L-shaped moves, of course) at random. Your program should run one tour
and print the final chessboard. How far did the knight get?

b) Most likely, the preceding program produced a relatively short tour. Now modify your
program to attempt 1000 tours. Use a single-subscripted array to keep track of the number
of tours of each length. When your program finishes attempting the 1000 tours, it should
print this information in neat tabular format. What was the best result?

c) Most likely, the preceding program gave you some “respectable” tours, but no full tours.
Now “pull all the stops out” and simply let your program run until it produces a full tour.
(Caution: This version of the program could run for hours on a powerful computer.) Once
again, keep a table of the number of tours of each length and print this table when the first
full tour is found. How many tours did your program attempt before producing a full
tour? How much time did it take?

d) Compare the brute force version of the Knight’s Tour with the accessibility-heuristic ver-
sion. Which required a more careful study of the problem? Which algorithm was more
difficult to develop? Which required more computer power? Could we be certain (in ad-
vance) of obtaining a full tour with the accessibility-heuristic approach? Could we be cer-
tain (in advance) of obtaining a full tour with the brute force approach? Argue the pros
and cons of brute force problem solving in general.

7.24 (Eight Queens) Another puzzler for chess buffs is the Eight Queens problem. Simply stated:
Is it possible to place eight queens on an empty chessboard so that no queen is “attacking” any other,
i.e., no two queens are in the same row, in the same column or along the same diagonal? Use the think-
ing developed in Exercise 7.22 to formulate a heuristic for solving the Eight Queens problem. Run
your program. (Hint: It is possible to assign a value to each square of the chessboard indicating how
many squares of an empty chessboard are “eliminated” if a queen is placed in that square. Each of the
corners would be assigned the value 22, as in Figure 7.31.) Once these “elimination numbers” are
placed in all 64 squares, an appropriate heuristic might be: Place the next queen in the square with the
smallest elimination number. Why is this strategy intuitively appealing?

7.25 (Eight Queens: Brute Force Approaches) In this exercise, you will develop several brute
force approaches to solving the Eight Queens problem introduced in Exercise 7.24.

a) Solve the Eight Queens exercise, using the random brute force technique developed in
Exercise 7.23.

b) Use an exhaustive technique (i.e., try all possible combinations of eight queens on the
chessboard).

c) Why do you suppose the exhaustive brute force approach may not be appropriate for
solving the Knight’s Tour problem?

d) Compare and contrast the random brute force and exhaustive brute force approaches.

7.26 (Knight’s Tour: Closed Tour Test) In the Knight’s Tour, a full tour occurs when the knight
makes 64 moves touching each square of the chessboard once and only once. A closed tour occurs
when the 64th move is one move away from the square in which the knight started the tour. Modify
the program you wrote in Exercise 7.22 to test for a closed tour if a full tour has occurred.

7.27 (The Sieve of Eratosthenes) A prime integer is any integer that is evenly divisible only by
itself and 1. The Sieve of Eratosthenes is a method of finding prime numbers. It operates as follows:

Chapter 7 Arrays 367

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

a) Create a primitive type boolean array with all elements initialized to true. Array el-
ements with prime subscripts will remain true. All other array elements will eventually
be set to false.

b) Starting with array subscript 2 (subscript 1 must be prime), determine whether a given
element is true. If so, loop through the remainder of the array and set to false every
element whose subscript is a multiple of the subscript for the element with value true.
Then, continue the process with the next element with value true. For array subscript
2, all elements beyond element 2 in the array that have subscripts which are multiples of
2 will be set to false (subscripts 4, 6, 8, 10, etc.); for array subscript 3, all elements
beyond element 3 in the array that have subscripts which are multiples of 3 will be set to
false (subscripts 6, 9, 12, 15, etc.); and so on.

When this process is complete, the array elements that are still true indicate that the subscript is a
prime number. These subscripts can be displayed. Write a program that uses an array of 1000 ele-
ments to determine and print the prime numbers between 1 and 999. Ignore element 0 of the array.

7.28 (Bucket Sort) A bucket sort begins with a single-subscripted array of positive integers to be
sorted and a double-subscripted array of integers with rows subscripted from 0 to 9 and columns sub-
scripted from 0 to n - 1, where n is the number of values in the array to be sorted. Each row of the
double-subscripted array is referred to as a bucket. Write an applet containing a method called buck-
etSort that takes an integer array as an argument and performs as follows:

a) Place each value of the single-subscripted array into a row of the bucket array based on
the value’s ones digit. For example, 97 is placed in row 7, 3 is placed in row 3 and 100
is placed in row 0. This is called a “distribution pass.”

b) Loop through the bucket array row by row and copy the values back to the original array.
This is called a “gathering pass.” The new order of the preceding values in the single-
subscripted array is 100, 3 and 97.

c) Repeat this process for each subsequent digit position (tens, hundreds, thousands, etc.).

On the second pass, 100 is placed in row 0, 3 is placed in row 0 (because 3 has no tens digit) and 97
is placed in row 9. After the gathering pass, the order of the values in the single-subscripted array is
100, 3 and 97. On the third pass, 100 is placed in row 1, 3 is placed in row 0 and 97 is placed in row
0 (after the 3). After the last gathering pass, the original array is now in sorted order.

Note that the double-subscripted array of buckets is ten times the size of the integer array being
sorted. This sorting technique provides better performance than a bubble sort, but requires much
more memory. The bubble sort requires space for only one additional element of data. This is an
example of the space-time trade-off: The bucket sort uses more memory than the bubble sort, but
performs better. This version of the bucket sort requires copying all the data back to the original
array on each pass. Another possibility is to create a second double-subscripted bucket array and
repeatedly swap the data between the two bucket arrays.

Fig. 7.31Fig. 7.31Fig. 7.31Fig. 7.31 The 22 squares eliminated by placing a queen in the upper left corner.

* * * * * * * *
*
*
*
*
*
*
*

*
*

*
*

*
*

*

368 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

RECURSION EXERCISES
7.29 (Selection Sort) A selection sort searches an array looking for the smallest element in the ar-
ray, then swaps that element with the first element of the array. The process is repeated for the sub-
array beginning with the second element. Each pass of the array places one element in its proper
location. For an array of n elements, n - 1 passes must be made, and for each subarray, n - 1 compar-
isons must be made to find the smallest value. When the subarray being processed contains one ele-
ment, the array is sorted. Write recursive method selectionSort to perform this algorithm.

7.30 (Palindromes) A palindrome is a string that is spelled the same way forward and backward.
Some examples of palindromes are “radar,” “able was i ere i saw elba” and (if blanks are ignored) “a
man a plan a canal panama.” Write a recursive method testPalindrome that returns boolean
value true if the string stored in the array is a palindrome and false otherwise. The method should
ignore spaces and punctuation in the string. [Hint: Use String method toCharArray, which
takes no arguments, to get a char array containing the characters in the String. Then, pass the ar-
ray to method testPalindrome.]

7.31 (Linear Search) Modify Figure 7.12 to use recursive method linearSearch to perform a
linear search of the array. The method should receive an integer array, the array size and the search
key as arguments. If the search key is found, return the array subscript; otherwise, return –1.

7.32 (Binary Search) Modify the program of Figure 7.13 to use a recursive method binary-
Search to perform the binary search of the array. The method should receive an integer array and
the starting subscript and ending subscript as arguments. If the search key is found, return the array
subscript; otherwise, return –1.

7.33 (Eight Queens) Modify the Eight Queens program you created in Exercise 7.24 to solve the
problem recursively.

7.34 (Print an array) Write a recursive method printArray that takes an array of int values
and the size of the array as arguments and returns nothing. The method should stop processing and
return when it receives an array of size 0.

7.35 (Print a string backward) Write a recursive method stringReverse that takes a character
array containing a string as an argument, prints the string backward and returns nothing.

7.36 (Find the minimum value in an array) Write a recursive method recursiveMinimum that
takes an integer array and the array size as arguments and returns the smallest element of the array.
The method should stop processing and return when it receives an array of one element.

7.37 (Quicksort) In the examples and exercises of this chapter, we discussed the sorting tech-
niques bubble sort, bucket sort and selection sort. We now present the recursive sorting technique
called Quicksort. The basic algorithm for a single-subscripted array of values is as follows:

a) Partitioning Step: Take the first element of the unsorted array and determine its final lo-
cation in the sorted array (i.e., all values to the left of the element in the array are less than
the element, and all values to the right of the element in the array are greater than the el-
ement). We now have one element in its proper location and two unsorted subarrays.

b) Recursive Step: Perform step 1 on each unsorted subarray.

Each time step 1 is performed on a subarray, another element is placed in its final location of the
sorted array and two unsorted subarrays are created. When a subarray consists of one element, it
must be sorted therefore, that element is in its final location.

The basic algorithm seems simple enough, but how do we determine the final position of the
first element of each subarray? As an example, consider the following set of values (the element in
bold is the partitioning element—it will be placed in its final location in the sorted array):

37 2 6 4 89 8 10 12 68 45

Chapter 7 Arrays 369

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

a) Starting from the rightmost element of the array, compare each element to 37 until an el-
ement less than 37 is found, then swap 37 and that element. The first element less than
37 is 12, so 37 and 12 are swapped. The new array is

12 2 6 4 89 8 10 37 68 45

Element 12 is in italic to indicate that it was just swapped with 37.
b) Starting from the left of the array, but beginning with the element after 12, compare each

element to 37 until an element greater than 37 is found, then swap 37 and that element.
The first element greater than 37 is 89, so 37 and 89 are swapped. The new array is

12 2 6 4 37 8 10 89 68 45

c) Starting from the right, but beginning with the element before 89, compare each element
to 37 until an element less than 37 is found, then swap 37 and that element. The first el-
ement less than 37 is 10, so 37 and 10 are swapped. The new array is

12 2 6 4 10 8 37 89 68 45

d) Starting from the left, but beginning with the element after 10, compare each element to
37 until an element greater than 37 is found, then swap 37 and that element. There are no
more elements greater than 37, so when we compare 37 to itself we know that 37 has been
placed in its final location of the sorted array.

Once the partition has been applied on the previous array, there are two unsorted subarrays. The sub-
array with values less than 37 contains 12, 2, 6, 4, 10 and 8. The subarray with values greater than 37
contains 89, 68 and 45. The sort continues with both subarrays being partitioned in the same manner
as the original array.

Based on the preceding discussion, write recursive method quickSort to sort a single-sub-
scripted integer array. The method should receive as arguments an integer array, a starting subscript
and an ending subscript. Method partition should be called by quickSort to perform the par-
titioning step.

7.38 (Maze Traversal) The following grid of #s and dots (.) is a double-subscripted array repre-
sentation of a maze.

#
. . . #
. . # . # . # # # # . #
. # # .
. . . . # # # . # . .
. # . # . # .
. . # . # . # . # .
. # . # . # . # .
. # .
. # # # .
. # . . .
#

In the preceding double-subscripted array, the #s represent the walls of the maze, and the dots repre-
sent squares in the possible paths through the maze. Moves can be made only to a location in the
array that contains a dot.

There is a simple algorithm for walking through a maze that guarantees finding the exit (assuming
there is an exit). If there is not an exit, you will arrive at the starting location again. Place your right
hand on the wall to your right and begin walking forward. Never remove your hand from the wall. If
the maze turns to the right, you follow the wall to the right. As long as you do not remove your hand

370 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

from the wall, eventually you will arrive at the exit of the maze. There may be a shorter path than the
one you have taken, but you are guaranteed to get out of the maze if you follow the algorithm.

Write recursive method mazeTraverse to walk through the maze. The method should
receive as arguments a 12-by-12 character array representing the maze and the starting location of
the maze. As mazeTraverse attempts to locate the exit from the maze, it should place the charac-
ter X in each square in the path. The method should display the maze after each move so the user can
watch as the maze is solved.

7.39 (Generating Mazes Randomly) Write a method mazeGenerator that takes as an argument
a double-subscripted 12-by-12 character array and randomly produces a maze. The method should
also provide the starting and ending locations of the maze. Try your method mazeTraverse from
Exercise 7.38, using several randomly generated mazes.

7.40 (Mazes of Any Size) Generalize methods mazeTraverse and mazeGenerator of
Exercise 7.38 and Exercise 7.39 to process mazes of any width and height.

7.41 (Simulation: The Tortoise and the Hare) In this problem, you will recreate one of the truly
great moments in history, namely the classic race of the tortoise and the hare. You will use random
number generation to develop a simulation of this memorable event.

Our contenders begin the race at “square 1” of 70 squares. Each square represents a possible
position along the race course. The finish line is at square 70. The first contender to reach or pass
square 70 is rewarded with a pail of fresh carrots and lettuce. The course weaves its way up the side
of a slippery mountain, so occasionally the contenders lose ground.

There is a clock that ticks once per second. With each tick of the clock, your applet should
adjust the position of the animals according to the rules in Fig. 7.32

Use variables to keep track of the positions of the animals (i.e., position numbers are 1–70).
Start each animal at position 1 (i.e., the “starting gate”). If an animal slips left before square 1, move
the animal back to square 1.

Generate the percentages in the preceding table by producing a random integer, i, in the range 1
≤ i ≤ 10. For the tortoise, perform a “fast plod” when 1 ≤ i ≤ 5, a “slip” when 6 ≤ i ≤ 7 or a “slow
plod” when 8 ≤ i ≤ 10. Use a similar technique to move the hare.

Begin the race by printing

BANG !!!!!
AND THEY'RE OFF !!!!!

Then, for each tick of the clock (i.e., each repetition of a loop), print a 70-position line showing
the letter T in the position of the tortoise and the letter H in the position of the hare. Occasionally, the
contenders will land on the same square. In this case, the tortoise bites the hare, and your program
should print OUCH!!! beginning at that position. All print positions other than the T, the H or the
OUCH!!! (in case of a tie) should be blank.

After each line is printed, test for whether either animal has reached or passed square 70. If so,
print the winner and terminate the simulation. If the tortoise wins, print TORTOISE WINS!!!
YAY!!! If the hare wins, print Hare wins. Yuch. If both animals win on the same tick of the
clock, you may want to favor the turtle (the “underdog”) or you may want to print It's a tie. If
neither animal wins, perform the loop again to simulate the next tick of the clock. When you are
ready to run your program, assemble a group of fans to watch the race. You’ll be amazed at how
involved your audience gets!

Later in the book, we introduce a number of Java capabilities, such as graphics, images, anima-
tion, sound and multithreading. As you study those features, you might enjoy enhancing your tor-
toise and hare contest simulation.

Chapter 7 Arrays 371

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

SPECIAL SECTION: BUILDING YOUR OWN COMPUTER
In the next several problems, we take a temporary diversion away from the world of high-level lan-
guage programming. We “peel open” a computer and look at its internal structure. We introduce
machine-language programming and write several machine-language programs. To make this an
especially valuable experience, we then build a computer (through the technique of software-based
simulation) on which you can execute your machine-language programs!

7.42 (Machine-Language Programming) Let us create a computer we will call the Simpletron. As
its name implies, it is a simple machine, but as we will soon see, a powerful one as well. The Sim-
pletron runs programs written in the only language it directly understands, that is, Simpletron Ma-
chine Language or SML for short.

The Simpletron contains an accumulator—a “special register” in which information is put
before the Simpletron uses that information in calculations or examines it in various ways. All infor-
mation in the Simpletron is handled in terms of words. A word is a signed four-digit decimal number
such as +3364, -1293, +0007, -0001, etc. The Simpletron is equipped with a 100-word memory
and these words are referenced by their location numbers 00, 01, …, 99.

Before running an SML program, we must load or place the program into memory. The first
instruction (or statement) of every SML program is always placed in location 00. The simulator will
start executing at this location.

Each instruction written in SML occupies one word of the Simpletron’s memory (and hence
instructions are signed four-digit decimal numbers). We shall assume that the sign of an SML
instruction is always plus, but the sign of a data word may be either plus or minus. Each location in
the Simpletron’s memory may contain either an instruction, a data value used by a program or an
unused (and hence undefined) area of memory. The first two digits of each SML instruction are the
operation code specifying the operation to be performed. SML operation codes are summarized in
Fig. 7.33.

The last two digits of an SML instruction are the operand—the address of the memory location
containing the word to which the operation applies. Let’s consider several simple SML programs.

Animal Move type Percentage of the time Actual move

Tortoise Fast plod 50% 3 squares to the right

Slip 20% 6 squares to the left

Slow plod 30% 1 square to the right

Hare Sleep 20% No move at all

Big hop 20% 9 squares to the right

Big slip 10% 12 squares to the left

Small hop 30% 1 square to the right

Small slip 20% 2 squares to the left

Fig. 7.32Fig. 7.32Fig. 7.32Fig. 7.32 Rules for adjusting the positions of the tortoise and the hare.

372 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The first SML program (Fig. 7.34) reads two numbers from the keyboard and computes and
prints their sum. The instruction +1007 reads the first number from the keyboard and places it into
location 07 (which has been initialized to 0). Then, instruction +1008 reads the next number into
location 08. The load instruction, +2007, puts the first number into the accumulator, and the add
instruction, +3008, adds the second number to the number in the accumulator. All SML arithmetic
instructions leave their results in the accumulator. The store instruction, +2109, places the result
back into memory location 09 from which the write instruction, +1109, takes the number and
prints it (as a signed four-digit decimal number). The halt instruction, +4300, terminates execution.

Operation code Meaning

Input/output operations:

final int READ = 10; Read a word from the keyboard into a specific
location in memory.

final int WRITE = 11; Write a word from a specific location in memory
to the screen.

Load/store operations:

final int LOAD = 20; Load a word from a specific location in memory
into the accumulator.

final int STORE = 21; Store a word from the accumulator into a spe-
cific location in memory.

Arithmetic operations:

final int ADD = 30; Add a word from a specific location in memory
to the word in the accumulator (leave result in
the accumulator).

final int SUBTRACT = 31; Subtract a word from a specific location in mem-
ory from the word in the accumulator (leave
result in the accumulator).

final int DIVIDE = 32; Divide a word from a specific location in mem-
ory into the word in the accumulator (leave result
in the accumulator).

final int MULTIPLY = 33; Multiply a word from a specific location in
memory by the word in the accumulator (leave
result in the accumulator).

Transfer of control operations:

final int BRANCH = 40; Branch to a specific location in memory.

final int BRANCHNEG = 41; Branch to a specific location in memory if the
accumulator is negative.

 final int BRANCHZERO = 42; Branch to a specific location in memory if the
accumulator is 0.

final int HALT = 43; Halt—the program has completed its task.

Fig. 7.33Fig. 7.33Fig. 7.33Fig. 7.33 Simpletron Machine Language (SML) operation codes .

Chapter 7 Arrays 373

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The second SML program (Fig. 7.35) reads two numbers from the keyboard and determines
and prints the larger value. Note the use of the instruction +4107 as a conditional transfer of control,
much the same as Java’s if statement.

Now write SML programs to accomplish each of the following tasks:
a) Use a sentinel-controlled loop to read 10 positive numbers. Compute and print their sum.
b) Use a counter-controlled loop to read seven numbers, some positive and some negative,

and compute and print their average.
c) Read a series of numbers and determine and print the largest number. The first number

read indicates how many numbers should be processed.

Location Number Instruction

00 +1007 (Read A)

01 +1008 (Read B)

02 +2007 (Load A)

03 +3008 (Add B)

04 +2109 (Store C)

05 +1109 (Write C)

06 +4300 (Halt)

07 +0000 (Variable A)

08 +0000 (Variable B)

09 +0000 (Result C)

Fig. 7.34Fig. 7.34Fig. 7.34Fig. 7.34 SML program that reads two integers and computes their sum.

Location Number Instruction

00 +1009 (Read A)

01 +1010 (Read B)

02 +2009 (Load A)

03 +3110 (Subtract B)

04 +4107 (Branch negative to 07)

05 +1109 (Write A)

06 +4300 (Halt)

07 +1110 (Write B)

08 +4300 (Halt)

09 +0000 (Variable A)

10 +0000 (Variable B)

Fig. 7.35Fig. 7.35Fig. 7.35Fig. 7.35 SML program that reads two integers and determines which is larger.

374 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7.43 (A Computer Simulator) It may at first seem outrageous, but in this problem you are going to
build your own computer. No, you will not be soldering components together. Rather, you will use
the powerful technique of software-based simulation to create an object-oriented software model of
the Simpletron. You will not be disappointed. Your Simpletron simulator will turn the computer you
are using into a Simpletron, and you will actually be able to run, test and debug the SML programs
you wrote in Exercise 7.42. Your Simpletron will be an event-driven applet—you will click a button
to execute each SML instruction and you will be able to see the instruction “in action.”

When you run your Simpletron simulator, it should begin by displaying:

*** Welcome to Simpletron! ***
*** Please enter your program one instruction ***
*** (or data word) at a time into the input ***
*** text field. I will display the location ***
*** number and a question mark (?). You then ***
*** type the word for that location. Press the ***
*** Done button to stop entering your program. ***

The program should display an input JTextField in which the user will type each instruction
one at a time and a Done button for the user to click when the complete SML program has been
entered. Simulate the memory of the Simpletron with a single-subscripted array memory that has
100 elements. Now assume that the simulator is running and let us examine the dialog as we enter
the program of Fig. 7.35 (Exercise 7.42):

00 ? +1009
01 ? +1010
02 ? +2009
03 ? +3110
04 ? +4107
05 ? +1109
06 ? +4300
07 ? +1110
08 ? +4300
09 ? +0000
10 ? +0000

Your program should use a JTextField to display the memory location followed by a ques-
tion mark. Each of the values to the right of a question mark is typed by the user into the input
JTextField. When the Done button is clicked, the program should display:

*** Program loading completed ***
*** Program execution begins ***

The SML program has now been placed (or loaded) in array memory. The Simpletron should
provide an “Execute next instruction” button the user can click to execute each instruction
in your SML program. Execution begins with the instruction in location 00 and, like Java, continues
sequentially, unless directed to some other part of the program by a transfer of control.

Use the variable accumulator to represent the accumulator register. Use the variable
instructionCounter to keep track of the location in memory that contains the instruction
being performed. Use the variable operationCode to indicate the operation currently being per-
formed (i.e., the left two digits of the instruction word). Use the variable operand to indicate the
memory location on which the current instruction operates. Thus, operand is the rightmost two
digits of the instruction currently being performed. Do not execute instructions directly from mem-
ory. Rather, transfer the next instruction to be performed from memory to a variable called
instructionRegister. Then “pick off” the left two digits and place them in operation-

Chapter 7 Arrays 375

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Code and “pick off” the right two digits and place them in operand. Each of the preceding regis-
ters should have a corresponding JTextField in which its current value can be displayed at all
times. When Simpletron begins execution, the special registers are all initialized to 0.

Now, let us “walk through” execution of the first SML instruction, +1009 in memory location
00. This is called an instruction execution cycle.

The instructionCounter tells us the location of the next instruction to be performed. We
fetch the contents of that location from memory by using the Java statement

instructionRegister = memory[instructionCounter];

The operation code and the operand are extracted from the instruction register by the statements

operationCode = instructionRegister / 100;
operand = instructionRegister % 100;

Now the Simpletron must determine that the operation code is actually a read (versus a write, a load,
etc.). A switch differentiates among the twelve operations of SML.

In the switch structure, the behavior of various SML instructions is simulated as shown in
Fig. 7.36. We discuss branch instructions shortly and leave the others to the reader.

When the SML program completes execution, the name and contents of each register as well as
the complete contents of memory should be displayed. Such a printout is often called a computer
dump (and, no, a computer dump is not a place where old computers go). To help you program your
dump method, a sample dump format is shown in Fig. 7.37. Note that a dump after executing a Sim-
pletron program would show the actual values of instructions and data values at the moment execu-
tion terminated. The sample dump assumes the output will be sent to the display screen with a series
of System.out.print and System.out.println method calls. However, we encourage
you to experiment with a version that can be displayed on the applet using a JTextArea or an
array of JTextField objects.

Let us proceed with the execution of our program’s first instruction, namely the +1009 in loca-
tion 00. As we have indicated, the switch statement simulates this by prompting the user to enter
a value into the input dialog, reading the value, converting the value to an integer and storing it in
memory location memory[operand]. Since your Simpletron is event driven, it waits for the user
to type a value into the input JTextField and press the Enter key. The value is then read into
location 09.

At this point, simulation of the first instruction is completed. All that remains is to prepare the
Simpletron to execute the next instruction. Since the instruction just performed was not a transfer of
control, we need merely increment the instruction counter register as follows:

++instructionCounter;

Instruction Description

read: Display an input dialog with the prompt “Enter an integer.” Convert the
input value to an integer and store it in location memory[operand].

load: accumulator = memory[operand];

add: accumulator += memory[operand];

Fig. 7.36Fig. 7.36Fig. 7.36Fig. 7.36 Behavior of several SML instructions in the Simpletron.

376 Arrays Chapter 7

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

This completes the simulated execution of the first instruction. When the user clicks the Exe-
cute next instruction button, the entire process (i.e., the instruction execution cycle) begins
again with the fetch of the next instruction to be executed.

Now let us consider how the branching instructions—the transfers of control—are simulated.
All we need to do is adjust the value in the instruction counter appropriately. Therefore, the uncondi-
tional branch instruction (40) is simulated within the switch as

instructionCounter = operand;

The conditional “branch if accumulator is zero” instruction is simulated as

if (accumulator == 0)
 instructionCounter = operand;

At this point, you should implement your Simpletron simulator and run each of the SML pro-
grams you wrote in Exercise 7.42. You may embellish SML with additional features and provide for
these in your simulator.

Your simulator should check for various types of errors. During the program loading phase, for
example, each number the user types into the Simpletron’s memory must be in the range -9999 to
+9999. Your simulator should test that each number entered is in this range, and, if not, keep
prompting the user to reenter the number until the user enters a correct number.

During the execution phase, your simulator should check for various serious errors, such as
attempts to divide by zero, attempts to execute invalid operation codes, accumulator overflows (i.e.,
arithmetic operations resulting in values larger than +9999 or smaller than -9999) and the like.
Such serious errors are called fatal errors. When a fatal error is detected, your simulator should print
an error message such as:

*** Attempt to divide by zero ***
*** Simpletron execution abnormally terminated ***

REGISTERS:
accumulator +0000
instructionCounter 00
instructionRegister +0000
operationCode 00
operand 00

MEMORY:
 0 1 2 3 4 5 6 7 8 9
 0 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
10 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
20 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
30 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
40 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
50 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
60 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
70 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
80 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000
90 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000 +0000

Fig. 7.37Fig. 7.37Fig. 7.37Fig. 7.37 A sample dump.

Chapter 7 Arrays 377

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

and should print a full computer dump in the format we discussed previously. This will help the user
locate the error in the program.

7.44 (Modifications to the Simpletron Simulator) In Exercise 7.43, you wrote a software simula-
tion of a computer that executes programs written in Simpletron Machine Language (SML). In this
exercise, we propose several modifications and enhancements to the Simpletron Simulator. In
Exercise 19.26 and Exercise 19.27, we propose building a compiler that converts programs written in
a high-level programming language (a variation of Basic) to Simpletron Machine Language. Some of
the following modifications and enhancements may be required to execute the programs produced by
the compiler:

a) Extend the Simpletron Simulator’s memory to contain 1000 memory locations to enable
the Simpletron to handle larger programs.

b) Allow the simulator to perform modulus calculations. This requires an additional Sim-
pletron Machine Language instruction.

c) Allow the simulator to perform exponentiation calculations. This requires an additional
Simpletron Machine Language instruction.

d) Modify the simulator to use hexadecimal values rather than integer values to represent
Simpletron Machine Language instructions.

e) Modify the simulator to allow output of a newline. This requires an additional Simpletron
Machine Language instruction.

f) Modify the simulator to process floating-point values in addition to integer values.
g) Modify the simulator to handle string input. [Hint: Each Simpletron word can be divided

into two groups, each holding a two-digit integer. Each two-digit integer represents the
ASCII decimal equivalent of a character. Add a machine-language instruction that will
input a string and store the string beginning at a specific Simpletron memory location.
The first half of the word at that location will be a count of the number of characters in
the string (i.e., the length of the string). Each succeeding half-word contains one ASCII
character expressed as two decimal digits. The machine-language instruction converts
each character into its ASCII equivalent and assigns it to a “half-word.”]

h) Modify the simulator to handle output of strings stored in the format of part g). [Hint:
Add a machine-language instruction that will print a string beginning at a certain Sim-
pletron memory location. The first half of the word at that location is a count of the num-
ber of characters in the string (i.e., the length of the string). Each succeeding half-word
contains one ASCII character expressed as two decimal digits. The machine-language in-
struction checks the length and prints the string by translating each two-digit number into
its equivalent character.]

7.45 The Fibonacci series

0, 1, 1, 2, 3, 5, 8, 13, 21, …

begins with the terms 0 and 1 and has the property that each succeeding term is the sum of the two
preceding terms.

a) Write a nonrecursive method fibonacci(n) that calculates the nth Fibonacci num-
ber. Incorporate this method into an applet that enables the user to enter the value of n.

b) Determine the largest Fibonacci number that can be printed on your system.
c) Modify the program of part a) to use double instead of int to calculate and return Fi-

bonacci numbers and use this modified program to repeat part b).

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

8
Object-Based
Programming

Objectives
• To understand encapsulation and data hiding.
• To understand the notions of data abstraction and

abstract data types (ADTs).
• To create Java ADTs, namely, classes.
• To be able to create, use and destroy objects.
• To be able to control access to object instance

variables and methods.
• To appreciate the value of object orientation.
• To understand the use of the this reference.
• To understand class variables and class methods.
My object all sublime
I shall achieve in time.
W. S. Gilbert

Is it a world to hide virtues in?
William Shakespeare, Twelfth Night

Your public servants serve you right.
Adlai Stevenson

But what, to serve our private ends,
Forbids the cheating of our friends?
Charles Churchill

This above all: to thine own self be true.
William Shakespeare, Hamlet

Have no friends not equal to yourself.
Confucius

Chapter 8 Object-Based Programming 379

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

8.1 Introduction
Now we investigate object orientation in Java in greater depth. Why did we defer this until
now? First, the objects we will build will be composed in part of structured program pieces,
so we needed to establish a basis in structured programming with control structures. Sec-
ond, we wanted to study methods in depth. Third, we wanted to familiarize the reader with
arrays that are Java objects.

Through our discussions of object-oriented Java programs in Chapter 2 through
Chapter 7, we introduced many basic concepts (i.e., “object think”) and terminology (i.e.,
“object speak”) of object-oriented programming in Java. We also discussed our program-
development methodology: We analyzed many typical problems that required a pro-
gram—either a Java applet or a Java application—to be built, determined what classes
from the Java API were needed to implement the program, determined what instance vari-
ables were needed, determined what methods were needed and specified how an object of
our class collaborated with objects of Java API classes to accomplish the overall goals of
the program.

Outline

8.1 Introduction
8.2 Implementing a Time Abstract Data Type with a Class
8.3 Class Scope
8.4 Controlling Access to Members
8.5 Creating Packages
8.6 Initializing Class Objects: Constructors
8.7 Using Overloaded Constructors
8.8 Using Set and Get Methods

8.8.1 Executing an Applet that Uses Programmer-Defined
Packages

8.9 Software Reusability
8.10 Final Instance Variables
8.11 Composition: Objects as Instance Variables of Other Classes
8.12 Package Access
8.13 Using the this Reference
8.14 Finalizers
8.15 Static Class Members
8.16 Data Abstraction and Encapsulation

8.16.1 Example: Queue Abstract Data Type
8.17 (Optional Case Study) Thinking About Objects: Starting to Program

the Classes for the Elevator Simulation

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

380 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Let us briefly review some key concepts and terminology of object orientation. OOP
encapsulates data (attributes) and methods (behaviors) into objects; the data and methods
of an object are intimately tied together. Objects have the property of information hiding.
This means that although objects might know how to communicate with one another across
well-defined interfaces, objects normally are not allowed to know how other objects are
implemented—implementation details are hidden within the objects themselves. Surely it
is possible to drive a car effectively without knowing the details of how engines, transmis-
sions and exhaust systems work internally. We will see why information hiding is so crucial
to good software engineering.

In C and other procedural programming languages, programming tends to be action-
oriented. In Java, programming is object-oriented. In C, the unit of programming is the
function (called methods in Java). In Java, the unit of programming is the class from which
objects are eventually instantiated (i.e., created). Functions do not disappear in Java; rather,
they are encapsulated as methods with the data they process within the “walls” of classes.

C programmers concentrate on writing functions. Groups of actions that perform some
task are formed into functions, and functions are grouped to form programs. Data is cer-
tainly important in C, but the view is that data exists primarily in support of the actions that
functions perform. The verbs in a system-requirements document help the C programmer
determine the set of functions that will work together to implement the system.

Java programmers concentrate on creating their own user-defined types called classes.
Classes are also referred to as programmer-defined types. Each class contains data as well
as the set of methods that manipulate the data. The data components of a class are called
instance variables (these are called data members in C++). Just as an instance of a built-in
type such as int is called a variable, an instance of a user-defined type (i.e., a class) is
called an object. The focus of attention in Java is on objects rather than methods. The nouns
in a system-requirements document help the Java programmer determine an initial set of
classes with which to begin the design process. These classes are then used to instantiate
objects that will work together to implement the system.

This chapter explains how to create and use objects, a subject called object-based pro-
gramming (OBP). Chapter 9 introduces inheritance and polymorphism—two key technol-
ogies that enable true object-oriented programming (OOP). Although inheritance is not
discussed in detail until Chapter 9, inheritance is part of every Java class definition.

Performance Tip 8.1
When passing an object to a method in Java, only a reference to the object is passed, not a
copy of a possibly large object (as would be the case in a pass by value). 8.1

Software Engineering Observation 8.1
It is important to write programs that are understandable and easy to maintain. Change is
the rule rather than the exception. Programmers should anticipate their code’s being modi-
fied. As we will see, classes facilitate program modifiability. 8.1

8.2 Implementing a Time Abstract Data Type with a Class
The next example consists of two classes—Time1 (Fig. 8.1) and TimeTest (Fig. 8.2).
Class Time1 is defined in file Time1.java. Class TimeTest is defined in a separate
file called TimeTest.java. It is important to note that these classes must be defined in

Chapter 8 Object-Based Programming 381

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

separate files, because they are both public classes. [Note: The output of this program
appears in Fig. 8.2.]

1 // Fig. 8.1: Time1.java
2 // Time1 class definition maintains the time in 24-hour format.
3
4 // Java core packages
5 import java.text.DecimalFormat;
6
7 public class Time1 extends Object {
8 private int hour; // 0 - 23
9 private int minute; // 0 - 59

10 private int second; // 0 - 59
11
12 // Time1 constructor initializes each instance variable
13 // to zero. Ensures that each Time1 object starts in a
14 // consistent state.
15 public Time1()
16 {
17 setTime(0, 0, 0);
18 }
19
20 // Set a new time value using universal time. Perform
21 // validity checks on the data. Set invalid values to zero.
22 public void setTime(int h, int m, int s)
23 {
24 hour = ((h >= 0 && h < 24) ? h : 0);
25 minute = ((m >= 0 && m < 60) ? m : 0);
26 second = ((s >= 0 && s < 60) ? s : 0);
27 }
28
29 // convert to String in universal-time format
30 public String toUniversalString()
31 {
32 DecimalFormat twoDigits = new DecimalFormat("00");
33
34 return twoDigits.format(hour) + ":" +
35 twoDigits.format(minute) + ":" +
36 twoDigits.format(second);
37 }
38
39 // convert to String in standard-time format
40 public String toString()
41 {
42 DecimalFormat twoDigits = new DecimalFormat("00");
43
44 return ((hour == 12 || hour == 0) ? 12 : hour % 12) +
45 ":" + twoDigits.format(minute) +
46 ":" + twoDigits.format(second) +
47 (hour < 12 ? " AM" : " PM");
48 }
49
50 } // end class Time1

Fig. 8.1Fig. 8.1Fig. 8.1Fig. 8.1 Abstract data type Time1 implementation as a class.

382 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Software Engineering Observation 8.2
Class definitions that begin with keyword public must be stored in a file that has exactly
the same name as the class and ends with the .java file name extension. 8.2

Common Programming Error 8.1
Defining more than one public class in the same file is a syntax error. 8.1

Figure 8.1 contains a simple definition for class Time1. Our Time1 class definition
begins with line 6, which indicates that class Time1 extends class Object (from package
java.lang). Remember that you never create a class definition “from scratch.” In fact,
when you create a class definition, you always use pieces of an existing class definition. Java
uses inheritance to create new classes from existing class definitions. Keyword extends
followed by class name Object indicates the class (in this case Time1) from which our new
class inherits existing pieces. In this inheritance relationship, Object is called the superclass
or base class and Time1 is called the subclass or derived class. Using inheritance results in
a new class definition that has the attributes (data) and behaviors (methods) of class Object
as well as new features we add in our Time1 class definition. Every class in Java is a subclass
of Object (directly or indirectly). Therefore, every class inherits the 11 methods defined by
class Object. One key Object method is toString, discussed later in this section. Other
methods of class Object are discussed as they are needed throughout the text. For a com-
plete list of class Object’s methods, see the online API documentation at

java.sun.com/j2se/1.3/docs/api/index.html

Software Engineering Observation 8.3
Every class defined in Java must extend another class. If a class does not explicitly use the
keyword extends in its definition, the class implicitly extends Object. 8.3

The body of the class definition is delineated with left and right braces ({ and }) on
lines 7 and 50. Class Time1 contains three integer instance variables—hour, minute
and second—that represent the time in universal-time format (24-hour clock format).

Keywords public and private are member access modifiers. Instance variables
or methods declared with member access modifier public are accessible wherever the
program has a reference to a Time1 object. Instance variables or methods declared with
member access modifier private are accessible only to methods of the class in which
they are defined. Every instance variable or method definition should be preceded by a
member access modifier.

The three integer instance variables hour, minute and second are each declared
(lines 8–10) with member access modifier private, indicating that these instance vari-
ables are accessible only to methods of the class. When a program creates (instantiates) an
object of the class, such instance variables are encapsulated in the object and can be
accessed only through methods of that object’s class (normally through the class’s public
methods). Typically, instance variables are declared private, and methods are declared
public. It is possible to have private methods and public data, as we will see later.
The private methods are known as utility methods or helper methods because they can
be called only by other methods of that class and are used to support the operation of those
methods. Using public data is uncommon and is a dangerous programming practice.

Chapter 8 Object-Based Programming 383

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Software Engineering Observation 8.4
Methods tend to fall into a number of different categories: methods that get the values of
private instance variables; methods that set the values of private instance variables;
methods that implement the services of the class; and methods that perform various mechan-
ical chores for the class, such as initializing class objects, assigning class objects, and con-
verting between classes and built-in types or between classes and other classes. 8.4

Access methods can read or display data. Another common use for access methods is
to test whether a condition is true or false—such methods are often called predicate
methods. An example of a predicate method would be an isEmpty method for any con-
tainer class—a class capable of holding many objects—such as a linked list, a stack or a
queue (these data structures are discussed in depth in Chapter 19, Chapter 20 and
Chapter 21). A program might test isEmpty before attempting to read another item from
the container object. A program might test isFull before attempting to insert another
item into the container object.

Class Time1 contains the following public methods—Time1 (lines 15–18), set-
Time (lines 22–27), toUniversalString (lines 30–37) and toString (line 40–48).
These are the public methods, public services or public interface of the class. These
methods are used by clients (i.e., portions of a program that are users of a class) of the class
to manipulate the data stored in objects of the class.

The clients of a class use references to interact with an object of the class. For example,
method paint in an applet is a client of class Graphics. Method paint uses a refer-
ence to a Graphics object (such as g) that it receives as an argument to draw on the applet
by calling methods that are public services of class Graphics (such as drawString,
drawLine, drawOval and drawRect).

Notice the method with the same name as the class (lines 15–18); it is the constructor
method of that class. A constructor is a special method that initializes the instance variables
of a class object. Java calls a class’s constructor method when a program instantiates an
object of that class. In this example, the constructor simply calls the class’s setTime
method (discussed shortly) with hour, minute and second values specified as 0.

It is common to have several constructors for a class; this is accomplished through
method overloading (as we will see Fig. 8.6). Constructors can take arguments but cannot
specify a return data type. Implicitly, the constructor returns a reference to the instantiated
object. An important difference between constructors and other methods is that construc-
tors are not allowed to specify a return data type (not even void). Normally, constructors
are public methods of a class. Nonpublic methods are discussed later.

Common Programming Error 8.2
Attempting to declare a return type for a constructor and/or attempting to return a value
from a constructor is a logic error. Java allows other methods of the class to have the same
name as the class and to specify return types. Such methods are not constructors and will not
be called when an object of the class is instantiated. 8.2

Method setTime (lines 22–27) is a public method that receives three integer argu-
ments and uses them to set the time. Each argument is tested in a conditional expression
that determines whether the value is in range. For example, the hour value must be greater
than or equal to 0 and less than 24 because we represent the time in universal time format
(0–23 for the hour, 0–59 for the minute and 0–59 for the second). Any value outside this

384 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

range is an invalid value and is set to zero—ensuring that a Time1 object always contains
valid data. This is also known as keeping the object in a consistent state or maintaining the
object’s integrity. In cases where invalid data is supplied to setTime, the program may
want to indicate that an invalid time setting was attempted. We explore this possibility in
the exercises.

Good Programming Practice 8.1
Always define a class so its instance variables are maintained in a consistent state. 8.1

Method toUniversalString (lines 30–37) takes no arguments and returns a
String. This method produces a universal-time-format string consisting of six digits—
two for the hour, two for the minute and two for the second. For example, 13:30:07 repre-
sents 1:30:07 PM. Line 32 creates an instance of class DecimalFormat (from package
java.text imported at line 3) to help format the universal time. Object twoDigits is
initialized with the format control string "00", which indicates that the number format
should consist of two digits—each 0 is a placeholder for a digit. If the number being for-
matted is a single digit, it is automatically preceded by a leading 0 (i.e., 8 is formatted as
08). The return statement at lines 34–36 uses method format (which returns a for-
matted String containing the number) from object twoDigits to format the hour,
minute and second values into two-digit strings. Those strings are concatenated with
the + operator (separated by colons) and returned from method toUniversalString.

Method toString (line 40–48) takes no arguments and returns a String. This
method produces a standard-time-format string consisting of the hour, minute and
second values separated by colons and an AM or PM indicator, as in 1:27:06 PM. This
method uses the same DecimalFormat techniques as method toUniversalString
to guarantee that the minute and second values each appear with two digits. Method
toString is special, in that we inherited from class Object a toString method with
exactly the same first line as our toString on line 40. The original toString method
of class Object is a generic version that is used mainly as a placeholder that can be rede-
fined by a subclass (similar to methods init, start and paint from class JApplet).
Our version replaces the version we inherited to provide a toString method that is more
appropriate for our class. This is known as overriding the original method definition (dis-
cussed in detail in Chapter 9).

Once the class has been defined, it can be used as a type in declarations such as

Time1 sunset, // reference to object of type Time1
 timeArray[]; // reference to array of Time1 objects

The class name is a new type specifier. There may be many objects of a class, just as there
may be many variables of a primitive data type such as int. The programmer can create
new class types as needed; this is one of the reasons that Java is known as an extensible
language.

The TimeTest1 application of Fig. 8.2 uses class Time1. Method main of class
TimeTest1 declares and initializes an instance of class Time1 called time in line 12.
When the object is instantiated, operator new allocates the memory in which the Time1
object will be stored; then new calls the Time1 constructor to initialize the instance vari-
ables of the new Time1 object. The constructor invokes method setTime to explicitly
initialize each private instance variable to 0. Operator new then returns a reference to the

Chapter 8 Object-Based Programming 385

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

new object, and that reference is assigned to time. Similarly, line 32 in class Time1
(Fig. 8.1) uses new to allocate the memory for a DecimalFormat object, then calls the
DecimalFormat constructor with the argument "00" to indicate the number format
control string.

Software Engineering Observation 8.5
Every time new creates an object of a class, that class’s constructor is called to initialize the
instance variables of the new object. 8.5

Note that class Time1 was not imported into the TimeTest1.java file. Actu-
ally, every class in Java is part of a package (like the classes from the Java API). If the pro-
grammer does not specify the package for a class, the class is automatically placed in the
default package, which includes the compiled classes in the current directory. If a class is
in the same package as the class that uses it, an import statement is not required. We
import classes from the Java API because their .class files are not in the same package
with each program we write. Section 8.5 illustrates how to define your own packages of
classes for reuse.

1 // Fig. 8.2: TimeTest1.java
2 // Class TimeTest1 to exercise class Time1
3
4 // Java extension packages
5 import javax.swing.JOptionPane;
6
7 public class TimeTest1 {
8
9 // create Time1 object and manipulate it

10 public static void main(String args[])
11 {
12 Time1 time = new Time1(); // calls Time1 constructor
13
14 // append String version of time to String output
15 String output = "The initial universal time is: " +
16 time.toUniversalString() +
17 "\nThe initial standard time is: " + time.toString() +
18 "\nImplicit toString() call: " + time;
19
20 // change time and append String version of time to output
21 time.setTime(13, 27, 6);
22 output += "\n\nUniversal time after setTime is: " +
23 time.toUniversalString() +
24 "\nStandard time after setTime is: " + time.toString();
25
26 // use invalid values to change time and append String
27 // version of time to output
28 time.setTime(99, 99, 99);
29 output += "\n\nAfter attempting invalid settings: " +
30 "\nUniversal time: " + time.toUniversalString() +
31 "\nStandard time: " + time.toString();
32

Fig. 8.2Fig. 8.2Fig. 8.2Fig. 8.2 Using an object of class Time1 in a program (part 1 of 2).

386 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The statement at lines 15–18 defines a String reference output, which stores the
string containing the results that will be displayed in a message box. Initially, the program
assigns to output the time in universal-time format (by sending message toUniver-
salString to the object to which time refers) and standard-time format (by sending
message toString to the object to which time refers) to confirm that the data were ini-
tialized properly. Note that line 18 uses a special string concatenation feature of Java. Con-
catenating a String with any object results in an implicit call to the object’s toString
method to convert the object to a String; then the Strings are concatenated. Lines 17–
18 illustrate that you can call toString both explicitly and implicitly in a String con-
catenation operation.

Line 21 sends the setTime message to the object to which time refers to change the
time. Then lines 22–24 append the time to output again in both formats to confirm that
the time was set correctly.

To illustrate that method setTime validates the values passed to it, line 28 calls
method setTime and attempts to set the instance variables to invalid values. Then lines
29–31 append the time to output again in both formats to confirm that setTime vali-
dated the data. Lines 33–35 display a message box with the results of our program. Notice
in the last two lines of the output window that the time is set to midnight—the default value
of a Time1 object.

Now that we have seen our first non-applet, non-application class, let us consider sev-
eral issues of class design.

Again, note that the instance variables hour, minute and second are each declared
private. Instance variables declared private are not accessible outside the class in
which they are defined. The philosophy here is that the actual data representation used
within the class is of no concern to the class’s clients. For example, it would be perfectly

33 JOptionPane.showMessageDialog(null, output,
34 "Testing Class Time1",
35 JOptionPane.INFORMATION_MESSAGE);
36
37 System.exit(0);
38 }
39
40 } // end class TimeTest1

Fig. 8.2Fig. 8.2Fig. 8.2Fig. 8.2 Using an object of class Time1 in a program (part 2 of 2).

Chapter 8 Object-Based Programming 387

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

reasonable for the class to represent the time internally as the number of seconds since mid-
night. Clients could use the same public methods and get the same results without being
aware of this. In this sense, implementation of a class is said to be hidden from its clients.
Exercise 8.18 asks you to make precisely this modification to the Time1 class of
Figure 8.1 and show that there is no change visible to the clients of the class.

Software Engineering Observation 8.6
Information hiding promotes program modifiability and simplifies the client’s perception of
a class. The client should not require knowledge of a class’s implementation (known as im-
plementation knowledge) to be able to reuse a class. 8.6

Software Engineering Observation 8.7
Clients of a class can (and should) use the class without knowing the internal details of how
the class is implemented. If the class implementation is changed (to improve performance,
for example), the class clients’ source code need not change, provided that the class’s inter-
face remains constant. This makes it much easier to modify systems. 8.7

In this program, the Time1 constructor simply initializes the instance variables to 0
(i.e., the universal time equivalent of 12 AM). This ensures that the object is created in a
consistent state (i.e., all instance variable values are valid). Invalid values cannot be stored
in the instance variables of a Time1 object, because the constructor is automatically called
when the Time1 object is created and subsequent attempts by a client to modify the
instance variables are scrutinized by the method setTime.

Instance variables can be initialized where they are declared in the class body, by the
class’s constructor, or they can be assigned values by “set” methods. (Remember, instance
variables that are not initialized explicitly receive default values (primitive numeric vari-
ables are set to 0, booleans are set to false and references are set to null).

Good Programming Practice 8.2
Initialize instance variables of a class in that class’s constructor. 8.2

Every class may include a finalizer method called finalize that does “termination
housekeeping” on each class object before the memory for the object is garbage collected
by the system. We will discuss garbage collection and finalizers in detail in Section 8.14
and Section 8.15.

It is interesting that the toUniversalString and toString methods take no
arguments. This is because these methods implicitly know that they are to manipulate the
instance variables of the particular Time1 object for which they are invoked. This makes
method calls more concise than conventional function calls in procedural programming. It
also reduces the likelihood of passing the wrong arguments, the wrong types of arguments
and/or the wrong number of arguments, as often happens in C function calls.

Software Engineering Observation 8.8
Using an object-oriented programming approach can often simplify method calls by re-
ducing the number of parameters to be passed. This benefit of object-oriented programming
derives from the fact that encapsulation of instance variables and methods within an object
gives the methods the right to access the instance variables. 8.8

Classes simplify programming because the client (or user of the class object) need only
be concerned with the public operations encapsulated in the object. Such operations are

388 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

usually designed to be client oriented rather than implementation oriented. Clients need not
be concerned with a class’s implementation. Interfaces do change, but less frequently than
implementations. When an implementation changes, implementation-dependent code must
change accordingly. By hiding the implementation, we eliminate the possibility of other
program parts becoming dependent on the details of the class implementation.

Often, classes do not have to be created “from scratch.” Rather, they can be derived
from other classes that provide operations the new classes can use, or classes can include
objects of other classes as members. Such software reuse can greatly enhance programmer
productivity. Deriving new classes from existing classes is called inheritance—a distin-
guishing feature between object-based programming and object-oriented programming—
and is discussed in detail in Chapter 9. Including class objects as members of other classes
is called composition or aggregation and is discussed later in this chapter.

8.3 Class Scope
A class’s instance variables and methods belong to that class’s scope. Within a class’s
scope, class members are accessible to all of that class’s methods and can be referenced
simply by name. Outside a class’s scope, class members cannot be referenced directly by
name. Those class members (such as public members) that are visible can be accessed
only through a “handle” (i.e., primitive data type members can be referred to by object-
ReferenceName.primitiveVariableName and object members can be referenced by object-
ReferenceName.objectMemberName). For example, a program can determine the number
of elements in an array object by accessing the array’s public member length as in ar-
rayName.length.

Variables defined in a method are known only to that method (i.e., they are local vari-
ables to that method). Such variables are said to have block scope. If a method defines a
variable with the same name as a variable with class scope (i.e., an instance variable), the
class-scope variable is hidden by the method-scope variable in the method scope. A hidden
instance variable can be accessed in the method by preceding its name with the keyword
this and the dot operator, as in this.variableName. Keyword this is discussed
Section 8.13.

8.4 Controlling Access to Members
The member access modifiers public and private control access to a class’s instance
variables and methods. (In Chapter 9, we will introduce the additional access modifier
protected.) As we stated previously, the primary purpose of public methods is to
present to the class’s clients a view of the services the class provides (i.e., the public inter-
face of the class). Clients of the class need not be concerned with how the class accomplish-
es its tasks. For this reason, the private instance variables and private methods of a
class (i.e., the class’s implementation details) are not accessible to the clients of a class. Re-
stricting access to class members via keyword private is called encapsulation.

Common Programming Error 8.3
An attempt by a method that is not a member of a particular class to access a private
member of that class is a syntax error. 8.3

Figure 8.3 demonstrates that private class members are not accessible by name out-
side the class. Line 10 attempts to access directly the private instance variable hour of

Chapter 8 Object-Based Programming 389

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

the Time1 object to which time refers. When this program is compiled, the compiler gen-
erates an error stating that the private member hour is not accessible. [Note: This pro-
gram assumes that the Time1 class from Figure 8.1 is used.]

Good Programming Practice 8.3
Our preference is to list the private instance variables of a class first, so that, as you read
the code, you see the names and types of the instance variables before they are used in the
methods of the class. 8.3

Software Engineering Observation 8.9
Keep all the instance variables of a class private. When necessary, provide public
methods to set the values of private instance variables and to get the values of private
instance variables. This architecture helps hide the implementation of a class from its clients,
which reduces bugs and improves program modifiability. 8.9

Access to private data should be controlled carefully by the class’s methods. For
example, to allow clients to read the value of private data, the class can provide a “get”
method (also called an accessor method). To enable clients to modify private data, the
class can provide a “set” method (also called a mutator method). Such modification would
seem to violate the notion of private data, but a set method can provide data validation
capabilities (such as range checking) to ensure that the value is set properly. A set method
can also translate between the form of the data used in the interface and the form used in
the implementation. A get method need not expose the data in “raw” format; rather, the get
method can edit the data and limit the view of the data the client will see.

Software Engineering Observation 8.10
Class designers use private data and public methods to enforce the notion of information
hiding and the principle of least privilege. If the client of a class needs access to data in the
class, provide that access through public methods of the class. By doing so, the programmer
of the class controls how the class’s data is manipulated (e.g., data validity checking can pre-
vent invalid data from being stored in an object). This is the principle of data encapsulation. 8.10

1 // Fig. 8.3: TimeTest2.java
2 // Demonstrate errors resulting from attempts
3 // to access private members of class Time1.
4 public class TimeTest2 {
5
6 public static void main(String args[])
7 {
8 Time1 time = new Time1();
9

10 time.hour = 7;
11 }
12 }

TimeTest2.java:10: hour has private access in Time1
 time.hour = 7;
 ^
1 error

Fig. 8.3Fig. 8.3Fig. 8.3Fig. 8.3 Erroneous attempt to access private members of class Time1.

390 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Software Engineering Observation 8.11
The class designer need not provide set and/or get methods for each private data member;
these capabilities should be provided only when it makes sense and after careful thought by
the class designer. 8.11

Testing and Debugging Tip 8.1
Making the instance variables of a class private and the methods of the class public
facilitates debugging because problems with data manipulations are localized to the class’s
methods. 8.11

8.5 Creating Packages
As we have seen in almost every example in the text, classes and interfaces (discussed in
Chapter 9) from preexisting libraries, such as the Java API, can be imported into a Java pro-
gram. Each class and interface in the Java API belongs to a specific package that contains a
group of related classes and interfaces. As applications become more complex, packages help
programmers manage the complexity of application components. Packages also facilitate
software reuse by enabling programs to import classes from other packages (as we have done
in almost every example to this point). Another benefit of packages is that they provide a con-
vention for unique class names. With hundreds of thousands of Java programmers around the
world, there is a good chance that the names you choose for classes will conflict with the
names that other programmers choose for their classes. This section introduces how to create
your own packages and discusses the standard distribution mechanism for packages.

The application of Fig. 8.4 and Fig. 8.5 illustrates how to create your own package and
use a class from that package in a program. The steps for creating a reusable class are:

1. Define a public class. If the class is not public, it can be used only by other
classes in the same package.

2. Choose a package name, and add a package statement to the source code file for
the reusable class definition. [Note: There can be only one package statement in
a Java source code file.]

3. Compile the class so it is placed in the appropriate package directory structure.

4. Import the reusable class into a program, and use the class.

Common Programming Error 8.4
A syntax error occurs if any code appears in a Java file before the package statement (if
there is one) in the file. 8.4

We chose to demonstrate Step 1 by modifying the public class Time1 defined in
Fig. 8.1. The new version is shown in Fig. 8.4. No modifications have been made to the
implementation of the class, so we will not discuss the implementation details of the class
again here.

To satisfy Step 2, we added a package statement at the beginning of the file. Line 3
uses a package statement to define a package named com.deitel.jhtp4.ch08.
Placing a package statement at the beginning of a Java source file indicates that the class
defined in the file is part of the specified package. The only types of statements in Java that
can appear outside the braces of a class definition are package statements and import
statements.

Chapter 8 Object-Based Programming 391

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

1 // Fig. 8.4: Time1.java
2 // Time1 class definition in a package
3 package com.deitel.jhtp4.ch08;
4
5 // Java core packages
6 import java.text.DecimalFormat;
7
8 public class Time1 extends Object {
9 private int hour; // 0 - 23

10 private int minute; // 0 - 59
11 private int second; // 0 - 59
12
13 // Time1 constructor initializes each instance variable
14 // to zero. Ensures that each Time1 object starts in a
15 // consistent state.
16 public Time1()
17 {
18 setTime(0, 0, 0);
19 }
20
21 // Set a new time value using universal time. Perform
22 // validity checks on the data. Set invalid values to zero.
23 public void setTime(int h, int m, int s)
24 {
25 hour = ((h >= 0 && h < 24) ? h : 0);
26 minute = ((m >= 0 && m < 60) ? m : 0);
27 second = ((s >= 0 && s < 60) ? s : 0);
28 }
29
30 // convert to String in universal-time format
31 public String toUniversalString()
32 {
33 DecimalFormat twoDigits = new DecimalFormat("00");
34
35 return twoDigits.format(hour) + ":" +
36 twoDigits.format(minute) + ":" +
37 twoDigits.format(second);
38 }
39
40 // convert to String in standard-time format
41 public String toString()
42 {
43 DecimalFormat twoDigits = new DecimalFormat("00");
44
45 return ((hour == 12 || hour == 0) ? 12 : hour % 12) +
46 ":" + twoDigits.format(minute) +
47 ":" + twoDigits.format(second) +
48 (hour < 12 ? " AM" : " PM");
49 }
50
51 } // end class Time1

Fig. 8.4Fig. 8.4Fig. 8.4Fig. 8.4 Placing Class Time1 in a package for reuse.

392 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Software Engineering Observation 8.12
A Java source code file has the following order: a package statement (if any), zero or more
import statements, then class definitions. Only one of the class definitions in a particular
file can be public. Other classes in the file are also placed in the package, but are reusable
only from other classes in that package—they cannot be imported into classes in another
package. They are in the package to support the reusable class in the file. 8.12

In an effort to provide unique names for every package, Sun Microsystems specifies a
convention for package naming that all Java programmers should follow. Every package
name should start with your Internet domain name in reverse order. For example, our
Internet domain name is deitel.com, so we began our package name with
com.deitel. If your domain name is yourcollege.edu, the package name you would
use is edu.yourcollege. After the domain name is reversed, you can choose any other
names you want for your package. If you are part of a company with many divisions or a
university with many schools, you may want to use the name of your division or school as
the next name in the package. We chose to use jhtp4 as the next name in our package
name to indicate that this class is from Java How to Program: Fourth Edition. The last
name in our package name specifies that this package is for Chapter 8 (ch08). [Note: We
use our own packages several times throughout the book. You can determine the chapter in
which one of our reusable classes is defined by looking at the last part of the package name
in the import statement. This appears before the name of the class being imported or
before the * if a particular class is not specified.]

Step 3 is to compile the class so it is stored in the appropriate package. When a Java
file containing a package statement is compiled, the resulting .class file is placed in
the directory structure specified by the package statement. The preceding package
statement indicates that class Time1 should be placed in the directory ch08. The other
names—com, deitel and jhtp4—are also directories. The directory names in the
package statement specify the exact location of the classes in the package. If these direc-
tories do not exist before the class is compiled, the compiler creates them.

When compiling a class in a package, there is an extra option (-d) that must be passed
to the javac compiler. This option specifies where to create (or locate) the directories in
the package statement. For example, we used the compilation command

javac -d . Time1.java

to specify that the first directory specified in our package name should be placed in the cur-
rent directory. The . after -d in the preceding command represents the current directory
on the Windows, UNIX and Linux operating systems (and several others as well). After ex-
ecuting the compilation command, the current directory contains a directory called com,
com contains a directory called deitel, deitel contains a directory called jhtp4 and
jhtp4 contains a directory called ch08. In the ch08 directory, you can find the file
Time1.class.

The package directory names become part of the class name when the class is com-
piled. The class name in this example is actually com.deitel.jhtp4.ch08.Time1
after the class is compiled. You can use this fully qualified name in your programs or you can
import the class and use its short name (Time1) in the program. If another package also
contains a Time1 class, the fully qualified class names can be used to distinguish between
the classes in the program and prevent a naming conflict (also called a name collision).

Chapter 8 Object-Based Programming 393

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Once the class is compiled and stored in its package, the class can be imported into pro-
grams (Step 4). The TimeTest3 application of Fig. 8.5, line 8 specifies that class Time1
should be imported for use in class TimeTest3.

At compile time for class TimeTest3, javac must locate .class file for Time1,
so javac can ensure that class TimeTest3 uses class Time1 correctly. The compiler
follows a specific search order to locate the classes it needs. It begins by searching the stan-
dard Java classes that are bundled with the J2SDK. Then it searches for extension classes.
Java 2 provides an extensions mechanism that enables new packages to be added to Java
for development and execution purposes. [Note: The extensions mechanism is beyond the
scope of this book. For more information, visit java.sun.com/j2se/1.3/docs/
guide/extensions.] If the class is not found in the standard Java classes or in the
extension classes, the complier searches the class path. By default, the class path consists
only of the current directory. However, the class path can be modified by:

1 // Fig. 8.5: TimeTest3.java
2 // Class TimeTest3 to use imported class Time1
3
4 // Java extension packages
5 import javax.swing.JOptionPane;
6
7 // Deitel packages
8 import com.deitel.jhtp4.ch08.Time1; // import Time1 class
9

10 public class TimeTest3 {
11
12 // create an object of class Time1 and manipulate it
13 public static void main(String args[])
14 {
15 Time1 time = new Time1(); // create Time1 object
16
17 time.setTime(13, 27, 06); // set new time
18 String output =
19 "Universal time is: " + time.toUniversalString() +
20 "\nStandard time is: " + time.toString();
21
22 JOptionPane.showMessageDialog(null, output,
23 "Packaging Class Time1 for Reuse",
24 JOptionPane.INFORMATION_MESSAGE);
25
26 System.exit(0);
27 }
28
29 } // end class TimeTest3

Fig. 8.5Fig. 8.5Fig. 8.5Fig. 8.5 Using programmer-defined class Time1 in a package.

394 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

1. providing the -classpath option to the javac compiler, or

2. setting the CLASSPATH environment variable (a special variable that you define
and the operating system maintains so that applications can search for classes in
the specified locations).

In each case, the class path consists of a list of directories and/or archive files separated by
semicolons (;). Archive files are individual files that contain directories of other files, typ-
ically in compressed format. For example, the standard classes of Java are contained in the
archive file rt.jar that is installed with the J2SDK. Archive files normally end with the
.jar or .zip file name extensions. The directories and archive files specified in the class
path contain the classes you wish to make available to the Java compiler. For more infor-
mation on the class path, visit java.sun.com/j2se/1.3/docs/tooldocs/
win32/classpath.html for Windows or java.sun.com/j2se/1.3/docs/
tooldocs/solaris/classpath.html for Solaris/Linux. [Note: We discuss ar-
chive files in more detail in Section 8.8.]

Common Programming Error 8.5
Specifying an explicit class path eliminates the current directory from the class path. This
prevents classes in the current directory from loading properly. If classes must be loaded
from the current directory, include the current directory (.) in the explicit class path. 8.5

Software Engineering Observation 8.13
In general, it is a better practice to use the -classpath option of the compiler, rather than
the CLASSPATH environment variable, to specify the class path for a program. This enables
each application to have its own class path. 8.13

Testing and Debugging Tip 8.2
Specifying the class path with the CLASSPATH environment variable can cause subtle and
difficult-to-locate errors in programs that use different versions of the same packages. 8.2

For the example of Fig. 8.4 and Fig. 8.5, we did not specify an explicit class path.
Thus, to locate the classes in the com.deitel.jhtp4.ch08 package from this
example, the compiler looks in the current directory for the first name in the package—
com. Next, the compiler navigates the directory structure. Directory com contains the sub-
directory deitel. Directory deitel contains the subdirectory jhtp4. Finally, direc-
tory jhtp4 contains subdirectory ch08. In the ch08 directory is the file Time1.class,
which is loaded by the compiler to ensure that the class is used properly in our program.

Locating the classes to execute the program is similar to locating the classes to compile
the program. Like the compiler, the java interpreter searches the standard classes and
extension classes first, then searches the class path (the current directory by default). The
class path for the interpreter can be specified explicitly by using either of the techniques
discussed for the compiler. As with the compiler, it is better to specify an individual pro-
gram’s class path via command-line options to the interpreter. You can specify the class
path to the java interpreter via the -classpath or -cp command line options followed
by a list of directories and/or archive files separated by semicolons (;).

8.6 Initializing Class Objects: Constructors
When an object is created, its members can be initialized by a constructor method. A con-
structor is a method with the same name as the class (including case sensitivity). The pro-

Chapter 8 Object-Based Programming 395

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

grammer of a class can define the class’s constructor, which is invoked each time the program
instantiates an object of that class. Instance variables can be initialized implicitly to their de-
fault values (0 for primitive numeric types, false for booleans and null for references),
they can be initialized in a constructor of the class or their values can be set later after the ob-
ject is created. Constructors cannot specify return types or return values. A class can contain
overloaded constructors to provide a variety of means for initializing objects of that class.

When a program instantiates an object of a class, the program can supply initializers
in parentheses to the right of the class name. These initializers are passed as arguments to
the class’s constructor. This technique is demonstrated in the example of Section 8.7. We
have also seen this technique several times previously as we created new objects of classes
like DecimalFormat, JLabel, JTextField, JTextArea and JButton. For each
of these classes, we have seen statements of the form

ref = new ClassName(arguments);

where ref is a reference of the appropriate data type, new indicates that a new object is
being created, ClassName indicates the type of the new object and arguments specifies the
values used by the class’s constructor to initialize the object.

If no constructors are defined for a class, the compiler creates a default constructor that
takes no arguments (also called a no-argument constructor). The default constructor for a
class calls the default constructor for its superclass (the class it extends), then proceeds to
initialize the instance variables in the manner we discussed previously. If the class that this
class extends does not have a default constructor, the compiler issues an error message. It
is also possible for the programmer to provide a no-argument constructor, as we showed in
class Time1 and will see in the next example. If any constructors are defined for a class by
the programmer, Java will not create a default constructor for the class.

Good Programming Practice 8.4
When appropriate (almost always), provide a constructor to ensure that every object is prop-
erly initialized with meaningful values. 8.4

Common Programming Error 8.6
If constructors are provided for a class, but none of the public constructors are no-argu-
ment constructors, and an attempt is made to call a no-argument constructor to initialize an
object of the class, a syntax error occurs. A constructor can be called with no arguments only
if there are no constructors for the class (the default constructor is called) or if there is a no-
argument constructor. 8.6

8.7 Using Overloaded Constructors
Methods of a class can be overloaded (i.e., several methods in a class may have exactly the
same name as defined in Chapter 6, Methods). To overload a method of a class, simply pro-
vide a separate method definition with the same name for each version of the method. Re-
member that overloaded methods must have different parameter lists.

Common Programming Error 8.7
Attempting to overload a method of a class with another method that has the exact same sig-
nature (name and parameters) is a syntax error. 8.7

The Time1 constructor in Fig. 8.1 initialized hour, minute and second to 0 (i.e.,
12 midnight in universal time) with a call to the class’s setTime method. Figure 8.6

396 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

overloads the constructor method to provide a convenient variety of ways to initialize
objects of the new class Time2. The constructors guarantee that every object begins its
existence in a consistent state. In this program, each constructor calls method setTime
with the values passed to the constructor, to ensure that the value supplied for hour is in
the range 0 to 23 and that the values for minute and second are each in the range 0 to
59. If a value is out of range, it is set to zero by setTime (once again ensuring that each
instance variable remains in a consistent state). The appropriate constructor is invoked by
matching the number, types and order of the arguments specified in the constructor call
with the number, types and order of the parameters specified in each constructor defini-
tion. The matching constructor is called automatically. Figure 8.7 uses class Time2 to
demonstrate its constructors.

1 // Fig. 8.6: Time2.java
2 // Time2 class definition with overloaded constructors.
3 package com.deitel.jhtp4.ch08;
4
5 // Java core packages
6 import java.text.DecimalFormat;
7
8 public class Time2 extends Object {
9 private int hour; // 0 - 23

10 private int minute; // 0 - 59
11 private int second; // 0 - 59
12
13 // Time2 constructor initializes each instance variable
14 // to zero. Ensures that Time object starts in a
15 // consistent state.
16 public Time2()
17 {
18 setTime(0, 0, 0);
19 }
20
21 // Time2 constructor: hour supplied, minute and second
22 // defaulted to 0
23 public Time2(int h)
24 {
25 setTime(h, 0, 0);
26 }
27
28 // Time2 constructor: hour and minute supplied, second
29 // defaulted to 0
30 public Time2(int h, int m)
31 {
32 setTime(h, m, 0);
33 }
34
35 // Time2 constructor: hour, minute and second supplied
36 public Time2(int h, int m, int s)
37 {
38 setTime(h, m, s);
39 }

Fig. 8.6Fig. 8.6Fig. 8.6Fig. 8.6 Class Time2 with overloaded constructors (part 1 of 2).

Chapter 8 Object-Based Programming 397

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Most of the code in class Time2 is identical to that in class Time1, so we concentrate
on only the new features here (i.e., the constructors). Lines 16–19 define the no-argument
(default) constructor. Lines 23–26 define a Time2 constructor that receives a single int
argument representing the hour. Lines 30–33 defines a Time2 constructor that receives
two int arguments representing the hour and minute. Lines 36–39 define a Time2 con-
structor that receives three int arguments representing the hour, minute and second.
Lines 42–45 define a Time2 constructor that receives a Time2 reference to another Time2
object. In this case, the values from the Time2 argument are used to initialize the hour,
minute and second. Notice that none of the constructors specifies a return data type
(remember, this is not allowed for constructors). Also, notice that all the constructors receive
different numbers of arguments and/or different types of arguments. Even though only two

40
41 // Time2 constructor: another Time2 object supplied
42 public Time2(Time2 time)
43 {
44 setTime(time.hour, time.minute, time.second);
45 }
46
47 // Set a new time value using universal time. Perform
48 // validity checks on data. Set invalid values to zero.
49 public void setTime(int h, int m, int s)
50 {
51 hour = ((h >= 0 && h < 24) ? h : 0);
52 minute = ((m >= 0 && m < 60) ? m : 0);
53 second = ((s >= 0 && s < 60) ? s : 0);
54 }
55
56 // convert to String in universal-time format
57 public String toUniversalString()
58 {
59 DecimalFormat twoDigits = new DecimalFormat("00");
60
61 return twoDigits.format(hour) + ":" +
62 twoDigits.format(minute) + ":" +
63 twoDigits.format(second);
64 }
65
66 // convert to String in standard-time format
67 public String toString()
68 {
69 DecimalFormat twoDigits = new DecimalFormat("00");
70
71 return ((hour == 12 || hour == 0) ? 12 : hour % 12) +
72 ":" + twoDigits.format(minute) +
73 ":" + twoDigits.format(second) +
74 (hour < 12 ? " AM" : " PM");
75 }
76
77 } // end class Time2

Fig. 8.6Fig. 8.6Fig. 8.6Fig. 8.6 Class Time2 with overloaded constructors (part 2 of 2).

398 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

of the constructors receive values for the hour, minute and second, all the constructors
call setTime with values for hour, minute and second and substitute zeros for the
missing values to satisfy setTime’s requirement of three arguments.

Notice in particular the constructor at lines 42–45, which uses the hour, minute and
second values of its argument time to initialize the new Time2 object. Even though we
know that hour, minute and second are declared as private variables of class
Time2, we are able to access these values directly by using the expressions time.hour,
time.minute and time.second. This is due to a special relationship between objects
of the same class. When one object of a class has a reference to another object of the same
class, the first object can access all the second object’s data and methods.

Class TimeTest4 (Fig. 8.7) creates six Time2 objects (lines 17–22) to demonstrate
how to invoke the different constructors of the class. Line 17 shows that the no-argument
constructor is invoked by placing an empty set of parentheses after the class name when
allocating a Time2 object with new. Lines 18–22 of the program demonstrate passing
arguments to the Time2 constructors. Remember that the appropriate constructor is
invoked by matching the number, types and order of the arguments specified in the con-
structor call with the number, types and order of the parameters specified in each method
definition. So, line 18 invokes the constructor at line 23 of Fig. 8.6. Line 19 invokes the
constructor at line 30 of Fig. 8.6. Lines 20–21 invoke the constructor at line 36 of Fig. 8.6.
Line 22 invokes the constructor at line 42 of Fig. 8.6.

Note that each Time2 constructor in Fig. 8.6 could be written to include a copy of the
appropriate statements from method setTime. This could be slightly more efficient,
because the extra call to setTime is eliminated. However, consider changing the repre-
sentation of the time from three int values (requiring 12 bytes of memory) to a single int
value representing the total number of seconds that have elapsed in the day (requiring 4
bytes of memory). Coding the Time2 constructors and method setTime identically
makes such a change in this class definition more difficult. If the implementation of method
setTime changes, the implementation of the Time2 constructors would need to change
accordingly. Having the Time2 constructors call setTime directly requires any changes
to the implementation of setTime to be made only once. This reduces the likelihood of a
programming error when altering the implementation.

Software Engineering Observation 8.14
If a method of a class already provides all or part of the functionality required by a construc-
tor (or other method) of the class, call that method from the constructor (or other method).
This simplifies the maintenance of the code and reduces the likelihood of an error if the im-
plementation of the code is modified. It is also an effective example of reuse. 8.14

1 // Fig. 8.7: TimeTest4.java
2 // Using overloaded constructors
3
4 // Java extension packages
5 import javax.swing.*;
6

Fig. 8.7Fig. 8.7Fig. 8.7Fig. 8.7 Using overloaded constructors to initialize objects of class Time2 (part 1
of 3).

Chapter 8 Object-Based Programming 399

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7 // Deitel packages
8 import com.deitel.jhtp4.ch08.Time2;
9

10 public class TimeTest4 {
11
12 // test constructors of class Time2
13 public static void main(String args[])
14 {
15 Time2 t1, t2, t3, t4, t5, t6;
16
17 t1 = new Time2(); // 00:00:00
18 t2 = new Time2(2); // 02:00:00
19 t3 = new Time2(21, 34); // 21:34:00
20 t4 = new Time2(12, 25, 42); // 12:25:42
21 t5 = new Time2(27, 74, 99); // 00:00:00
22 t6 = new Time2(t4); // 12:25:42
23
24 String output = "Constructed with: " +
25 "\nt1: all arguments defaulted" +
26 "\n " + t1.toUniversalString() +
27 "\n " + t1.toString();
28
29 output += "\nt2: hour specified; minute and " +
30 "second defaulted" +
31 "\n " + t2.toUniversalString() +
32 "\n " + t2.toString();
33
34 output += "\nt3: hour and minute specified; " +
35 "second defaulted" +
36 "\n " + t3.toUniversalString() +
37 "\n " + t3.toString();
38
39 output += "\nt4: hour, minute, and second specified" +
40 "\n " + t4.toUniversalString() +
41 "\n " + t4.toString();
42
43 output += "\nt5: all invalid values specified" +
44 "\n " + t5.toUniversalString() +
45 "\n " + t5.toString();
46
47 output += "\nt6: Time2 object t4 specified" +
48 "\n " + t6.toUniversalString() +
49 "\n " + t6.toString();
50
51 JOptionPane.showMessageDialog(null, output,
52 "Demonstrating Overloaded Constructors",
53 JOptionPane.INFORMATION_MESSAGE);
54
55 System.exit(0);
56 }
57
58 } // end class TimeTest4

Fig. 8.7Fig. 8.7Fig. 8.7Fig. 8.7 Using overloaded constructors to initialize objects of class Time2 (part 2
of 3).

400 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

8.8 Using Set and Get Methods
Private instance variables can be manipulated only by methods of the class. A typical ma-
nipulation might be the adjustment of a customer’s bank balance (e.g., a private instance
variable of a class BankAccount) by a method computeInterest.

Classes often provide public methods to allow clients of the class to set (i.e., assign
values to) or get (i.e., obtain the values of) private instance variables. These methods
need not be called set and get, but they often are.

As a naming example, a method that sets instance variable interestRate would
typically be named setInterestRate and a method that gets the interestRate
would typically be called getInterestRate. Get methods are also commonly called
accessor methods or query methods. Set methods are also commonly called mutator
methods (because they typically change a value).

It would seem that providing set and get capabilities is essentially the same as making
the instance variables public. This is another subtlety of Java that makes the language so
desirable for software engineering. If an instance variable is public, the instance variable
can be read or written at will by any method in the program. If an instance variable is pri-
vate, a public get method certainly seems to allow other methods to read the data at
will but the get method controls the formatting and display of the data. A public set
method can—and most likely will—carefully scrutinize attempts to modify the instance
variable’s value. This ensures that the new value is appropriate for that data item. For
example, an attempt to set the day of the month for a date to 37 would be rejected, an
attempt to set a person’s weight to a negative value would be rejected, and so on. So,

Fig. 8.7Fig. 8.7Fig. 8.7Fig. 8.7 Using overloaded constructors to initialize objects of class Time2 (part 3
of 3).

Chapter 8 Object-Based Programming 401

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

although set and get methods could provide access to private data, the access is
restricted by the programmer’s implementation of the methods.

The benefits of data integrity are not automatic simply because instance variables are
made private—the programmer must provide validity checking. Java provides the
framework in which programmers can design better programs in a convenient manner.

Software Engineering Observation 8.15
Methods that set the values of private data should verify that the intended new values are
proper; if they are not, the set methods should place the private instance variables into
an appropriate consistent state. 8.15

A class’s set methods can return values indicating that attempts were made to assign
invalid data to objects of the class. This enables clients of the class to test the return values
of set methods to determine whether the objects they are manipulating are valid and to take
appropriate action if the objects are not valid. In Chapter 14, Exception Handling, we illus-
trate a more robust way in which clients of a class can be notified if an object is not valid.

Good Programming Practice 8.5
Every method that modifies the private instance variables of an object should ensure that the
data remains in a consistent state. 8.5

The applet of Fig. 8.8 (class Time3) and Fig. 8.9 (class TimeTest5) enhances our
Time class (now called Time3) to include get and set methods for the hour, minute and
second private instance variables. The set methods strictly control the setting of the
instance variables to valid values. Attempts to set any instance variable to an incorrect
value cause the instance variable to be set to zero (thus leaving the instance variable in a
consistent state). Each get method simply returns the appropriate instance variable’s value.
This applet introduces enhanced GUI event handling techniques as we move toward
defining our first full-fledged windowed application. After discussing the code, we intro-
duce how to set up an applet to use classes in programmer-defined packages.

1 // Fig. 8.8: Time3.java
2 // Time3 class definition with set and get methods
3 package com.deitel.jhtp4.ch08;
4
5 // Java core packages
6 import java.text.DecimalFormat;
7
8 public class Time3 extends Object {
9 private int hour; // 0 - 23

10 private int minute; // 0 - 59
11 private int second; // 0 - 59
12
13 // Time3 constructor initializes each instance variable
14 // to zero. Ensures that Time object starts in a
15 // consistent state.
16 public Time3()
17 {
18 setTime(0, 0, 0);
19 }

Fig. 8.8Fig. 8.8Fig. 8.8Fig. 8.8 Class Time3 with set and get methods (part 1 of 3).

402 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

20
21 // Time3 constructor: hour supplied, minute and second
22 // defaulted to 0
23 public Time3(int h)
24 {
25 setTime(h, 0, 0);
26 }
27
28 // Time3 constructor: hour and minute supplied, second
29 // defaulted to 0
30 public Time3(int h, int m)
31 {
32 setTime(h, m, 0);
33 }
34
35 // Time3 constructor: hour, minute and second supplied
36 public Time3(int h, int m, int s)
37 {
38 setTime(h, m, s);
39 }
40
41 // Time3 constructor: another Time3 object supplied
42 public Time3(Time3 time)
43 {
44 setTime(time.getHour(), time.getMinute(),
45 time.getSecond());
46 }
47
48 // Set Methods
49 // Set a new time value using universal time. Perform
50 // validity checks on data. Set invalid values to zero.
51 public void setTime(int h, int m, int s)
52 {
53 setHour(h); // set the hour
54 setMinute(m); // set the minute
55 setSecond(s); // set the second
56 }
57
58 // validate and set hour
59 public void setHour(int h)
60 {
61 hour = ((h >= 0 && h < 24) ? h : 0);
62 }
63
64 // validate and set minute
65 public void setMinute(int m)
66 {
67 minute = ((m >= 0 && m < 60) ? m : 0);
68 }
69

Fig. 8.8Fig. 8.8Fig. 8.8Fig. 8.8 Class Time3 with set and get methods (part 2 of 3).

Chapter 8 Object-Based Programming 403

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The new set methods of the class are defined in Fig. 8.8 at lines 59–62, 65–68 and 71–
74, respectively. Notice that each method performs the same conditional statement that was

70 // validate and set second
71 public void setSecond(int s)
72 {
73 second = ((s >= 0 && s < 60) ? s : 0);
74 }
75
76 // Get Methods
77 // get hour value
78 public int getHour()
79 {
80 return hour;
81 }
82
83 // get minute value
84 public int getMinute()
85 {
86 return minute;
87 }
88
89 // get second value
90 public int getSecond()
91 {
92 return second;
93 }
94
95 // convert to String in universal-time format
96 public String toUniversalString()
97 {
98 DecimalFormat twoDigits = new DecimalFormat("00");
99
100 return twoDigits.format(getHour()) + ":" +
101 twoDigits.format(getMinute()) + ":" +
102 twoDigits.format(getSecond());
103 }
104
105 // convert to String in standard-time format
106 public String toString()
107 {
108 DecimalFormat twoDigits = new DecimalFormat("00");
109
110 return ((getHour() == 12 || getHour() == 0) ?
111 12 : getHour() % 12) + ":" +
112 twoDigits.format(getMinute()) + ":" +
113 twoDigits.format(getSecond()) +
114 (getHour() < 12 ? " AM" : " PM");
115 }
116
117 } // end class Time3

Fig. 8.8Fig. 8.8Fig. 8.8Fig. 8.8 Class Time3 with set and get methods (part 3 of 3).

404 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

previously in method setTime for setting the hour, minute or second. The addition
of these methods caused us to redefine the body of method setTime to follow Software
Engineering Observation 8.14—if a method of a class already provides all or part of the
functionality required by another method of the class, call that method from the other
method. Notice that setTime (lines 51–56) now calls methods setHour, setMinute
and setSecond—each of which performs part of setTime’s task.

The new get methods of the class are defined at lines 78–81, 84–87 and 90–93, respec-
tively. Notice that each method simply returns the hour, minute or second value (a
copy of each value is returned, because these are all primitive data type variables). The
addition of these methods caused us to redefine the bodies of methods toUniversal-
String (lines 96–103) and toString (lines 106–115) to follow Software Engineering
Observation 8.14. In both cases, every use of instance variables hour, minute and
second is replaced with a call to getHour, getMinute and getSecond.

Due to the changes in class Time3 just described, we have minimized the changes that
will have to occur in the class definition if the data representation is changed from hour,
minute and second to another representation (such as total elapsed seconds in the day).
Only the new set and get method bodies will have to change. This allows the programmer
to change the implementation of the class without affecting the clients of the class (as long
as all the public methods of the class are still called the same way).

The TimeTest5 applet (Fig. 8.9) provides a graphical user interface that enables the
user to exercise the methods of class Time3. The user can set the hour, minute or second
value by typing a value in the appropriate JTextField and pressing the Enter key. The
user can also click the “Add 1 to second” button to increment the time by one second.
The JTextField and JButton events in this applet are all processed in method
actionPerformed (lines 66–94). Notice that lines 34, 41, 48 and 59 all call addAc-
tionListener to indicate that the applet should start listening to JTextFields
hourField, minuteField, secondField and JButton tickButton, respec-
tively. Also, notice that all four calls use this as the argument, indicating that the object
of our applet class TimeTest5 has its actionPerformed method invoked for each
user interaction with these four GUI components. This poses an interesting question—how
do we determine the GUI component with which the user interacted?

In actionPerformed, notice the use of actionEvent.getSource() to
determine which GUI component generated the event. For example, line 69 determines
whether tickButton was clicked by the user. If so, the body of the if structure exe-
cutes. Otherwise, the program tests the condition in the if structure at line 73, and so on.
Every event has a source—the GUI component with which the user interacted to signal the
program to do a task. The ActionEvent parameter contains a reference to the source of
the event. The condition in line 69 simply asks, “Is the source of the event the tick-
Button?” This condition compares the references on either side of the == operator to
determine whether they refer to the same object. In this case, if they both refer to the
JButton, then the program knows that the user pressed the button. Remember that the
source of the event calls actionPerformed in response to the user interaction.

After each operation, the resulting time is displayed as a string in the status bar of the
applet. The output windows in Fig. 8.9 illustrate the applet before and after the following
operations: setting the hour to 23, setting the minute to 59, setting the second to 58 and
incrementing the second twice with the “Add 1 to second” button.

Chapter 8 Object-Based Programming 405

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

1 // Fig. 8.9: TimeTest5.java
2 // Demonstrating the Time3 class set and get methods.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 // Deitel packages
12 import com.deitel.jhtp4.ch08.Time3;
13
14 public class TimeTest5 extends JApplet
15 implements ActionListener {
16
17 private Time3 time;
18 private JLabel hourLabel, minuteLabel, secondLabel;
19 private JTextField hourField, minuteField,
20 secondField, displayField;
21 private JButton tickButton;
22
23 // Create Time3 object and set up GUI
24 public void init()
25 {
26 time = new Time3();
27
28 Container container = getContentPane();
29 container.setLayout(new FlowLayout());
30
31 // set up hourLabel and hourField
32 hourLabel = new JLabel("Set Hour");
33 hourField = new JTextField(10);
34 hourField.addActionListener(this);
35 container.add(hourLabel);
36 container.add(hourField);
37
38 // set up minuteLabel and minuteField
39 minuteLabel = new JLabel("Set minute");
40 minuteField = new JTextField(10);
41 minuteField.addActionListener(this);
42 container.add(minuteLabel);
43 container.add(minuteField);
44
45 // set up secondLabel and secondField
46 secondLabel = new JLabel("Set Second");
47 secondField = new JTextField(10);
48 secondField.addActionListener(this);
49 container.add(secondLabel);
50 container.add(secondField);
51
52 // set up displayField
53 displayField = new JTextField(30);

Fig. 8.9Fig. 8.9Fig. 8.9Fig. 8.9 Using class Time3’s set and get methods (part 1 of 4).

406 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

54 displayField.setEditable(false);
55 container.add(displayField);
56
57 // set up tickButton
58 tickButton = new JButton("Add 1 to Second");
59 tickButton.addActionListener(this);
60 container.add(tickButton);
61
62 updateDisplay(); // update text in displayField
63 }
64
65 // handle button and text field events
66 public void actionPerformed(ActionEvent actionEvent)
67 {
68 // process tickButton event
69 if (actionEvent.getSource() == tickButton)
70 tick();
71
72 // process hourField event
73 else if (actionEvent.getSource() == hourField) {
74 time.setHour(
75 Integer.parseInt(actionEvent.getActionCommand()));
76 hourField.setText("");
77 }
78
79 // process minuteField event
80 else if (actionEvent.getSource() == minuteField) {
81 time.setMinute(
82 Integer.parseInt(actionEvent.getActionCommand()));
83 minuteField.setText("");
84 }
85
86 // process secondField event
87 else if (actionEvent.getSource() == secondField) {
88 time.setSecond(
89 Integer.parseInt(actionEvent.getActionCommand()));
90 secondField.setText("");
91 }
92
93 updateDisplay(); // update displayField and status bar
94 }
95
96 // update displayField and applet container's status bar
97 public void updateDisplay()
98 {
99 displayField.setText("Hour: " + time.getHour() +
100 "; Minute: " + time.getMinute() +
101 "; Second: " + time.getSecond());
102
103 showStatus("Standard time is: " + time.toString() +
104 "; Universal time is: " + time.toUniversalString());
105 }
106

Fig. 8.9Fig. 8.9Fig. 8.9Fig. 8.9 Using class Time3’s set and get methods (part 2 of 4).

Chapter 8 Object-Based Programming 407

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

107 // add one to second and update hour/minute if necessary
108 public void tick()
109 {
110 time.setSecond((time.getSecond() + 1) % 60);
111
112 if (time.getSecond() == 0) {
113 time.setMinute((time.getMinute() + 1) % 60);
114
115 if (time.getMinute() == 0)
116 time.setHour((time.getHour() + 1) % 24);
117 }
118 }
119
120 } // end class TimeTest5

Fig. 8.9Fig. 8.9Fig. 8.9Fig. 8.9 Using class Time3’s set and get methods (part 3 of 4).

408 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Note that when the “Add 1 to second” button is clicked, method actionPer-
formed calls the applet’s tick method (defined at lines 108–118). Method tick uses
all the new set and get methods to increment the second properly. Although this works, it
incurs the performance burden of issuing multiple method calls. In Section 8.12, we discuss
the notion of package access as a means of eliminating this performance burden.

Common Programming Error 8.8
A constructor can call other methods of the class, such as set or get methods. However, the
instance variables might not yet be in a consistent state, because the constructor is in the pro-
cess of initializing the object. Using instance variables before they have been initialized
properly is a logic error. 8.8

Fig. 8.9Fig. 8.9Fig. 8.9Fig. 8.9 Using class Time3’s set and get methods (part 4 of 4).

Chapter 8 Object-Based Programming 409

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Set methods are certainly important from a software engineering standpoint, because
they can perform validity checking. Set and get methods have another important software
engineering advantage, discussed in the following Software Engineering Observation.

Software Engineering Observation 8.16
Accessing private data through set and get methods not only protects the instance vari-
ables from receiving invalid values, but also insulates clients of the class from the represen-
tation of the instance variables. Thus, if the representation of the data changes (typically, to
reduce the amount of storage required, improve performance or enhance the class in other
ways), only the method implementations need to change—the clients need not change as long
as the interface provided by the methods remains the same. 8.16

8.8.1 Executing an Applet that Uses Programmer-Defined Packages

After compiling the classes in Fig. 8.8 and Fig. 8.9, you can execute the applet from a com-
mand window with the command

appletviewer TimeTest5.html

As we discussed when we introduced packages earlier in this chapter, the interpreter can
locate packaged classes in the current directory. The appletviewer is a Java application
that executes a Java applet. Like the interpreter, the appletviewer can load standard
Java classes and extension classes installed on the local computer. However, the applet-
viewer does not use the class path to locate classes in programmer-defined packages. For
an applet, such classes should be bundled with the applet class in an archive file called a
Java Archive (JAR) file. Remember that applets normally are downloaded from the Internet
into a Web browser (see Chapter 3 for more information). Bundling the classes and pack-
ages that compose an applet enables the applet and its supporting classes to be downloaded
as a unit, then executed in the browser (or via the Java Plug-in for browsers that do not sup-
port Java 2).

To bundle the classes in Fig. 8.8 and Fig. 8.9, open a command window and change
directories to the location in which TimeTest5.class is stored. In that same directory
should be the com directory that begins the package directory structure for class Time3.
In that directory, issue the following command

jar cf TimeTest5.jar TimeTest5.class com*.*

to create the JAR file. [Note: This command uses \ as the directory separator from the MS-
DOS prompt. UNIX would use / as the directory separator.] In the preceding command,
jar is the Java archive utility used to create JAR files. Next are the options for the jar
utility—cf. The letter c indicates that we are creating a JAR file. The letter f indicates that
the next argument in the command line (TimeTest5.jar) is the name of the JAR file to
create. Following the options and JAR file name are the actual files that will be included in
the JAR file. We specified TimeTest5.class and com*.*, indicating that
TimeTest5.class and all the files in the com directory should be included in the JAR
file. The com directory begins the package that contains the .class file for the Time3.
[Note: You can include selected files by specifying the path and file name for each individ-

410 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

ual file.] It is important that the directory structure in the JAR file match the directory struc-
ture for the packaged classes. Therefore, we executed the jar command from the directory
in which com is located.

To confirm that the files were archived directly, you can issue the command

jar tvf TimeTest5.jar

which produces the listing in Fig. 8.10. In the preceding command, the options for the jar
utility are tvf. The letter t indicates that the table of contents for the JAR should be listed.
The letter v indicates that the output should be verbose (the verbose output includes the file
size in bytes and the date and time each file was created, in addition to the directory struc-
ture and file name). The letter f specifies that the next argument on the command line is
the JAR file to use.

The only remaining issue is to specify the archive as part of the applet’s HTML file. In
prior examples, <applet> tags had the form

<applet code = "ClassName.class" width = "width" height = "height">
</applet>

To specify that the applet classes are located in a JAR file, use an <applet> tag of the
form:

<applet code = "ClassName.class" archive = "archiveList"
 width = "width" height = "height">
</applet>

The archive attribute can specify a comma-separated list of archive files for use in an
applet. Each file in the archive list will be downloaded by the browser when it encoun-
ters the <applet> tags in the HTML document. For the TimeTest5 applet, the applet tag
would be

<applet code = "TimeTest5.class" archive = "TimeTest5.jar"
 width = "400" height = "115">
</applet>

Try loading this applet into your Web browser. Remember that you must either have a
browser that supports Java 2 (such as Netscape Navigator 6) or convert the HTML file for
use with the Java Plug-in (as discussed in Chapter 3).

 0 Fri May 25 14:13:14 EDT 2001 META-INF/
 71 Fri May 25 14:13:14 EDT 2001 META-INF/MANIFEST.MF
2959 Fri May 25 13:42:32 EDT 2001 TimeTest5.class
 0 Fri May 18 17:35:18 EDT 2001 com/deitel/
 0 Fri May 18 17:35:18 EDT 2001 com/deitel/jhtp4/
 0 Fri May 18 17:35:18 EDT 2001 com/deitel/jhtp4/ch08/
1765 Fri May 18 17:35:18 EDT 2001 com/deitel/jhtp4/ch08/Time3.class

Fig. 8.10Fig. 8.10Fig. 8.10Fig. 8.10 Contents of TimeTest5.jar.

Chapter 8 Object-Based Programming 411

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

8.9 Software Reusability
Java programmers concentrate on crafting new classes and reusing existing classes. Many
class libraries exist, and others are being developed worldwide. Software is then construct-
ed from existing, well-defined, carefully tested, well-documented, portable, widely avail-
able components. This kind of software reusability speeds the development of powerful,
high-quality software. Rapid applications development (RAD) is of great interest today.

Java programmers now have thousands of classes in the Java API from which to
choose to help them implement Java programs. Indeed, Java is not just a programming lan-
guage. It is a framework in which Java developers can work to achieve true reusability and
rapid applications development. Java programmers can focus on the task at hand when
developing their programs and leave the lower-level details to the classes of the Java API.
For example, to write a program that draws graphics, a Java programmer does not require
knowledge of graphics on every computer platform where the program will execute.
Instead, a Java programmer concentrates on learning Java’s graphics capabilities (which
are quite substantial and growing) and writes a Java program that draws the graphics, using
Java’s API classes such as Graphics. When the program executes on a given computer,
it is the job of the interpreter to translate Java commands into commands that the local com-
puter can understand.

The Java API classes enable Java programmers to bring new applications to market
faster by using preexisting, tested components. Not only does this reduce development
time, it also improves programmers’ ability to debug and maintain applications. To take
advantage of Java’s many capabilities, it is essential that programmers take the time to
familiarize themselves with the variety of packages and classes in the Java API. There are
many Web-based resources at java.sun.com to help you with this task. The primary
resource for learning about the Java API is the Java API documentation, which can be
found at

java.sun.com/j2se/1.3/docs/api/index.html

In addition, java.sun.com provides many other resources, including tutorials, articles
and sites specific to individual Java topics. Java developers should also register (for free)
at the Java Developer Connection

developer.java.sun.com

This site provides additional resources that Java developers will find useful, including more
tutorials and articles, and links to other Java resources. See Appendix B for a more com-
plete list of Java-related Internet and World Wide Web resources.

Good Programming Practice 8.6
Avoid reinventing the wheel. Study the capabilities of the Java API. If the API already con-
tains a class that meets the requirements of your program, use that class rather than creating
your own. 8.6

In general, to realize the full potential of software reusability, we need to improve cat-
aloging schemes, licensing schemes, protection mechanisms that ensure master copies of
classes are not corrupted, description schemes that system designers use to determine if
existing objects meet their needs, browsing mechanisms that determine what classes are

412 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

available and how closely they meet software developer requirements, and the like. Many
interesting research and development problems have been solved and many more need to
be solved; these problems will be solved because the potential value of software reuse is
enormous.

8.10 Final Instance Variables
We have emphasized repeatedly the principle of least privilege as one of the most funda-
mental principles of good software engineering. Let us see one way in which this principle
applies to instance variables.

Some instance variables need to be modifiable and some do not. The programmer can
use the keyword final to specify that a variable is not modifiable and that any attempt to
modify the variable is an error. For example,

private final int INCREMENT = 5;

declares a constant instance variable INCREMENT of type int and initializes it to 5.

Software Engineering Observation 8.17
Declaring an instance variable as final helps enforce the principle of least privilege. If an
instance variable should not be modified, declare it to be final to expressly forbid modifi-
cation. 8.17

Testing and Debugging Tip 8.3
Accidental attempts to modify a final instance variable are caught at compile time rather
than causing execution-time errors. It is always preferable to get bugs out at compile time,
if possible, rather than allowing them to slip through to execution time (where studies have
found that the cost of repair is often as much as ten times more expensive). 8.3

Common Programming Error 8.9
Attempting to modify a final instance variable after it is initialized is a syntax error. 8.9

The applet of Fig. 8.11 creates a final instance variable INCREMENT of type int
and initializes it to 5 in its declaration (line 15). A final variable cannot be modified by
assignment after it is initialized. Such a variable can be initialized in its declaration or in
every constructor of the class.

Common Programming Error 8.10
Not initializing a final instance variable in its declaration or in every constructor of the
class is a syntax error. 8.10

1 // Fig. 8.11: Increment.java
2 // Initializing a final variable
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7

Fig. 8.11Fig. 8.11Fig. 8.11Fig. 8.11 Initializing a final variable (part 1 of 2).

Chapter 8 Object-Based Programming 413

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Figure 8.12 illustrates compiler errors produced for the program of Fig. 8.11 if
instance variable INCREMENT is declared final, but is not initialized in the declaration.

8 // Java extension packages
9 import javax.swing.*;

10
11 public class Increment extends JApplet
12 implements ActionListener {
13
14 private int count = 0, total = 0;
15 private final int INCREMENT = 5; // constant variable
16
17 private JButton button;
18
19 // set up GUI
20 public void init()
21 {
22 Container container = getContentPane();
23
24 button = new JButton("Click to increment");
25 button.addActionListener(this);
26 container.add(button);
27 }
28
29 // add INCREMENT to total when user clicks button
30 public void actionPerformed(ActionEvent actionEvent)
31 {
32 total += INCREMENT;
33 count++;
34 showStatus("After increment " + count +
35 ": total = " + total);
36 }
37
38 } // end class Increment

Increment.java:11: variable INCREMENT might not have been
 initialized
public class Increment extends JApplet
 ^
1 error

Fig. 8.12Fig. 8.12Fig. 8.12Fig. 8.12 Compiler error message as a result of not initializing increment.

Fig. 8.11Fig. 8.11Fig. 8.11Fig. 8.11 Initializing a final variable (part 2 of 2).

414 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

8.11 Composition: Objects as Instance Variables of Other
Classes
An AlarmClock class object needs to know when it is supposed to sound its alarm, so
why not include a reference to a Time object as a member of the AlarmClock object?
Such a capability is called composition. A class can have references to objects of other
classes as members.

Software Engineering Observation 8.18
One form of software reuse is composition, in which a class has references to objects of other
classes as members. 8.18

The next program contains three classes—Date (Fig. 8.13), Employee (Fig. 8.14) and
EmployeeTest (Fig. 8.15). Class Employee contains instance variables firstName,
lastName,birthDate and hireDate. Members birthDate and hireDate are ref-
erences to Dates that contain instance variables month, day and year. This demonstrates
that a class can contain references to objects of other classes. Class EmployeeTest instan-
tiates an Employee and initializes and displays its instance variables. The Employee con-
structor (Fig. 8.14, lines 12–20) takes eight arguments—first, last, birthMonth,
birthDay, birthYear, hireMonth, hireDay and hireYear. Arguments birth-
Month, birthDay and birthYear are passed to the Date constructor (Fig. 8.13, lines
13–28) to initialize the birthDate object and hireMonth, hireDay and hireYear
are passed to the Date constructor to initialize the hireDate object.

A member object does not need to be initialized immediately with constructor argu-
ments. If an empty argument list is provided when a member object is created, the object’s
default constructor (or no-argument constructor if one is available) will be called automat-
ically. Values, if any, established by the default constructor (or no-argument constructor)
can then be replaced by set methods.

Performance Tip 8.2
Initialize member objects explicitly at construction time by passing appropriate arguments
to the constructors of the member objects. This eliminates the overhead of initializing mem-
ber objects twice—once when the member object’s default constructor is called and again
when set methods are used to provide initial values for the member object. 8.2

Note that both class Date (Fig. 8.13) and class Employee (Fig. 8.14) are defined as
part of the package com.deitel.jhtp4.ch08 as specified on line 3 of each file.
Because they are in the same package (i.e., the same directory), class Employee does not
need to import class Date to use it. When the compiler searches for the file Date.class,
the compiler knows to search the directory where Employee.class is located. Classes
in a package never need to import other classes from the same package.

1 // Fig. 8.13: Date.java
2 // Declaration of the Date class.
3 package com.deitel.jhtp4.ch08;
4
5 public class Date extends Object {
6 private int month; // 1-12

Fig. 8.13Fig. 8.13Fig. 8.13Fig. 8.13 Date class (part 1 of 2).

Chapter 8 Object-Based Programming 415

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

7 private int day; // 1-31 based on month
8 private int year; // any year
9

10 // Constructor: Confirm proper value for month;
11 // call method checkDay to confirm proper
12 // value for day.
13 public Date(int theMonth, int theDay, int theYear)
14 {
15 if (theMonth > 0 && theMonth <= 12) // validate month
16 month = theMonth;
17 else {
18 month = 1;
19 System.out.println("Month " + theMonth +
20 " invalid. Set to month 1.");
21 }
22
23 year = theYear; // could validate year
24 day = checkDay(theDay); // validate day
25
26 System.out.println(
27 "Date object constructor for date " + toString());
28 }
29
30 // Utility method to confirm proper day value
31 // based on month and year.
32 private int checkDay(int testDay)
33 {
34 int daysPerMonth[] =
35 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
36
37 // check if day in range for month
38 if (testDay > 0 && testDay <= daysPerMonth[month])
39 return testDay;
40
41 // check for leap year
42 if (month == 2 && testDay == 29 &&
43 (year % 400 == 0 ||
44 (year % 4 == 0 && year % 100 != 0)))
45 return testDay;
46
47 System.out.println("Day " + testDay +
48 " invalid. Set to day 1.");
49
50 return 1; // leave object in consistent state
51 }
52
53 // Create a String of the form month/day/year
54 public String toString()
55 {
56 return month + "/" + day + "/" + year;
57 }
58
59 } // end class Date

Fig. 8.13Fig. 8.13Fig. 8.13Fig. 8.13 Date class (part 2 of 2).

416 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

1 // Fig. 8.14: Employee.java
2 // Definition of class Employee.
3 package com.deitel.jhtp4.ch08;
4
5 public class Employee extends Object {
6 private String firstName;
7 private String lastName;
8 private Date birthDate;
9 private Date hireDate;

10
11 // constructor to initialize name, birth date and hire date
12 public Employee(String first, String last,
13 int birthMonth, int birthDay, int birthYear,
14 int hireMonth, int hireDay, int hireYear)
15 {
16 firstName = first;
17 lastName = last;
18 birthDate = new Date(birthMonth, birthDay, birthYear);
19 hireDate = new Date(hireMonth, hireDay, hireYear);
20 }
21
22 // convert Employee to String format
23 public String toString()
24 {
25 return lastName + ", " + firstName +
26 " Hired: " + hireDate.toString() +
27 " Birthday: " + birthDate.toString();
28 }
29
30 } // end class Employee

Fig. 8.14Fig. 8.14Fig. 8.14Fig. 8.14 Employee class with member object references.

1 // Fig. 8.15: EmployeeTest.java
2 // Demonstrating an object with a member object.
3
4 // Java extension packages
5 import javax.swing.JOptionPane;
6
7 // Deitel packages
8 import com.deitel.jhtp4.ch08.Employee;
9

10 public class EmployeeTest {
11
12 // test class Employee
13 public static void main(String args[])
14 {
15 Employee employee = new Employee("Bob", "Jones",
16 7, 24, 49, 3, 12, 88);
17

Fig. 8.15Fig. 8.15Fig. 8.15Fig. 8.15 Demonstrating an object with a member object reference (part 1 of 2).

Chapter 8 Object-Based Programming 417

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

8.12 Package Access
When no member access modifier is provided for a method or variable when it is defined
in a class, the method or variable is considered to have package access. If your program
consists of one class definition, this has no specific effects on the program. However, if
your program uses multiple classes from the same package (i.e., a group of related classes),
these classes can access each other’s package-access methods and data directly through a
reference to an object.

Performance Tip 8.3
Package access enables objects of different classes to interact without the need for set and
get methods that provide access to data, thus eliminating some of the method call overhead. 8.3

Let us consider a mechanical example of package access. The application of Fig. 8.16
contains two classes—the PackageDataTest application class (lines 8–34) and the
PackageData class (lines 37–54). In the PackageData class definition, lines 38–39
declare the instance variables number and string with no member access modifiers;
therefore, these are package access instance variables. The PackageDataTest applica-
tion’s main method creates an instance of the PackageData class (line 13) to demon-
strate the ability to modify the PackageData instance variables directly (as shown on
lines 20–21). The results of the modification can be seen in the output window.

When you compile this program, the compiler produces two separate files—a .class
file for class PackageData and a .class file for class PackageDataTest. Every
Java class has its own .class file. These two .class files are placed in the same direc-
tory by the compiler automatically and are considered to be part of the same package (they
are certainly related by the fact that they are in the same file). Because they are part of the
same package, class PackageDataTest is allowed to modify the package access data
of objects of class PackageData.

18 JOptionPane.showMessageDialog(null,
19 employee.toString(), "Testing Class Employee",
20 JOptionPane.INFORMATION_MESSAGE);
21
22 System.exit(0);
23 }
24
25 } // end class EmployeeTest

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988

Fig. 8.15Fig. 8.15Fig. 8.15Fig. 8.15 Demonstrating an object with a member object reference (part 2 of 2).

418 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

1 // Fig. 8.16: PackageDataTest.java
2 // Classes in the same package (i.e., the same directory) can
3 // use package access data of other classes in the same package.
4
5 // Java extension packages
6 import javax.swing.JOptionPane;
7
8 public class PackageDataTest {
9

10 // Java extension packages
11 public static void main(String args[])
12 {
13 PackageData packageData = new PackageData();
14
15 // append String representation of packageData to output
16 String output =
17 "After instantiation:\n" + packageData.toString();
18
19 // change package access data in packageData object
20 packageData.number = 77;
21 packageData.string = "Good bye";
22
23 // append String representation of packageData to output
24 output += "\nAfter changing values:\n" +
25 packageData.toString();
26
27 JOptionPane.showMessageDialog(null, output,
28 "Demonstrating Package Access",
29 JOptionPane.INFORMATION_MESSAGE);
30
31 System.exit(0);
32 }
33
34 } // end class PackageDataTest
35
36 // class with package access instance variables
37 class PackageData {
38 int number; // package access instance variable
39 String string; // package access instance variable
40
41 // constructor
42 public PackageData()
43 {
44 number = 0;
45 string = "Hello";
46 }
47
48 // convert PackageData object to String representation
49 public String toString()
50 {
51 return "number: " + number + " string: " + string;
52 }
53

Fig. 8.16Fig. 8.16Fig. 8.16Fig. 8.16 Package access to members of a class (part 1 of 2).

Chapter 8 Object-Based Programming 419

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Software Engineering Observation 8.19
Some people in the OOP community feel that package access corrupts information hiding
and weakens the value of the object-oriented design approach, because the programmer must
assume responsibility for error checking and data validation in any code that manipulates
the package access data members. 8.19

8.13 Using the this Reference
When a method of a class references another member of that class for a specific object of
that class, how does Java ensure that the proper object is referenced? The answer is that
each object has access to a reference to itself—called the this reference.

The this reference is used implicitly to refer to both the instance variables and
methods of an object. We begin with a simple example of using the this reference explic-
itly; a subsequent example shows some substantial and subtle examples of using this.

Performance Tip 8.4
Java conserves storage by maintaining only one copy of each method per class; this method
is invoked by every object of that class. Each object, on the other hand, has its own copy of
the class’s instance variables. 8.4

The application of Fig. 8.17 demonstrates implicit and explicit use of the this refer-
ence to enable the main method of class ThisTest to display the private data of a
SimpleTime object.

54 } // end class PackageData

Fig. 8.16Fig. 8.16Fig. 8.16Fig. 8.16 Package access to members of a class (part 2 of 2).

1 // Fig. 8.17: ThisTest.java
2 // Using the this reference to refer to
3 // instance variables and methods.
4
5 // Java core packages
6 import java.text.DecimalFormat;
7
8 // Java extension packages
9 import javax.swing.*;

10

Fig. 8.17Fig. 8.17Fig. 8.17Fig. 8.17 Using the this reference implicitly and explicitly (part 1 of 3).

420 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

11 public class ThisTest {
12
13 // test class SimpleTime
14 public static void main(String args[])
15 {
16 SimpleTime time = new SimpleTime(12, 30, 19);
17
18 JOptionPane.showMessageDialog(null, time.buildString(),
19 "Demonstrating the \"this\" Reference",
20 JOptionPane.INFORMATION_MESSAGE);
21
22 System.exit(0);
23 }
24
25 } // end class ThisTest
26
27 // class SimpleTime demonstrates the "this" reference
28 class SimpleTime {
29 private int hour, minute, second;
30
31 // constructor uses parameter names identical to instance
32 // variable names, so "this" reference required to distinguish
33 // between instance variables and parameters
34 public SimpleTime(int hour, int minute, int second)
35 {
36 this.hour = hour; // set "this" object's hour
37 this.minute = minute; // set "this" object's minute
38 this.second = second; // set "this" object's second
39 }
40
41 // call toString explicitly via "this" reference, explicitly
42 // via implicit "this" reference, implicitly via "this"
43 public String buildString()
44 {
45 return "this.toString(): " + this.toString() +
46 "\ntoString(): " + toString() +
47 "\nthis (with implicit toString() call): " + this;
48 }
49
50 // convert SimpleTime to String format
51 public String toString()
52 {
53 DecimalFormat twoDigits = new DecimalFormat("00");
54
55 // "this" not required, because toString does not have
56 // local variables with same names as instance variables
57 return twoDigits.format(this.hour) + ":" +
58 twoDigits.format(this.minute) + ":" +
59 twoDigits.format(this.second);
60 }
61
62 } // end class SimpleTime

Fig. 8.17Fig. 8.17Fig. 8.17Fig. 8.17 Using the this reference implicitly and explicitly (part 2 of 3).

Chapter 8 Object-Based Programming 421

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Class SimpleTime (lines 8–60) defines three private instance variables—hour,
minute and second. The constructor (lines 34–39) receives three int arguments to ini-
tialize a SimpleTime object. Notice that the parameter names for the constructor are the
same as the instance variable names. Remember that a local variable of a method with the
same name as an instance variable of a class hides the instance variable in the scope of the
method. For this reason, we use the this reference to refer explicitly to the instance vari-
ables on lines 36–38.

Common Programming Error 8.11
In a method in which a method parameter has the same name as one of the class members,
use this explicitly if you want to access the class member; otherwise, you will incorrectly
reference the method parameter. 8.11

Good Programming Practice 8.7
Avoid using method parameter names that conflict with class member names. 8.7

Method buildString (lines 43–48) returns a String created with a statement
that uses the this reference three ways. Line 45 explicitly invokes the class’s
toString method via this.toString(). Line 46 implicitly uses the this refer-
ence to perform the same task. Line 47 appends this to the string that will be returned.
Remember that the this reference is a reference to an object—the current Simple-
Time object being manipulated. As before, any reference added to a String results in
a call to the toString method for the referenced object. Method buildString is
invoked at line 18 to display the results of the three calls to toString. Note that the
same time is displayed on all three lines of the output because all three calls to
toString are for the same object.

Another use of the this reference is in enabling concatenated method calls (also
called cascaded method calls or method call chaining). Figure 8.18 illustrates returning
a reference to a Time4 object to enable method calls of class Time4 to be concatenated.
Methods setTime (lines 50–57), setHour (lines 60–65), setMinute (line 68–74)
and setSecond (lines 77–83) each have a return type of Time4 and each has as its last
statement

return this;

to indicate that a reference to the Time4 object being manipulated should be returned to
the caller of the method.

Fig. 8.17Fig. 8.17Fig. 8.17Fig. 8.17 Using the this reference implicitly and explicitly (part 3 of 3).

422 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

1 // Fig. 8.18: Time4.java
2 // Time4 class definition
3 package com.deitel.jhtp4.ch08;
4
5 // Java core packages
6 import java.text.DecimalFormat;
7
8 public class Time4 extends Object {
9 private int hour; // 0 - 23

10 private int minute; // 0 - 59
11 private int second; // 0 - 59
12
13 // Time4 constructor initializes each instance variable
14 // to zero. Ensures that Time object starts in a
15 // consistent state.
16 public Time4()
17 {
18 this.setTime(0, 0, 0);
19 }
20
21 // Time4 constructor: hour supplied, minute and second
22 // defaulted to 0
23 public Time4(int hour)
24 {
25 this.setTime(hour, 0, 0);
26 }
27
28 // Time4 constructor: hour and minute supplied, second
29 // defaulted to 0
30 public Time4(int hour, int minute)
31 {
32 this.setTime(hour, minute, 0);
33 }
34
35 // Time4 constructor: hour, minute and second supplied
36 public Time4(int hour, int minute, int second)
37 {
38 this.setTime(hour, minute, second);
39 }
40
41 // Time4 constructor: another Time4 object supplied.
42 public Time4(Time4 time)
43 {
44 this.setTime(time.getHour(), time.getMinute(),
45 time.getSecond());
46 }
47
48 // Set Methods
49 // set a new Time value using universal time
50 public Time4 setTime(int hour, int minute, int second)
51 {
52 this.setHour(hour); // set hour

Fig. 8.18Fig. 8.18Fig. 8.18Fig. 8.18 Class Time4 using this to enable chained method calls (part 1 of 3).

Chapter 8 Object-Based Programming 423

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

53 this.setMinute(minute); // set minute
54 this.setSecond(second); // set second
55
56 return this; // enables chaining
57 }
58
59 // validate and set hour
60 public Time4 setHour(int hour)
61 {
62 this.hour = (hour >= 0 && hour < 24 ? hour : 0);
63
64 return this; // enables chaining
65 }
66
67 // validate and set minute
68 public Time4 setMinute(int minute)
69 {
70 this.minute =
71 (minute >= 0 && minute < 60) ? minute : 0;
72
73 return this; // enables chaining
74 }
75
76 // validate and set second
77 public Time4 setSecond(int second)
78 {
79 this.second =
80 (second >= 0 && second < 60) ? second : 0;
81
82 return this; // enables chaining
83 }
84
85 // Get Methods
86 // get value of hour
87 public int getHour() { return this.hour; }
88
89 // get value of minute
90 public int getMinute() { return this.minute; }
91
92 // get value of second
93 public int getSecond() { return this.second; }
94
95 // convert to String in universal-time format
96 public String toUniversalString()
97 {
98 DecimalFormat twoDigits = new DecimalFormat("00");
99
100 return twoDigits.format(this.getHour()) + ":" +
101 twoDigits.format(this.getMinute()) + ":" +
102 twoDigits.format(this.getSecond());
103 }
104

Fig. 8.18Fig. 8.18Fig. 8.18Fig. 8.18 Class Time4 using this to enable chained method calls (part 2 of 3).

424 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

 The example again demonstrates the explicit use of the this reference inside the body
of a class. In class Time4, every use of an instance variable of the class and every call to
another method in class Time4 uses the this reference explicitly. Most programmers prefer
not to use the this reference unless it is required or helps clarify a piece of code.

Good Programming Practice 8.8
Explicitly using this can increase program clarity in some contexts in which this is op-
tional. 8.8

In application class TimeTest6 (Fig. 8.19), line 18 and line 26 both demonstrate
method call chaining. Why does the technique of returning the this reference work? Let
us discuss line 18. The dot operator (.) associates from left to right, so the expression

time.setHour(18).setMinute(30).setSecond(22);

first evaluates time.setHour(18), then returns a reference to object time as the re-
sult of this method call. Any time you have a reference in a program (even as the result of
a method call), the reference can be followed by a dot operator and a call to one of the meth-
ods of the reference type. Thus, the remaining expression is interpreted as

time.setMinute(30).setSecond(22);

The time.setMinute(30) call executes and returns a reference to time. The re-
maining expression is interpreted as

time.setSecond(22);

When the statement is complete, the time is 18 for the hour, 30 for the minute and 22
from the second.

Note that the calls on line 26

time.setTime(20, 20, 20).toString();

also use the concatenation feature. These method calls must appear in this order in this ex-
pression because toString as defined in the class does not return a reference to a Time4
object. Placing the call to toString before the call to setTime causes a syntax error.
Note that toString returns a reference to a String object. Therefore, a method of class
String could be concatenated to the end of line 26.

105 // convert to String in standard-time format
106 public String toString()
107 {
108 DecimalFormat twoDigits = new DecimalFormat("00");
109
110 return (this.getHour() == 12 || this.getHour() == 0 ?
111 12 : this.getHour() % 12) + ":" +
112 twoDigits.format(this.getMinute()) + ":" +
113 twoDigits.format(this.getSecond()) +
114 (this.getHour() < 12 ? " AM" : " PM");
115 }
116
117 } // end class Time4

Fig. 8.18Fig. 8.18Fig. 8.18Fig. 8.18 Class Time4 using this to enable chained method calls (part 3 of 3).

Chapter 8 Object-Based Programming 425

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Note that the purpose of the example in Fig. 8.18 and Fig. 8.19 is to demonstrate the
mechanics of concatenated method calls. Many Java methods return references to objects
that can be used in the manner shown here. It is important to understand concatenated
method calls as they appear frequently in Java programs.

Good Programming Practice 8.9
For program clarity, avoid using concatenated method calls. 8.9

1 // Fig. 8.19: TimeTest6.java
2 // Chaining method calls together with the this reference
3
4 // Java extension packages
5 import javax.swing.*;
6
7 // Deitel packages
8 import com.deitel.jhtp4.ch08.Time4;
9

10 public class TimeTest6 {
11
12 // test method call chaining with object of class Time4
13 public static void main(String args[])
14 {
15 Time4 time = new Time4();
16
17 // chain calls to setHour, setMinute and setSecond
18 time.setHour(18).setMinute(30).setSecond(22);
19
20 // use method call chaining to set new time and get
21 // String representation of new time
22 String output =
23 "Universal time: " + time.toUniversalString() +
24 "\nStandard time: " + time.toString() +
25 "\n\nNew standard time: " +
26 time.setTime(20, 20, 20).toString();
27
28 JOptionPane.showMessageDialog(null, output,
29 "Chaining Method Calls",
30 JOptionPane.INFORMATION_MESSAGE);
31
32 System.exit(0);
33 }
34
35 } // end class TimeTest6

Fig. 8.19Fig. 8.19Fig. 8.19Fig. 8.19 Concatenating method calls.

426 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

8.14 Finalizers
We have seen that constructor methods are capable of initializing data in an object of a class
when the class is created. Often, constructors acquire various system resources such as
memory (when the new operator is used). We need a disciplined way to give resources
back to the system when they are no longer needed to avoid resource leaks. The most com-
mon resource acquired by constructors is memory. Java performs automatic garbage col-
lection of memory to help return memory back to the system. When an object is no longer
used in the program (i.e., there are no references to the object), the object is marked for gar-
bage collection. The memory for such an object can be reclaimed when the garbage col-
lector executes. Therefore, memory leaks that are common in other languages like C and
C++ (because memory is not automatically reclaimed in those languages) are less likely to
happen in Java. However, other resource leaks can occur.

Performance Tip 8.5
Extensive use of local variables that refer to objects can degrade performance. When a local
variable is the only reference to an object, the object is marked for garbage collection as the
local variable goes out of scope. If this happens frequently in short time periods, large num-
bers of objects could be marked for garbage collection, thus placing a performance burden
on the garbage collector. 8.5

Every class in Java can have a finalizer method that returns resources to the system.
The finalizer method for an object is guaranteed to be called to perform termination house-
keeping on the object just before the garbage collector reclaims the memory for the object.
A class’s finalizer method always has the name finalize, receives no parameters and
returns no value (i.e., its return type is void). A class should have only one finalize
method that takes no arguments. Method finalize is defined originally in class Object
as a placeholder that does nothing. This guarantees that every class has a finalize
method for the garbage collector to call.

Good Programming Practice 8.10
The last statement in a finalize method should always be super.finalize(); to en-
sure that the superclass’s finalize method is called. 8.10

Software Engineering Observation 8.20
The garbage collector is not guaranteed to execute; therefore, an object’s finalize meth-
od is not guaranteed to get called. You should not architect classes that rely on the garbage
collector calling an object’s finalize method to deallocate resources. 8.20

Finalizers have not been provided for the classes presented so far. Actually, finalizers
are rarely used in industrial Java applications. We will see a sample finalize method
and discuss the garbage collector further in Figure 8.20.

Testing and Debugging Tip 8.4
Several professional Java developers who reviewed this book indicated that method final-
ize is not useful in industrial Java applications, because it is not guaranteed to get called.
For this reason, you should search your Java programs for any use of method finalize
to ensure that the program does not rely on calls to method finalize for proper deallo-
cation of resources. In fact, you might consider removing method finalize entirely and

Chapter 8 Object-Based Programming 427

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

using other techniques to ensure proper resource deallocation. We present one such tech-
nique in Chapter 14, Exception Handling. 8.4

8.15 Static Class Members
Each object of a class has its own copy of all the instance variables of the class. In certain
cases, only one copy of a particular variable should be shared by all objects of a class. A
static class variable is used for these and other reasons. A static class variable rep-
resents class-wide information—all objects of the class share the same piece of data. The
declaration of a static member begins with the keyword static.

Let us motivate the need for static class-wide data with a video game example.
Suppose we have a video game with Martians and other space creatures. Each Martian
tends to be brave and willing to attack other space creatures when the Martian is aware
that there are at least five Martians present. If there are fewer than five Martians
present, each Martian becomes cowardly. So each Martian needs to know the mar-
tianCount. We could endow class Martian with martianCount as instance data.
If we do this, then every Martian will have a separate copy of the instance data and every
time we create a new Martian we will have to update the instance variable martian-
Count in every Martian. This wastes space with the redundant copies and wastes time
in updating the separate copies. Instead, we declare martianCount to be static. This
makes martianCount class-wide data. Every Martian can see the martianCount
as if it were instance data of the Martian, but only one copy of the static martian-
Count is maintained by Java. This saves space. We save time by having the Martian
constructor increment the static martianCount. Because there is only one copy, we do
not have to increment separate copies of martianCount for each Martian object.

Performance Tip 8.6
Use static class variables to save storage when a single copy of the data will suffice. 8.6

Although static class variables may seem like global variables, static class vari-
ables have class scope. A class’s public static class members can be accessed through
a reference to any object of that class, or they can be accessed through the class name by
using the dot operator (e.g., Math.random()). A class’s private static class mem-
bers can be accessed only through methods of the class. Actually, static class members
exist even when no objects of that class exist—they are available as soon as the class is
loaded into memory at execution time. To access a public static class member when
no objects of the class exist, simply prefix the class name and the dot operator to the class
member. To access a private static class member when no objects of the class exist,
a public static method must be provided and the method must be called by prefixing
its name with the class name and dot operator.

Our next program defines two classes—Employee (Fig. 8.20) and EmployeeTest
(Fig. 8.21). Class Employee defines a private static class variable and a public
static method. The class variable count (Fig. 8.20, line 6) is initialized to zero by default.
Class variable count maintains a count of the number of objects of class Employee that
have been instantiated and currently reside in memory. This includes objects that have already
been marked for garbage collection but have not yet been reclaimed.

428 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

When objects of class Employee exist, member count can be used in any method
of an Employee object—in this example, count is incremented (line 15) by the con-

1 // Fig. 8.20: Employee.java
2 // Employee class definition.
3 public class Employee extends Object {
4 private String firstName;
5 private String lastName;
6 private static int count; // number of objects in memory
7
8 // initialize employee, add 1 to static count and
9 // output String indicating that constructor was called

10 public Employee(String first, String last)
11 {
12 firstName = first;
13 lastName = last;
14
15 ++count; // increment static count of employees
16 System.out.println("Employee object constructor: " +
17 firstName + " " + lastName);
18 }
19
20 // subtract 1 from static count when garbage collector
21 // calls finalize to clean up object and output String
22 // indicating that finalize was called
23 protected void finalize()
24 {
25 --count; // decrement static count of employees
26 System.out.println("Employee object finalizer: " +
27 firstName + " " + lastName + "; count = " + count);
28 }
29
30 // get first name
31 public String getFirstName()
32 {
33 return firstName;
34 }
35
36 // get last name
37 public String getLastName()
38 {
39 return lastName;
40 }
41
42 // static method to get static count value
43 public static int getCount()
44 {
45 return count;
46 }
47
48 } // end class Employee

Fig. 8.20Fig. 8.20Fig. 8.20Fig. 8.20 Employee class that uses a static class variable to maintain a count of
the number of Employee objects in memory.

Chapter 8 Object-Based Programming 429

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

structor and decremented (line 25) by the finalizer. When no objects of class Employee
exist, member count can still be referenced, but only through a call to public static
method getCount (lines 43–46), as in:

Employee.getCount()

which determines the number of Employee objects currently in memory. Note that when
there are no objects instantiated in the program, the Employee.getCount() method
call is issued. However, when there are objects instantiated, method getCount can also
be called through a reference to one of the objects, as in

e1.getCount()

Good Programming Practice 8.11
Always invoke static methods by using the class name and the dot operator (.). This em-
phasizes to other programmers reading your code that the method being called is a static
method. 8.11

Notice that the Employee class has a finalize method (lines 23–28). This
method is included to show when it is called by the garbage collector in a program.
Method finalize normally is declared protected so it is not part of the public
services of a class. We will discuss the protected access modifier in detail in
Chapter 9.

Method main of the EmployeeTest application class (Fig. 8.21) instantiates two
Employee objects (lines 16–17). When each Employee object’s constructor is
invoked, lines 12–13 of Fig. 8.20 store references to that Employee’s first name and
last name String objects. Note that these two statements do not make copies of the
original Strings arguments. Actually, String objects in Java are immutable—they
cannot be modified after they are created (class String does not provide any set
methods). Because a reference cannot be used to modify a String, it is safe to have
many references to one String object in a Java program. This is not normally the case
for most other classes in Java. If Java String objects are immutable, why are we able to
use the + and += operators to concatenate Strings? As we discuss in Chapter 10, Strings
and Characters, the String concatenation operations actually result in the creation of
new String objects containing the concatenated values. The original String objects
actually are not modified.

When main is done with the two Employee objects, the references e1 and e2 are
set to null at lines 37–38. At this point references e1 and e2 no longer refer to the objects
that were instantiated on lines 16–17. This marks the objects for garbage collection because
there are no more references to the objects in the program.

1 // Fig. 8.21: EmployeeTest.java
2 // Test Employee class with static class variable,
3 // static class method, and dynamic memory.
4 import javax.swing.*;
5

Fig. 8.21Fig. 8.21Fig. 8.21Fig. 8.21 Using a static class variable to maintain a count of the number of
objects of a class (part 1 of 3).

430 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

6 public class EmployeeTest {
7
8 // test class Employee
9 public static void main(String args[])

10 {
11 // prove that count is 0 before creating Employees
12 String output = "Employees before instantiation: " +
13 Employee.getCount();
14
15 // create two Employees; count should be 2
16 Employee e1 = new Employee("Susan", "Baker");
17 Employee e2 = new Employee("Bob", "Jones");
18
19 // Prove that count is 2 after creating two Employees.
20 // Note: static methods should be called only via the
21 // class name for the class in which they are defined.
22 output += "\n\nEmployees after instantiation: " +
23 "\nvia e1.getCount(): " + e1.getCount() +
24 "\nvia e2.getCount(): " + e2.getCount() +
25 "\nvia Employee.getCount(): " + Employee.getCount();
26
27 // get names of Employees
28 output += "\n\nEmployee 1: " + e1.getFirstName() +
29 " " + e1.getLastName() + "\nEmployee 2: " +
30 e2.getFirstName() + " " + e2.getLastName();
31
32 // If there is only one reference to each employee (as
33 // on this example), the following statements mark
34 // those objects for garbage collection. Otherwise,
35 // these statement simply decrement the reference count
36 // for each object.
37 e1 = null;
38 e2 = null;
39
40 System.gc(); // suggest call to garbage collector
41
42 // Show Employee count after calling garbage collector.
43 // Count displayed may be 0, 1 or 2 depending on
44 // whether garbage collector executed immediately and
45 // number of Employee objects it collects.
46 output += "\n\nEmployees after System.gc(): " +
47 Employee.getCount();
48
49 JOptionPane.showMessageDialog(null, output,
50 "Static Members and Garbage Collection",
51 JOptionPane.INFORMATION_MESSAGE);
52
53 System.exit(0);
54 }
55
56 } // end class EmployeeTest

Fig. 8.21Fig. 8.21Fig. 8.21Fig. 8.21 Using a static class variable to maintain a count of the number of
objects of a class (part 2 of 3).

Chapter 8 Object-Based Programming 431

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Eventually, the garbage collector reclaims the memory for these objects (or the memory
is reclaimed by the operating system when the program terminates). Because it is not guaran-
teed when the garbage collector will execute, we make an explicit call to the garbage collector
with line 40, which uses public static method gc from class System (java.lang
package) to indicate that the garbage collector immediately should make a best effort attempt
to collect objects that have been marked for garbage collection. However, this is just a best
effort—it is possible that no objects or a subset of the garbage objects will be collected. In our
example, the garbage collector did execute before lines 49–51 displayed the results of the pro-
gram. The last line of the output indicates that the number of Employee objects in memory
is 0 after the call to System.gc(). Also, the last two lines of the command window output
show that the Employee object for Susan Baker was finalized before the Employee
object for Bob Jones. Remember, the garbage collector is not guaranteed to execute when
System.gc() is invoked nor is it guaranteed to collect objects in a specific order, so it is
possible that the output of this program on your system may differ.

[Note: A method declared static cannot access nonstatic class members. Unlike
nonstatic methods, a static method has no this reference because, static class
variables and static class methods exist independent of any objects of a class and before
any objects of the class have been instantiated.]

Common Programming Error 8.12
Referring to the this reference in a static method is a syntax error. 8.12

Common Programming Error 8.13
It is a syntax error for a static method to call an instance method or to access an instance
variable. 8.13

Employee object constructor: Susan Baker
Employee object constructor: Bob Jones
Employee object finalizer: Susan Baker; count = 1
Employee object finalizer: Bob Jones; count = 0

Fig. 8.21Fig. 8.21Fig. 8.21Fig. 8.21 Using a static class variable to maintain a count of the number of
objects of a class (part 3 of 3).

432 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Software Engineering Observation 8.21
Any static class variables and static class methods exist and can be used even if no
objects of that class have been instantiated. 8.21

8.16 Data Abstraction and Encapsulation
Classes normally hide their implementation details from the clients of the classes. This is
called encapsulation or information hiding. As an example of encapsulation, let us consider
a data structure called a stack.

Think of a stack in terms of a pile of dishes. When a dish is placed on the pile, it is
always placed at the top (referred to as pushing the dish onto the stack), and when a dish is
removed from the pile, it is always removed from the top (referred to as popping the dish
off the stack). Stacks are known as last-in, first-out (LIFO) data structures—the last item
pushed (inserted) on the stack is the first item popped (removed) from the stack.

The programmer can create a stack class and hide from its clients implementation of
the stack. Stacks can easily be implemented with arrays and other methods (such as linked
lists; see Chapter 19, “Data Structures,” and Chapter 20, “Java Utilities Packages and Bit
Manipulation”). A client of a stack class need not know how the stack is implemented. The
client simply requires that when data items are placed in the stack, they will be recalled in
last-in, first-out order. This concept is referred to as data abstraction, and Java classes
define abstract data types (ADTs). Although users might happen to know the details of how
a class is implemented, users may not write code that depends on these details. This means
that a particular class (such as one that implements a stack and its operations of push and
pop) can be replaced with another version without affecting the rest of the system, as long
as the public services of that class does not change (i.e., every method still has the same
name, return type and parameter list in the new class definition).

The job of a high-level language is to create a view convenient for programmers to use.
There is no single accepted standard view—that is one reason why there are so many pro-
gramming languages. Object-oriented programming in Java presents yet another view.

Most programming languages emphasize actions. In these languages, data exists in
support of the actions programs need to take. Data is “less interesting” than actions,
anyway. Data is “crude.” There are only a few built-in data types, and it is difficult for pro-
grammers to create their own new data types.

This view changes with Java and the object-oriented style of programming. Java ele-
vates the importance of data. The primary activity in Java is creating new data types (i.e.,
classes) and expressing the interactions among objects of those data types.

To move in this direction, the programming-languages community needed to
formalize some notions about data. The formalization we consider is the notion of abstract
data types (ADTs). ADTs receive as much attention today as structured programming did
over the last two decades. ADTs do not replace structured programming. Rather, they pro-
vide an additional formalization to further improve the program development process.

What is an abstract data type? Consider the built-in type int. What comes to mind is
the notion of an integer in mathematics, but int on a computer is not precisely what an
integer is in mathematics. In particular, computer ints are normally quite limited in size.
For example, int on a 32-bit machine is limited approximately to the range –2 billion to
+2 billion. If the result of a calculation falls outside this range, an error occurs and the

Chapter 8 Object-Based Programming 433

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

machine responds in some machine-dependent manner, including the possibility of “qui-
etly” producing an incorrect result. Mathematical integers do not have this problem. So the
notion of a computer int is really only an approximation to the notion of a real-world
integer. The same is true with float.

The point is that even the built-in data types provided with programming languages
like Java are really only approximations or models of real-world concepts and behaviors.
We have taken int for granted until this point, but now you have a new perspective to con-
sider. Types like int, float, char and others are all examples of abstract data types.
They are essentially ways of representing real-world notions to some satisfactory level of
precision within a computer system.

An abstract data type actually captures two notions, namely a data representation and
the operations that are allowed on that data. For example, the notion of int defines addi-
tion, subtraction, multiplication, division and modulus operations in Java, but division by
zero is undefined. Another example is the notion of negative integers whose operations and
data representation are clear, but the operation of taking the square root of a negative
integer is undefined. In Java, the programmer uses classes to implement abstract data types.

Java has a small set of primitive types. ADTs extend the base programming language.

Software Engineering Observation 8.22
The programmer is able to create new types through the use of the class mechanism. These
new types can be designed to be used as conveniently as the built-in types. Thus, Java is an
extensible language. Although the language is easy to extend with these new types, the base
language itself is not changeable. 8.22

New Java classes can be proprietary to an individual, to small groups, to companies,
and so on. Many classes are placed in standard class libraries intended for wide distribu-
tion. This does not necessarily promote standards, although de facto standards are
emerging. The full value of Java will be realized only when substantial, standardized class
libraries become more widely available than they are today. In the United States, such stan-
dardization often happens through ANSI, the American National Standards Institute.
Worldwide standardization often happens through ISO, the International Standards Orga-
nization. Regardless of how these libraries ultimately appear, the reader who learns Java
and object-oriented programming will be ready to take advantage of the new kinds of rapid,
component-oriented software development made possible with class libraries.

8.16.1 Example: Queue Abstract Data Type

Each of us stands in line from time to time. A waiting line is also called a queue. We wait
in line at the supermarket checkout counter, we wait in line to get gasoline, we wait in line
to board a bus, we wait in line to pay a toll on the highway, and students know all too well
about waiting in line during registration to get the courses they want. Computer systems use
many waiting lines internally, so we write programs that simulate what queues are and do.

A queue is a good example of an abstract data type. A queue offers well-understood
behavior to its clients. Clients put things in a queue one at a time—using an enqueue
operation, and the clients get those things back one at a time on demand—using a dequeue
operation. Conceptually, a queue can become infinitely long. A real queue, of course, is
finite. Items are returned from a queue in first-in, first-out (FIFO) order—the first item
inserted in the queue is the first item removed from the queue.

434 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The queue hides an internal data representation that keeps track of the items currently
waiting in line, and it offers a set of operations to its clients, namely enqueue and dequeue.
The clients are not concerned about implementation of the queue. Clients merely want the
queue to operate “as advertised.” When a client enqueues a new item, the queue should
accept that item and place it internally in some kind of first-in, first-out data structure.
When the client wants the next item from the front of the queue, the queue should remove
the item from its internal representation and should deliver the item to the outside world in
FIFO order (i.e., the item that has been in the queue the longest should be the next one
returned by the next dequeue operation).

The queue ADT guarantees the integrity of its internal data structure. Clients must
not manipulate this data structure directly. Only the queue ADT has access to its internal
data (i.e., the queue ADT encapsulates its data). Clients must cause only allowable oper-
ations to be performed on the data representation; operations not provided in the ADT's
public interface are rejected by the ADT in some appropriate manner. This could mean
issuing an error message, terminating execution, or simply ignoring the operation
request.

8.17 (Optional Case Study) Thinking About Objects: Starting to
Program the Classes for the Elevator Simulation
In the “Thinking About Objects” sections in Chapters 1 through 7, we introduced the fun-
damentals of object orientation and developed an object-oriented design for our elevator
simulation. In Chapter 8, we introduced the details of programming with Java classes. We
now begin implementing our object-oriented design in Java. At the end of this section, we
show how to generate code in Java, working from class diagrams. This process is referred
to as forward engineering.1

Visibility
Before we begin implementing our design in Java, we apply member-access modifiers (see
Section 8.2) to the members of our classes. In Chapter 8, we introduced the access specifi-
ers public and private—these determine the visibilities of an object’s attributes and
methods to other objects. Before we create class files, we consider which attributes and
methods of our classes should be public and which should be private.

Software Engineering Observation 8.23
Each element of a class should have private visibility unless it can be proven that the el-
ement needs public visibility. 8.23

In Chapter 8, we discussed how attributes generally should be private, but what
about the operations of a class—its methods? These operations are invoked by clients of
that class; therefore, the methods normally should be public. In the UML, public vis-
ibility is indicated by placing a plus sign (+) before a particular element (i.e., a method or
an attribute); a minus sign (-) indicates private visibility. Figure 8.13 shows our updated
class diagram with visibility notations included.

1. G. Booch, The Unified Modeling Language User Guide. Massachusetts: Addison Wesley Long-
man, Inc., 1999: 16. [Once code exists, the process of going backward from the code to reproduce
design documents is called reverse engineering.]

Chapter 8 Object-Based Programming 435

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

Implementation: Forward Engineering
Forward engineering is the process of transforming a design, such as that in a class diagram,
into code of a specific programming language, such as Java. Now that we have discussed
programming Java classes, we forward engineer the class diagram of Fig. 8.13 into the Java
code for our elevator simulator. The generated code will represent only the “skeleton,” or
the structure, of the model.2 In Chapters 9 and 10, we modify the code to incorporate inher-
itance and interfaces, respectively. In Appendix G, Appendix H and Appendix I, we
present the complete, working Java code for our model.

As an example, we forward engineer class Elevator from Fig. 8.13. We use this
figure to determine the attributes and operations of that class. We use the class diagram of
Fig. 3.23 to determine associations (and aggregations) among classes. We adhere to the fol-
lowing four guidelines:

1. Use the name located in the first compartment to declare the class as a public
class with an empty constructor. For example, class Elevator yields

Fig. 8.13Fig. 8.13Fig. 8.13Fig. 8.13 Complete class diagram with visibility notations.

2. So far, we have presented only about half of the case-study material—we have not yet discussed
inheritance, event handling, multithreading and animation. The standard development process rec-
ommends finishing the design process before starting the coding process. Technically, we will not
have finished designing our system until we have discussed these additional topics, so our current
code implementation might seem premature. We present only a partial implementation illustrating
the topics covered in Chapter 8.

Floor

- floorNumber : Integer
- capacity : Integer = 1

<none yet>

ElevatorDoor

- open : Boolean = false

+ openDoor() : void
+ closeDoor() : void

ElevatorShaft

<none yet>

<none yet>

Bell

<none yet>

ElevatorModel

- numberPeople : Integer = 0

+ ringBell() : void

Light

- lightOn : Boolean = false

+ turnOnLight() : void
+ turnOffLight() : void

ElevatorButton

- pressed : Boolean = false

+ resetButton() : void
+ pressButton() : void

FloorButton

- pressed : Boolean = false

+ resetButton() : void
+ pressButton() : void

+ addPerson() : void

FloorDoor

- open : Boolean = false

+ openDoor() : void
+ closeDoor() : void

Person

- ID : Integer
- moving : Boolean = true

+ doorOpened() : void

Elevator

- moving : Boolean = false
- summoned:Boolean = false
- currentFloor : Integer = 1
- destinationFloor:Integer = 2
- capacity : Integer = 1
- travelTime : Integer = 5
+ ride() : void
+ requestElevator() : void
+ enterElevator() : void
+ exitElevator() : void
+ departElevator() : void

436 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

public class Elevator {

public Elevator() {}
}

2. Use the attributes located in the second compartment to declare the member vari-
ables. For example, the private attributes moving, summoned, current-
Floor, destinationFloor, capacity and travelTime of class
Elevator yield

public class Elevator {

// class attributes
private boolean moving;
private boolean summoned;
private int currentFloor = 1;
private int destinationFloor = 2;
private int capacity = 1;
private int travelTime = 5;

// class constructor
public Elevator() {}

}

3. Use the associations described in the class diagram to generate the references to
other objects. For example, according to Fig. 3.23, Elevator contains one ob-
ject each of classes ElevatorDoor, ElevatorButton and Bell. This
yields

public class Elevator {

// class attributes
private boolean moving;
private boolean summoned;
private int currentFloor = 1;
private int destinationFloor = 2;
private int capacity = 1;
private int travelTime = 5;

// class objects
private ElevatorDoor elevatorDoor;
private ElevatorButton elevatorButton;
private Bell bell;

// class constructor
public Elevator() {}

}

4. Use the operations located in the third compartment of Fig. 8.13 to declare the
methods. For example, the public operations ride, requestElevator,
enterElevator, exitElevator and departElevator in Elevator
yield

Chapter 8 Object-Based Programming 437

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

public class Elevator {

 // class attributes
private boolean moving;
private boolean summoned;
private int currentFloor = 1;
private int destinationFloor = 2;
private int capacity = 1;
private int travelTime = 5;

// class objects
private ElevatorDoor elevatorDoor;
private ElevatorButton elevatorButton;
private Bell bell;

// class constructor
public Elevator() {}

// class methods
public void ride() {}
public void requestElevator() {}
public void enterElevator() {}
public void exitElevator() {}
public void departElevator() {}

}

This concludes the basics of forward engineering. We return to this example at the ends
of “Thinking About Objects” Section 9.23 and Section 10.22 to incorporate inheritance,
interfaces and event handling.

SUMMARY
• OOP encapsulates data (attributes) and methods (behaviors) into objects; the data and methods of

an object are intimately tied together.

• Objects have the property of information hiding. Objects might know how to communicate with
one another across well-defined interfaces, but they normally are not allowed to know how other
objects are implemented.

• Java programmers concentrate on creating their own user-defined types called classes.

• The non-static data components of a class are called instance variables. The static data
components of a class are called class variables.

• Java uses inheritance to create new classes from existing class definitions.

• Every class in Java is a subclass of Object. Thus, every new class definition has the attributes
(data) and behaviors (methods) of class Object.

• Keywords public and private are member access modifiers.

• Instance variables and methods declared with member access modifier public are accessible
wherever the program has a reference to an object of the class in which they are defined.

• Instance variables and methods declared with member access modifier private are accessible
only to methods of the class in which they are defined.

• Instance variables are normally declared private and methods are normally declared public.

• The public methods (or public services) of a class are used by clients of the class to manip-
ulate the data stored in objects of the class.

438 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

• A constructor is a method with the exact same name as the class that initializes the instance vari-
ables of an object of the class when the object is instantiated. Constructor methods can be over-
loaded for a class. Constructors can take arguments but cannot specify a return value type.

• Constructors and other methods that change instance variable values should always maintain ob-
jects in a consistent state.

• Method toString takes no arguments and returns a String. The original toString method
of class Object is a placeholder that is normally redefined by a subclass.

• When an object is instantiated, operator new allocates the memory for the object, then new calls
the constructor for the class to initialize the instance variables of the object.

• If the .class files for the classes used in a program are in the same directory as the class that
uses them, import statements are not required.

• Concatenating a String and any object results in an implicit call to the object’s toString
method to convert the object to a String, then the Strings are concatenated.

• Within a class’s scope, class members are accessible to all of that class’s methods and can be ref-
erenced simply by name. Outside a class’s scope, class members can only be accessed off a “han-
dle” (i.e., a reference to an object of the class).

• If a method defines a variable with the same name as a variable with class scope, the class-scope
variable is hidden by the method-scope variable in the method. A hidden instance variable can be
accessed in the method by preceding its name with the keyword this and the dot operator.

• Each class and interface in the Java API belongs to a specific package that contains a group of re-
lated classes and interfaces.

• Packages are actually directory structures used to organize classes and interfaces. Packages pro-
vide a mechanism for software reuse and a convention for unique class names.

• Creating a reusable class requires: defining a public class, adding a package statement to the
class definition file, compiling the class into the appropriate package directory structure and im-
porting the class into a program.

• When compiling a class in a package, the option -d must be passed to the compiler to specify
where to create (or locate) all the directories in the package statement.

• The package directory names become part of the class name when the class is compiled. Use
this fully qualified name in programs or import the class and use its short name (the name of the
class by itself) in the program.

• If no constructors are defined for a class, the compiler creates a default constructor.

• When one object of a class has a reference to another object of the same class, the first object can
access all the second object’s data and methods.

• Classes often provide public methods to allow clients of the class to set (i.e., assign values to)
or get (i.e., obtain the values of) private instance variables. Get methods are also commonly
called accessor methods or query methods. Set methods are also commonly called mutator meth-
ods (because they typically change a value).

• Every event has a source—the GUI component with which the user interacted to signal the pro-
gram to do a task.

• Use the keyword final to specify that a variable is not modifiable and that any attempt to modify
the variable is an error. A final variable cannot be modified by assignment after it is initialized.
Such a variable must be initialized in its declaration or in every constructor of the class.

• With composition, a class has references to objects of other classes as members.

• When no member access modifier is provided for a method or variable when it is defined in a class,
the method or variable is considered to have package access.

Chapter 8 Object-Based Programming 439

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

• If a program uses multiple classes from the same package, these classes can access each other’s
package-access methods and data directly through a reference to an object.

• Each object has access to a reference to itself called the this reference that can be used inside the
methods of the class to refer to the object’s data and other methods explicitly.

• Any time you have a reference in a program (even as the result of a method call), the reference can
be followed by a dot operator and a call to one of the methods for the reference type.

• Java performs automatic garbage collection of memory. When an object is no longer used in the
program (i.e., there are no references to the object), the object is marked for garbage collection.

• Every class in Java can have a finalizer method that returns resources to the system. A class’s fi-
nalizer method always has the name finalize, receives no parameters and returns no value.
Method finalize is originally defined in class Object as a placeholder that does nothing. This
guarantees that every class has a finalize method for the garbage collector to call.

• A static class variable represents class-wide information—all objects of the class share the
same piece of data. A class’s public static members can be accessed through a reference to
any object of that class, or they can be accessed through the class name using the dot operator.

• public static method gc from class System suggests that the garbage collector immediate-
ly make a best effort attempt to collect garbage objects.The garbage collector is not guaranteed to
collect objects in a specific order.

• A method declared static cannot access nonstatic class members. Unlike nonstatic
methods, a static method has no this reference, because static class variables and stat-
ic class methods exist independent of any objects of a class.

• static class members exist even when no objects of that class exist—they are available as soon
as the class is loaded into memory at execution time.

TERMINOLOGY
abstract data type (ADT) extends
access method extensibility
aggregation finalizer
attribute get method
behavior helper method
cascaded method calls implementation of a class
class information hiding
class definition initialize a class object
class library instance method
class method (static) instance of a class
class scope instance variable
class variable instantiate an object of a class
client of a class interface to a class
composition member access control
concatenated method calls member access modifiers
consistent state for an instance variable member access operator (.)
constructor message
container class method
-d compiler option method calls
data type mutator method
default constructor new operator
dot operator (.) no-argument constructor
encapsulation object

440 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

SELF-REVIEW EXERCISES
8.1 Fill in the blanks in each of the following statements:

a) Class members are accessed via the operator in conjunction with a reference
to an object of the class.

b) Members of a class specified as are accessible only to methods of the class.
c) A is a special method used to initialize the instance variables of a class.
d) A method is used to assign values to private instance variables of a class.
e) Methods of a class are normally made and instance variables of a class are

normally made .
f) A method is used to retrieve values of private data of a class.
g) The keyword introduces a class definition.
h) Members of a class specified as are accessible anywhere an object of the

class is in scope.
i) The operator dynamically allocates memory for an object of a specified type

and returns a to that type.
j) A instance variable represents class-wide information.
k) The keyword specifies that an object or variable is not modifiable after it is

initialized.
l) A method declared static cannot access class members.

ANSWERS TO SELF-REVIEW EXERCISES
8.1 a) dot (.). b) private. c) constructor. d) set. e) public, private. f) get. g) class.
h) public. i) new, reference. j) static. k) final. l) nonstatic.

EXERCISES
8.2 Create a class called Complex for performing arithmetic with complex numbers. Write a
driver program to test your class.

Complex numbers have the form

realPart + imaginaryPart * i

where i is

Use floating-point variables to represent the private data of the class. Provide a constructor
method that enables an object of this class to be initialized when it is declared. Provide a no-argu-

object-based programming (OBP) rapid applications development (RAD)
object-oriented programming (OOP) reusable code
package access services of a class
package statement set method
predicate method software reusability
principle of least privilege static class variable
private static method
programmer-defined type this reference
public user-defined type
public interface of a class utility method
query method

-1

Chapter 8 Object-Based Programming 441

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

ment constructor with default values in case no initializers are provided. Provide public methods
for each of the following:

a) Addition of two Complex numbers: The real parts are added together and the imaginary
parts are added together.

b) Subtraction of two Complex numbers: The real part of the right operand is subtracted
from the real part of the left operand and the imaginary part of the right operand is sub-
tracted from the imaginary part of the left operand.

c) Printing Complex numbers in the form (a, b), where a is the real part and b is the
imaginary part.

8.3 Create a class called Rational for performing arithmetic with fractions. Write a driver pro-
gram to test your class.

Use integer variables to represent the private instance variables of the class—the numerator
and the denominator. Provide a constructor method that enables an object of this class to be initial-
ized when it is declared. The constructor should store the fraction in reduced form (i.e., the fraction

2/4

would be stored in the object as 1 in the numerator and 2 in the denominator). Provide a no-
argument constructor with default values in case no initializers are provided. Provide public meth-
ods for each of the following:

a) Addition of two Rational numbers. The result of the addition should be stored in re-
duced form.

b) Subtraction of two Rational numbers. The result of the subtraction should be stored
in reduced form.

c) Multiplication of two Rational numbers. The result of the multiplication should be
stored in reduced form.

d) Division of two Rational numbers. The result of the division should be stored in re-
duced form.

e) Printing Rational numbers in the form a/b, where a is the numerator and b is the
denominator.

f) Printing Rational numbers in floating-point format. (Consider providing formatting
capabilities that enable the user of the class to specify the number of digits of precision
to the right of the decimal point.)

8.4 Modify the Time3 class of Fig. 8.8 to include the tick method that increments the time
stored in a Time3 object by one second. Also provide method incrementMinute to increment
the minute and method incrementHour to increment the hour. The Time3 object should always
remain in a consistent state. Write a driver program that tests the tick method, the increment-
Minute method and the incrementHour method to ensure that they work correctly. Be sure to
test the following cases:

a) incrementing into the next minute.
b) incrementing into the next hour.
c) incrementing into the next day (i.e., 11:59:59 PM to 12:00:00 AM).

8.5 Modify the Date class of Fig. 8.13 to perform error-checking on the initializer values for in-
stance variables month, day and year (currently it validates only the month and day). Also, pro-
vide a method nextDay to increment the day by one. The Date object should always remain in a
consistent state. Write a driver program that tests the nextDay method in a loop that prints the date
during each iteration of the loop to illustrate that the nextDay method works correctly. Be sure to
test the following cases:

a) incrementing into the next month.
b) incrementing into the next year.

442 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

8.6 Combine the modified Time3 class of Exercise 8.5 and the modified Date class of Exercise
8.5 into one class called DateAndTime. Modify the tick method to call the nextDay method if
the time is incremented into the next day. Modify methods toString and toUniversal-
String() to output the date in addition to the time. Write a driver program to test the new class
DateAndTime. Specifically test incrementing the time to the next day.

8.7 Modify the set methods in class Time3 of Fig. 8.8 to return appropriate error values if an
attempt is made to set one of the instance variables hour, minute or second of an object of class
Time to an invalid value. (Hint: Use boolean return types on each method.)

8.8 Create a class Rectangle. The class has attributes length and width, each of which de-
faults to 1. It has methods that calculate the perimeter and the area of the rectangle. It has set
and get methods for both length and width. The set methods should verify that length and
width are each floating-point numbers larger than 0.0 and less than 20.0. Write a program to test
class Rectangle.

8.9 Create a more sophisticated Rectangle class than the one you created in Exercise 8.8. This
class stores only the Cartesian coordinates of the four corners of the rectangle. The constructor calls
a set method that accepts four sets of coordinates and verifies that each of these is in the first quadrant
with no single x- or y-coordinate larger than 20.0. The set method also verifies that the supplied co-
ordinates do, in fact, specify a rectangle. Provide methods to calculate the length, width, pe-
rimeter and area. The length is the larger of the two dimensions. Include a predicate method
isSquare which determines whether the rectangle is a square. Write a program to test class Rect-
angle.

8.10 Modify the Rectangle class of Exercise 8.9 to include a draw method that displays the
rectangle inside a 25-by-25 box enclosing the portion of the first quadrant in which the rectangle re-
sides. Use the methods of the Graphics class to help output the Rectangle. If you feel ambitious,
you might include methods to scale the size of the rectangle, rotate it and move it around within the
designated portion of the first quadrant.

8.11 Create a class HugeInteger which uses a 40-element array of digits to store integers as
large as 40 digits each. Provide methods inputHugeInteger, outputHugeInteger, add-
HugeIntegers and substractHugeIntegers. For comparing HugeInteger objects, pro-
vide methods isEqualTo, isNotEqualTo, isGreaterThan, isLessThan, IsGreater-
ThanOrEqualTo and isLessThanOrEqualTo—each of these is a “predicate” method that
simply returns true if the relationship holds between the two HugeIntegers and returns false
if the relationship does not hold. Provide a predicate method isZero. If you feel ambitious, also pro-
vide the method multiplyHugeIntegers, the method divideHugeIntegers and the meth-
od modulusHugeIntegers.

8.12 Create a class TicTacToe that will enable you to write a complete program to play the
game of Tic-Tac-Toe. The class contains as private data a 3-by-3 double array of integers. The con-
structor should initialize the empty board to all zeros. Allow two human players. Wherever the first
player moves, place a 1 in the specified square; place a 2 wherever the second player moves. Each
move must be to an empty square. After each move determine whether the game has been won and
whether the game is a draw. If you feel ambitious, modify your program so that the computer makes
the moves for one of the players automatically. Also, allow the player to specify whether he or she
wants to go first or second. If you feel exceptionally ambitious, develop a program that will play
three-dimensional Tic-Tac-Toe on a 4-by-4-by-4 board [Note: This is a challenging project that could
take many weeks of effort!].

8.13 Explain the notion of package access in Java. Explain the negative aspects of package access
as described in the text.

8.14 What happens when a return type, even void, is specified for a constructor?

Chapter 8 Object-Based Programming 443

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

8.15 Create a Date class with the following capabilities:
a) Output the date in multiple formats such as

MM/DD/YYYY
June 14, 1992
DDD YYYY

b) Use overloaded constructors to create Date objects initialized with dates of the formats
in part a).

[Hint: You can compare Strings using method equals. Suppose you have two String references
s1 and s2, if those Strings are equal, s1.equals(s2) returns true; otherwise, it returns
false.]

8.16 Create class SavingsAccount. Use a static class variable to store the annualIn-
terestRate for all account holders. Each object of the class contains a private instance variable
savingsBalance indicating the amount the saver currently has on deposit. Provide method
calculateMonthlyInterest to calculate the monthly interest by multiplying the sav-
ingsBalance by annualInterestRate divided by 12; this interest should be added to sav-
ingsBalance. Provide a static method modifyInterestRate that sets the
annualInterestRate to a new value. Write a driver program to test class SavingsAccount.
Instantiate two savingsAccount objects, saver1 and saver2, with balances of $2000.00 and
$3000.00, respectively. Set annualInterestRate to 4%, then calculate the monthly interest and
print the new balances for each of the savers. Then set the annualInterestRate to 5% and cal-
culate the next month’s interest and print the new balances for each of the savers.

8.17 Create class IntegerSet. Each object of the class can hold integers in the range 0 through
100. A set is represented internally as an array of booleans. Array element a[i] is true if integer
i is in the set. Array element a[j] is false if integer j is not in the set. The no-argument constructor
initializes a set to the so-called “empty set” (i.e., a set whose array representation contains all false
values).

Provide the following methods: Method unionOfIntegerSets creates a third set which is
the set-theoretic union of two existing sets (i.e., an element of the third set’s array is set to true if
that element is true in either or both of the existing sets; otherwise, the element of the third set is
set to false). Method intersectionOfIntegerSets creates a third set which is the set-the-
oretic intersection of two existing sets i.e., an element of the third set’s array is set to false if that
element is false in either or both of the existing sets; otherwise, the element of the third set is set
to true). Method insertElement inserts a new integer k into a set (by setting a[k] to true).
Method deleteElement deletes integer m (by setting a[m] to false). Method setPrint
prints a set as a list of numbers separated by spaces. Print only those elements that are present in the
set. Print --- for an empty set. Method isEqualTo determines if two sets are equal. Write a pro-
gram to test your IntegerSet class. Instantiate several IntegerSet objects. Test that all your
methods work properly.

8.18 It would be perfectly reasonable for the Time1 class of Figure 8.1 to represent the time in-
ternally as the number of seconds since midnight rather than the three integer values hour, minute
and second. Clients could use the same public methods and get the same results. Modify the
Time1 class of Figure 8.1 to implement the Time1 as the number of seconds since midnight and
show that there is no change visible to the clients of the class.

8.19 (Drawing Program) Create a drawing applet that randomly draws lines, rectangles and ovals.
For this purpose, create a set of “smart” shape classes where objects of these classes know how to
draw themselves if provided with a Graphics object that tells them where to draw (i.e., the applet’s
Graphics object allows a shape to draw on the applet’s background). The class names should be
MyLine, MyRect and MyOval.

444 Object-Based Programming Chapter 8

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/3/01

The data for class MyLine should include x1, y1, x2 and y2 coordinates. Method drawLine
method of class Graphics will connect the two points supplied with a line. The data for classes
MyRect and MyOval should include an upper-left x-coordinate value, an upper-left y-coordinate
value, a width (must be nonnegative) and a height (must be nonnegative). All data in each class must
be private.

In addition to the data, each class should define at least the following public methods:
a) A constructor with no arguments that sets the coordinates to 0.
b) A constructor with arguments that sets the coordinates to the supplied values.
c) Set methods for each individual piece of data that allow the programmer to independently

set any piece of data in a shape (e.g., if you have an instance variable x1, you should have
a method setX1).

d) Get methods for each individual piece of data that allow the programmer to independent-
ly retrieve any piece of data in a shape (e.g., if you have an instance variable x1, you
should have a method getX1).

e) A draw method with the first line

public void draw(Graphics g)

will be called from the applet’s paint method to draw a shape onto the screen.

The preceding methods are required. If you would like to provide more methods for flexibility, please
do so.

Begin by defining class MyLine and an applet to test your classes. The applet should have a
MyLine instance variable line that can refer to one MyLine object (created in the applet’s init
method with random coordinates). The applet’s paint method should draw the shape with a state-
ment like

line.draw(g);

where line is the MyLine reference and g is the Graphics object that the shape will use to draw
itself on the applet.

Next, change the single MyLine reference into an array of MyLine references and hard code
several MyLine objects into the program for drawing. The applet’s paint method should walk
through the array of MyLine objects and draw every one.

After the preceding part is working, you should define the MyOval and MyRect classes and
add objects of these classes into the MyRect and MyOval arrays. The applet’s paint method
should walk through each array and draw every shape. Create five shapes of each type.

Once the applet is running, select Reload from the appletviewer’s Applet menu to reload
the applet. This will cause the applet to choose new random numbers for the shapes and draw the
shapes again.

In Chapter 9, we will modify this exercise to take advantage of the similarities between the
classes and to avoid reinventing the wheel.

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

9
Object-Oriented
Programming

Objectives
• To understand inheritance and software reusability.
• To understand superclasses and subclasses.
• To appreciate how polymorphism makes systems

extensible and maintainable.
• To understand the distinction between abstract classes

and concrete classes.
• To learn how to create abstract classes and interfaces.
Say not you know another entirely, till you have divided an
inheritance with him.
Johann Kasper Lavater

This method is to define as the number of a class the class of
all classes similar to the given class.
Bertrand Russell

Good as it is to inherit a library, it is better to collect one.
Augustine Birrell

General propositions do not decide concrete cases.
Oliver Wendell Holmes

A philosopher of imposing stature doesn’t think in a vacuum.
Even his most abstract ideas are, to some extent, conditioned
by what is or is not known in the time when he lives.
Alfred North Whitehead

446 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

9.1 Introduction
In this chapter, we discuss object-oriented programming (OOP) and its key component
technologies—inheritance and polymorphism. Inheritance is a form of software reusability
in which new classes are created from existing classes by absorbing their attributes and be-
haviors and adding new capabilities the new classes require. Inheritance takes advantage of
class relationships where objects of a certain class—such as a class of vehicles—have the
same characteristics. Newly created classes of objects are derived by absorbing character-
istics of existing classes and adding unique characteristics of their own. An object of class
“convertible” certainly has the characteristics of the more general class “automobile,” but
a convertible’s roof goes up and down.

Outline

9.1 Introduction
9.2 Superclasses and Subclasses
9.3 protected Members
9.4 Relationship between Superclass Objects and Subclass Objects
9.5 Constructors and Finalizers in Subclasses
9.6 Implicit Subclass-Object-to-Superclass-Object Conversion
9.7 Software Engineering with Inheritance
9.8 Composition vs. Inheritance
9.9 Case Study: Point, Circle, Cylinder
9.10 Introduction to Polymorphism
9.11 Type Fields and switch Statements
9.12 Dynamic Method Binding
9.13 final Methods and Classes
9.14 Abstract Superclasses and Concrete Classes
9.15 Polymorphism Examples
9.16 Case Study: A Payroll System Using Polymorphism
9.17 New Classes and Dynamic Binding
9.18 Case Study: Inheriting Interface and Implementation
9.19 Case Study: Creating and Using Interfaces
9.20 Inner Class Definitions
9.21 Notes on Inner Class Definitions
9.22 Type-Wrapper Classes for Primitive Types
9.23 (Optional Case Study) Thinking About Objects: Incorporating

Inheritance into the Elevator Simulation
9.24 (Optional) Discovering Design Patterns: Introducing Creational,

Structural and Behavioral Design Patterns

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 9 Object-Oriented Programming 447

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Software reusability saves time in program development. It encourages reuse of
proven and debugged high-quality software, thus reducing problems after a system
becomes operational. These are exciting possibilities. Polymorphism enables us to write
programs in a general fashion to handle a wide variety of existing and yet-to-be-specified
related classes. Polymorphism makes it easy to add new capabilities to a system. Inherit-
ance and polymorphism are effective techniques for dealing with software complexity.

When creating a new class, instead of writing completely new instance variables and
instance methods, the programmer can designate that the new class is to inherit the instance
variables and instance methods of a previously defined superclass. The new class is
referred to as a subclass. Each subclass itself becomes a candidate to be a superclass for
some future subclass.

The direct superclass of a class is the superclass from which the class explicitly
inherits (via the keyword extends). An indirect superclass is inherited from two or more
levels up the class hierarchy. For example, class JApplet (package javax.swing)
extends class Applet (package java.applet). Thus, each applet class we have defined
is a direct subclass of JApplet and an indirect subclass of Applet.

With single inheritance, a class is derived from one superclass. Java does not support
multiple inheritance (as C++ does) but it does support the notion of interfaces. Interfaces
help Java achieve many of the advantages of multiple inheritance without the associated
problems. We will discuss the details of interfaces in this chapter. We consider both general
principles and a detailed specific example of creating and using interfaces.

A subclass normally adds instance variables and instance methods of its own, so a sub-
class is generally larger than its superclass. A subclass is more specific than its superclass
and represents a smaller, more specialized group of objects. With single inheritance, the
subclass starts out essentially the same as the superclass. The real strength of inheritance
comes from the ability to define in the subclass additions to, or replacements for, the fea-
tures inherited from the superclass.

Every subclass object is also an object of that class’s superclass. For example, every
applet we have defined is considered to be an object of class JApplet. Also, because
JApplet extends Applet, every applet we have defined is considered to be an Applet.
This information is critical when developing applets, because an applet container can exe-
cute a program only if it is an Applet. Although a subclass object always can be treated
as one of its superclass types, superclass objects are not considered to be objects of their
subclass types. We will take advantage of this “subclass-object-is-a-superclass-object”
relationship to perform some powerful manipulations. For example, a drawing application
can maintain a list of shapes to display. If all the shape types extend the same superclass
directly or indirectly, the drawing program can store all the shapes in an array (or other data
structure) of superclass objects. As we will see in this chapter, this ability to process a set
of objects as a single type is a key thrust of object-oriented programming.

We add a new form of member access control in this chapter, namely protected
access. Subclass methods and methods of other classes in the same package as the super-
class can access protected superclass members.

Experience in building software systems indicates that significant portions of the code
deal with closely related special cases. It becomes difficult in such systems to see the “big pic-
ture” because the designer and the programmer become preoccupied with the special cases.
Object-oriented programming provides several ways of “seeing the forest through the trees.”

448 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The programmer and designer concentrate on the big picture—the commonality among
objects in the system—rather than the special cases. This process is called abstraction.

If a procedural program has many closely related special cases, then it is common to see
switch structures or nested if/else structures that distinguish among the special cases
and provide the processing logic to deal with each case individually. We will show how to
use inheritance and polymorphism to replace such switch logic with much simpler logic.

We distinguish between the “is a” relationship and the “has a” relationship. “Is a” is
inheritance. In an “is a” relationship, an object of a subclass type may also be treated as an
object of its superclass type. “Has a” is composition (as we discussed in Chapter 8). In a
“has a” relationship, a class object has one or more objects of other classes as members. For
example, a car has a steering wheel.

A subclass’s methods might need to access certain of its superclass’s instance variables
and methods. A crucial aspect of software engineering in Java is that a subclass cannot
access the private members of its superclass. If a subclass could access the superclass’s
private members, this would violate information hiding in the superclass.

Software Engineering Observation 9.1
A subclass cannot directly access private members of its superclass. 9.1

Testing and Debugging Tip 9.1
Hiding private members is a tremendous help in testing, debugging and correctly modi-
fying systems. If a subclass could access its superclass’s private members, it would be
possible for classes derived from that subclass to access that data as well, and so on. This
would propagate access to what is supposed to be private data, and the benefits of infor-
mation hiding would be lost throughout the class hierarchy. 9.1

However, a subclass can access the public and protected members of its super-
class. A subclass also can use the package access members of its superclass if the subclass
and superclass are in the same package. Superclass members that should not be accessible
to a subclass via inheritance are declared private in the superclass. A subclass can effect
state changes in superclass private members only through public, protected and
package access methods provided in the superclass and inherited into the subclass. [Note:
We use protected instance variables in this chapter to demonstrate how they work. Sev-
eral of the exercises in this chapter require that you use only private instance variables, to
maintain encapsulation.]

Software Engineering Observation 9.2
To preserve encapsulation, all instance variables should be declared private and should
be accessible only via set and get methods of the class. 9.2

A problem with inheritance is that a subclass can inherit methods that it does not need or
should not have. It is the class designer’s responsibility to ensure that the capabilities provided
by a class are appropriate for future subclasses. Even when the superclass methods are appro-
priate for the subclasses, it is common for a sublcass to require the method to perform a task
in a manner that is specific to the subclass. In such cases, the superclass method can be over-
ridden (redefined) in the subclass with an appropriate implementation.

Perhaps most exciting is the notion that new classes can inherit from abundant class
libraries, such as those provided with the Java API. Organizations develop their own class

Chapter 9 Object-Oriented Programming 449

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

libraries and can take advantage of other libraries available worldwide. Someday, most
software might be constructed from standardized reusable components, just as hardware is
often constructed today. This will help meet the challenges of developing the ever more
powerful software we will need in the future.

9.2 Superclasses and Subclasses
Often an object of one class “is an” object of another class as well. A rectangle certainly is
a quadrilateral (as are squares, parallelograms and trapezoids). Thus, class Rectangle
can be said to inherit from class Quadrilateral. In this context, class Quadrilat-
eral is a superclass, and class Rectangle is a subclass. A rectangle is a specific type
of quadrilateral, but it is incorrect to claim that a quadrilateral is a rectangle (the quadrilat-
eral could be a parallelogram). Figure 9.1 shows several simple inheritance examples of su-
perclasses and potential subclasses.

Inheritance normally produces subclasses with more features than their superclasses,
so the terms superclass and subclass can be confusing. There is another way, however, to
view these terms that makes perfectly good sense. Because every subclass object “is an”
object of its superclass, and because one superclass can have many subclasses, the set of
objects represented by a superclass is normally larger than the set of objects represented by
any of that superclass’s subclasses. For example, the superclass Vehicle represents in a
generic manner all vehicles, such as cars, trucks, boats, bicycles and so on. However, sub-
class Car represents only a small subset of all the Vehicles in the world.

Inheritance relationships form tree-like hierarchical structures. A superclass exists in
a hierarchical relationship with its subclasses. A class can certainly exist by itself, but it is
when a class is used with the mechanism of inheritance that the class becomes either a
superclass that supplies attributes and behaviors to other classes or a subclass that inherits
those attributes and behaviors. Frequently, one class is both a subclass and a superclass.

Superclass Subclasses

Student GraduateStudent
UndergraduateStudent

Shape Circle
Triangle
Rectangle

Loan CarLoan
HomeImprovementLoan
MortgageLoan

Employee FacultyMember
StaffMember

Account CheckingAccount
SavingsAccount

Fig. 9.1Fig. 9.1Fig. 9.1Fig. 9.1 Some simple inheritance examples in which the subclass “is a”
superclass.

450 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Let us develop a simple inheritance hierarchy. A typical university community has
thousands of people who are community members. These people consist of employees,
students and alumni. Employees are either faculty members or staff members. Faculty
members are either administrators (such as deans and department chairpersons) or
teaching faculty. This yields the inheritance hierarchy shown in Fig. 9.2. Note that the
inheritance hierarchy could contain many other classes. For example, students can be
graduate students or undergraduate students. Undergraduate students can be freshman,
sophomores, juniors, and seniors. And so on. The arrows in the hierarchy represent the
“is a” relationship. For example, based on this class hierarchy that we can state, “an
Employee is a CommunityMember,” or “a Teacher is a Faculty member.”
CommunityMember is the direct superclass of Employee, Student and Alumni.
CommunityMember is an indirect superclass of all the other classes in the hierarchy
diagram. Note that class Employee is both a subclass of CommunityMember and a
superclass of Faculty and Staff.

Also, starting from the bottom of the diagram, you can follow the arrows and apply
the is a relationship all the way up to the topmost superclass in the hierarchy. For
example, an Administrator is a Faculty member, is an Employee and is a Com-
munityMember. And, in Java, an Administrator also is an Object because all
classes in Java have Object as one of their direct or indirect superclasses. Thus, all
classes in Java are related in a hierarchical relationship in which they share the 11
methods defined by class Object, which include the toString and finalize
methods discussed previously. Other methods of class Object are discussed as they are
needed in the text.

Another substantial inheritance hierarchy is the Shape hierarchy of Figure 9.3.
There are abundant examples of hierarchies in the real world, but students are not accus-
tomed to categorizing the real world in this manner, so it takes some adjustment in their
thinking. Actually, biology students have had some practice with hierarchies. Everything
we study in biology is grouped into a hierarchy headed by living things and these can be
plants or animals and so on.

To specify that class TwoDimensionalShape is derived from (or inherits from)
class Shape, class TwoDimensionalShape could be defined in Java as follows:

Fig. 9.2Fig. 9.2Fig. 9.2Fig. 9.2 An inheritance hierarchy for university CommunityMembers.

CommunityMember

Employee Student

Faculty Staff

Administrator Teacher

Alumni

Chapter 9 Object-Oriented Programming 451

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

public class TwoDimensionalShape extends Shape {
 ...
}

With inheritance, private members of a superclass are not directly accessible from that
class’s subclasses. Package access members of the superclass are accessible in a subclass
only if both the superclass and its subclass are in the same package. All other superclass
members become members of the subclass, using their original member access (i.e., pub-
lic members of the superclass become public members of the subclass, and pro-
tected members of the superclass become protected members of the subclass).

Software Engineering Observation 9.3
Constructors are never inherited—they are specific to the class in which they are defined. 9.3

It is possible to treat superclass objects and subclass objects similarly; that common-
ality is expressed in the attributes and behaviors of the superclass. Objects of all classes
derived from a common superclass can all be treated as objects of that superclass.

We will consider many examples in which we can take advantage of this inheritance
relationship with an ease of programming not available in non-object-oriented languages
such as C.

9.3 protected Members
A superclass’s public members are accessible anywhere the program has a reference
to that superclass type or one of its subclass types. A superclass’s private members
are accessible only in methods of that superclass.

A superclass’s protected access members serve as an intermediate level of pro-
tection between public and private access. A superclass’s protected members
may be accessed only by methods of the superclass, by methods of subclasses and by
methods of other classes in the same package (protected members have package
access).

Subclass methods can normally refer to public and protected members of the
superclass simply by using the member names. When a subclass method overrides a
superclass method, the superclass method may be accessed from the subclass by pre-
ceding the superclass method name with keyword super followed by the dot operator
(.). This technique is illustrated several times throughout the chapter.

Fig. 9.3Fig. 9.3Fig. 9.3Fig. 9.3 A portion of a Shape class hierarchy.

Shape

TwoDimensionalShape ThreeDimensionalShape

Circle Square Triangle Sphere Cube Tetrahedron

452 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

9.4 Relationship between Superclass Objects and Subclass
Objects
An object of a subclass can be treated as an object of its superclass. This makes possible
some interesting manipulations. For example, despite the fact that objects of a variety of
classes derived from a particular superclass might be quite different from one another, we
can create an array of references to them—as long as we treat them as superclass objects.
But the reverse is not true: A superclass object cannot always be treated a subclass object.
For example, a Shape is not always a Circle.

However, an explicit cast can be used to convert a superclass reference to a subclass
reference. This can be done only when the superclass reference is referencing a subclass
object; otherwise, Java will indicate a ClassCastException—an indication that the
cast operation is not allowed. Exceptions are discussed in detail in Chapter 14.

Common Programming Error 9.1
Assigning an object of a superclass to a subclass reference (without a cast) is a syntax error. 9.1

Software Engineering Observation 9.4
If an object has been assigned to a reference of one of its superclasses, it is acceptable to cast
that object back to its own type. In fact, this must be done in order to send that object any of
its messages that do not appear in that superclass. 9.4

Our first example consists of two classes. Figure 9.4 shows a Point class definition.
Figure 9.5 shows a Circle class definition. We will see that class Circle inherits from
class Point. Figure 9.6 shows application class InheritanceTest, which demon-
strates assigning subclass references to superclass references and casting superclass refer-
ences to subclass references.

Every applet defined previously has used some of the techniques presented here. We
now formalize the inheritance concept. In Chapter 3, we stated that every class definition
in Java must extend another class. However, notice in Fig. 9.4 that class Point (line 4)
does not use the extends keyword explicitly. If a new class definition does not extend an
existing class definition explicitly, Java implicitly uses class Object (package
java.lang) as the superclass for the new class definition. Class Object provides a set
of methods that can be used with any object of any class.

Software Engineering Observation 9.5
Every class in Java implicitly extends Object, unless it is specified otherwise in the first
line of the class definition, in which case the class indirectly extends Object. Thus, class
Object is the superclass of the entire Java class hierarchy. 9.5

Let us first examine the Point class definition (Fig. 9.4). The public services of
class Point include methods setPoint, getX, getY, toString and two Point
constructors. The instance variables x and y of Point are specified as protected. This
prevents clients of Point objects from accessing the data directly (unless they are classes
in the same package), but enables classes derived from Point to access the inherited
instance variables directly. If the data were specified as private, the nonprivate
methods of Point would have to be used to access the data, even by subclasses. Note that
class Point’s toString method overrides the original toString method inherited
from class Object.

Chapter 9 Object-Oriented Programming 453

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Class Point’s constructors (lines 8–12 and 15–19) must call class Object’s con-
structor. In fact, every subclass constructor is required to call its direct superclass’s con-
structor as its first task, either implicitly or explicitly (the syntax for this call is discussed
with class Circle momentarily). If there is no explicit call to the superclass constructor,

1 // Fig. 9.4: Point.java
2 // Definition of class Point
3
4 public class Point {
5 protected int x, y; // coordinates of Point
6
7 // No-argument constructor
8 public Point()
9 {

10 // implicit call to superclass constructor occurs here
11 setPoint(0, 0);
12 }
13
14 // constructor
15 public Point(int xCoordinate, int yCoordinate)
16 {
17 // implicit call to superclass constructor occurs here
18 setPoint(xCoordinate, yCoordinate);
19 }
20
21 // set x and y coordinates of Point
22 public void setPoint(int xCoordinate, int yCoordinate)
23 {
24 x = xCoordinate;
25 y = yCoordinate;
26 }
27
28 // get x coordinate
29 public int getX()
30 {
31 return x;
32 }
33
34 // get y coordinate
35 public int getY()
36 {
37 return y;
38 }
39
40 // convert into a String representation
41 public String toString()
42 {
43 return "[" + x + ", " + y + "]";
44 }
45
46 } // end class Point

Fig. 9.4Fig. 9.4Fig. 9.4Fig. 9.4 Point class definition.

454 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Java automatically attempts to call the superclass’s default constructor. Note that lines 10
and 17 are comments indicating where the call to the superclass Object’s default con-
structor occurs.

Software Engineering Observation 9.6
Every subclass constructor must call one of the direct superclass constructors explicitly or
implicitly. Implicit calls can be made only to the no-argument constructor of the superclass.
If the superclass does not provide a no-argument constructor, all direct subclasses of that
class must call one of superclass’s constructors explicitly. 9.6

Class Circle (Fig. 9.5) inherits from class Point as specified with the extends
keyword on line 4. Keyword extends in the class definition indicates inheritance. All the
(nonprivate) members of class Point (except the constructors) are inherited into class
Circle. Thus, the public interface to Circle includes the Point class’s public
methods as well as the two overloaded Circle constructors and Circle methods set-
Radius, getRadius, area and toString. Notice that method area (lines 38–41)
uses predefined constant Math.PI from class Math (package java.lang) to calculate
the area of a circle.

1 // Fig. 9.5: Circle.java
2 // Definition of class Circle
3
4 public class Circle extends Point { // inherits from Point
5 protected double radius;
6
7 // no-argument constructor
8 public Circle()
9 {

10 // implicit call to superclass constructor occurs here
11 setRadius(0);
12 }
13
14 // constructor
15 public Circle(double circleRadius, int xCoordinate,
16 int yCoordinate)
17 {
18 // call superclass constructor to set coordinates
19 super(xCoordinate, yCoordinate);
20
21 // set radius
22 setRadius(circleRadius);
23 }
24
25 // set radius of Circle
26 public void setRadius(double circleRadius)
27 {
28 radius = (circleRadius >= 0.0 ? circleRadius : 0.0);
29 }
30

Fig. 9.5Fig. 9.5Fig. 9.5Fig. 9.5 Circle class definition (part 1 of 2).

Chapter 9 Object-Oriented Programming 455

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The Circle constructors (lines 8–12 and 15–23) must invoke a Point constructor
to initialize the superclass portion of a Circle object (i.e., variables x and y inherited
from Point). The default constructor at lines 8–12 does not call a Point constructor
explicitly, so Java automatically calls class Point’s default constructor (defined at line 8
of Fig. 9.4) that initializes superclass members x and y to zeros. If class Point contained
only the constructor with arguments (i.e., did not provide a default constructor), a compiler
error would occur.

Line 19 in the body of the second Circle constructor explicitly invokes the Point
constructor (defined at line 15 of Fig. 9.4) by using the superclass constructor call syntax—
keyword super followed by a set of parentheses containing the arguments to the super-
class constructor. In this case, the arguments are the values xCoordinate and yCoor-
dinate that are used by the Point constructor to initialize the superclass members x and
y). The call to the superclass constructor must be the first line in the body of the subclass
constructor. To call the superclass default constructor explicitly, use the statement

super(); // explicit call to superclass default constructor

Common Programming Error 9.2
It is a syntax error if a super call by a subclass to its superclass constructor is not the first
statement in the subclass constructor. 9.2

Common Programming Error 9.3
It is a syntax error if the arguments to a super call by a subclass to its superclass construc-
tor do not match the parameters specified in one of the superclass constructor definitions. 9.3

A subclass can redefine a superclass method by using the same signature; this is called
overriding a superclass method. When that method is mentioned by name in the subclass,

31 // get radius of Circle
32 public double getRadius()
33 {
34 return radius;
35 }
36
37 // calculate area of Circle
38 public double area()
39 {
40 return Math.PI * radius * radius;
41 }
42
43 // convert the Circle to a String
44 public String toString()
45 {
46 return "Center = " + "[" + x + ", " + y + "]" +
47 "; Radius = " + radius;
48 }
49
50 } // end class Circle

Fig. 9.5Fig. 9.5Fig. 9.5Fig. 9.5 Circle class definition (part 2 of 2).

456 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

the subclass version is automatically called. We have actually been overriding methods in
every applet in the book. When we extend JApplet to create a new applet class, the new
class inherits versions of init and paint (and many other methods). Each time we
defined init or paint, we were overriding the original version that was inherited. Also,
when we provided method toString for many of the classes in Chapter 8, we were over-
riding the original version of toString provided by class Object. As we will see in
Fig. 9.8, the super reference followed by the dot operator can be used to access the orig-
inal superclass version of that method from the subclass.

Note that class Circle’s toString method (lines 44–48) overrides the Point
class toString method (lines 41–44 of Fig. 9.4). Class Point’s toString method
overrides the original toString method provided by class Object. Actually, every
class inherits a toString method, because class Object provides the original
toString method. This method converts an object of any class into a String repre-
sentation and is sometimes called implicitly by the program (e.g., when an object is con-
catenated with a String). Circle method toString directly accesses the
protected instance variables x and y that were inherited from class Point. Method
toString uses the values of x and y as part of the Circle’s String representation.
Actually, if you study class Point’s toString method and class Circle’s
toString method, you will notice that Circle’s toString uses the same format-
ting as Point’s toString for the Point parts of the Circle. Also, recall Software
Engineering Observation 8.14, indicating that, if a method exists that performs part of
another method’s task, call the method. Point’s toString performs part of the task
of Circle’s toString. To call Point’s toString from class Circle, use the
expression

super.toString()

Software Engineering Observation 9.7
A redefinition of a superclass method in a subclass need not have the same signature as the
superclass method. Such a redefinition is not method overriding; rather, it is an example of
method overloading. 9.7

Software Engineering Observation 9.8
Any object can be converted to a String with an explicit or implicit call to the object’s
toString method. 9.8

Software Engineering Observation 9.9
Each class should override method toString to return useful information about objects of
that class. 9.9

Common Programming Error 9.4
It is a syntax error if a method in a superclass and a method in its subclass have the same
signature but a different return type. 9.4

The InheritanceTest application (Fig. 9.6) instantiates Point object point1
and Circle object circle1 at lines 18–19 in main. The String representations of
each object are assigned to String output to show that they were initialized correctly
(lines 21–22). See the first two lines in the output screen capture to confirm this.

Chapter 9 Object-Oriented Programming 457

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

1 // Fig. 9.6: InheritanceTest.java
2 // Demonstrating the "is a" relationship
3
4 // Java core packages
5 import java.text.DecimalFormat;
6
7 // Java extension packages
8 import javax.swing.JOptionPane;
9

10 public class InheritanceTest {
11
12 // test classes Point and Circle
13 public static void main(String args[])
14 {
15 Point point1, point2;
16 Circle circle1, circle2;
17
18 point1 = new Point(30, 50);
19 circle1 = new Circle(2.7, 120, 89);
20
21 String output = "Point point1: " + point1.toString() +
22 "\nCircle circle1: " + circle1.toString();
23
24 // use "is a" relationship to refer to a Circle
25 // with a Point reference
26 point2 = circle1; // assigns Circle to a Point reference
27
28 output += "\n\nCircle circle1 (via point2 reference): " +
29 point2.toString();
30
31 // use downcasting (casting a superclass reference to a
32 // subclass data type) to assign point2 to circle2
33 circle2 = (Circle) point2;
34
35 output += "\n\nCircle circle1 (via circle2): " +
36 circle2.toString();
37
38 DecimalFormat precision2 = new DecimalFormat("0.00");
39 output += "\nArea of c (via circle2): " +
40 precision2.format(circle2.area());
41
42 // attempt to refer to Point object with Circle reference
43 if (point1 instanceof Circle) {
44 circle2 = (Circle) point1;
45 output += "\n\ncast successful";
46 }
47 else
48 output += "\n\npoint1 does not refer to a Circle";
49
50 JOptionPane.showMessageDialog(null, output,
51 "Demonstrating the \"is a\" relationship",
52 JOptionPane.INFORMATION_MESSAGE);
53

Fig. 9.6Fig. 9.6Fig. 9.6Fig. 9.6 Assigning subclass references to superclass references (part 1 of 2).

458 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Line 26 assigns circle1 (a reference to a subclass Circle object) to point2 (a
superclass Point reference). It is always acceptable in Java to assign a subclass reference
to a superclass reference, because of the “is a” relationship of inheritance. A Circle is a
Point because class Circle extends class Point. Assigning a superclass reference to
a subclass reference is dangerous, as we will see.

Lines 28–29 append the result of point2.toString() to output. Interestingly,
when point2 is sent the toString message, Java knows that the object really is a
Circle, so it chooses the Circle class’s toString rather than the Point class’s
toString as you might have expected. This is an example of polymorphism and dynamic
binding—concepts we treat in depth later in this chapter. The compiler looks at the pre-
ceding expression and asks the question, “Does the data type of the reference point2 (i.e.,
Point) have a toString method with no arguments?” The answer to this question is yes
(per Point’s toString definition on line 41 of Fig. 9.4). The compiler simply checks
the syntax of the expression and ensures that the method exists. At execution time, the inter-
preter asks the question, “What type is the object to which point2 refers?” Every object
in Java knows its own data type, so the answer to the question is point2 refers to a
Circle object. Based on this answer, the interpreter calls the toString method of the
actual object’s data type—class Circle’s toString method. See the third line of the
screen capture to confirm this. The two key programming techniques we used to achieve
this polymorphism effect are

1. extending class Point to create class Circle, and

2. overriding method toString with the exact same signature in class Point and
class Circle.

Line 33 casts point2, which admittedly is referencing a Circle at this time in the
program’s execution, to a Circle and assigns the result to circle2 (this cast would be
dangerous if point2 were really referencing a Point, as we will soon discuss). Then we
use circle2 to append to output the various facts about circle2. Lines 35–36

54 System.exit(0);
55 }
56
57 } // end class InheritanceTest

Fig. 9.6Fig. 9.6Fig. 9.6Fig. 9.6 Assigning subclass references to superclass references (part 2 of 2).

Chapter 9 Object-Oriented Programming 459

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

invoke method toString to append the String representation of the Circle. Lines
39–40 append the area of the Circle to output.

Next, the if/else structure at lines 43–48 attempts a dangerous cast in line 44. We cast
point1, which refers to a Point object, to a Circle. If the program attempts to execute this
statement, Java would determine that point1 really refers to a Point, recognize the cast to
Circle as being dangerous and indicate an improper cast with ClassCastException
message. However, we prevent this statement from executing with the if condition

if (point1 instanceof Circle) {

that uses operator instanceof to determine whether the object to which point1 refers
is a Circle. This condition evaluates to true only if the object to which point1 refers
is a Circle; otherwise, the condition evaluates to false. Reference point1 does not
refer to a Circle, so the condition fails, and a String indicating that point1 does not
refer to a Circle is appended to output.

If we remove the if test from the program and execute the program, the following
message is generated at execution time:

Exception in thread "main" java.lang.ClassCastException: Point
 at InheritanceTest.main(InheritanceTest.java:43)

Such error messages normally include the file name (InheritanceTest.java) and
line number at which the error occurred (43) so you can go to that specific line in the pro-
gram for debugging.

9.5 Constructors and Finalizers in Subclasses
When an object of a subclass is instantiated, the superclass’s constructor should be called
to do any necessary initialization of the superclass instance variables of the subclass object.
An explicit call to the superclass constructor (via the super reference) can be provided as
the first statement in the subclass constructor. Otherwise, the subclass constructor will call
the superclass default constructor (or no-argument constructor) implicitly.

Superclass constructors are not inherited by subclasses. Subclass constructors, how-
ever, can call superclass constructors via the super reference.

Software Engineering Observation 9.10
When an object of a subclass is created, first the subclass constructor calls the superclass
constructor (explicitly via super or implicitly), the superclass constructor executes, then
the remainder of the subclass constructor’s body executes. 9.10

If the classes in your class hierarchy define finalize methods, the subclass
finalize method as its last action should invoke the superclass finalize method to
ensure that all parts of an object are finalized properly if the garbage collector reclaims the
memory for the object.

The application of Fig. 9.7–Fig. 9.9 shows the order in which superclass and subclass
constructors and finalizers are called. For the purpose of this example, class Point and
class Circle are simplified.

Class Point (Fig. 9.7) contains two constructors, a finalizer, a toString method
and protected instance variables x and y. The constructor and finalizer each print that
they are executing, then display the Point for which they are invoked. Note the use of

460 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

this in the System.out.println calls to cause an implicit call to method
toString. Notice the first line of the finalize method (line 23). Method finalize
should always be defined as protected so subclasses have access to the method but
classes that simply use Point objects do not.

Class Circle (Fig. 9.8) derives from Point and contains two constructors, a final-
izer, a toString method and protected instance variable radius. The constructor and
finalizer each print that they are executing, then display the Circle for which they are
invoked. Note that the Circle method toString invokes Point’s toString via
super (line 19).

Software Engineering Observation 9.11
When a superclass method is overridden in a subclass, it is common to have the subclass ver-
sion call the superclass version and do some additional work. In this scenario, the superclass
method performs the tasks common to all subclasses of that class, and the subclass method
performs additional tasks specific to a given subclass. 9.11

1 // Fig. 9.7: Point.java
2 // Definition of class Point
3 public class Point extends Object {
4 protected int x, y; // coordinates of the Point
5
6 // no-argument constructor
7 public Point()
8 {
9 x = 0;

10 y = 0;
11 System.out.println("Point constructor: " + this);
12 }
13
14 // constructor
15 public Point(int xCoordinate, int yCoordinate)
16 {
17 x = xCoordinate;
18 y = yCoordinate;
19 System.out.println("Point constructor: " + this);
20 }
21
22 // finalizer
23 protected void finalize()
24 {
25 System.out.println("Point finalizer: " + this);
26 }
27
28 // convert Point into a String representation
29 public String toString()
30 {
31 return "[" + x + ", " + y + "]";
32 }
33
34 } // end class Point

Fig. 9.7Fig. 9.7Fig. 9.7Fig. 9.7 Point class definition to demonstrate when constructors and finalizers are
called.

Chapter 9 Object-Oriented Programming 461

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Common Programming Error 9.5
When an overridden method calls the superclass version of the same method, not using key-
word super to reference the superclass’s method causes infinite recursion, because the
subclass method actually calls itself. 9.5

Common Programming Error 9.6
Cascading super reference to refer to a member (method or variable) several levels up the
hierarchy (as in super.super.x) is a syntax error. 9.6

1 // Fig. 9.8: Circle.java
2 // Definition of class Circle
3 public class Circle extends Point { // inherits from Point
4 protected double radius;
5
6 // no-argument constructor
7 public Circle()
8 {
9 // implicit call to superclass constructor here

10 radius = 0;
11 System.out.println("Circle constructor: " + this);
12 }
13
14 // Constructor
15 public Circle(double circleRadius, int xCoordinate,
16 int yCoordinate)
17 {
18 // call superclass constructor
19 super(xCoordinate, yCoordinate);
20
21 radius = circleRadius;
22 System.out.println("Circle constructor: " + this);
23 }
24
25 // finalizer
26 protected void finalize()
27 {
28 System.out.println("Circle finalizer: " + this);
29 super.finalize(); // call superclass finalize method
30 }
31
32 // convert the Circle to a String
33 public String toString()
34 {
35 return "Center = " + super.toString() +
36 "; Radius = " + radius;
37 }
38
39 } // end class Circle

Fig. 9.8Fig. 9.8Fig. 9.8Fig. 9.8 Circle class definition to demonstrate when constructors and finalizers
are called.

462 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Application class Test (Fig. 9.9) uses this Point/Circle inheritance hierarchy.
The application begins in method main by instantiating Circle object circle1 (line
11). This invokes the Circle constructor at line 15 of Fig. 9.8, which immediately
invokes the Point constructor at line 15 of Fig. 9.7. The Point constructor outputs the
values received from the Circle constructor by implicitly calling method toString
and returns program control to the Circle constructor. Then the Circle constructor
outputs the complete Circle by calling method toString. Notice that the first two
lines of the output from this program both show values for x, y and radius. Polymor-
phism is once again causing the Circle’s toString method to execute because it is a
Circle object that is being created. When toString is invoked from the Point con-
structor, 0.0 is displayed for the radius because the radius has not yet been initialized
in the Circle constructor.

Circle object circle2 is instantiated next. Again, the Point and Circle con-
structors both execute. Notice, in the command-line output window, that the body of the
Point constructor is performed before the body of the Circle constructor, showing that
objects are constructed “inside out.”

1 // Fig. 9.9: Test.java
2 // Demonstrate when superclass and subclass
3 // constructors and finalizers are called.
4 public class Test {
5
6 // test when constructors and finalizers are called
7 public static void main(String args[])
8 {
9 Circle circle1, circle2;

10
11 circle1 = new Circle(4.5, 72, 29);
12 circle2 = new Circle(10, 5, 5);
13
14 circle1 = null; // mark for garbage collection
15 circle2 = null; // mark for garbage collection
16
17 System.gc(); // call the garbage collector
18 }
19
20 } // end class Test

Point constructor: Center = [72, 29]; Radius = 0.0
Circle constructor: Center = [72, 29]; Radius = 4.5
Point constructor: Center = [5, 5]; Radius = 0.0
Circle constructor: Center = [5, 5]; Radius = 10.0
Circle finalizer: Center = [72, 29]; Radius = 4.5
Point finalizer: Center = [72, 29]; Radius = 4.5
Circle finalizer: Center = [5, 5]; Radius = 10.0
Point finalizer: Center = [5, 5]; Radius = 10.0

Fig. 9.9Fig. 9.9Fig. 9.9Fig. 9.9 Order in which constructors and finalizers are called.

Chapter 9 Object-Oriented Programming 463

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Lines 14–15 set circle1 to null, then set circle2 to null. Each of these
objects is no longer needed in the program, so Java marks the memory occupied by
circle1 and circle2 for garbage collection. Java guarantees that, before the garbage
collector runs to reclaim the space for each of these objects, the finalize methods for
each object will be called. The garbage collector is a low-priority thread that runs automat-
ically whenever processor time is available. We choose here to ask the garbage collector to
run with a call to class System’s static method gc in line 17. Java does not guarantee
the order in which objects will be garbage collected; therefore, it cannot guarantee which
object’s finalizer will execute first. Notice, in the command-line output window, that
finalize methods are called for both the Circle and Point when each Circle
object is garbage collected.

9.6 Implicit Subclass-Object-to-Superclass-Object
Conversion
Despite the fact that a subclass object also “is a” superclass object, the subclass type and
the superclass type are different. Subclass objects can be treated as superclass objects. This
makes sense because the subclass has members corresponding to each of the superclass
members—remember that the subclass normally has more members than the superclass
has. Assignment in the other direction is not allowed because assigning a superclass object
to a subclass reference would leave the additional subclass members undefined.

A reference to a subclass object could be implicitly converted into a reference to a
superclass object because a subclass object is a superclass object through inheritance.

There are four possible ways to mix and match superclass references and subclass ref-
erences with superclass objects and subclass objects:

1. Referring to a superclass object with a superclass reference is straightforward.

2. Referring to a subclass object with a subclass reference is straightforward.

3. Referring to a subclass object with a superclass reference is safe, because the sub-
class object is an object of its superclass as well. Such code can refer only to su-
perclass members. If this code refers to subclass-only members through the
superclass reference, the compiler will report a syntax error.

4. Referring to a superclass object with a subclass reference is a syntax error.

As convenient as it might be to treat subclass objects as superclass objects, and to do
this by manipulating all these objects with superclass references, there appears to be a
problem. In a payroll system, for example, we would like to be able to walk through an
array of employees and calculate the weekly pay for each person. But intuition suggests that
using superclass references would enable the program to call only the superclass payroll
calculation routine (if indeed there is such a routine in the superclass). We need a way to
invoke the proper payroll calculation routine for each object, whether it is a superclass
object or a subclass object, and to do this simply by using the superclass reference. Actu-
ally, this is precisely how Java behaves and is discussed in this chapter when we consider
polymorphism and dynamic binding.

464 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

9.7 Software Engineering with Inheritance
We can use inheritance to customize existing software. When we use inheritance to create
a new class from an existing class, the new class inherits the attributes and behaviors of an
existing class; then we can add attributes and behaviors or override superclass behaviors to
customize the class to meet our needs.

It can be difficult for students to appreciate the problems faced by designers and
implementers on large-scale software projects in industry. People experienced on such
projects will invariably state that a key to improving the software development process is
encouraging software reuse. Object-oriented programming in general, and Java in partic-
ular, certainly does this.

It is the availability of substantial and useful class libraries that delivers the maximum
benefits of software reuse through inheritance. As interest in Java grows, interest in Java class
libraries will increase. Just as shrink-wrapped software produced by independent software
vendors became an explosive growth industry with the arrival of the personal computer, so,
too, will the creation and sale of Java class libraries. Application designers will build their
applications with these libraries, and library designers will be rewarded by having their
libraries wrapped with the applications. What we see coming is a massive worldwide com-
mitment to the development of Java class libraries for a huge variety of applications arenas.

Software Engineering Observation 9.12
Creating a subclass does not affect its superclass's source code or the superclass’s Java byte-
codes; the integrity of a superclass is preserved by inheritance. 9.12

A superclass specifies commonality. All classes derived from a superclass inherit the
capabilities of that superclass. In the object-oriented design process, the designer looks for
commonality among a set of classes and factors it out to form desirable superclasses. Sub-
classes are then customized beyond the capabilities inherited from the superclass.

Software Engineering Observation 9.13
Just as the designer of non-object-oriented systems should avoid unnecessary proliferation
of functions, the designer of object-oriented systems should avoid unnecessary proliferation
of classes. Proliferating classes creates management problems and can hinder software re-
usability, simply because it is more difficult for a potential user of a class to locate that class
in a huge collection. The trade-off is to create fewer classes, each providing substantial ad-
ditional functionality, but such classes might be too rich for certain users. 9.13

Performance Tip 9.1
When creating a new class, inherit from the class “closest” to what you need—i.e., the one
that provides the minimum set of capabilities required for a new class to perform its tasks.
Subclasses could inherit data and functionality that they will not use, in which case memory
and processing resources may be wasted. 9.1

Note that reading a set of subclass declarations can be confusing because inherited
members are not shown, but inherited members are nevertheless present in the subclasses.
A similar problem can exist in the documentation of subclasses.

Software Engineering Observation 9.14
In an object-oriented system, classes are often closely related. “Factor out” common at-
tributes and behaviors and place these in a superclass. Then use inheritance to form sub-
classes without having to repeat common attributes and behaviors. 9.14

Chapter 9 Object-Oriented Programming 465

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Software Engineering Observation 9.15
Modifications to a superclass do not require subclasses to change as long as the public in-
terface to the superclass remains unchanged. 9.15

9.8 Composition vs. Inheritance
We have discussed is a relationships that are implemented by inheritance. We have also
discussed has a relationships (and seen examples in preceding chapters) in which a class
has objects of other classes as members—such relationships create new classes by compo-
sition of existing classes. For example, given the classes Employee, BirthDate and
TelephoneNumber, it is improper to say that an Employee is a BirthDate or that
an Employee is a TelephoneNumber. But it is certainly appropriate to say that an Em-
ployee has a BirthDate and that an Employee has a TelephoneNumber.

9.9 Case Study: Point, Circle, Cylinder
Now let us consider a substantial inheritance example. We consider a point, circle, cylinder
hierarchy. First we develop and use class Point (Fig. 9.10 and Fig. 9.11). Then we present
an example in which we derive class Circle from class Point (Fig. 9.12 and Fig. 9.13).
Finally, we present an example in which we derive class Cylinder from class Circle
(Fig. 9.14 and Fig. 9.15).

Figure 9.10 is the class Point definition. Class Point is defined as part of package
com.deitel.jhtp4.ch09 (line 3). Note that Point’s instance variables are pro-
tected. Thus, when class Circle is derived from class Point, the methods of class
Circle will be able to reference coordinates x and y directly rather than using access
methods. This could result in better performance.

1 // Fig. 9.10: Point.java
2 // Definition of class Point
3 package com.deitel.jhtp4.ch09;
4
5 public class Point {
6 protected int x, y; // coordinates of Point
7
8 // No-argument constructor
9 public Point()

10 {
11 // implicit call to superclass constructor occurs here
12 setPoint(0, 0);
13 }
14
15 // constructor
16 public Point(int xCoordinate, int yCoordinate)
17 {
18 // implicit call to superclass constructor occurs here
19 setPoint(xCoordinate, yCoordinate);
20 }
21

Fig. 9.10Fig. 9.10Fig. 9.10Fig. 9.10 Point class definition (part 1 of 2).

466 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Figure 9.11 shows a Test application for testing class Point. The main method
must use getX and getY to read the values of protected instance variables x and y.
Remember that protected instance variables are accessible only to methods of their
class, their subclasses and other classes in the same package. Also, note the implicit call to
toString when point is added to a String at line 25.

22 // set x and y coordinates of Point
23 public void setPoint(int xCoordinate, int yCoordinate)
24 {
25 x = xCoordinate;
26 y = yCoordinate;
27 }
28
29 // get x coordinate
30 public int getX()
31 {
32 return x;
33 }
34
35 // get y coordinate
36 public int getY()
37 {
38 return y;
39 }
40
41 // convert into a String representation
42 public String toString()
43 {
44 return "[" + x + ", " + y + "]";
45 }
46
47 } // end class Point

1 // Fig. 9.11: Test.java
2 // Applet to test class Point
3
4 // Java extension packages
5 import javax.swing.JOptionPane;
6
7 // Deitel packages
8 import com.deitel.jhtp4.ch09.Point;
9

10 public class Test {
11
12 // test class Point
13 public static void main(String args[])
14 {
15 Point point = new Point(72, 115);
16

Fig. 9.11Fig. 9.11Fig. 9.11Fig. 9.11 Testing class Point (part 1 of 2).

Fig. 9.10Fig. 9.10Fig. 9.10Fig. 9.10 Point class definition (part 2 of 2).

Chapter 9 Object-Oriented Programming 467

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Our next example imports the Point class definition from Fig. 9.10, so we do not
show the class definition again here. Figure 9.12 shows the Circle class definition with
the Circle method definitions. Note that class Circle extends class Point. This
means that the public interface to Circle includes the Point methods as well as the
Circle methods setRadius, getRadius, area, toString and the Circle con-
structors.

17 // get coordinates
18 String output = "X coordinate is " + point.getX() +
19 "\nY coordinate is " + point.getY();
20
21 // set coordinates
22 point.setPoint(10, 10);
23
24 // use implicit call to point.toString()
25 output += "\n\nThe new location of point is " + point;
26
27 JOptionPane.showMessageDialog(null, output,
28 "Demonstrating Class Point",
29 JOptionPane.INFORMATION_MESSAGE);
30
31 System.exit(0);
32 }
33
34 } // end class Test

1 // Fig. 9.12: Circle.java
2 // Definition of class Circle
3 package com.deitel.jhtp4.ch09;
4
5 public class Circle extends Point { // inherits from Point
6 protected double radius;
7
8 // no-argument constructor
9 public Circle()

10 {
11 // implicit call to superclass constructor occurs here
12 setRadius(0);
13 }
14

Fig. 9.12Fig. 9.12Fig. 9.12Fig. 9.12 Circle class definition (part 1 of 2).

Fig. 9.11Fig. 9.11Fig. 9.11Fig. 9.11 Testing class Point (part 2 of 2).

468 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Application Test (Fig. 9.13) instantiates an object of class Circle (line 19), then
uses get methods to obtain the information about the Circle object. Method main indi-
rectly references the protected data of class Circle through method calls. Method
main then uses set methods setRadius and setPoint to reset the radius and coordi-
nates of the center of the circle. Finally, main displays the Circle object circle and
calculates and displays its area.

15 // constructor
16 public Circle(double circleRadius, int xCoordinate,
17 int yCoordinate)
18 {
19 // call superclass constructor to set coordinates
20 super(xCoordinate, yCoordinate);
21
22 // set radius
23 setRadius(circleRadius);
24 }
25
26 // set radius of Circle
27 public void setRadius(double circleRadius)
28 {
29 radius = (circleRadius >= 0.0 ? circleRadius : 0.0);
30 }
31
32 // get radius of Circle
33 public double getRadius()
34 {
35 return radius;
36 }
37
38 // calculate area of Circle
39 public double area()
40 {
41 return Math.PI * radius * radius;
42 }
43
44 // convert the Circle to a String
45 public String toString()
46 {
47 return "Center = " + "[" + x + ", " + y + "]" +
48 "; Radius = " + radius;
49 }
50
51 } // end class Circle

1 // Fig. 9.13: Test.java
2 // Applet to test class Circle
3

Fig. 9.13Fig. 9.13Fig. 9.13Fig. 9.13 Testing class Circle (part 1 of 2).

Fig. 9.12Fig. 9.12Fig. 9.12Fig. 9.12 Circle class definition (part 2 of 2).

Chapter 9 Object-Oriented Programming 469

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

4 // Java core packages
5 import java.text.DecimalFormat;
6
7 // Java extension packages
8 import javax.swing.JOptionPane;
9

10 // Deitel packages
11 import com.deitel.jhtp4.ch09.Circle;
12
13 public class Test {
14
15 // test class Circle
16 public static void main(String args[])
17 {
18 // create a Circle
19 Circle circle = new Circle(2.5, 37, 43);
20 DecimalFormat precision2 = new DecimalFormat("0.00");
21
22 // get coordinates and radius
23 String output = "X coordinate is " + circle.getX() +
24 "\nY coordinate is " + circle.getY() +
25 "\nRadius is " + circle.getRadius();
26
27 // set coordinates and radius
28 circle.setRadius(4.25);
29 circle.setPoint(2, 2);
30
31 // get String representation of Circle and calculate area
32 output +=
33 "\n\nThe new location and radius of c are\n" + circle +
34 "\nArea is " + precision2.format(circle.area());
35
36 JOptionPane.showMessageDialog(null, output,
37 "Demonstrating Class Circle",
38 JOptionPane.INFORMATION_MESSAGE);
39
40 System.exit(0);
41 }
42
43 } // end class Test

Fig. 9.13Fig. 9.13Fig. 9.13Fig. 9.13 Testing class Circle (part 2 of 2).

470 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Our last example is shown in Fig. 9.14 and Fig. 9.15. Figure 9.14 shows the Cyl-
inder class definition with the Cylinder method definitions. Note that class Cyl-
inder extends class Circle. This means that the public interface to Cylinder
includes the Circle methods and Point methods as well as the Cylinder constructor
and Cylinder methods setHeight, getHeight, area (which overrides the
Circle area method), volume and toString.

1 // Fig. 9.14: Cylinder.java
2 // Definition of class Cylinder
3 package com.deitel.jhtp4.ch09;
4
5 public class Cylinder extends Circle {
6 protected double height; // height of Cylinder
7
8 // no-argument constructor
9 public Cylinder()

10 {
11 // implicit call to superclass constructor here
12 setHeight(0);
13 }
14
15 // constructor
16 public Cylinder(double cylinderHeight, double cylinderRadius,
17 int xCoordinate, int yCoordinate)
18 {
19 // call superclass constructor to set coordinates/radius
20 super(cylinderRadius, xCoordinate, yCoordinate);
21
22 // set cylinder height
23 setHeight(cylinderHeight);
24 }
25
26 // set height of Cylinder
27 public void setHeight(double cylinderHeight)
28 {
29 height = (cylinderHeight >= 0 ? cylinderHeight : 0);
30 }
31
32 // get height of Cylinder
33 public double getHeight()
34 {
35 return height;
36 }
37
38 // calculate area of Cylinder (i.e., surface area)
39 public double area()
40 {
41 return 2 * super.area() +
42 2 * Math.PI * radius * height;
43 }
44

Fig. 9.14Fig. 9.14Fig. 9.14Fig. 9.14 Class Cylinder definition (part 1 of 2).

Chapter 9 Object-Oriented Programming 471

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Method main of the Test application (Fig. 9.15) instantiates an object of class Cyl-
inder (line 19), then uses get methods (lines 23–26) to obtain information about the Cyl-
inder object. Again, the Test applications’s main method cannot reference directly the
protected data of class Cylinder. Method main uses set methods setHeight,
setRadius and setPoint (lines 29–31) to reset the height, radius and coordi-
nates of the Cylinder. Then main uses toString, area and volume to print the
attributes and some facts about the Cylinder. Figure 9.15 is a Test application to test
class Cylinder’s capabilities.

45 // calculate volume of Cylinder
46 public double volume()
47 {
48 return super.area() * height;
49 }
50
51 // convert the Cylinder to a String
52 public String toString()
53 {
54 return super.toString() + "; Height = " + height;
55 }
56
57 } // end class Cylinder

1 // Fig. 9.15: Test.java
2 // Application to test class Cylinder
3
4 // Java core packages
5 import java.text.DecimalFormat;
6
7 // Java extension packages
8 import javax.swing.JOptionPane;
9

10 // Deitel packages
11 import com.deitel.jhtp4.ch09.Cylinder;
12
13 public class Test {
14
15 // test class Cylinder
16 public static void main(String args[])
17 {
18 // create Cylinder
19 Cylinder cylinder = new Cylinder(5.7, 2.5, 12, 23);
20 DecimalFormat precision2 = new DecimalFormat("0.00");
21
22 // get coordinates, radius and height
23 String output = "X coordinate is " + cylinder.getX() +
24 "\nY coordinate is " + cylinder.getY() +
25 "\nRadius is " + cylinder.getRadius() +
26 "\nHeight is " + cylinder.getHeight();

Fig. 9.15Fig. 9.15Fig. 9.15Fig. 9.15 Testing class Cylinder (part 1 of 2).

Fig. 9.14Fig. 9.14Fig. 9.14Fig. 9.14 Class Cylinder definition (part 2 of 2).

472 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The series of examples in this section nicely demonstrates inheritance and defining and
referencing protected instance variables. The reader should now be confident with the
basics of inheritance. In the next several sections, we show how to program with inherit-
ance hierarchies in a general manner, using polymorphism. Data abstraction, inheritance
and polymorphism are the crux of object-oriented programming.

9.10 Introduction to Polymorphism
With polymorphism, it is possible to design and implement systems that are more easily ex-
tensible. Programs can be written to process generically—as superclass objects—objects of
all existing classes in a hierarchy. Classes that do not exist during program development
can be added with little or no modifications to the generic part of the program—as long as
those classes are part of the hierarchy that is being processed generically. The only parts of

27
28 // set coordinates, radius and height
29 cylinder.setHeight(10);
30 cylinder.setRadius(4.25);
31 cylinder.setPoint(2, 2);
32
33 // get String representation of Cylinder and calculate
34 // area and volume
35 output += "\n\nThe new location, radius " +
36 "and height of cylinder are\n" + cylinder +
37 "\nArea is " + precision2.format(cylinder.area()) +
38 "\nVolume is " + precision2.format(cylinder.volume());
39
40 JOptionPane.showMessageDialog(null, output,
41 "Demonstrating Class Cylinder",
42 JOptionPane.INFORMATION_MESSAGE);
43
44 System.exit(0);
45 }
46
47 } // end class Test

Fig. 9.15Fig. 9.15Fig. 9.15Fig. 9.15 Testing class Cylinder (part 2 of 2).

Chapter 9 Object-Oriented Programming 473

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

a program that need modification are those parts that require direct knowledge of the par-
ticular class that is added to the hierarchy. We will study two substantial class hierarchies
and will show how objects throughout those hierarchies are manipulated polymorphically.

9.11 Type Fields and switch Statements
One means of dealing with objects of many different types is to use a switch statement
to take an appropriate action on each object, based on that object’s type. For example, in a
hierarchy of shapes in which each shape has a shapeType instance variable, a switch
structure could determine which print method to call based on the object’s shapeType.

There are many problems with using switch logic. The programmer might forget to
make such a type test when one is warranted. The programmer might forget to test all pos-
sible cases in a switch. If a switch-based system is modified by adding new types, the
programmer might forget to insert the new cases in existing switch statements. Every
addition or deletion of a class demands that every switch statement in the system be mod-
ified; tracking these down can be time consuming and error prone.

As we will see, polymorphic programming can eliminate the need for switch logic.
The programmer can use Java’s polymorphism mechanism to perform the equivalent logic
automatically, thus avoiding the kinds of errors typically associated with switch logic.

Testing and Debugging Tip 9.2
An interesting consequence of using polymorphism is that programs take on a simplified ap-
pearance. They contain less branching logic in favor of simpler sequential code. This simpli-
fication facilitates testing, debugging, and program maintenance. 9.2

9.12 Dynamic Method Binding
Suppose a set of shape classes such as Circle, Triangle, Rectangle, Square, are
all derived from superclass Shape. In object-oriented programming, each of these classes
might be endowed with the ability to draw itself. Each class has its own draw method, and
the draw method implementation for each shape is quite different. When drawing a shape,
whatever that shape may be, it would be nice to be able to treat all these shapes generically
as objects of the superclass Shape. Then, to draw any shape, we could simply call method
draw of superclass Shape and let the program determine dynamically (i.e., at execution
time) which subclass draw method to use from the actual object’s type.

To enable this kind of behavior, we declare draw in the superclass, and then we over-
ride draw in each of the subclasses to draw the appropriate shape.

Software Engineering Observation 9.16
When a subclass chooses not to redefine a method, the subclass simply inherits its immediate
superclass’s method definition. 9.16

If we use a superclass reference to refer to a subclass object and invoke the draw
method, the program will choose the correct subclass’s draw method dynamically (i.e., at
execution time). This is called dynamic method binding. Dynamic method binding is an
important mechanism for implementing polymorphic processing of objects and will be
illustrated in the case studies later in this chapter

474 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

9.13 final Methods and Classes
We saw in Chapter 7 that variables can be declared final to indicate that they cannot be
modified after they are declared and that they must be initialized when they are declared. It
is also possible to define methods and classes with the final modifier.

A method that is declared final cannot be overridden in a subclass. Methods that are
declared static and methods that are declared private are implicitly final. Because
a final method’s definition can never change, the compiler can optimize the program by
removing calls to final methods and replacing them with the expanded code of their def-
initions at each method call location—a technique known as inlining the code.

A class that is declared final cannot be a superclass (i.e., a class cannot inherit from
a final class). All methods in a final class are implicitly final.

Performance Tip 9.2
The compiler can decide to inline a final method call and will do so for small, simple fi-
nal methods. Inlining does not violate encapsulation or information hiding (but does im-
prove performance because it eliminates the overhead of making a method call). 9.2

Software Engineering Observation 9.17
A class declared final cannot be extended, and every method in it is implicitly final. 9.17

Software Engineering Observation 9.18
In the Java API, the vast majority of the thousands of classes are not declared final. This
enables inheritance and polymorphic processing—the fundamental capabilities of object-
oriented programming. However, in some cases it is important to declare classes final—
typically for security1 or performance reasons. 9.18

9.14 Abstract Superclasses and Concrete Classes
When we think of a class as a type, we assume that objects of that type will be instantiated.
However, there are cases in which it is useful to define classes for which the programmer
never intends to instantiate any objects. Such classes are called abstract classes. Because
these are used as superclasses in inheritance situations, we will normally refer to them as
abstract superclasses. No objects of abstract superclasses can be instantiated.

The sole purpose of an abstract class is to provide an appropriate superclass from
which other classes may inherit interface and/or implementation (we will see examples of
each shortly). Classes from which objects can be instantiated are called concrete classes.

1. Class String is an example of a final class. This class cannot be extended, so programs that
use Strings can rely on the functionality of String objects as specified in the Java API. Mak-
ing the class final also prevents programmers from creating subclasses that might bypass secu-
rity restrictions. For example, when a Java program attempts to open a file on your computer, the
program supplies a String representing the name of the file. In many cases, opening a file is sub-
ject to security restrictions. If it were possible to create a subclass of String, that subclass might
be implemented in a manner that enables it to specify one String to pass a security or permis-
sions test, then specify a different name when the program actually opens the file. For more infor-
mation on final classes and methods visit: java.sun.com/docs/books/tutorial/
java/javaOO/final.html [Note: Strings are covered in detail in Chapter 10 and file
processing is covered in detail in Chapter 16.]

Chapter 9 Object-Oriented Programming 475

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

We could have an abstract superclass TwoDimensionalObject and derive con-
crete classes, such as Square, Circle, Triangle. We could also have an abstract
superclass ThreeDimensionalObject and derive such concrete classes as Cube,
Sphere and Cylinder. Abstract superclasses are too generic to define real objects; we
need to be more specific before we can think of instantiating objects. For example, if
someone tells you to “draw the shape,” what shape would you draw? Concrete classes pro-
vide the specifics that make it reasonable to instantiate objects.

A class is made abstract by declaring it with keyword abstract. A hierarchy does
not need to contain any abstract classes, but, as we will see, many good object-oriented
systems have class hierarchies headed by abstract superclasses. In some cases,
abstract classes constitute the top few levels of the hierarchy. A good example of this
is the shape hierarchy in Fig. 9.3. The hierarchy begins with abstract superclass
Shape. On the next level down we have two more abstract superclasses, namely
TwoDimensionalShape and ThreeDimensionalShape. The next level down
would start defining concrete classes for such two-dimensional shapes as Circle and
Square and for such three-dimensional shapes as Sphere and Cube.

9.15 Polymorphism Examples
Here is an example of polymorphism. If class Rectangle is derived from class Quad-
rilateral, then a Rectangle object is a more specific version of a Quadrilater-
al object. An operation (such as calculating the perimeter or the area) that can be
performed on an object of class Quadrilateral can also be performed on an object of
class Rectangle. Such operations can also be performed on other “kinds of” Quadri-
laterals, such as Squares, Parallelograms and Trapezoids. When a request is
made through a superclass reference to use a method, Java chooses the correct overridden
method polymorphically in the appropriate subclass associated with the object.

Here is another example of polymorphism. Suppose we have a video game that
manipulates objects of many varieties, including objects of class Martian, Venutian,
Plutonian, SpaceShip, LaserBeam and the like. Each of these classes extends a
common superclass, GamePiece, that contains a method called drawYourself. This
method is defined by each subclass. A Java screen manager program would simply main-
tain some kind of collection (such as a GamePiece array) of references to objects of
these various classes. To refresh the screen periodically, the screen manager would
simply send each object the same message, namely drawYourself. Each object would
respond in its own unique way. A Martian object would draw itself with the appro-
priate number of antennae. A SpaceShip object would draw itself bright and silvery.
A LaserBeam object would draw itself as a bright red beam across the screen. Thus,
the same message sent to a variety of objects would have “many forms” of results—hence
the term polymorphism.

Such a polymorphic screen manager makes it especially easy to add new types of
objects to a system with minimal impact. Suppose we want to add Mercurians to our
video game. We certainly have to build a new class Mercurian that extends Game-
Piece and provides its own definition of the drawYourself method. Then, when
objects of class Mercurian appear in the collection, the screen manager need not be mod-
ified. It simply sends the message drawYourself to every object in the collection

476 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

regardless of the object’s type, so the new Mercurian objects just “fit right in.” Thus,
with polymorphism, new types of objects not even envisioned when a system is created can
be added without modifications to the system (other than the new class itself, of course).

Through the use of polymorphism, one method call can cause different actions to
occur, depending on the type of the object receiving the call. This gives the programmer
tremendous expressive capability. We will see examples of the power of polymorphism in
the next several sections.

Software Engineering Observation 9.19
With polymorphism, the programmer can deal in generalities and let the execution-time en-
vironment concern itself with the specifics. The programmer can command a wide variety of
objects to behave in manners appropriate to those objects without even knowing the types of
those objects. 9.19

Software Engineering Observation 9.20
Polymorphism promotes extensibility: Software written to invoke polymorphic behavior is
written independent of the types of the objects to which messages (i.e., method calls) are sent.
Thus, new types of objects that can respond to existing messages can be added into such a
system without modifying the base system. 9.20

Software Engineering Observation 9.21
If a method is declared final, it cannot be overridden in subclasses, so method calls may
not be sent polymorphically to objects of those subclasses. The method call may still be sent
to subclasses, but they will all respond identically rather than polymorphically. 9.21

Software Engineering Observation 9.22
An abstract class defines a common interface for the various members of a class hierar-
chy. The abstract class contains methods that will be defined in the subclasses. All classes
in the hierarchy can use this same interface through polymorphism. 9.22

Although we cannot instantiate objects of abstract superclasses, we can declare
references to abstract superclasses. Such references can be used to enable polymorphic
manipulations of subclass objects when such objects are instantiated from concrete classes.

Let us consider more applications of polymorphism. A screen manager needs to dis-
play a variety of objects, including new types of objects that will be added to the system
even after the screen manager is written. The system may need to display various shapes
(the superclass is Shape), such as Circle, Triangle and Rectangle. Each shape
class is derived from superclass Shape. The screen manager uses superclass Shape ref-
erences to manage the objects to be displayed. To draw any object (regardless of the level
at which that object appears in the inheritance hierarchy), the screen manager uses a super-
class reference to the object and simply sends a draw message to the object. Method draw
has been declared abstract in superclass Shape and has been overridden in each of the
subclasses. Each Shape object knows how to draw itself. The screen manager does not
have to worry about what type each object is or whether the screen manager has seen
objects of that type before—the screen manager simply tells each object to draw itself.

Polymorphism is particularly effective for implementing layered software systems. In
operating systems, for example, each type of physical device could operate quite differently
from the others. Even so, commands to read or write data from and to devices can have a

Chapter 9 Object-Oriented Programming 477

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

certain uniformity. The write message sent to a device-driver object needs to be interpreted
specifically in the context of that device driver and how that device driver manipulates
devices of a specific type. However, the write call itself is really no different from the write
to any other device in the system—simply place some number of bytes from memory onto
that device. An object-oriented operating system might use an abstract superclass to
provide an interface appropriate for all device drivers. Then, through inheritance from that
abstract superclass, subclasses are formed that all operate similarly. The capabilities
(i.e., the public interface) offered by the device drivers are provided as abstract
methods in the abstract superclass. The implementations of these abstract methods
are provided in the subclasses that correspond to the specific types of device drivers.

It is common in object-oriented programming to define an iterator class that can walk
through all the objects in a collection (such as an array). If you want to print a list of objects
in a linked list, for example, an iterator object can be instantiated that will return the next
element of the linked list each time the iterator is called. Iterators are commonly used in
polymorphic programming to walk through an array or a linked list of objects from various
levels of a hierarchy. The references in such a list would all be superclass references (see
Chapter 19, Data Structures, for more on linked lists). A list of objects of superclass class
TwoDimensionalShape could contain objects from the classes Square, Circle,
Triangle and so on. Sending a draw message to each object in the list would, using
polymorphism, draw the correct picture on the screen.

9.16 Case Study: A Payroll System Using Polymorphism
Let us use abstract classes, abstract methods and polymorphism to perform payroll
calculations based on the type of employee (Fig. 9.16). We use an abstract superclass
Employee. The subclasses of Employee are Boss (Fig. 9.17)—paid a fixed weekly sal-
ary regardless of the number of hours worked, CommissionWorker (Fig. 9.18)—paid a
flat base salary plus a percentage of sales, PieceWorker (Fig. 9.19)—paid by the num-
ber of items produced and HourlyWorker (Fig. 9.20)—paid by the hour and receives
overtime pay. Each subclass of Employee has been declared final, because we do not
intend to inherit from them again.

An earnings method call certainly applies generically to all employees. But the way
each person’s earnings are calculated depends on the class of the employee, and these
classes are all derived from the superclass Employee. So earnings is declared
abstract in superclass Employee and appropriate implementations of earnings are
provided for each of the subclasses. Then, to calculate any employee’s earnings, the pro-
gram simply uses a superclass reference to that employee’s object and invokes the
earnings method. In a real payroll system, the various Employee objects might be ref-
erenced by individual elements in an array of Employee references. The program would
simply walk through the array one element at a time, using the Employee references to
invoke the earnings method of each object.

Software Engineering Observation 9.23
If a subclass is derived from a superclass with an abstract method, and if no definition is
supplied in the subclass for that abstract method (i.e., if that method is not overridden in
the subclass), that method remains abstract in the subclass. Consequently, the subclass
is also an abstract class and must be explicitly declared as an abstract class. 9.23

478 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Software Engineering Observation 9.24
The ability to declare an abstract method gives the class designer considerable power
over how subclasses will be implemented in a class hierarchy. Any new class that wants to
inherit from this class is forced to override the abstract method (either directly or by in-
heriting from a class that has overridden the method). Otherwise, that new class will contain
an abstract method and thus be an abstract class, unable to instantiate objects. 9.24

Software Engineering Observation 9.25
An abstract can still have instance data and nonabstract methods subject to the nor-
mal rules of inheritance by subclasses. An abstract class can also have constructors. 9.25

Common Programming Error 9.7
Attempting to instantiate an object of an abstract class (i.e., a class that contains one or
more abstract methods) is a syntax error. 9.7

Common Programming Error 9.8
It is a syntax error if a class with one or more abstract methods is not explicitly declared
abstract. 9.8

Let us consider the Employee class (Fig. 9.16). The public methods include a con-
structor that takes the first name and last name as arguments; a getFirstName method
that returns the first name; a getLastName method that returns the last name; a
toString method that returns the first name and last name separated by a space; and an
abstract method—earnings. Why is this method abstract? The answer is that it
does not make sense to provide an implementation of this method in the Employee class.
We cannot calculate the earnings for a generic employee—we must first know what kind
of employee it is. By making this method abstract we are indicating that we will pro-
vide an implementation in each concrete subclass, but not in the superclass itself.

1 // Fig. 9.16: Employee.java
2 // Abstract base class Employee.
3
4 public abstract class Employee {
5 private String firstName;
6 private String lastName;
7
8 // constructor
9 public Employee(String first, String last)

10 {
11 firstName = first;
12 lastName = last;
13 }
14
15 // get first name
16 public String getFirstName()
17 {
18 return firstName;
19 }
20

Fig. 9.16Fig. 9.16Fig. 9.16Fig. 9.16 Employee abstract superclass (part 1 of 2).

Chapter 9 Object-Oriented Programming 479

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Class Boss (Fig. 9.17) is derived from Employee. The public methods include a
constructor that takes a first name, a last name and a weekly salary as arguments and passes
the first name and last name to the Employee constructor to initialize the firstName
and lastName members of the superclass part of the subclass object. Other public
methods include a setWeeklySalary method to assign a new value to private
instance variable weeklySalary; an earnings method defining how to calculate a
Boss’s earnings; and a toString method that forms a String containing the type of
the employee (i.e., "Boss: ") followed by the boss’s name.

21 // get last name
22 public String getLastName()
23 {
24 return lastName;
25 }
26
27 public String toString()
28 {
29 return firstName + ' ' + lastName;
30 }
31
32 // Abstract method that must be implemented for each
33 // derived class of Employee from which objects
34 // are instantiated.
35 public abstract double earnings();
36
37 } // end class Employee

1 // Fig. 9.17: Boss.java
2 // Boss class derived from Employee.
3
4 public final class Boss extends Employee {
5 private double weeklySalary;
6
7 // constructor for class Boss
8 public Boss(String first, String last, double salary)
9 {

10 super(first, last); // call superclass constructor
11 setWeeklySalary(salary);
12 }
13
14 // set Boss's salary
15 public void setWeeklySalary(double salary)
16 {
17 weeklySalary = (salary > 0 ? salary : 0);
18 }
19

Fig. 9.17Fig. 9.17Fig. 9.17Fig. 9.17 Boss extends abstract class Employee.

Fig. 9.16Fig. 9.16Fig. 9.16Fig. 9.16 Employee abstract superclass (part 2 of 2).

480 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Class CommissionWorker (Fig. 9.18) is derived from Employee. The public
methods include a constructor that takes a first name, a last name, a salary, a commission
and a quantity of items sold as arguments and passes the first name and last name to the
Employee constructor; set methods to assign new values to instance variables salary,
commission and quantity; an earnings method to calculate a Commission-
Worker’s earnings; and a toString method that forms a String containing the
employee type (i.e., "Commission worker: ") followed by the worker’s name.

20 // get Boss's pay
21 public double earnings()
22 {
23 return weeklySalary;
24 }
25
26 // get String representation of Boss's name
27 public String toString()
28 {
29 return "Boss: " + super.toString();
30 }
31
32 } // end class Boss

1 // Fig. 9.18: CommissionWorker.java
2 // CommissionWorker class derived from Employee
3
4 public final class CommissionWorker extends Employee {
5 private double salary; // base salary per week
6 private double commission; // amount per item sold
7 private int quantity; // total items sold for week
8
9 // constructor for class CommissionWorker

10 public CommissionWorker(String first, String last,
11 double salary, double commission, int quantity)
12 {
13 super(first, last); // call superclass constructor
14 setSalary(salary);
15 setCommission(commission);
16 setQuantity(quantity);
17 }
18
19 // set CommissionWorker's weekly base salary
20 public void setSalary(double weeklySalary)
21 {
22 salary = (weeklySalary > 0 ? weeklySalary : 0);
23 }
24

Fig. 9.18Fig. 9.18Fig. 9.18Fig. 9.18 CommissionWorker extends abstract class Employee (part 1 of 2).

Fig. 9.17Fig. 9.17Fig. 9.17Fig. 9.17 Boss extends abstract class Employee.

Chapter 9 Object-Oriented Programming 481

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Class PieceWorker (Fig. 9.19) is derived from Employee. The public methods
include a constructor that takes a first name, a last name, a wage per piece and a quantity
of items produced as arguments and passes the first name and last name to the Employee
constructor; set methods to assign new values to instance variables wagePerPiece and
quantity; an earnings method defining how to calculate a PieceWorker’s earn-
ings; and a toString method that forms a String containing the type of the employee
(i.e., "Piece worker: ") followed by the pieceworker’s name.

25 // set CommissionWorker's commission
26 public void setCommission(double itemCommission)
27 {
28 commission = (itemCommission > 0 ? itemCommission : 0);
29 }
30
31 // set CommissionWorker's quantity sold
32 public void setQuantity(int totalSold)
33 {
34 quantity = (totalSold > 0 ? totalSold : 0);
35 }
36
37 // determine CommissionWorker's earnings
38 public double earnings()
39 {
40 return salary + commission * quantity;
41 }
42
43 // get String representation of CommissionWorker's name
44 public String toString()
45 {
46 return "Commission worker: " + super.toString();
47 }
48
49 } // end class CommissionWorker

1 // Fig. 9.19: PieceWorker.java
2 // PieceWorker class derived from Employee
3
4 public final class PieceWorker extends Employee {
5 private double wagePerPiece; // wage per piece output
6 private int quantity; // output for week
7
8 // constructor for class PieceWorker
9 public PieceWorker(String first, String last,

10 double wage, int numberOfItems)
11 {
12 super(first, last); // call superclass constructor
13 setWage(wage);
14 setQuantity(numberOfItems);
15 }

Fig. 9.19Fig. 9.19Fig. 9.19Fig. 9.19 PieceWorker extends abstract class Employee (part 1 of 2).

Fig. 9.18Fig. 9.18Fig. 9.18Fig. 9.18 CommissionWorker extends abstract class Employee (part 2 of 2).

482 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Class HourlyWorker (Fig. 9.20) is derived from Employee. The public
methods include a constructor that takes a first name, a last name, a wage and the number
of hours worked as arguments and passes the first name and last name to the Employee
constructor; set methods to assign new values to instance variables wage and hours; an
earnings method defining how to calculate an HourlyWorker’s earnings; and a
toString method that forms a String containing the type of the employee (i.e.,
"Hourly worker: ") followed by the hourly worker’s name.

16
17 // set PieceWorker's wage
18 public void setWage(double wage)
19 {
20 wagePerPiece = (wage > 0 ? wage : 0);
21 }
22
23 // set number of items output
24 public void setQuantity(int numberOfItems)
25 {
26 quantity = (numberOfItems > 0 ? numberOfItems : 0);
27 }
28
29 // determine PieceWorker's earnings
30 public double earnings()
31 {
32 return quantity * wagePerPiece;
33 }
34
35 public String toString()
36 {
37 return "Piece worker: " + super.toString();
38 }
39
40 } // end class PieceWorker

1 // Fig. 9.20: HourlyWorker.java
2 // Definition of class HourlyWorker
3
4 public final class HourlyWorker extends Employee {
5 private double wage; // wage per hour
6 private double hours; // hours worked for week
7
8 // constructor for class HourlyWorker
9 public HourlyWorker(String first, String last,

10 double wagePerHour, double hoursWorked)
11 {
12 super(first, last); // call superclass constructor
13 setWage(wagePerHour);
14 setHours(hoursWorked);
15 }

Fig. 9.20Fig. 9.20Fig. 9.20Fig. 9.20 HourlyWorker extends abstract class Employee (part 1 of 2).

Fig. 9.19Fig. 9.19Fig. 9.19Fig. 9.19 PieceWorker extends abstract class Employee (part 2 of 2).

Chapter 9 Object-Oriented Programming 483

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Method main of the Test application (Fig. 9.21) begins by declaring Employee
reference, ref. Each of the types of Employees is handled similarly in main, so we will
discuss only the case in which main deals with a Boss object.

16
17 // Set the wage
18 public void setWage(double wagePerHour)
19 {
20 wage = (wagePerHour > 0 ? wagePerHour : 0);
21 }
22
23 // Set the hours worked
24 public void setHours(double hoursWorked)
25 {
26 hours = (hoursWorked >= 0 && hoursWorked < 168 ?
27 hoursWorked : 0);
28 }
29
30 // Get the HourlyWorker's pay
31 public double earnings() { return wage * hours; }
32
33 public String toString()
34 {
35 return "Hourly worker: " + super.toString();
36 }
37
38 } // end class HourlyWorker

1 // Fig. 9.21: Test.java
2 // Driver for Employee hierarchy
3
4 // Java core packages
5 import java.text.DecimalFormat;
6
7 // Java extension packages
8 import javax.swing.JOptionPane;
9

10 public class Test {
11
12 // test Employee hierarchy
13 public static void main(String args[])
14 {
15 Employee employee; // superclass reference
16 String output = "";
17
18 Boss boss = new Boss("John", "Smith", 800.0);
19

Fig. 9.21Fig. 9.21Fig. 9.21Fig. 9.21 Testing the Employee class hierarchy using an abstract superclass.

Fig. 9.20Fig. 9.20Fig. 9.20Fig. 9.20 HourlyWorker extends abstract class Employee (part 2 of 2).

484 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

1 CommissionWorker commisionWorker =
2 new CommissionWorker(
3 "Sue", "Jones", 400.0, 3.0, 150);
4
5 PieceWorker pieceWorker =
6 new PieceWorker("Bob", "Lewis", 2.5, 200);
7
8 HourlyWorker hourlyWorker =
9 new HourlyWorker("Karen", "Price", 13.75, 40);

10
11 DecimalFormat precision2 = new DecimalFormat("0.00");
12
13 // Employee reference to a Boss
14 employee = boss;
15
16 output += employee.toString() + " earned $" +
17 precision2.format(employee.earnings()) + "\n" +
18 boss.toString() + " earned $" +
19 precision2.format(boss.earnings()) + "\n";
20
21 // Employee reference to a CommissionWorker
22 employee = commissionWorker;
23
24 output += employee.toString() + " earned $" +
25 precision2.format(employee.earnings()) + "\n" +
26 commissionWorker.toString() + " earned $" +
27 precision2.format(
28 commissionWorker.earnings()) + "\n";
29
30 // Employee reference to a PieceWorker
31 employee = pieceWorker;
32
33 output += employee.toString() + " earned $" +
34 precision2.format(employee.earnings()) + "\n" +
35 pieceWorker.toString() + " earned $" +
36 precision2.format(pieceWorker.earnings()) + "\n";
37
38 // Employee reference to an HourlyWorker
39 employee = hourlyWorker;
40
41 output += employee.toString() + " earned $" +
42 precision2.format(employee.earnings()) + "\n" +
43 hourlyWorker.toString() + " earned $" +
44 precision2.format(hourlyWorker.earnings()) + "\n";
45
46 JOptionPane.showMessageDialog(null, output,
47 "Demonstrating Polymorphism",
48 JOptionPane.INFORMATION_MESSAGE);
49
50 System.exit(0);
51 }
52
53 } // end class Test

Fig. 9.21Fig. 9.21Fig. 9.21Fig. 9.21 Testing the Employee class hierarchy using an abstract superclass.

Chapter 9 Object-Oriented Programming 485

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Line 18 instantiates subclass object class Boss and provides various constructor argu-
ments, including a first name, a last name and a fixed weekly salary. The new object is
assigned to Boss reference boss.

Line 33 assigns to superclass Employee reference employee a reference to the sub-
class Boss object to which boss refers. This is precisely what we must do to effect poly-
morphic behavior.

The method call in line 35 invokes the toString method of the object referenced by
employee. The system determines that the referenced object is a Boss and invokes sub-
class Boss’s toString method—again, polymorphic behavior. This method call is an
example of dynamic method binding—the decision as to what method to invoke is deferred
until execution time.

The method call in line 36 invokes the earnings method of the object to which
employee refers. The system determines that the object is a Boss and invokes the sub-
class Boss’s earnings method rather than the superclass’s earnings method. This is
also an example of dynamic method binding.

The method call in line 37 explicitly invokes the Boss version of method
toString by following reference boss with the dot operator. We included line 37 for
comparison purposes to ensure that the dynamically bound method invoked with
employee.toString() was indeed the proper method.

The method call in line 38 explicitly invokes the Boss version of method earnings
by using the dot operator with the specific Boss reference boss. This call is also included
for comparison purposes to ensure that the dynamically bound method invoked with
employee.earnings() was indeed the proper method.

To prove that the superclass reference employee can be used to invoke toString
and earnings for the other types of employees, lines 41, 50 and 58 each assign a different
type of employee object (CommissionWorker, PieceWorker and HourlyWorker,
respectively) to the superclass reference employee; then the two methods are called after
each assignment to show that Java is always capable of determining the type of the refer-
enced object before invoking a method.

9.17 New Classes and Dynamic Binding
Polymorphism certainly works nicely when all possible classes are known in advance. But
it also works when new kinds of classes are added to systems.

Fig. 9.21Fig. 9.21Fig. 9.21Fig. 9.21 Testing the Employee class hierarchy using an abstract superclass.

486 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

New classes are accommodated by dynamic method binding (also called late binding).
An object’s type need not be known at compile time for a polymorphic call to be compiled.
At execution time, the call is matched with the method of the called object.

A screen manager program can now handle (without recompilation) new types of dis-
play objects as they are added to the system. The draw method call remains the same. The
new objects themselves each contain a draw method implementing the actual drawing
capabilities. This makes it easy to add new capabilities to systems with minimal impact. It
also promotes software reuse.

Performance Tip 9.3
The kinds of polymorphic manipulations made possible with dynamic binding can also be ac-
complished by using hand-coded switch logic based on type fields in objects. The polymor-
phic code generated by the Java compiler runs with performance comparable to that of
efficiently coded switch logic. 9.3

Software Engineering Observation 9.26
Java provides mechanisms for loading classes into a program dynamically to enhance the
functionality of an executing program. In particular, static method forName of class
Class (package java.lang) can be used to load a class definition, then create new ob-
jects of that class for use in a program. This concept is beyond the scope of this book. For
more information, see the online API documentation for Class. 9.26

9.18 Case Study: Inheriting Interface and Implementation
Our next example (Fig. 9.22–Fig. 9.26) reexamines the Point, Circle, Cylinder hi-
erarchy, except that we now head the hierarchy with abstract superclass Shape
(Fig. 9.22). This hierarchy mechanically demonstrates the power of polymorphism. In the
exercises, we explore a more realistic hierarchy of shapes.

Shape contains abstract method getName, so Shape must be declared an
abstract superclass. Shape contains two other methods, area and volume, each of
which has an implementation that returns zero by default. Point inherits these imple-
mentations from Shape. This makes sense because both the area and volume of a point are
zero. Circle inherits the volume method from Point, but Circle provides its own
implementation for the area method. Cylinder provides its own implementations for
both the area (interpreted as the surface area of the cylinder) and volume methods.

In this example, class Shape is used to define a set of methods that all Shapes in our
hierarchy have in common. Defining these methods in class Shape enables us to generi-
cally call these methods through a Shape reference. Remember, the only methods that can
be called through any reference are those public methods defined in the reference’s
declared class type and any public methods inherited into that class. Thus, we can call
Object and Shape methods through a Shape reference.

Note that although Shape is an abstract superclass, it still contains implementa-
tions of methods area and volume, and these implementations are inheritable. The
Shape class provides an inheritable interface (set of services) in the form of three methods
that all classes of the hierarchy will contain. The Shape class also provides some imple-
mentations that subclasses in the first few levels of the hierarchy will use.

This case study emphasizes that a subclass can inherit interface and/or implementation
from a superclass.

Chapter 9 Object-Oriented Programming 487

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Software Engineering Observation 9.27
Hierarchies designed for implementation inheritance tend to have their functionality high in
the hierarchy—each new subclass inherits one or more methods that were defined in a su-
perclass and uses the superclass definitions. 9.27

Software Engineering Observation 9.28
Hierarchies designed for interface inheritance tend to have their functionality lower in the
hierarchy—a superclass specifies one or more methods that should be called identically for
each object in the hierarchy (i.e., they have the same signature), but the individual subclasses
provide their own implementations of the method(s). 9.28

Superclass Shape (Fig. 9.22) extends Object, consists of three public methods
and does not contain any data (although it could). Method getName is abstract, so it
is overridden in each of the subclasses. Methods area and volume are defined to return
0.0. These methods are overridden in subclasses when it is appropriate for those classes
to have a different area calculation (classes Circle and Cylinder) and/or a different
volume calculation (class Cylinder).

Class Point (Fig. 9.23) is derived from Shape. A Point has an area of 0.0 and a
volume of 0.0, so the superclass methods area and volume are not overridden here—
they are inherited as defined in Shape. Other methods include setPoint to assign new
x and y coordinates to a Point and getX and getY to return the x and y coordinates of
a Point. Method getName is an implementation of the abstract method in the super-
class. If this method were not defined, class Point would be an abstract class.

1 // Fig. 9.22: Shape.java
2 // Definition of abstract base class Shape
3
4 public abstract class Shape extends Object {
5
6 // return shape's area
7 public double area()
8 {
9 return 0.0;

10 }
11
12 // return shape's volume
13 public double volume()
14 {
15 return 0.0;
16 }
17
18 // abstract method must be defined by concrete subclasses
19 // to return appropriate shape name
20 public abstract String getName();
21
22 } // end class Shape

Fig. 9.22Fig. 9.22Fig. 9.22Fig. 9.22 Shape abstract superclass for Point, Circle, Cylinder hierarchy.

488 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

1 // Fig. 9.23: Point.java
2 // Definition of class Point
3
4 public class Point extends Shape {
5 protected int x, y; // coordinates of the Point
6
7 // no-argument constructor
8 public Point()
9 {

10 setPoint(0, 0);
11 }
12
13 // constructor
14 public Point(int xCoordinate, int yCoordinate)
15 {
16 setPoint(xCoordinate, yCoordinate);
17 }
18
19 // set x and y coordinates of Point
20 public void setPoint(int xCoordinate, int yCoordinate)
21 {
22 x = xCoordinate;
23 y = yCoordinate;
24 }
25
26 // get x coordinate
27 public int getX()
28 {
29 return x;
30 }
31
32 // get y coordinate
33 public int getY()
34 {
35 return y;
36 }
37
38 // convert point into String representation
39 public String toString()
40 {
41 return "[" + x + ", " + y + "]";
42 }
43
44 // return shape name
45 public String getName()
46 {
47 return "Point";
48 }
49
50 } // end class Point

Fig. 9.23Fig. 9.23Fig. 9.23Fig. 9.23 Point subclass of abstract class Shape.

Chapter 9 Object-Oriented Programming 489

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Class Circle (Fig. 9.24) is derived from Point. A Circle has a volume of 0.0, so
superclass method volume is not overridden—it is inherited from class Point, which
inherited it from Shape. A Circle has an area different from that of a Point, so the
area method is overridden. Method getName is an implementation of the abstract
method in the superclass. If this method is not overridden here, the Point version of get-
Name would be inherited. Other methods include setRadius to assign a new radius
to a Circle and getRadius to return the radius of a Circle.

1 // Fig. 9.24: Circle.java
2 // Definition of class Circle
3
4 public class Circle extends Point { // inherits from Point
5 protected double radius;
6
7 // no-argument constructor
8 public Circle()
9 {

10 // implicit call to superclass constructor here
11 setRadius(0);
12 }
13
14 // constructor
15 public Circle(double circleRadius, int xCoordinate,
16 int yCoordinate)
17 {
18 // call superclass constructor
19 super(xCoordinate, yCoordinate);
20
21 setRadius(circleRadius);
22 }
23
24 // set radius of Circle
25 public void setRadius(double circleRadius)
26 {
27 radius = (circleRadius >= 0 ? circleRadius : 0);
28 }
29
30 // get radius of Circle
31 public double getRadius()
32 {
33 return radius;
34 }
35
36 // calculate area of Circle
37 public double area()
38 {
39 return Math.PI * radius * radius;
40 }
41

Fig. 9.24Fig. 9.24Fig. 9.24Fig. 9.24 Circle subclass of Point—indirect subclass of abstract class
Shape (part 1 of 2).

490 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Software Engineering Observation 9.29
A subclass always inherits the most recently defined version of each public and pro-
tected method from its direct and indirect superclasses. 9.29

Class Cylinder (Fig. 9.25) is derived from Circle. A Cylinder has area and
volume different from those of class Circle, so the area and volume methods are both
overridden. Method getName is an implementation of the abstract method in the
superclass. If this method had not been overridden here, the Circle version of getName
would be inherited. Other methods include setHeight to assign a new height to a
Cylinder and getHeight to return the height of a Cylinder.

42 // convert Circle to a String represention
43 public String toString()
44 {
45 return "Center = " + super.toString() +
46 "; Radius = " + radius;
47 }
48
49 // return shape name
50 public String getName()
51 {
52 return "Circle";
53 }
54
55 } // end class Circle

Fig. 9.24Fig. 9.24Fig. 9.24Fig. 9.24 Circle subclass of Point—indirect subclass of abstract class
Shape (part 2 of 2).

1 // Fig. 9.25: Cylinder.java
2 // Definition of class Cylinder.
3
4 public class Cylinder extends Circle {
5 protected double height; // height of Cylinder
6
7 // no-argument constructor
8 public Cylinder()
9 {

10 // implicit call to superclass constructor here
11 setHeight(0);
12 }
13
14 // constructor
15 public Cylinder(double cylinderHeight,
16 double cylinderRadius, int xCoordinate,
17 int yCoordinate)
18 {
19 // call superclass constructor
20 super(cylinderRadius, xCoordinate, yCoordinate);

Fig. 9.25Fig. 9.25Fig. 9.25Fig. 9.25 Cylinder subclass of Circle—indirect subclass of abstract class
Shape (part 1 of 2).

Chapter 9 Object-Oriented Programming 491

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Method main of class Test (Fig. 9.26) instantiates Point object point, Circle
object circle and Cylinder object cylinder (lines 16–18). Next, array arrayOf-
Shapes is instantiated (line 21). This array of superclass Shape references will refer to
each subclass object instantiated. At line 24, the reference point is assigned to array ele-
ment arrayOfShapes[0]. At line 27, the reference circle is assigned to array ele-
ment arrayOfShapes[1]. At line 30, the reference cylinder is assigned to array
element arrayOfShapes[2]. Now, each superclass Shape reference in the array
refers to a subclass object of type Point, Circle or Cylinder.

21
22 setHeight(cylinderHeight);
23 }
24
25 // set height of Cylinder
26 public void setHeight(double cylinderHeight)
27 {
28 height = (cylinderHeight >= 0 ? cylinderHeight : 0);
29 }
30
31 // get height of Cylinder
32 public double getHeight()
33 {
34 return height;
35 }
36
37 // calculate area of Cylinder (i.e., surface area)
38 public double area()
39 {
40 return 2 * super.area() + 2 * Math.PI * radius * height;
41 }
42
43 // calculate volume of Cylinder
44 public double volume()
45 {
46 return super.area() * height;
47 }
48
49 // convert Cylinder to a String representation
50 public String toString()
51 {
52 return super.toString() + "; Height = " + height;
53 }
54
55 // return shape name
56 public String getName()
57 {
58 return "Cylinder";
59 }
60
61 } // end class Cylinder

Fig. 9.25Fig. 9.25Fig. 9.25Fig. 9.25 Cylinder subclass of Circle—indirect subclass of abstract class
Shape (part 2 of 2).

492 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

1 // Fig. 9.26: Test.java
2 // Class to test Shape, Point, Circle, Cylinder hierarchy
3
4 // Java core packages
5 import java.text.DecimalFormat;
6
7 // Java extension packages
8 import javax.swing.JOptionPane;
9

10 public class Test {
11
12 // test Shape hierarchy
13 public static void main(String args[])
14 {
15 // create shapes
16 Point point = new Point(7, 11);
17 Circle circle = new Circle(3.5, 22, 8);
18 Cylinder cylinder = new Cylinder(10, 3.3, 10, 10);
19
20 // create Shape array
21 Shape arrayOfShapes[] = new Shape[3];
22
23 // aim arrayOfShapes[0] at subclass Point object
24 arrayOfShapes[0] = point;
25
26 // aim arrayOfShapes[1] at subclass Circle object
27 arrayOfShapes[1] = circle;
28
29 // aim arrayOfShapes[2] at subclass Cylinder object
30 arrayOfShapes[2] = cylinder;
31
32 // get name and String representation of each shape
33 String output =
34 point.getName() + ": " + point.toString() + "\n" +
35 circle.getName() + ": " + circle.toString() + "\n" +
36 cylinder.getName() + ": " + cylinder.toString();
37
38 DecimalFormat precision2 = new DecimalFormat("0.00");
39
40 // loop through arrayOfShapes and get name,
41 // area and volume of each shape in arrayOfShapes
42 for (int i = 0; i < arrayOfShapes.length; i++) {
43 output += "\n\n" + arrayOfShapes[i].getName() +
44 ": " + arrayOfShapes[i].toString() +
45 "\nArea = " +
46 precision2.format(arrayOfShapes[i].area()) +
47 "\nVolume = " +
48 precision2.format(arrayOfShapes[i].volume());
49 }
50
51 JOptionPane.showMessageDialog(null, output,
52 "Demonstrating Polymorphism",
53 JOptionPane.INFORMATION_MESSAGE);

Fig. 9.26Fig. 9.26Fig. 9.26Fig. 9.26 Shape, Point, Circle, Cylinder hierarchy (part 1 of 2).

Chapter 9 Object-Oriented Programming 493

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Lines 33 through 36 invoke methods getName and toString to illustrate that the
objects are initialized correctly (as in the first three lines of the screen capture).

Next, the for structure at lines 42–49 walks through arrayOfShapes, and the fol-
lowing calls are made during each iteration of the loop:

arrayOfShapes[i].getName()
arrayOfShapes[i].toString()
arrayOfShapes[i].area()
arrayOfShapes[i].volume()

Each of these method calls is invoked on the object to which arrayOfShapes[i]
currently refers. When the compiler looks at each of these calls, it is simply trying to de-
termine whether a Shape reference (arrayOfShapes[i]) can be used to call these
methods. For methods getName, area and volume the answer is yes, because each of
these methods is defined in class Shape. For method toString, the compiler first
looks at class Shape to determine that toString is not defined there, then the compil-
er proceeds to Shape’s superclass (Object) to determine whether Shape inherited a
toString method that takes no arguments (as it did, because all Objects have a
toString method).

The screen capture illustrates that all four methods are invoked properly based on the
type of the referenced object. First, the string "Point: " and the coordinates of the object
point (arrayOfShapes[0]) are output; the area and volume are both 0. Next, the
string "Circle: ", the coordinates of object circle, and the radius of object circle
(arrayOfShapes[1]) are output; the area of circle is calculated and the volume is

54
55 System.exit(0);
56 }
57
58 } // end class Test

Fig. 9.26Fig. 9.26Fig. 9.26Fig. 9.26 Shape, Point, Circle, Cylinder hierarchy (part 2 of 2).

494 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

0. Finally, the string "Cylinder: ", the coordinates of object cylinder, the radius of
object cylinder and the height of object cylinder (arrayOfShapes[2]) are
output; the area of cylinder is calculated and the volume of cylinder is calculated.
All the method calls to getName, toString, area and volume are resolved at run-
time with dynamic binding.

9.19 Case Study: Creating and Using Interfaces
Our next example (Fig. 9.27–Fig. 9.31) reexamines the Point, Circle, Cylinder hi-
erarchy one last time, replacing abstract superclass Shape with the interface Shape
(Fig. 9.27). An interface definition begins with the keyword interface and contains a
set of public abstract methods. Interfaces may also contain public static fi-
nal data. To use an interface, a class must specify that it implements the interface and
the class must define every method in the interface with the number of arguments and the
return type specified in the interface definition. If the class leaves any method of the inter-
face undefined, the class becomes an abstract class and must be declared abstract
in the first line of its class definition. Implementing a interface is like signing a contract
with the compiler that states, “I will define all the methods specified by the interface.”

Common Programming Error 9.9
Leaving a method of an interface undefined in a class that implements the interface
results in a compile error indicating that the class must be declared abstract. 9.9

Software Engineering Observation 9.30
Declaring a final reference indicates that the reference always refers to the same object.
However, this does not affect the object to which the reference refers—the object’s data still
can be modified. 9.30

We started using the concept of an interface when we introduced GUI event handling
in Chapter 6, “Methods.” Recall that our applet class included implements Action-
Listener (an interface in package java.awt.event). The reason we were required
to define actionPerformed in the applets with event handling is that ActionLis-
tener is an interface that specifies that actionPerformed must be defined. Interfaces
are an important part of GUI event handling, as we will discuss in the next section.

An interface is typically used in place of an abstract class when there is no default
implementation to inherit—i.e., no instance variables and no default method implementa-
tions. Like public abstract classes, interfaces are typically public data types,
so they are normally defined in files by themselves with the same name as the interface and
the .java extension.

The definition of interface Shape begins in Fig. 9.27 at line 4. Interface Shape has
abstract methods area, volume and getName. By coincidence, all three methods
take no arguments. However, this is not a requirement of methods in an interface.

In Fig. 9.28, line 4 indicates that class Point extends class Object and implements
interface Shape. Class Point provides definitions of all three methods in the interface.
Method area is defined at lines 45–48. Method volume is defined at lines 51–54. Method
getName is defined at lines 57–60. These three methods satisfy the implementation
requirement for the three methods defined in the interface. We have fulfilled our contract
with the compiler.

Chapter 9 Object-Oriented Programming 495

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

1 // Fig. 9.27: Shape.java
2 // Definition of interface Shape
3
4 public interface Shape {
5
6 // calculate area
7 public abstract double area();
8
9 // calculate volume

10 public abstract double volume();
11
12 // return shape name
13 public abstract String getName();
14 }

Fig. 9.27Fig. 9.27Fig. 9.27Fig. 9.27 Point, circle, cylinder hierarchy with a Shape interface.

1 // Fig. 9.28: Point.java
2 // Definition of class Point
3
4 public class Point extends Object implements Shape {
5 protected int x, y; // coordinates of the Point
6
7 // no-argument constructor
8 public Point()
9 {

10 setPoint(0, 0);
11 }
12
13 // constructor
14 public Point(int xCoordinate, int yCoordinate)
15 {
16 setPoint(xCoordinate, yCoordinate);
17 }
18
19 // Set x and y coordinates of Point
20 public void setPoint(int xCoordinate, int yCoordinate)
21 {
22 x = xCoordinate;
23 y = yCoordinate;
24 }
25
26 // get x coordinate
27 public int getX()
28 {
29 return x;
30 }
31

Fig. 9.28Fig. 9.28Fig. 9.28Fig. 9.28 Point implementation of interface Shape (part 1 of 2).

496 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

When a class implements an interface, the same is a relationship provided by inheritance
applies. For example, class Point implements Shape. Therefore, a Point object is a
Shape. In fact, objects of any class that extends Point are also Shape objects. Using this
relationship, we have maintained the original definitions of class Circle, class Cylinder
and application class Test from Section 9.18 (repoeated in Fig. 9.29–Fig. 9.31) to illustrate
that an interface can be used instead of an abstract class to process Shapes polymorphi-
cally. Notice that the output for the program (Fig. 9.31) is identical to Fig. 9.22. Also, notice
that Object method toString is called through a Shape interface reference (line 44).

Software Engineering Observation 9.31
All methods of class Object can be called by using a reference of an interface data type—
a reference refers to an object, and all objects have the methods defined by class Object. 9.31

One benefit of using interfaces is that a class can implement as many interfaces as it
needs in addition to extending a class. To implement more than one interface, simply pro-
vide a comma-separated list of interface names after keyword implements in the class
definition. This is particularly useful in the GUI event-handling mechanism. A class that
implements more than one event-listener interface (such as ActionListener in earlier

32 // get y coordinate
33 public int getY()
34 {
35 return y;
36 }
37
38 // convert point into String representation
39 public String toString()
40 {
41 return "[" + x + ", " + y + "]";
42 }
43
44 // calculate area
45 public double area()
46 {
47 return 0.0;
48 }
49
50 // calculate volume
51 public double volume()
52 {
53 return 0.0;
54 }
55
56 // return shape name
57 public String getName()
58 {
59 return "Point";
60 }
61
62 } // end class Point

Fig. 9.28Fig. 9.28Fig. 9.28Fig. 9.28 Point implementation of interface Shape (part 2 of 2).

Chapter 9 Object-Oriented Programming 497

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

examples) can process different types of GUI events, as we will see in Chapter 12 and
Chapter 13.

1 // Fig. 9.29: Circle.java
2 // Definition of class Circle
3
4 public class Circle extends Point { // inherits from Point
5 protected double radius;
6
7 // no-argument constructor
8 public Circle()
9 {

10 // implicit call to superclass constructor here
11 setRadius(0);
12 }
13
14 // constructor
15 public Circle(double circleRadius, int xCoordinate,
16 int yCoordinate)
17 {
18 // call superclass constructor
19 super(xCoordinate, yCoordinate);
20
21 setRadius(circleRadius);
22 }
23
24 // set radius of Circle
25 public void setRadius(double circleRadius)
26 {
27 radius = (circleRadius >= 0 ? circleRadius : 0);
28 }
29
30 // get radius of Circle
31 public double getRadius()
32 {
33 return radius;
34 }
35
36 // calculate area of Circle
37 public double area()
38 {
39 return Math.PI * radius * radius;
40 }
41
42 // convert Circle to a String represention
43 public String toString()
44 {
45 return "Center = " + super.toString() +
46 "; Radius = " + radius;
47 }

Fig. 9.29Fig. 9.29Fig. 9.29Fig. 9.29 Circle subclass of Point—indirect implementation of interface Shape
(part 1 of 2).

498 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

48
49 // return shape name
50 public String getName()
51 {
52 return "Circle";
53 }
54
55 } // end class Circle

1 // Fig. 9.30: Cylinder.java
2 // Definition of class Cylinder.
3
4 public class Cylinder extends Circle {
5 protected double height; // height of Cylinder
6
7 // no-argument constructor
8 public Cylinder()
9 {

10 // implicit call to superclass constructor here
11 setHeight(0);
12 }
13
14 // constructor
15 public Cylinder(double cylinderHeight,
16 double cylinderRadius, int xCoordinate,
17 int yCoordinate)
18 {
19 // call superclass constructor
20 super(cylinderRadius, xCoordinate, yCoordinate);
21
22 setHeight(cylinderHeight);
23 }
24
25 // set height of Cylinder
26 public void setHeight(double cylinderHeight)
27 {
28 height = (cylinderHeight >= 0 ? cylinderHeight : 0);
29 }
30
31 // get height of Cylinder
32 public double getHeight()
33 {
34 return height;
35 }
36
37 // calculate area of Cylinder (i.e., surface area)
38 public double area()
39 {

Fig. 9.30Fig. 9.30Fig. 9.30Fig. 9.30 Cylinder subclass of Circle—indirect implementation of interface
Shape (part 1 of 2).

Fig. 9.29Fig. 9.29Fig. 9.29Fig. 9.29 Circle subclass of Point—indirect implementation of interface Shape
(part 2 of 2).

Chapter 9 Object-Oriented Programming 499

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

40 return 2 * super.area() + 2 * Math.PI * radius * height;
41 }
42
43 // calculate volume of Cylinder
44 public double volume()
45 {
46 return super.area() * height;
47 }
48
49 // convert Cylinder to a String representation
50 public String toString()
51 {
52 return super.toString() + "; Height = " + height;
53 }
54
55 // return shape name
56 public String getName()
57 {
58 return "Cylinder";
59 }
60
61 } // end class Cylinder

1 // Fig. 9.31: Test.java
2 // Test Point, Circle, Cylinder hierarchy with interface Shape.
3
4 // Java core packages
5 import java.text.DecimalFormat;
6
7 // Java extension packages
8 import javax.swing.JOptionPane;
9

10 public class Test {
11
12 // test Shape hierarchy
13 public static void main(String args[])
14 {
15 // create shapes
16 Point point = new Point(7, 11);
17 Circle circle = new Circle(3.5, 22, 8);
18 Cylinder cylinder = new Cylinder(10, 3.3, 10, 10);
19
20 // create Shape array
21 Shape arrayOfShapes[] = new Shape[3];
22
23 // aim arrayOfShapes[0] at subclass Point object
24 arrayOfShapes[0] = point;
25

Fig. 9.31Fig. 9.31Fig. 9.31Fig. 9.31 Shape, Point, Circle, Cylinder hierarchy (part 1 of 2).

Fig. 9.30Fig. 9.30Fig. 9.30Fig. 9.30 Cylinder subclass of Circle—indirect implementation of interface
Shape (part 2 of 2).

500 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

26 // aim arrayOfShapes[1] at subclass Circle object
27 arrayOfShapes[1] = circle;
28
29 // aim arrayOfShapes[2] at subclass Cylinder object
30 arrayOfShapes[2] = cylinder;
31
32 // get name and String representation of each shape
33 String output =
34 point.getName() + ": " + point.toString() + "\n" +
35 circle.getName() + ": " + circle.toString() + "\n" +
36 cylinder.getName() + ": " + cylinder.toString();
37
38 DecimalFormat precision2 = new DecimalFormat("0.00");
39
40 // loop through arrayOfShapes and get name,
41 // area and volume of each shape in arrayOfShapes
42 for (int i = 0; i < arrayOfShapes.length; i++) {
43 output += "\n\n" + arrayOfShapes[i].getName() +
44 ": " + arrayOfShapes[i].toString() +
45 "\nArea = " +
46 precision2.format(arrayOfShapes[i].area()) +
47 "\nVolume = " +
48 precision2.format(arrayOfShapes[i].volume());
49 }
50
51 JOptionPane.showMessageDialog(null, output,
52 "Demonstrating Polymorphism",
53 JOptionPane.INFORMATION_MESSAGE);
54
55 System.exit(0);
56 }
57
58 } // end class Test

Fig. 9.31Fig. 9.31Fig. 9.31Fig. 9.31 Shape, Point, Circle, Cylinder hierarchy (part 2 of 2).

Chapter 9 Object-Oriented Programming 501

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Another use of interfaces is to define a set of constants that can be used in many class
definitions. Consider interface Constants

public interface Constants {
 public static final int ONE = 1;
public static final int TWO = 2;
public static final int THREE = 3;

}

Classes that implement interface Constants can use ONE, TWO and THREE anywhere in
the class definition. A class can even use these constants by importing the interface, then
referring to each constant as Constants.ONE, Constants.TWO and Con-
stants.THREE. There are no methods declared in this interface, so a class that imple-
ments the interface is not required to provide any method implementations.

9.20 Inner Class Definitions
All the class definitions discussed so far were defined at file scope. For example, if a file con-
tained two classes, one class was not nested in the body of the other class. Java provides a
facility called inner classes, in which classes can be defined inside other classes. Such classes
can be complete class definitions or anonymous inner class definitions (classes without a
name). Inner classes are used mainly in event handling. However, they have other benefits.
For example, the implementation of the queue abstract data type discussed in Section 8.16.1
might use an inner class to represent the objects that store each item currently in the queue.
Only the queue data structure requires knowledge of how the objects are stored internally, so
the implementation can be hidden by defining an inner class as part of class Queue.

Inner classes frequently are used with GUI event handling, we take this opportunity not
only to show you inner class definitions, but also to demonstrate an application that exe-
cutes in its own window. After you complete this example, you will be able to use in your
applications the GUI techniques shown only in applets so far.

To demonstrate an inner class definition, Fig. 9.33 uses a simplified version of the
Time3 class (renamed Time in Fig. 9.32) from Figure 8.8. Class Time provides a default
constructor, the same set/get methods as Figure 8.8 and a toString method. Also, this
program defines class TimeTestWindow as an application. The application executes in
its own window. [Note: We do not discuss class Time here, because all its features were
discussed in Chapter 8.]

1 // Fig. 9.32: Time.java
2 // Time class definition.
3
4 // Java core packages
5 import java.text.DecimalFormat;
6
7 // This class maintains the time in 24-hour format
8 public class Time extends Object {
9 private int hour; // 0 - 23

10 private int minute; // 0 - 59
11 private int second; // 0 - 59

Fig. 9.32Fig. 9.32Fig. 9.32Fig. 9.32 Time class (part 1 of 3).

502 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

12
13 // Time constructor initializes each instance variable
14 // to zero. Ensures that Time object starts in a
15 // consistent state.
16 public Time()
17 {
18 setTime(0, 0, 0);
19 }
20
21 // Set a new time value using universal time. Perform
22 // validity checks on the data. Set invalid values to zero.
23 public void setTime(int hour, int minute, int second)
24 {
25 setHour(hour);
26 setMinute(minute);
27 setSecond(second);
28 }
29
30 // validate and set hour
31 public void setHour(int h)
32 {
33 hour = ((h >= 0 && h < 24) ? h : 0);
34 }
35
36 // validate and set minute
37 public void setMinute(int m)
38 {
39 minute = ((m >= 0 && m < 60) ? m : 0);
40 }
41
42 // validate and set second
43 public void setSecond(int s)
44 {
45 second = ((s >= 0 && s < 60) ? s : 0);
46 }
47
48 // get hour
49 public int getHour()
50 {
51 return hour;
52 }
53
54 // get minute
55 public int getMinute()
56 {
57 return minute;
58 }
59
60 // get second
61 public int getSecond()
62 {
63 return second;
64 }

Fig. 9.32Fig. 9.32Fig. 9.32Fig. 9.32 Time class (part 2 of 3).

Chapter 9 Object-Oriented Programming 503

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

65
66 // convert to String in standard-time format
67 public String toString()
68 {
69 DecimalFormat twoDigits = new DecimalFormat("00");
70
71 return ((getHour() == 12 || getHour() == 0) ?
72 12 : getHour() % 12) + ":" +
73 twoDigits.format(getMinute()) + ":" +
74 twoDigits.format(getSecond()) +
75 (getHour() < 12 ? " AM" : " PM");
76 }
77
78 } // end class Time

1 // Fig. 9.33: TimeTestWindow.java
2 // Demonstrating the Time class set and get methods
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class TimeTestWindow extends JFrame {
12 private Time time;
13 private JLabel hourLabel, minuteLabel, secondLabel;
14 private JTextField hourField, minuteField,
15 secondField, displayField;
16 private JButton exitButton;
17
18 // set up GUI
19 public TimeTestWindow()
20 {
21 super("Inner Class Demonstration");
22
23 time = new Time();
24
25 // create an instance of inner class ActionEventHandler
26 ActionEventHandler handler = new ActionEventHandler();
27
28 // set up GUI
29 Container container = getContentPane();
30 container.setLayout(new FlowLayout());
31
32 hourLabel = new JLabel("Set Hour");
33 hourField = new JTextField(10);
34 hourField.addActionListener(handler);

Fig. 9.33Fig. 9.33Fig. 9.33Fig. 9.33 Demonstrating an inner class in a windowed application (part 1 of 4).

Fig. 9.32Fig. 9.32Fig. 9.32Fig. 9.32 Time class (part 3 of 3).

504 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

35 container.add(hourLabel);
36 container.add(hourField);
37
38 minuteLabel = new JLabel("Set minute");
39 minuteField = new JTextField(10);
40 minuteField.addActionListener(handler);
41 container.add(minuteLabel);
42 container.add(minuteField);
43
44 secondLabel = new JLabel("Set Second");
45 secondField = new JTextField(10);
46 secondField.addActionListener(handler);
47 container.add(secondLabel);
48 container.add(secondField);
49
50 displayField = new JTextField(30);
51 displayField.setEditable(false);
52 container.add(displayField);
53
54 exitButton = new JButton("Exit");
55 exitButton.addActionListener(handler);
56 container.add(exitButton);
57
58 } // end constructor
59
60 // display time in displayField
61 public void displayTime()
62 {
63 displayField.setText("The time is: " + time);
64 }
65
66 // create TimeTestWindow and display it
67 public static void main(String args[])
68 {
69 TimeTestWindow window = new TimeTestWindow();
70
71 window.setSize(400, 140);
72 window.setVisible(true);
73 }
74
75 // inner class definition for handling JTextField and
76 // JButton events
77 private class ActionEventHandler
78 implements ActionListener {
79
80 // method to handle action events
81 public void actionPerformed(ActionEvent event)
82 {
83 // user pressed exitButton
84 if (event.getSource() == exitButton)
85 System.exit(0); // terminate the application
86

Fig. 9.33Fig. 9.33Fig. 9.33Fig. 9.33 Demonstrating an inner class in a windowed application (part 2 of 4).

Chapter 9 Object-Oriented Programming 505

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

87 // user pressed Enter key in hourField
88 else if (event.getSource() == hourField) {
89 time.setHour(
90 Integer.parseInt(event.getActionCommand()));
91 hourField.setText("");
92 }
93
94 // user pressed Enter key in minuteField
95 else if (event.getSource() == minuteField) {
96 time.setMinute(
97 Integer.parseInt(event.getActionCommand()));
98 minuteField.setText("");
99 }
100
101 // user pressed Enter key in secondField
102 else if (event.getSource() == secondField) {
103 time.setSecond(
104 Integer.parseInt(event.getActionCommand()));
105 secondField.setText("");
106 }
107
108 displayTime();
109 }
110
111 } // end inner class ActionEventHandler
112
113 } // end class TimeTestWindow

Fig. 9.33Fig. 9.33Fig. 9.33Fig. 9.33 Demonstrating an inner class in a windowed application (part 3 of 4).

Close box

Title bar

Maximize

Minimize

506 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

In Fig. 9.33, line 11 indicates that class TimeTestWindow extends class JFrame
(from package javax.swing) rather than class JApplet (as shown in Figure 8.8).
Superclass JFrame provides the basic attributes and behaviors of a window—a title bar
and buttons to minimize, maximize and close the window (all labeled in the first screen cap-
ture). Class TimeTestWindow uses the same GUI components as the applet of Fig. 8.8,
except that the button (line 16) is now called exitButton and is used to terminate the
application.

The init method of the applet has been replaced by a constructor (lines 19–54) to
guarantee that the window’s GUI components are created as the application begins exe-
cuting. Method main (lines 67–73) defines a new object of class TimeTestWindow that
results in a call to the constructor. Remember, init is a special method that is guaranteed
to be called when an applet begins execution. However, this program is not an applet, so if
we did define the init method, it would not be called automatically.

Several new features appear in the constructor. Line 21 calls the superclass JFrame
constructor with the string "Inner Class Demonstration". This string is displayed
in the title bar of the window by class JFrame’s constructor. Line 26 defines one instance
of our inner class ActionEventHandler (defined at lines 77–111) and assigns it to
handler. This reference is passed to each of the four calls to addActionListener
(lines 34, 40, 46 and 55) that register the event handlers for each GUI component that gen-
erates events in this example (hourField, minuteField, secondField and
exitButton). Each call to addActionListener requires an object of type

Fig. 9.33Fig. 9.33Fig. 9.33Fig. 9.33 Demonstrating an inner class in a windowed application (part 4 of 4).

Chapter 9 Object-Oriented Programming 507

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

ActionListener to be passed as an argument. Actually, handler is an Action-
Listener. Line 77 (the first line of the inner class definition) indicates that inner class
ActionEventHandler implements ActionListener. Thus, every object of type
ActionEventHandler is an ActionListener. The requirement that add-
ActionListener be passed an object of type ActionListener is satisfied! The is
a relationship is used extensively in the GUI event-handling mechanism, as you will see
over the next several chapters. The inner class is defined as private because it will be
used only in this class definition. Inner classes can be private, protected or
public.

An inner class object has a special relationship with the outer class object that creates
it. The inner class object is allowed to access directly all the instance variables and methods
of the outer class object. The actionPerformed method (line 77–105) of class
ActionEventHandler does just that. Throughout the method, the instance variables
time, exitButton, hourField, minuteField and secondField are used, as is
method displayTime. Notice that none of these needs a “handle” to the outer class
object. This is a free relationship created by the compiler between the outer class and its
inner classes.

Software Engineering Observation 9.32
An inner class object is allowed to access directly all the variables and methods of the outer
class object that defined it. 9.32

This application must be terminated by pressing the Exit button. Remember, an appli-
cation that displays a window must be terminated with a call to System.exit(0). Also
note that a window in Java is 0 pixels wide, 0 pixels tall and not displayed by default. Lines
71–72 use methods resize and setVisible to size the window and display it on the
screen. These methods are defined in class java.awt.Component originally and inher-
ited into class JFrame.

An inner class can also be defined inside a method of a class. Such an inner class has
access to its outer class’s members. However, it has limited access to the local variables for
the method in which it is defined.

Software Engineering Observation 9.33
An inner class defined in a method is allowed to access directly all the instance variables
and methods of the outer class object that defined it and any final local variables in the
method. 9.33

The application of Fig. 9.34 modifies class TimeTestWindow of Fig. 9.33 to use
anonymous inner classes defined in methods. An anonymous inner class has no name, so
one object of the anonymous inner class must be created at the point where the class is
defined in the program. We demonstrate anonymous inner classes two ways in this
example. First, we use separate anonymous inner classes that implement an interface
(ActionListener) to create event handlers for each of the three JTextFields
hourField, minuteField and secondField. We also demonstrate how to termi-
nate an application when the user clicks the Close box on the window. The event handler
is defined as an anonymous inner class that extends a class (WindowAdapter). The
Time class used is identical to Fig. 9.32, so it is not included here. Also, the Exit button
has been removed from this example.

508 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

1 // Fig. 9.34: TimeTestWindow.java
2 // Demonstrating the Time class set and get methods
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class TimeTestWindow extends JFrame {
12 private Time time;
13 private JLabel hourLabel, minuteLabel, secondLabel;
14 private JTextField hourField, minuteField,
15 secondField, displayField;
16
17 // set up GUI
18 public TimeTestWindow()
19 {
20 super("Inner Class Demonstration");
21
22 // create Time object
23 time = new Time();
24
25 // create GUI
26 Container container = getContentPane();
27 container.setLayout(new FlowLayout());
28
29 hourLabel = new JLabel("Set Hour");
30 hourField = new JTextField(10);
31
32 // register hourField event handler
33 hourField.addActionListener(
34
35 // anonymous inner class
36 new ActionListener() {
37
38 public void actionPerformed(ActionEvent event)
39 {
40 time.setHour(
41 Integer.parseInt(event.getActionCommand()));
42 hourField.setText("");
43 displayTime();
44 }
45
46 } // end anonymous inner class
47
48); // end call to addActionListener
49
50 container.add(hourLabel);
51 container.add(hourField);
52

Fig. 9.34Fig. 9.34Fig. 9.34Fig. 9.34 Demonstrating anonymous inner classes (part 1 of 4).

Chapter 9 Object-Oriented Programming 509

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

53 minuteLabel = new JLabel("Set minute");
54 minuteField = new JTextField(10);
55
56 // register minuteField event handler
57 minuteField.addActionListener(
58
59 // anonymous inner class
60 new ActionListener() {
61
62 public void actionPerformed(ActionEvent event)
63 {
64 time.setMinute(
65 Integer.parseInt(event.getActionCommand()));
66 minuteField.setText("");
67 displayTime();
68 }
69
70 } // end anonymous inner class
71
72); // end call to addActionListener
73
74 container.add(minuteLabel);
75 container.add(minuteField);
76
77 secondLabel = new JLabel("Set Second");
78 secondField = new JTextField(10);
79
80 secondField.addActionListener(
81
82 // anonymous inner class
83 new ActionListener() {
84
85 public void actionPerformed(ActionEvent event)
86 {
87 time.setSecond(
88 Integer.parseInt(event.getActionCommand()));
89 secondField.setText("");
90 displayTime();
91 }
92
93 } // end anonymous inner class
94
95); // end call to addActionListener
96
97 container.add(secondLabel);
98 container.add(secondField);
99
100 displayField = new JTextField(30);
101 displayField.setEditable(false);
102 container.add(displayField);
103 }
104

Fig. 9.34Fig. 9.34Fig. 9.34Fig. 9.34 Demonstrating anonymous inner classes (part 2 of 4).

510 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

105 // display time in displayField
106 public void displayTime()
107 {
108 displayField.setText("The time is: " + time);
109 }
110
111 // create TimeTestWindow, register for its window events
112 // and display it to begin application's execution
113 public static void main(String args[])
114 {
115 TimeTestWindow window = new TimeTestWindow();
116
117 // register listener for windowClosing event
118 window.addWindowListener(
119
120 // anonymous inner class for windowClosing event
121 new WindowAdapter() {
122
123 // terminate application when user closes window
124 public void windowClosing(WindowEvent event)
125 {
126 System.exit(0);
127 }
128
129 } // end anonymous inner class
130
131); // end call to addWindowListener
132
133 window.setSize(400, 120);
134 window.setVisible(true);
135 }
136
137 } // end class TimeTestWindow

Fig. 9.34Fig. 9.34Fig. 9.34Fig. 9.34 Demonstrating anonymous inner classes (part 3 of 4).

Close box

Chapter 9 Object-Oriented Programming 511

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Each of the three JTextFields that generate events in this program has a similar anon-
ymous inner class to handle its events, so we discuss only the anonymous inner class for
hourField here. Lines 33–48 are a call to hourField’s addActionListener
method. The argument to this method must be an object that is an ActionListener (i.e.,
any object of a class that implements ActionListener). Lines 36–46 use special Java
syntax to define an anonymous inner class and create one object of that class that is passed as
the argument to addActionListener. Line 36 uses operator new to create an object. The
syntax ActionListener() begins the definition of an anonymous inner class that imple-
ments interface ActionListener. This is similar to beginning a class definition with

public class MyHandler implements ActionListener {

The parentheses after ActionListener indicate a call to the default constructor of the
anonymous inner class.

The opening left brace ({) at the end of line 36 and the closing right brace (}) at line
46 define the body of the class. Lines 38–44 define the actionPerformed method that
is required in any class that implements ActionListener. Method actionPer-
formed is called when the user presses Enter while typing in hourField.

Software Engineering Observation 9.34
When an anonymous inner class implements an interface, the class must define every method
in the interface. 9.34

Method main creates one instance of class TimeTestWindow (line 115), sizes the
window (line 133) and displays the window (line 134).

Windows generate a variety of events that are discussed in Chapter 13. For this
example we discuss the one event generated when the user clicks the window’s close box—
a window closing event. Lines 118–131 enable the user to terminate the application by

Fig. 9.34Fig. 9.34Fig. 9.34Fig. 9.34 Demonstrating anonymous inner classes (part 4 of 4).

512 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

clicking the window’s close box (labeled in the first screen capture). Method addWin-
dowListener registers a window event listener. The argument to addWindowLis-
tener must be a reference to an object that is a WindowListener (package
java.awt.event) (i.e., any object of a class that implements WindowListener).
However, there are seven different methods that must be defined in every class that imple-
ments WindowListener and we only need one in this example—windowClosing.
For event handling interfaces with more than one method, Java provides a corresponding
class (called an adapter class) that already implements all the methods in the interface for
you. All you need to do is extend the adapter class and override the methods you require in
your program.

Common Programming Error 9.10
Extending an adapter class and misspelling the name of the method you are overriding is a
logic error. 9.10

Lines 121–129 use special Java syntax to define an anonymous inner class and create
one object of that class that is passed as the argument to addWindowListener. Line 118
uses operator new to create an object. The syntax WindowAdapter() begins the defini-
tion of an anonymous inner class that extends class WindowAdapter. This is similar to
beginning a class definition with

public class MyHandler extends WindowAdapter {

The parentheses after WindowAdapter indicate a call to the default constructor of the
anonymous inner class. Class WindowAdapter implements interface WindowLis-
tener, so every WindowAdapter object is a WindowListener—the exact type re-
quired for the argument to addWindowListener.

The opening left brace ({) at the end of line 121 and the closing right brace (}) at line
129 define the body of the class. Lines 124–127 override the windowClosing method
of WindowAdapter that is called when the user clicks the window’s close box. In this
example, windowClosing terminates the application.

In the last two examples, we have seen that inner classes can be used to create event
handlers and that separate anonymous inner classes can be defined to handle events indi-
vidually for each GUI component. In Chapter 12 and Chapter 13, we revisit this concept as
we discuss the event handling mechanism in detail.

9.21 Notes on Inner Class Definitions
This section presents several notes of interest to programmers regarding the definition and
use of inner classes.

1. Compiling a class that contains inner classes results in a separate .class file for
every class. Inner classes with names have the file name OuterClassName$Inner-
ClassName.class. Anonymous inner classes have the file name OuterClass-
Name$#.class, where # starts at 1 and is incremented for each anonymous
inner class encountered during compilation.

2. Inner classes with class names can be defined as public, protected, package
access or private and are subject to the same usage restrictions as other mem-
bers of a class.

Chapter 9 Object-Oriented Programming 513

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

3. To access the outer class’s this reference, use OuterClassName.this.

4. The outer class is responsible for creating objects of its inner classes. To create an
object of another class’s inner class, first create an object of the outer class and
assign it to a reference (we will call it ref). Then use a statement of the following
form to create an inner class object:

OuterClassName.InnerClassName innerRef = ref.new InnerClassName();

5. An inner class can be declared static. A static inner class does not require
an object of its outer class to be defined (whereas a nonstatic inner class does).
A static inner class does not have access to the outer class’s nonstatic
members.

9.22 Type-Wrapper Classes for Primitive Types
Each of the primitive types has a type-wrapper class. These classes are called Charac-
ter, Byte, Short, Integer, Long, Float, Double and Boolean. Each type-
wrapper class enables you to manipulate primitive types as objects of class Object.
Therefore, values of the primitive data types can be processed polymorphically if they are
maintained as objects of the type-wrapper classes. Many of the classes we will develop or
reuse manipulate and share Objects. These classes cannot polymorphically manipulate
variables of primitive types, but they can polymorphically manipulate objects of the type-
wrapper classes, because every class ultimately is derived from class Object.

Each of the numeric classes—Byte, Short, Integer, Long, Float and
Double—inherits from class Number. Each of the type wrappers is declared final, so
their methods are implicitly final and may not be overridden. Note that many of the
methods that process the primitive data types are defined as static methods of the type-
wrapper classes. If you need to manipulate a primitive value in your program, first refer to
the documentation for the type-wrapper classes—the method you need might already be
defined. We will use the type-wrapper classes polymorphically in our study of data struc-
tures in Chapters 22 and 23.

9.23 (Optional Case Study) Thinking About Objects:
Incorporating Inheritance into the Elevator Simulation
We now examine our elevator simulator design to see whether it might benefit from inher-
itance. In previous chapters, we have been treating ElevatorButton and FloorBut-
ton as separate classes. These classes, however, have much in common—both have
attribute pressed and behaviors pressButton and resetButton. To apply inherit-
ance, we first look for commonality between these classes. We extract this commonality,
place it into superclass Button, then derive subclasses ElevatorButton and Floor-
Button from Button.

Let us now examine the similarities between classes ElevatorButton and
FloorButton. Figure 9.35 shows the attributes and operations of each class. Both
classes have their attribute (pressed) and operations (pressButton and reset-
Button) in common.

514 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

We must now examine whether these objects exhibit distinct behavior. If the Eleva-
torButton and FloorButton objects have the same behavior, then we cannot justify
using two separate classes to instantiate these objects. However, if these objects have dis-
tinct behaviors, we can place the common attributes and operations in a superclass
Button; then ElevatorButton and FloorButton inherit both the attributes and
operations of Button.

We have been treating the FloorButton as if it behaves differently from the Ele-
vatorButton—the FloorButton requests the Elevator to move to the Floor of
the request, and the ElevatorButton signals the Elevator to move to the opposite
Floor. Under closer scrutiny, we notice that both the FloorButton and the Eleva-
torButton signal the Elevator to move to a Floor, and the Elevator decides
whether to move. The Elevator will sometimes move in response to a signal from the
FloorButton, and the Elevator will always move in response to a signal from the
ElevatorButton—however, neither the FloorButton nor the ElevatorButton
decides for the Elevator that the Elevator must move to the other Floor. We con-
clude that both FloorButton and ElevatorButton have the same behavior—both
signal the Elevator to move—so we combine (not inherit) classes into one Button
class and discard class FloorButton and ElevatorButton from our case study.

We turn our attention to classes ElevatorDoor and FloorDoor. Figure 9.36
shows the attributes and operations of classes ElevatorDoor and FloorDoor—these
two classes are structurally similar to each other as well, because both classes possess the
attribute open and the two operations openDoor and closeDoor. In addition, both the
ElevatorDoor and FloorDoor have the same behavior—they inform a Person that
a door in the simulation has opened. The Person then decides either to enter or exit the
Elevator, depending on which door opened. In other words, neither the Elevator-
Door nor the FloorDoor decides for the Person that the Person must enter or exit
the Elevator. We combine both ElevatorDoor and FloorDoor into one Door
class and eliminate classes ElevatorDoor and FloorDoor from our case study.2

Fig. 9.35Fig. 9.35Fig. 9.35Fig. 9.35 Attributes and operations of classes FloorButton and
ElevatorButton.

2. As we continue to discuss inheritance throughout this section, we refer to the class diagram of
Fig. 3.23 to determine similarities among objects. However, this diagram contains classes
FloorButton and ElevatorButton, which we have eliminated recently from the case
study. Therefore, during our discussion of inheritance, when we mention the FloorButton,
we refer to that Floor’sButton object, and when we mention the ElevatorButton, we
refer to the Elevator’s Button object.

ElevatorButton

- pressed : Boolean = false

+ resetButton() : void
+ pressButton() : void

FloorButton

- pressed : Boolean = false

+ resetButton() : void
+ pressButton() : void

Chapter 9 Object-Oriented Programming 515

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

In Section 4.14, we encountered the problem of representing the location of the
Person—on what Floor is the Person located when riding in the Elevator? Using
inheritance, we may now model a solution. Both the Elevator and the two Floors are
locations at which the Person exists in the simulator. In other words, the Elevator and
the Floors are types of locations. Therefore, classes Elevator and Floor should
inherit from an abstract superclass called Location. We declare class Location as
abstract, because, for the purposes of our simulation, a location is too generic a term to
define a real object. The UML requires that we place abstract class names (and abstract
methods) in italics. Superclass Location contains the protected attribute loca-
tionName, which contains a String value of "firstFloor", "secondFloor" or
"elevator". Therefore, only classes Elevator and Floor have access to loca-
tionName. In addition, we include the public method getLocationName to return
the name of the location.

We search for more similarities between classes Floor and Elevator. First of all,
according to the class diagram of Fig. 3.23, Elevator contains a reference to both a
Button and a Door—the ElevatorButton (the Elevator’s Button) and the
ElevatorDoor (the Elevator’s Door). Class Floor, through its association with
class ElevatorShaft (class ElevatorShaft “connects” class Floor), also con-
tains a reference to a Button and a Door—the FloorButton (that Floor’s Button)
and the FloorDoor (that Floor’s Door). Therefore, in our simulation, the Location
class, which is the superclass of classes Elevator and Floor, will contain public
methods getButton and getDoor, which return a Button or Door reference, respec-
tively. Class Floor overrides these methods to return the Button and Door references
of that Floor, and class Elevator overrides these methods to return the Button and
Door references of the Elevator. In other words, class Floor and Elevator exhibit
distinct behavior from each other but share attribute locationName and methods get-
Button and getDoor—therefore, we may use inheritance for these classes.

The UML offers a relationship called a generalization to model inheritance.
Figure 9.35 is the generalization diagram of superclass Location and subclasses Ele-
vator and Floor. The empty-head arrows specify that classes Elevator and Floor
inherit from class Location. Note that attribute locationName has an access modifier
that we have not yet seen—the pound sign (#), indicating that locationName is a pro-
tected member, so Location subclasses may access this attribute. Note that classes
Floor and Elevator contain additional attributes and methods that further distinguish
these classes.

Fig. 9.36Fig. 9.36Fig. 9.36Fig. 9.36 Attributes and operations of classes FloorDoor and
ElevatorDoor.

ElevatorDoor

- open : Boolean = false

+ openDoor() : void
+ closeDoor() : void

FloorDoor

- open : Boolean = false

+ openDoor() : void
+ closeDoor() : void

516 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Classes Floor and Elevator override methods getButton and getDoor from
their superclass Location. In Fig. 9.37, these methods are italicized in class Location,
indicating that they are abstract methods. However, the methods in the subclasses are not
italicized—these methods became concrete methods by overriding the abstract methods.
Class Person now contains a Location object representing whether the Person is on
the first or second Floor or inside the Elevator. We remove the association between
Person and Elevator and the association between Person and Floor from the class
diagram, because the Location object acts as both the Elevator and Floor reference
for the Person. A Person sets its Location object to reference the Elevator when
that Person enters the Elevator. A Person sets its Location object to reference a
Floor when the Person is on that Floor. Lastly, we assign class Elevator two
Location objects to represent the Elevator’s reference to the current Floor and des-
tination Floor (we originally used integers to describe these references). Figure 9.38 pro-
vides an updated class diagram of our model by incorporating inheritance and eliminating
classes FloorButton, ElevatorButton, FloorDoor and ElevatorDoor.

Fig. 9.37Fig. 9.37Fig. 9.37Fig. 9.37 Generalization diagram of superclass Location and subclasses
Elevator and Floor.

Location

locationName : String

+ getLocationName() : String
+ getButton() : Button
+ getDoor() : Door

Floor

- capacity : Integer = 1
locationName : String
+ getLocationName() : String
+ getButton() : Button
+ getDoor() : Door

Elevator

- moving : Boolean = false
- summoned:Boolean = false
- currentFloor : Integer
- destinationFloor : Integer
- capacity : Integer = 1
- travelTime : Integer = 5
locationName : String

+ ride() : void
+ requestElevator() : void
+ enterElevator() : void
+ exitElevator() : void
+ departElevator() : void
+ getLocationName() : String
+ getButton() : Button
+ getDoor() : Door

Chapter 9 Object-Oriented Programming 517

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

We have allowed a Person, occupying a Location, to interact with several of the
objects in the simulator. For example, a Person can press a Button or be informed when
a Door opens from that Person’s specific Location. In addition, because a Person
may occupy only one Location at a time, that Person may interact with only the
objects known to that Location—a Person will never perform an illegal action, such
as pressing the first Floor’s Button while riding the Elevator.

We presented the class attributes and operations with access modifiers in Fig. 8.13.
Now, we present a modified diagram incorporating inheritance in Fig. 9.39.

Fig. 9.38Fig. 9.38Fig. 9.38Fig. 9.38 Class diagram of our simulator (incorporating inheritance).

Light ElevatorModel Floor

ElevatorShaft

Bell

Person

Elevator

Location

locationName : String

+ getLocationName() : String
+ getButton() : Button
+ getDoor() : Door

Button

- pressed : Boolean = false

+ resetButton() : void
+ pressButton() : void

Door

- open : Boolean = false

+ openDoor() : void
+ closeDoor() : void

Creates

Connects

Presses

2

2 2

2

21

1

1

1

1

1

1

1

1

1

1

1

1
1

1
1

1

0..*

1
1

1

1

2

Signals to
move

Resets

Resets

Opens

Closes

Occupies

Signals
arrival

Turns
on/off

Rings

518 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Class Elevator now contains two Location objects, called currentFloor and
destinationFloor, replacing the integer values we used previously to describe the
Floors. Lastly, Person contains a Location object named location, which indi-
cates whether Person is on a Floor or in the Elevator.

Implementation: Forward Engineering (Incorporating Inheritance)
“Thinking About Objects” Section 8.17 used the UML to express the Java class structure
for our simulation. We continue our implementation while incorporating inheritance, using
class Elevator as an example. For each class in the class diagram of Fig. 9.38,

Fig. 9.39Fig. 9.39Fig. 9.39Fig. 9.39 Class diagram with attributes and operations (incorporating
inheritance).

Person

- ID : Integer
- moving : Boolean = true
- location : Location

+ doorOpened() : void

ElevatorShaft

Bell

ElevatorModel

- numberPeople : Integer = 0

+ ringBell() : void

Light

- lightOn : Boolean = false

+ turnOnLight() : void
+ turnOffLight() : void

+ addPerson() : void

Button

- pressed : Boolean = false

+ resetButton() : void
+ pressButton() : void

Door

- open : Boolean = false

+ openDoor() : void
+ closeDoor() : void

Location

locationName : String

+ getLocationName() : String
+ getButton() : Button
+ getDoor() : Door

Floor

- capacity : Integer = 1
locationName : String
+ getLocationName() : String
+ getButton() : Button
+ getDoor() : Door

Elevator

- moving : Boolean = false
- summoned:Boolean = false
- currentFloor : Location
- destinationFloor : Location
- capacity : Integer = 1
- travelTime : Integer = 5
locationName : String

+ ride() : void
+ requestElevator() : void
+ enterElevator() : void
+ exitElevator() : void
+ departElevator() : void
+ getLocationName() : String
+ getButton() : Button
+ getDoor() : Door

Chapter 9 Object-Oriented Programming 519

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

1. If a class A is a subclass of class B, then A extends B in the class declaration and
calls the constructor of B. For example, class Elevator is a subclass of abstract
superclass Location, so the class declaration should read

public class Elevator extends Location {

public Elevator
 {
 super();
 }

 ...

2. If class B is an abstract class and class A is a subclass of class B, then class A must
override the abstract methods of class B (if class A is to be a concrete class). For
example, class Location contains abstract methods getLocationName,
getButton and getDoor, so class Elevator must override these methods
(note that getButton returns the Elevator’s Button object, and getDoor
returns the Elevator’s Door object—Elevator contains associations with
both objects, according to the class diagram of Fig. 9.38).

public class Elevator extends Location {

// class attributes
private boolean moving;
private boolean summoned;
private Location currentFloor;
private Location destinationFloor;
private int capacity = 1;
private int travelTime = 5;

// class objects
private Button elevatorButton;
private Door elevatorDoor;
private Bell bell;

// class constructor
public Elevator()

 {
 super();
 }

// class methods
public void ride() {}
public void requestElevator() {}
public void enterElevator() {}
public void exitElevator() {}
public void departElevator() {}

 // method overriding getLocationName
public String getLocationName()

 {
 return "elevator";
 }

520 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

 // method overriding getButton
 public Button getButton() {}
 {
 return elevatorButton;
 }

 // method overriding getDoor
 public Door getDoor() {}
 {
 return elevatorDoor;
 }
}

Using forward engineering provides a sound beginning for code implementation in any
language. “Thinking About Objects” Section 11.10 returns to interactions and focuses on
how objects generate and handle the messages passed in collaborations. In addition, we for-
ward engineer more class diagrams to implement these interactions. Eventually, we present
the Java code for our simulator in Appendix G, Appendix H and Appendix I.

9.24 (Optional) Discovering Design Patterns: Introducing
Creational, Structural and Behavioral Design Patterns
Now that we have introduced object-oriented programming, we begin our deeper presen-
tation of design patterns. In Section 1.17, we mentioned that the “gang of four” described
23 design patterns using three categories—creational, structural and behavioral. In this
and the remaining “Discovering Design Patterns” sections, we discuss the design patterns
of each type and their importance, and we mention how each pattern relates to the Java
material in the book. For example, several Java Swing components that we introduce in
Chapters 12 and 13 use the Composite design pattern, so we introduce the Composite de-
sign pattern in Section 13.18. Figure 9.40 identifies the 18 gang-of-four design patterns
discussed in this book.

Figure 9.40 lists 18 of the most widely used patterns in the software-engineering
industry. There are many popular patterns that have been documented since the gang-of-
four book—these include the concurrent design patterns, which are especially helpful in
the design of multithreaded systems. Section 15.13 discusses some of these patterns used
in industry. Architectural patterns, as we discuss in Section 17.10, specify how subsystems
interact with each other. Figure 9.41 specifies the concurrency patterns and architectural
patterns that we discuss in this book.

Section
Creational design
patterns

Structural design
patterns

Behavioral design
patterns

9.24 Singleton Proxy Memento
State

Fig. 9.40Fig. 9.40Fig. 9.40Fig. 9.40 The 18 Gang-of-four design patterns discussed in Java How to Program
4/e (part 1 of 2).

Chapter 9 Object-Oriented Programming 521

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

9.24.1 Creational Design Patterns

Creational design patterns address issues related to the creation of objects, such as prevent-
ing a system from creating more than one object of a class (the Singleton creational design
pattern) or deferring until execution time the decision as to what types of objects are going
to be created (the purpose of the other creational design patterns discussed here). For ex-
ample, suppose we are designing a 3-D drawing program, in which the user can create sev-
eral 3-D geometric objects, such as cylinders, spheres, cubes, tetrahedrons, etc. At compile
time, the program does not know what shapes the user will choose to draw. Based on user
input, this program should be able to determine the class from which to instantiate an ob-
ject. If the user creates a cylinder in the GUI, our program should “know” to instantiate an
object of class Cylinder. When the user decides what geometric object to draw, the pro-
gram should determine the specific subclass from which to instantiate that object.

The gang-of-four book describes five creational patterns (four of which we discuss in
this book):

• Abstract Factory (Section 17.10)

• Builder (not discussed)

13.18 Factory Method Adapter
Bridge
Composite

Chain-of-Responsibility
Command
Observer
Strategy
Template Method

17.10 Abstract Factory Decorator
Facade

21.12 Prototype Iterator

Section Concurrent design patterns Architectural patterns

15.13 Single-Threaded Execution
Guarded Suspension
Balking
Read/Write Lock
Two-Phase Termination

17.10 Model-View-Controller
Layers

Fig. 9.41Fig. 9.41Fig. 9.41Fig. 9.41 Concurrent design patterns and architectural patterns discussed in Java
How to Program, 4/e.

Section
Creational design
patterns

Structural design
patterns

Behavioral design
patterns

Fig. 9.40Fig. 9.40Fig. 9.40Fig. 9.40 The 18 Gang-of-four design patterns discussed in Java How to Program
4/e (part 2 of 2).

522 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

• Factory Method (Section 13.18)

• Prototype (Section 21.12)

• Singleton (Section 9.24)

Singleton
Occasionally, a system should contain exactly one object of a class—that is, once the pro-
gram instantiates that object, the program should not be allowed to create additional objects
of that class. For example, some systems connect to a database using only one object that
manages database connections, which ensures that other objects cannot initialize unneces-
sary connections that would slow the system. The Singleton design pattern guarantees that
a system instantiates a maximum of one object of a class.

Figure 9.42 demonstrates Java code using the Singleton design pattern. Line 5 declares
class Singleton as final, so methods in this class cannot be overridden to handle mul-
tiple instantiations. Lines 11–14 declare a private constructor—only class Singleton
can instantiate a Singleton object using this constructor. The static method
getSingletonInstance (lines 17–24) allows the one-time instantiation of a static
Singleton object (declared on line 8) by calling the private constructor. If the Sin-
gleton object has been created, line 23 merely returns a reference to the previously
instantiated Singleton object.

Lines 10–11 of class SingletonExample (Fig. 9.43) declare two references to
Singleton objects—firstSingleton and secondSingleton. Lines 14–15 call
method getSingletonInstance and assign Singleton references to
firstSingleton and secondSingleton, respectively. Line 18 tests if these objects
reference the same Singleton object. Figure 9.44 shows that firstSingleton and
secondSingleton share the same reference to the Singleton object, because each
time method getSingletonInstance is called, it returns a reference to the same
Singleton object.

1 // Singleton.java
2 // Demonstrates Singleton design pattern
3 package com.deitel.jhtp4.designpatterns;
4
5 public final class Singleton {
6
7 // Singleton object returned by method getSingletonInstance
8 private static Singleton singleton;
9

10 // constructor prevents instantiation from other objects
11 private Singleton()
12 {
13 System.err.println("Singleton object created.");
14 }
15
16 // create Singleton and ensure only one Singleton instance
17 public static Singleton getSingletonInstance()
18 {

Fig. 9.42Fig. 9.42Fig. 9.42Fig. 9.42 Class Singleton ensures that only one object of its class is created (part
1 of 2).

Chapter 9 Object-Oriented Programming 523

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

9.24.2 Structural Design Patterns
Structural design patterns describe common ways to organize classes and objects in a sys-
tem. The gang-of-four book describes seven structural design patterns (six of which we dis-
cuss in this book):

19 // instantiate Singleton if null
20 if (singleton == null)
21 singleton = new Singleton();
22
23 return singleton;
24 }
25 }

1 // SingletonExample.java
2 // Attempt to create two Singleton objects
3 package com.deitel.jhtp4.designpatterns;
4
5 public class SingletonExample {
6
7 // run SingletonExample
8 public static void main(String args[])
9 {

10 Singleton firstSingleton;
11 Singleton secondSingleton;
12
13 // create Singleton objects
14 firstSingleton = Singleton.getSingletonInstance();
15 secondSingleton = Singleton.getSingletonInstance();
16
17 // the "two" Singletons should refer to same Singleton
18 if (firstSingleton == secondSingleton)
19 System.out.println("firstSingleton and " +
20 "secondSingleton refer to the same Singleton " +
21 "object");
22 }
23 }

Fig. 9.43Fig. 9.43Fig. 9.43Fig. 9.43 Class SingletonExample attempts to create Singleton object
more than once.

Fig. 9.44Fig. 9.44Fig. 9.44Fig. 9.44 Class SingletonExample output shows that the Singleton
object may be created only once.

Fig. 9.42Fig. 9.42Fig. 9.42Fig. 9.42 Class Singleton ensures that only one object of its class is created (part
2 of 2).

524 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

• Adapter (Section 13.18)

• Bridge (Section 13.18)

• Composite (Section 13.18)

• Decorator (Section 17.10)

• Facade (Section 17.10)

• Flyweight (not discussed)

• Proxy (Section 9.24)

Proxy
An applet should always display something while images load. Whether that “something”
is a smaller image or a string of text informing the user that the images are loading, the
Proxy design pattern can be applied to achieve this effect. This pattern allows one object
to act as a replacement for another. Consider loading several large images (several mega-
bytes) in a Java applet. Ideally, we would like to see these images instantaneously—how-
ever, loading large images into memory can take time to complete (especially on a slow
processor). The Proxy design pattern allows the system to use one object—called a proxy
object—in place of another. In our example, the proxy object could be a gauge that informs
the user of what percentage of a large image has been loaded. When this image finishes
loading, the proxy object is no longer needed—the applet can then display an image instead
of the proxy.

9.24.3 Behavioral Design Patterns

There are many different examples of behavioral design patterns, which provide proven
strategies to model how objects collaborate with one another in a system and offer special
behaviors appropriate for a wide variety of applications. Let us consider the Observer be-
havioral design pattern—a classic example of a design pattern illustrating collaborations
between objects. For example, GUI components collaborate with their listeners to respond
to user interactions. GUI components use this pattern to process user interface events. A
listener observes state changes in a particular GUI component by registering to handle that
GUI component’s events. When the user interacts with that GUI component, the compo-
nent notifies its listeners (also known as its observers) that the GUI component’s state has
changed (e.g., a button has been pressed).

Another pattern we consider is the Memento behavioral design pattern—an example
of offering special behavior for a wide variety of applications. The Memento pattern
enables a system to save an object’s state, so that state can be restored at a later time. For
example, many applications provide an “undo” capability that allows users to revert to pre-
vious versions of their work.

The gang-of-four book describes 11 behavioral design patterns (eight of which we dis-
cuss in this book):

• Chain-of-Responsibility (Section 13.18)

• Command (Section 13.18)

• Interpreter (not discussed)

• Iterator (Section 21.12)

Chapter 9 Object-Oriented Programming 525

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

• Mediator (not discussed)

• Memento (Section 9.24)

• Observer (Section 13.18)

• State (Section 9.24)

• Strategy (Section 13.18)

• Template Method (Section 13.18)

• Visitor (not discussed)

Memento
Consider a painting program. This type of program allows a user to create graphics. Occa-
sionally the user may position a graphic improperly in the drawing area. Painting programs
offer an “undo” feature that allows the user to unwind such an error. Specifically, the pro-
gram restores the drawing area’s state to that before the user placed the graphic. More so-
phisticated painting programs offer a history, which stores several states in a list, so the user
can restore the program to any state in the history.The Memento design pattern allows an
object to save its state, so that—if necessary—the object can be restored to its former state.

The Memento design pattern requires three types of objects. The originator object
occupies some state—the set of attribute values at a specific time in program execution. In
our painting-program example, the drawing area acts as the originator, because it contains
attribute information describing its state—when the program first executes, the area con-
tains no elements. The memento object stores a copy of all attributes associated with the
originator’s state—i.e., the memento saves the drawing area’s state. The memento is stored
as the first item in the history list, which acts as the caretaker object—the object that con-
tains references to all memento objects associated with the originator.

 Now, suppose the user draws a circle in the drawing area. The area contains different
information describing its state—a circle object centered at specified x-y coordinates. The
drawing area then uses another memento to store this information. This memento is stored
as the second item in the history list. The history list displays all mementos on screen, so
the user can select which state to restore. Suppose the user wishes to remove the circle—if
the user selects the first memento from the list, the drawing area uses the first memento to
restore itself to a blank area.

State
In certain designs, we must convey an object’s state information or represent the various
states that an object can occupy. Our optional elevator simulation case study in the “Think-
ing About Objects” sections uses the State design pattern. Our simulation includes an ele-
vator that moves between floors in a two-story building. A person walks across a floor and
rides the elevator to the other floor. Originally, we used an integer value to represent on
which floor the person is walking. However, we encountered a problem when we tried to
answer the question “on what floor is the person when riding the elevator?” Actually, the
person is located on neither floor—rather the person is located inside the elevator. We also
realized that the elevator and the floors are locations that the person can occupy in our sim-
ulation. We created an abstract superclass called Location to represent a “location.”
Subclasses Elevator and Floor inherit from superclass Location. Class Person
contains a reference to a Location object, which represents the current location—eleva-

526 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

tor, first floor or second floor—of that person. Because a superclass reference can hold a
subclass reference, the person’s Location attribute references the appropriate Floor
object when that person is on a floor and references the Elevator object when that person
is inside the elevator.

The elevator and floors contain buttons. (The elevator’s button signals the elevator to
move to the other floor, and the floors’ buttons summon the elevator to the floor of the
request.) Because all locations in our simulation contain buttons, class Location pro-
vides abstract method getButton. Class Elevator implements method getButton
to return a reference to the Button object inside the elevator, and class Floor imple-
ments method getButton to return a reference to the Button object on the floor. Using
its Location reference, the person is able to press the correct button—i.e., the person will
not press a floor’s button when inside the elevator and will not press the elevator’s button
when on a floor.

The State design pattern uses an abstract superclass—called the State class—which
contains methods that describe behaviors for states that an object (called the context object)
can occupy. In our elevator simulation, the State class is superclass Location, and the
context object is the object of class Person. Note that class Location does not describe
all states of class Person (e.g., whether that person is walking or waiting for the ele-
vator)—class Location describes only the location the Person and contains method
getButton so the Person can access the Button object at various locations.

 A State subclass, which extends the State class, represents an individual state that the
context can occupy. The State subclasses in our simulation are classes Elevator and
Floor. Each State subclass contains methods that implement the State class’ abstract
methods. For example, both classes Elevator and Floor implement method get-
Button.

 The context contains exactly one reference to an object of the State class—this refer-
ence is called the state object. In the simulation, the state object is the object of class Loca-
tion. When the context changes state, the state object references the State subclass object
associated with that new state. For example, when the person walks from the floor into the
elevator, the Person object’s Location is changed from referencing one of the Floor
objects to referencing the Elevator object. When the person walks onto the floor from
the elevator, the Person object’s Location references the appropriate Floor object.

9.24.4 Conclusion
In “Discovering Design Patterns” Section 9.24, we listed the three types of design pat-
terns introduced in the gang-of-four book, we identified 18 of these design patterns that
we discuss in this book and we discussed specific design patterns, including Singleton,
Proxy, Memento and State. In “Discovering Design Patterns” Section 13.18, we intro-
duce some design patterns associated with AWT and Swing GUI components. After read-
ing this section, you should understand better how Java GUI components take advantage
of design patterns.

9.24.5 Internet and World-Wide-Web Resources

The following URLs provide further information on the nature, importance and applica-
tions of design patterns.

Chapter 9 Object-Oriented Programming 527

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Design Patterns

www.hillside.net/patterns
This page displays links to information on design patterns and languages.

www.hillside.net/patterns/books/
This site lists books on design patterns.

www.netobjectives.com/design.htm
This site introduces the importance of design patterns.

umbc7.umbc.edu/~tarr/dp/dp.html
This site links to design patterns Web sites, tutorials and papers.

www.links2go.com/topic/Design_Patterns
This site links to sites and information on design patterns.

www.c2.com/ppr/
This site discusses recent advances in design patterns and ideas for future projects.

Design Patterns in Java

www.research.umbc.edu/~tarr/cs491/fall00/cs491.html
This site is for a Java design patterns course at the University of Maryland and contains numerous
examples of how to apply design patterns in Java.

www.enteract.com/~bradapp/javapats.html
This site discusses Java design patterns and presents design patterns in distributed computing.

www.meurrens.org/ip-Links/java/designPatterns/
This site displays numerous links to resources and information on Java design patterns.

Design Patterns in C++ & Visual Basic

journal.iftech.com/articles/9904_shankel_patterns/
This site provides insight to design patterns (the Iterator design pattern, in particular) in C++.

mspress.microsoft.com/prod/books/sampchap/2322.htm
This site overviews the book, Microsoft Visual Basic Design Patterns (Microsoft Press: 2000).

Architectural Patterns

compsci.about.com/science/compsci/library/weekly/aa030600a.htm
This site provides an overview the Model-View-Controller architecture.

www.javaworld.com/javaworld/jw-04-1998/jw-04-howto.html
This site contains an article discussing how Swing components use Model-View-Controller architec-
ture.

www.ootips.org/mvc-pattern.html
This site provides information and tips on using MVC.

www.ftech.co.uk/~honeyg/articles/pda.htm
This site contains an article on the importance of architectural patterns in software.

www.tml.hut.fi/Opinnot/Tik-109.450/1998/niska/sld001.htm
This site provides information on architectural patterns, design pattern, and idioms (patterns targeting
a specific language).

528 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

SUMMARY
• One of the keys to the power of object-oriented programming is achieving software reusability

through inheritance.

• Through inheritance, a new class inherits the instance variables and methods of a previously de-
fined superclass. In this case, the new class is referred to as a subclass.

• With single inheritance, a class is derived from one superclass. With multiple inheritance, a sub-
class inherits from multiple superclasses. Java does not support multiple inheritance, but Java does
provide the notion of interfaces, which offer many of the benefits of multiple inheritance.

• A subclass normally adds instance variables and methods of its own, so a subclass generally is larger
than its superclass. A subclass represents a smaller set of more specific objects than its superclass.

• A subclass cannot access the private members of its superclass. A subclass can, however, ac-
cess the public, protected and package access members of its superclass. The subclass must
be in the superclass’s package to use superclass members with package access.

• A subclass constructor always calls the constructor for its superclass first (either explicitly or im-
plicitly) to create and initialize the subclass members inherited from the superclass.

• Inheritance enables software reusability, which saves time in development and encourages the use
of previously proven and debugged high-quality software.

• An object of a subclass can be treated as an object of its corresponding superclass, but the reverse
is not true.

• A superclass exists in a hierarchical relationship with its subclasses.

• When a class is used with the mechanism of inheritance, it becomes either a superclass that supplies
attributes and behaviors to other classes or a subclass that inherits those attributes and behaviors.

• An inheritance hierarchy can be arbitrarily deep within the physical limitations of a particular sys-
tem, but most inheritance hierarchies have only a few levels.

• Hierarchies are useful for understanding and managing complexity. With software becoming in-
creasingly complex, Java provides mechanisms for supporting hierarchical structures through in-
heritance and polymorphism.

• Modifier protected serves as an intermediate level of protection between public access and
private access. Superclass protected members may be accessed by methods of the super-
class, by methods of subclasses and by methods of classes in the same package.

• A superclass may be either a direct superclass or an indirect superclass. A direct superclass is the
class that a subclass explicitly extends. An indirect superclass is inherited from several levels
up the class hierarchy tree.

• When a superclass member is inappropriate for a subclass, the programmer must override that
member in the subclass.

• In a “has a” relationship, a class object has a reference to an object of another class as a member.
In an “is a” relationship, an object of a subclass type may also be treated as an object of the super-
class type. “Is a” is inheritance. “Has a” is composition.

• A reference to a subclass object may be converted implicitly to a reference for a superclass object.

• It is possible to convert a superclass reference to a subclass reference by using an explicit cast. If
the target object is not a subclass object, a ClassCastException is thrown.

• A superclass specifies commonality. All classes derived from a superclass inherit the capabilities
of that superclass. In the object-oriented design process, the designer looks for commonality
among classes and factors it out to form superclasses. Then, subclasses are customized beyond the
capabilities inherited from the superclass.

Chapter 9 Object-Oriented Programming 529

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

• Reading a set of subclass declarations can be confusing, because inherited superclass members are
not listed in the subclass declarations, but these members are indeed present in the subclasses.

• With polymorphism, it becomes possible to design and implement systems that are more extensi-
ble. Programs can be written to process objects of types that may not exist when the program is
under development.

• Polymorphic programming can eliminate the need for switch logic, thus avoiding the kinds of
errors associated with switch logic.

• An abstract method is declared by preceding the method’s definition with the keyword ab-
stract in the superclass.

• There are many situations in which it is useful to define classes for which the programmer never
intends to instantiate any objects. Such classes are called abstract classes. Because these are
used only as superclasses, typically they are called abstract superclasses. A program cannot
instantiate objects of an abstract class.

• Classes from which a program can instantiate objects are called concrete classes.

• A class is made abstract by declaring it with the keyword abstract.

• If a subclass is derived from a superclass with an abstract method without supplying a defi-
nition for that abstract method in the subclass, that method remains abstract in the sub-
class. Consequently, the subclass is also an abstract class.

• When a request is made through a superclass reference to use a method, Java chooses the correct
overridden method in the subclass associated with the object.

• Through the use of polymorphism, one method call can cause different actions to occur, depending
on the type of the object receiving the call.

• Although we cannot instantiate objects of abstract superclasses, we can declare references to
abstract superclasses. Such references can then be used to enable polymorphic manipulations
of subclass objects when such objects are instantiated from concrete classes.

• New classes are regularly added to systems. New classes are accommodated by dynamic method
binding (also called late binding). The type of an object need not be known at compile time for
a method call to be compiled. At execution time, the appropriate method of the receiving object
is selected.

• With dynamic method binding, at execution time the call to a method is routed to the method ver-
sion appropriate for the class of the object receiving the call.

• When a superclass provides a method, subclasses can override the method, but they do not have
to override it. Thus a subclass can use a superclass’s version of a method.

• An interface definition begins with the keyword interface and contains a set of public ab-
stract methods. Interfaces may also contain public static final data.

• To use an interface, a class must specify that it implements the interface and that class must
define every method in the interface with the number of arguments and the return type specified
in the interface definition.

• An interface is typically used in place of an abstract class when there is no default implementation
to inherit.

• When a class implements an interface, the same “is a” relationship provided by inheritance ap-
plies.

• To implement more than one interface, simply provide a comma-separated list of interface names
after keyword implements in the class definition.

• Inner classes are defined inside the scope of other classes.

530 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

• An inner class can also be defined inside a method of a class. Such an inner class has access to its
outer class’s members and to the final local variables for the method in which it is defined.

• Inner class definitions are used mainly in event handling.

• Class JFrame provides the basic attributes and behaviors of a window—a title bar and buttons to
minimize, maximize and close the window.

• An inner class object has access to all the variables and methods of the outer class object.

• Because an anonymous inner class has no name, one object of the anonymous inner class must be
created at the point where the class is defined in the program.

• An anonymous inner class can implement an interface or extend a class.

• The event generated when the user clicks the window’s close box is a window closing event.

• Method addWindowListener registers a window event listener. The argument to addWin-
dowListener must be a reference to an object that is a WindowListener (package ja-
va.awt.event).

• For event handling interfaces with more than one method, Java provides a corresponding class
(called an adapter class) that already implements all the methods in the interface for you. Class
WindowAdapter implements interface WindowListener, so every WindowAdapter ob-
ject is a WindowListener.

• Compiling a class that contains inner classes results in a separate .class file for every class.

• Inner classes with class names can be defined as public, protected, package access or pri-
vate and are subject to the same usage restrictions as other members of a class.

• To access the outer class’s this reference, use OuterClassName.this.

• The outer class is responsible for creating objects of its nonstatic inner classes.

• An inner class can be declared static.

TERMINOLOGY
abstract class hierarchical relationship
abstract method implementation inheritance
abstract superclass implicit reference conversion
abstraction indirect superclass
anonymous inner class infinite recursion error
base class inheritance
Boolean class inheritance hierarchy
Character class inner class
class hierarchy Integer class
client of a class interface
composition interface inheritance
direct superclass “is a” relationship
Double class JFrame class
dynamic method binding late binding
extends Long class
extensibility member access control
final class member object
final instance variable method overriding
final method multiple inheritance
garbage collection Number class
“has a” relationship Object class

Chapter 9 Object-Oriented Programming 531

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

SELF-REVIEW EXERCISES
9.1 Fill in the blanks in each of the following statements:

a) If the class Alpha inherits from the class Beta, class Alpha is called the
class and class Beta is called the class.

b) Inheritance enables , which saves time in development and encourages using
previously proven and high-quality software components.

c) An object of a class can be treated as an object of its corresponding
 class.

d) The four member access specifiers are , , and
.

e) A “has a” relationship between classes represents and an “is a” relationship
between classes represents .

f) Using polymorphism helps eliminate logic.
g) If a class contains one or more abstract methods, it is an class.
h) A method call resolved at run-time is referred to as binding.
i) A subclass may call any nonprivate superclass method by prepending to

the method call.

9.2 State whether each of the following statements is true or false. If false, explain why.
a) A superclass typically represents a larger number of objects than its subclass represents

(true/false).
b) A subclass typically encapsulates less functionality than does its superclass. (true/false).

ANSWERS TO SELF-REVIEW EXERCISES
9.1 a) sub, super. b) software reusability. c) sub, super. d) public,protected,private and
package access. e) composition, inheritance. f) switch. g) abstract. h) dynamic. i) super.

9.2 a) True.
b) False. A subclass includes all the functionality of its superclass.

EXERCISES
9.3 Consider the class Bicycle. Given your knowledge of some common components of bi-
cycles, show a class hierarchy in which the class Bicycle inherits from other classes, which, in turn,
inherit from yet other classes. Discuss the instantiation of various objects of class Bicycle. Discuss
inheritance from class Bicycle for other closely related subclasses.

object-oriented programming (OOP) subclass reference
override a method super
override an abstract method superclass
overriding vs. overloading superclass constructor
polymorphism superclass reference
protected member of a class switch logic
reference to an abstract class this
setSize method type-wrapper class
setVisible method “uses a” relationship
single inheritance WindowAdapter class
software reusability windowClosing method
standardized software components WindowEvent class
subclass WindowListener interface
subclass constructor

532 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

9.4 Define each of the following terms: single inheritance, multiple inheritance, interface, super-
class and subclass.

9.5 Discuss why casting a superclass reference to a subclass reference is potentially dangerous.

9.6 Distinguish between single inheritance and multiple inheritance. What feature of Java helps
realize the benefits of multiple inheritance?

9.7 (True/False) A subclass is generally smaller than its superclass.

9.8 (True/False) A subclass object is also an object of that subclass’s superclass.

9.9 Some programmers prefer not to use protected access because it breaks information hid-
ing in the superclass. Discuss the relative merits of using protected access vs. private access
in superclasses.

9.10 Many programs written with inheritance could be solved with composition instead, and vice
versa. Discuss the relative merits of these approaches in the context of the Point, Circle, Cyl-
inder class hierarchy in this chapter. Rewrite the program of Fig. 9.22–Fig. 9.26 (and the support-
ing classes) to use composition rather than inheritance. After you do this, reassess the relative merits
of the two approaches both for the Point, Circle, Cylinder problem and for object-oriented
programs in general.

9.11 Rewrite the Point, Circle, Cylinder program of Fig. 9.22–Fig. 9.26 as a Point,
Square, Cube program. Do this two ways—once with inheritance and once with composition.

9.12 In the chapter, we stated, “When a superclass method is inappropriate for a subclass, that
method can be overridden in the subclass with an appropriate implementation.” If this is done, does
the subclass-is-a-superclass-object relationship still hold? Explain your answer.

9.13 Study the inheritance hierarchy of Fig. 9.2. For each class, indicate some common attributes
and behaviors consistent with the hierarchy. Add some other classes (e.g., UndergraduateStu-
dent,GraduateStudent, Freshman, Sophomore, Junior, Senior), to enrich the hierarchy.

9.14 Write an inheritance hierarchy for classes Quadrilateral, Trapezoid, Parallel-
ogram, Rectangle and Square. Use Quadrilateral as the superclass of the hierarchy.
Make the hierarchy as deep (i.e., as many levels) as possible. The private data of Quadrila-
teral should include the (x, y) coordinate pairs for the four endpoints of the Quadrilateral.
Write a driver program that instantiates and displays objects of each of these classes. [In Chapter 11,
“Graphics and Java2D,” you will learn how to use Java’s drawing capabilities.]

9.15 Write down all the shapes you can think of—both two-dimensional and three-dimensional—
and form those shapes into a shape hierarchy. Your hierarchy should have superclass Shape, from
which class TwoDimensionalShape and class ThreeDimensionalShape are derived. Once
you have developed the hierarchy, define each of the classes in the hierarchy. We will use this hier-
archy in the exercises to process all shapes as objects of superclass Shape.

9.16 How is it that polymorphism enables you to program “in the general” rather than “in the spe-
cific”? Discuss the key advantages of programming “in the general.”

9.17 Discuss the problems of programming with switch logic. Explain why polymorphism is an
effective alternative to using switch logic.

9.18 Distinguish between inheriting interface and inheriting implementation. How do inheritance hi-
erarchies designed for inheriting interface differ from those designed for inheriting implementation?

9.19 Distinguish between nonabstract methods and abstract methods.

9.20 (True/False) All methods in an abstract superclass must be declared abstract.

9.21 Suggest one or more levels of abstract superclasses for the Shape hierarchy discussed
in the beginning of this chapter (the first level is Shape and the second level consists of the classes
TwoDimensionalShape and ThreeDimensionalShape).

Chapter 9 Object-Oriented Programming 533

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

9.22 How does polymorphism promote extensibility?

9.23 You have been asked to develop a flight simulator that will have elaborate graphical outputs.
Explain why polymorphic programming would be especially effective for a problem of this nature.

9.24 Develop a basic graphics package. Use the Shape class inheritance hierarchy from
Figure 9.3. Limit yourself to two-dimensional shapes such as squares, rectangles, triangles and cir-
cles. Interact with the user. Let the user specify the position, size, shape and fill colors to be used in
drawing each shape. The user can specify many items of the same shape. As you create each shape,
place a Shape reference to each new Shape object into an array. Each class has its own draw meth-
od. Write a polymorphic screen manager that walks through the array sending draw messages to each
object in the array to form a screen image. Redraw the screen image each time the user specifies an
additional shape. Investigate the methods of class Graphics to help draw each shape.

9.25 Modify the payroll system of Fig. 9.16–Fig. 9.21 to add private instance variables
birthDate (use class Date from Figure 8.13) and departmentCode (an int) to class Em-
ployee. Assume this payroll is processed once per month. Then, as your program calculates the pay-
roll for each Employee (polymorphically), add a $100.00 bonus to the person’s payroll amount if
this is the month in which the Employee’s birthday occurs.

9.26 In Exercise 9.15, you developed a Shape class hierarchy and defined the classes in the hi-
erarchy. Modify the hierarchy so that class Shape is an abstract superclass containing the inter-
face to the hierarchy. Derive TwoDimensionalShape and ThreeDimensionalShape from
class Shape—these classes should also be abstract. Use an abstract print method to out-
put the type and dimensions of each class. Also include area and volume methods so these calcu-
lations can be performed for objects of each concrete class in the hierarchy. Write a driver program
that tests the Shape class hierarchy.

9.27 Rewrite your solution to Exercise 9.26 to use a Shape interface instead of an abstract
Shape class.

9.28 (Drawing Application) Modify the drawing program of Exercise 8.19 to create a drawing ap-
plication that draws random lines, rectangles and ovals. [Note: Like an applet, a JFrame has a
paint method that you can override to draw on the background of the JFrame.]

For this exercise, modify the MyLine, MyOval and MyRect classes of Exercise 8.19 to cre-
ate the class hierarchy in Fig. 9.45. The classes of the MyShape hierarchy should be “smart” shape
classes where objects of these classes know how to draw themselves (if provided with a Graphics
object that tells them where to draw). The only switch or if/else logic in this program should
be to determine the type of shape object to create (use random numbers to pick the shape type and
the coordinates of each shape). Once an object from this hierarchy is created, it will be manipulated
for the rest of its lifetime as a superclass MyShape reference.

Fig. 9.45Fig. 9.45Fig. 9.45Fig. 9.45 The MyShape hierarchy.

MyShape

MyLine MyRectMyOval

java.lang.Object

534 Object-Oriented Programming Chapter 9

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Class MyShape in Fig. 9.45 must be abstract. The only data representing the coordinates
of the shapes in the hierarchy should be defined in class MyShape. Lines, rectangles and ovals can
all be drawn if you know two points in space. Lines require x1, y1, x2 and y2 coordinates. The
drawLine method of the Graphics class will connect the two points supplied with a line. If you
have the same four coordinate values (x1, y1, x2 and y2) for ovals and rectangles, you can calculate
the four arguments needed to draw them. Each requires an upper-left x-coordinate value (minimum
of the two x-coordinate values), an upper-left y-coordinate value (minimum of the two y coordinate
values), a width (difference between the two x-coordinate values; must be nonnegative) and a height
(difference between the two y-coordinate values; must be nonnegative). [Note: In Chapter 12, each
x,y pair will be captured by using mouse events from mouse interactions between the user and the
program’s background. These coordinates will be stored in an appropriate shape object as selected
by the user. As you begin the exercise, you will use random coordinate values as arguments to the
constructor.]

In addition to the data for the hierarchy, class MyShape should define at least the following
methods:

a) A constructor with no arguments that sets the coordinates to 0.
b) A constructor with arguments that sets the coordinates to the supplied values.
c) Set methods for each individual piece of data that allow the programmer to independently

set any piece of data for a shape in the hierarchy (e.g., if you have an instance variable
x1, you should have a method setX1).

d) Get methods for each individual piece of data that allow the programmer to independent-
ly retrieve any piece of data for a shape in the hierarchy (e.g., if you have an instance vari-
able x1, you should have a method getX1).

e) The abstract method
 public abstract void draw(Graphics g);
This method will be called from the program’s paint method to draw a shape onto the
screen.

The preceding methods are required. If you would like to provide more methods for flexibility,
please do so. However, be sure that any method you define in this class is a method that would be
used by all shapes in the hierarchy.

All data must be private to class MyShape in this exercise (this forces you to use proper
encapsulation of the data and provide proper set/get methods to manipulate the data). You are not
allowed to define new data that can be derived from existing information. As explained previously,
the upper-left x, upper-left y, width and height needed to draw an oval or rectangle can be calculated
if you already know two points in space. All subclasses of MyShape should provide two construc-
tors that mimic those provided by class MyShape.

Objects of the MyOval and MyRect classes should not calculate their upper-left x-coordinate,
upper-left y-coordinate, width and height until they are about to draw. Never modify the x1, y1, x2
and y2 coordinates of a MyOval or MyRect object to prepare to draw them. Instead, use the tempo-
rary results of the calculations described above. This will help us enhance the program in Chapter 12
by allowing the user to select each shape’s coordinates with the mouse.

There should be no MyLine, MyOval or MyRect references in the program—only MyShape
references that refer to MyLine, MyOval and MyRect objects are allowed. The program should
keep an array of MyShape references containing all shapes. The program’s paint method should
walk through the array of MyShape references and draw every shape (i.e., call every shape’s draw
method).

Begin by defining class MyShape, class MyLine and an application to test your classes. The
application should have a MyShape instance variable that can refer to one MyLine object (created

Chapter 9 Object-Oriented Programming 535

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

in the application’s constructor). The paint method (for your subclass of JFrame) should draw
the shape with a statement like

currentShape.draw(g);

where currentShape is the MyShape reference and g is the Graphics object that the shape
will use to draw itself on the background of the window.

9.29 Next, change the single MyShape reference into an array of MyShape references and hard
code several MyLine objects into the program for drawing. The application’s paint method should
walk through the array of shapes and draw every shape.

After the preceding part is working, you should define the MyOval and MyRect classes and
add objects of these classes into the existing array. For now, all the shape objects should be created in
the constructor for your subclass of JFrame. In Chapter 12, we will create the objects when the user
chooses a shape and begins drawing it with the mouse.

In Exercise 9.28, you defined a MyShape hierarchy in which classes MyLine, MyOval and
MyRect subclass MyShape directly. If the hierarchy was properly designed, you should be able to
see the tremendous similarities between the MyOval and MyRect classes. Redesign and reimple-
ment the code for the MyOval and MyRect classes to “factor out” the common features into the
abstract class MyBoundedShape to produce the hierarchy in Fig. 9.46.

Class MyBoundedShape should define two constructors that mimic the constructors of class
MyShape and methods that calculate the upper-left x-coordinate, upper-left y-coordinate, width and
height. No new data pertaining to the dimensions of the shapes should be defined in this class.
Remember, the values needed to draw an oval or rectangle can be calculated from two (x,y) coordi-
nates. If designed properly, the new MyOval and MyRect classes should each have two construc-
tors and a draw method.

Fig. 9.46Fig. 9.46Fig. 9.46Fig. 9.46 The MyShape hierarchy.

MyShape

MyLine MyBoundedShape

java.lang.Object

MyRectMyOval

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

10
Strings and Characters

Objectives
• To be able to create and manipulate nonmodifiable

character string objects of class String.
• To be able to create and manipulate modifiable

character string objects of class StringBuffer.
• To be able to create and manipulate objects of class
Character.

• To be able to use a StringTokenizer object to
break a String object into individual components
called tokens.

The chief defect of Henry King
Was chewing little bits of string.
Hilaire Belloc

Vigorous writing is concise. A sentence should contain no
unnecessary words, a paragraph no unnecessary sentences.
William Strunk, Jr.

I have made this letter longer than usual, because I lack the
time to make it short.
Blaise Pascal

The difference between the almost-right word & the right
word is really a large matter—it’s the difference between the
lightning bug and the lightning.
Mark Twain

Mum’s the word.
Miguel de Cervantes, Don Quixote de la Mancha

Chapter 10 Strings and Characters 537

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

10.1 Introduction
In this chapter, we introduce Java’s string and character-processing capabilities. The tech-
niques discussed here are appropriate for validating program input, displaying information
to users and other text-based manipulations. The techniques also are appropriate for devel-
oping text editors, word processors, page-layout software, computerized typesetting sys-
tems and other kinds of text-processing software. We have already presented several string-
processing capabilities in the text. This chapter discusses in detail the capabilities of class
String, class StringBuffer and class Character from the java.lang package
and class StringTokenizer from the java.util package. These classes provide the
foundation for string and character manipulation in Java.

Outline

10.1 Introduction
10.2 Fundamentals of Characters and Strings
10.3 String Constructors
10.4 String Methods length, charAt and getChars
10.5 Comparing Strings
10.6 String Method hashCode
10.7 Locating Characters and Substrings in Strings
10.8 Extracting Substrings from Strings
10.9 Concatenating Strings
10.10 Miscellaneous String Methods
10.11 Using String Method valueOf
10.12 String Method intern
10.13 StringBuffer Class
10.14 StringBuffer Constructors
10.15 StringBuffer Methods length, capacity, setLength and

ensureCapacity

10.16 StringBuffer Methods charAt, setCharAt, getChars and
reverse

10.17 StringBuffer append Methods
10.18 StringBuffer Insertion and Deletion Methods
10.19 Character Class Examples
10.20 Class StringTokenizer
10.21 Card Shuffling and Dealing Simulation
10.22 (Optional Case Study) Thinking About Objects: Event Handling

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Special Section: Advanced String Manipulation Exercises • Special Section: Challenging String
Manipulation Projects

538 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

10.2 Fundamentals of Characters and Strings
Characters are the fundamental building blocks of Java source programs. Every program is
composed of a sequence of characters that—when grouped together meaningfully—is in-
terpreted by the computer as a series of instructions used to accomplish a task. A program
might contain character constants. A character constant is an integer value represented as
a character in single quotes. As we stated previously, the value of a character constant is
the integer value of the character in the Unicode character set. For example, 'z' repre-
sents the integer value of z, and '\n' represents the integer value of newline. See Appen-
dix D for the integer equivalents of these characters.

A string is a series of characters treated as a single unit. A string may include letters,
digits and various special characters, such as +, -, *, /, $ and others. A string is an object
of class String. String literals or string constants (often called anonymous String
objects) are written as a sequence of characters in double quotation marks as follows:

"John Q. Doe" (a name)
"9999 Main Street" (a street address)
"Waltham, Massachusetts" (a city and state)
"(201) 555-1212" (a telephone number)

A String may be assigned in a declaration to a String reference. The declaration

String color = "blue";

initializes String reference color to refer to the anonymous String object "blue".

Performance Tip 10.1
Java treats all anonymous Strings with the same contents as one anonymous String ob-
ject that has many references. This conserves memory. 10.1

10.3 String Constructors
Class String provides nine constructors for initializing String objects in a variety of
ways. Seven of the constructors are demonstrated in Fig. 10.1. All the constructors are used
in the StringConstructors application’s main method.

Line 25 instantiates a new String object and assigns it to reference s1, using class
String’s default constructor. The new String object contains no characters (the empty
string) and has a length of 0.

Line 26 instantiates a new String object and assigns it to reference s2, using class
String’s copy constructor. The new String object contains a copy of the characters in
the String object s that is passed as an argument to the constructor.

1 // Fig. 10.1: StringConstructors.java
2 // This program demonstrates the String class constructors.
3
4 // Java extension packages
5 import javax.swing.*;
6

Fig. 10.1Fig. 10.1Fig. 10.1Fig. 10.1 Demonstrating the String class constructors (part 1 of 2).

Chapter 10 Strings and Characters 539

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

7 public class StringConstructors {
8
9 // test String constructors

10 public static void main(String args[])
11 {
12 char charArray[] = { 'b', 'i', 'r', 't', 'h', ' ',
13 'd', 'a', 'y' };
14 byte byteArray[] = { (byte) 'n', (byte) 'e',
15 (byte) 'w', (byte) ' ', (byte) 'y',
16 (byte) 'e', (byte) 'a', (byte) 'r' };
17
18 StringBuffer buffer;
19 String s, s1, s2, s3, s4, s5, s6, s7, output;
20
21 s = new String("hello");
22 buffer = new StringBuffer("Welcome to Java Programming!");
23
24 // use String constructors
25 s1 = new String();
26 s2 = new String(s);
27 s3 = new String(charArray);
28 s4 = new String(charArray, 6, 3);
29 s5 = new String(byteArray, 4, 4);
30 s6 = new String(byteArray);
31 s7 = new String(buffer);
32
33 // append Strings to output
34 output = "s1 = " + s1 + "\ns2 = " + s2 + "\ns3 = " + s3 +
35 "\ns4 = " + s4 + "\ns5 = " + s5 + "\ns6 = " + s6 +
36 "\ns7 = " + s7;
37
38 JOptionPane.showMessageDialog(null, output,
39 "Demonstrating String Class Constructors",
40 JOptionPane.INFORMATION_MESSAGE);
41
42 System.exit(0);
43 }
44
45 } // end class StringConstructors

Fig. 10.1Fig. 10.1Fig. 10.1Fig. 10.1 Demonstrating the String class constructors (part 2 of 2).

540 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Software Engineering Observation 10.1
In most cases, it is not necessary to make a copy of an existing String object. String ob-
jects are immutable—their character contents cannot be changed after they are created. Al-
so, if there are one or more references to a String object (or any object for that matter),
the object cannot be reclaimed by the garbage collector. Thus, a String reference cannot
be used to modify a String object or to delete a String object from memory as in other
programming languages, such as C or C++. 10.1

Line 27 instantiates a new String object and assigns it to reference s3 using class
String’s constructor that takes a character array as an argument. The new String
object contains a copy of the characters in the array.

Line 28 instantiates a new String object and assigns it to reference s4 using class
String’s constructor that takes a char array and two integers as arguments. The second
argument specifies the starting position (the offset) from which characters in the array
are copied. The third argument specifies the number of characters (the count) to be copied
from the array. The new String object contains a copy of the specified characters in the
array. If the offset or the count specified as arguments result in accessing an element
outside the bounds of the character array, a StringIndexOutOfBoundsException
is thrown. We discuss exceptions in detail in Chapter 14.

Line 29 instantiates a new String object and assigns it to reference s5 using class
String’s constructor that receives a byte array and two integers as arguments. The
second and third arguments specify the offset and count, respectively. The new
String object contains a copy of the specified bytes in the array. If the offset or the
count specified as arguments result in accessing an element outside the bounds of the
character array, a StringIndexOutOfBoundsException is thrown.

Line 30 instantiates a new String object and assigns it to reference s6 using class
String’s constructor that takes a byte array as an argument. The new String object
contains a copy of the bytes in the array.

Line 31 instantiates a new String object and assigns it to reference s7 using class
String’s constructor that receives a StringBuffer as an argument. A String-
Buffer is a dynamically resizable and modifiable string. The new String object con-
tains a copy of the characters in the StringBuffer. Line 22 creates a new object of class
StringBuffer using the constructor that receives a String argument (in this case
"Welcome to Java Programming") and assign the new object to reference buffer.
We discuss StringBuffers in detail later in this chapter. The screen capture for the pro-
gram displays the contents of each String.

10.4 String Methods length, charAt and getChars
The application of Fig. 10.2 presents String methods length, charAt and get-
Chars, which determine the length of a String, get the character at a specific location
in a String and get the entire set of characters in a String, respectively.

Line 28 uses String method length to determine the number of characters in
String s1. Like arrays, Strings always know their own size. However, unlike arrays,
Strings do not have a length instance variable that specifies the number of elements
in a String.

Chapter 10 Strings and Characters 541

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

1 // Fig. 10.2: StringMiscellaneous.java
2 // This program demonstrates the length, charAt and getChars
3 // methods of the String class.
4 //
5 // Note: Method getChars requires a starting point
6 // and ending point in the String. The starting point is the
7 // actual subscript from which copying starts. The ending point
8 // is one past the subscript at which the copying ends.
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class StringMiscellaneous {
14
15 // test miscellaneous String methods
16 public static void main(String args[])
17 {
18 String s1, output;
19 char charArray[];
20
21 s1 = new String("hello there");
22 charArray = new char[5];
23
24 // output the string
25 output = "s1: " + s1;
26
27 // test length method
28 output += "\nLength of s1: " + s1.length();
29
30 // loop through characters in s1 and display reversed
31 output += "\nThe string reversed is: ";
32
33 for (int count = s1.length() - 1; count >= 0; count--)
34 output += s1.charAt(count) + " ";
35
36 // copy characters from string into char array
37 s1.getChars(0, 5, charArray, 0);
38 output += "\nThe character array is: ";
39
40 for (int count = 0; count < charArray.length; count++)
41 output += charArray[count];
42
43 JOptionPane.showMessageDialog(null, output,
44 "Demonstrating String Class Constructors",
45 JOptionPane.INFORMATION_MESSAGE);
46
47 System.exit(0);
48 }
49
50 } // end class StringMiscellaneous

Fig. 10.2Fig. 10.2Fig. 10.2Fig. 10.2 The String class character manipulation methods (part 1 of 2).

542 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Common Programming Error 10.1
Attempting to determine the length of a String via an instance variable called length
(e.g., s1.length) is a syntax error. The String method length must be used. (e.g.,
s1.length()). 10.1

The for structure at lines 33–34 appends to output the characters of the String
s1 in reverse order. The String method charAt returns the character at a specific posi-
tion in the String. Method charAt receives an integer argument that is used as the posi-
tion number (or index) and returns the character at that position. Like arrays, the first
element of a String is considered to be at position 0.

Common Programming Error 10.2
Attempting to access a character that is outside the bounds of a String (i.e., an index less
than 0 or an index greater than or equal to the String’s length) results in a String-
IndexOutOfBoundsException. 10.2

Line 37 uses String method getChars to copy the characters of a String into a
character array. The first argument is the starting index from which characters are copied
in the String. The second argument is the index that is one past the last character to be
copied from the String. The third argument is the character array into which the charac-
ters are copied. The last argument is the starting index where the copied characters are
placed in the character array. Next, the char array contents are appended one character at
a time to String output with the for structure at lines 40–41 for display purposes.

10.5 Comparing Strings
Java provides a variety of methods for comparing String objects; these are demonstrated
in the next two examples. To understand just what it means for one string to be “greater
than” or “less than” another string, consider the process of alphabetizing a series of last
names. The reader would, no doubt, place “Jones” before “Smith” because the first letter
of “Jones” comes before the first letter of “Smith” in the alphabet. But the alphabet is more
than just a list of 26 letters—it is an ordered list of characters. Each letter occurs in a spe-
cific position within the list. “Z” is more than just a letter of the alphabet; “Z” is specifically
the twenty-sixth letter of the alphabet.

How does the computer know that one letter comes before another? All characters are
represented inside the computer as numeric codes (see Appendix D). When the computer
compares two strings, it actually compares the numeric codes of the characters in the
strings.

Fig. 10.2Fig. 10.2Fig. 10.2Fig. 10.2 The String class character manipulation methods (part 2 of 2).

Chapter 10 Strings and Characters 543

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Figure 10.3 demonstrates the String methods equals, equalsIgnoreCase,
compareTo and regionMatches and demonstrates using the equality operator == to
compare String objects.

1 // Fig. 10.3: StringCompare.java
2 // This program demonstrates the methods equals,
3 // equalsIgnoreCase, compareTo, and regionMatches
4 // of the String class.
5
6 // Java extension packages
7 import javax.swing.JOptionPane;
8
9 public class StringCompare {

10
11 // test String class comparison methods
12 public static void main(String args[])
13 {
14 String s1, s2, s3, s4, output;
15
16 s1 = new String("hello");
17 s2 = new String("good bye");
18 s3 = new String("Happy Birthday");
19 s4 = new String("happy birthday");
20
21 output = "s1 = " + s1 + "\ns2 = " + s2 +
22 "\ns3 = " + s3 + "\ns4 = " + s4 + "\n\n";
23
24 // test for equality
25 if (s1.equals("hello"))
26 output += "s1 equals \"hello\"\n";
27 else
28 output += "s1 does not equal \"hello\"\n";
29
30 // test for equality with ==
31 if (s1 == "hello")
32 output += "s1 equals \"hello\"\n";
33 else
34 output += "s1 does not equal \"hello\"\n";
35
36 // test for equality (ignore case)
37 if (s3.equalsIgnoreCase(s4))
38 output += "s3 equals s4\n";
39 else
40 output += "s3 does not equal s4\n";
41
42 // test compareTo
43 output +=
44 "\ns1.compareTo(s2) is " + s1.compareTo(s2) +
45 "\ns2.compareTo(s1) is " + s2.compareTo(s1) +
46 "\ns1.compareTo(s1) is " + s1.compareTo(s1) +
47 "\ns3.compareTo(s4) is " + s3.compareTo(s4) +
48 "\ns4.compareTo(s3) is " + s4.compareTo(s3) +
49 "\n\n";

Fig. 10.3Fig. 10.3Fig. 10.3Fig. 10.3 Demonstrating String comparisons (part 1 of 2).

544 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The condition in the if structure at line 25 uses method equals to compare String
s1 and anonymous String "hello" for equality. Method equals (inherited into
String from its superclass Object) tests any two objects for equality—the contents of
the two objects are identical. The method returns true if the objects are equal and false
otherwise. The preceding condition is true because String s1 was initialized with a
copy of the anonymous String "hello". Method equals uses a lexicographical com-
parison—the integer Unicode values that represent each character in each String are

50
51 // test regionMatches (case sensitive)
52 if (s3.regionMatches(0, s4, 0, 5))
53 output += "First 5 characters of s3 and s4 match\n";
54 else
55 output +=
56 "First 5 characters of s3 and s4 do not match\n";
57
58 // test regionMatches (ignore case)
59 if (s3.regionMatches(true, 0, s4, 0, 5))
60 output += "First 5 characters of s3 and s4 match";
61 else
62 output +=
63 "First 5 characters of s3 and s4 do not match";
64
65 JOptionPane.showMessageDialog(null, output,
66 "Demonstrating String Class Constructors",
67 JOptionPane.INFORMATION_MESSAGE);
68
69 System.exit(0);
70 }
71
72 } // end class StringCompare

Fig. 10.3Fig. 10.3Fig. 10.3Fig. 10.3 Demonstrating String comparisons (part 2 of 2).

Chapter 10 Strings and Characters 545

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

compared. Thus, if the String "hello" is compared with the String "HELLO", the
result is false, because the integer representation of a lowercase letter is different from
that of the corresponding uppercase letter.

The condition in the if structure at line 31 uses the equality operator == to compare
String s1 for equality with the anonymous String "hello". Operator == has dif-
ferent functionality when it is used to compare references and when it is used to compare
values of primitive data types. When primitive data type values are compared with ==, the
result is true if both values are identical. When references are compared with ==, the
result is true if both references refer to the same object in memory. To compare the actual
contents (or state information) of objects for equality, methods (such as equals) must be
invoked. The preceding condition evaluates to false in this program because the refer-
ence s1 was initialized with the statement

s1 = new String("hello");

which creates a new String object with a copy of anonymous String "hello" and
assigns the new object to reference s1. If s1 had been initialized with the statement

s1 = "hello";

which directly assigns the anonymous String "hello" to the reference s1, the condi-
tion would be true. Remember that Java treats all anonymous String objects with the
same contents as one anonymous String object that has many references. Thus, lines 16,
25 and 31 all refer to the same anonymous String object "hello" in memory.

Common Programming Error 10.3
Comparing references with == can lead to logic errors, because == compares the references
to determine whether they refer to the same object, not whether two objects have the same
contents. When two identical (but separate) objects are compared with ==, the result will be
false. When comparing objects to determine whether they have the same contents, use
method equals. 10.3

If you are sorting Strings, you may compare them for equality with method
equalsIgnoreCase, which ignores the case of the letters in each String when per-
forming the comparison. Thus, the String "hello" and the String "HELLO" com-
pare as equal. The if structure at line 37 uses String method equalsIgnoreCase to
compare String s3—Happy Birthday—for equality with String s4—happy
birthday. The result of this comparison is true, because the comparison ignores case
sensitivity.

Lines 44–48 use String method compareTo to compare String objects. For
example, line 44 compares String s1 to String s2. Method compareTo returns 0 if
the Strings are equal, a negative number if the String that invokes compareTo is
less than the String that is passed as an argument and a positive number if the String
that invokes compareTo is greater than the String that is passed as an argument.
Method compareTo uses a lexicographical comparison—it compares the numeric values
of corresponding characters in each String.

The condition in the if structure at line 52 uses String method regionMatches
to compare portions of two String objects for equality. The first argument is the starting
index in the String that invokes the method. The second argument is a comparison

546 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

String. The third argument is the starting index in the comparison String. The last
argument is the number of characters to compare between the two Strings. The method
returns true only if the specified number of characters are lexicographically equal.

Finally, the condition in the if structure at line 59 uses a second version of String
method regionMatches to compare portions of two String objects for equality. If the
first argument is true, the method ignores the case of the characters being compared. The
remaining arguments are identical to those described for the for-argument region-
Matches method.

The second example of this section (Fig. 10.4) demonstrates the startsWith and
endsWith methods of class String. Application StringStartEnd’s main method
defines an array of Strings called strings containing "started", "starting",
"ended" and "ending". The remainder of method main consists of three for struc-
tures that test the elements of the array to determine whether they start with or end with a
particular set of characters.

1 // Fig. 10.4: StringStartEnd.java
2 // This program demonstrates the methods startsWith and
3 // endsWith of the String class.
4
5 // Java extension packages
6 import javax.swing.*;
7
8 public class StringStartEnd {
9

10 // test String comparison methods for beginning and end
11 // of a String
12 public static void main(String args[])
13 {
14 String strings[] =
15 { "started", "starting", "ended", "ending" };
16 String output = "";
17
18 // test method startsWith
19 for (int count = 0; count < strings.length; count++)
20
21 if (strings[count].startsWith("st"))
22 output += "\"" + strings[count] +
23 "\" starts with \"st\"\n";
24
25 output += "\n";
26
27 // test method startsWith starting from position
28 // 2 of the string
29 for (int count = 0; count < strings.length; count++)
30
31 if (strings[count].startsWith("art", 2))
32 output += "\"" + strings[count] +
33 "\" starts with \"art\" at position 2\n";
34
35 output += "\n";

Fig. 10.4Fig. 10.4Fig. 10.4Fig. 10.4 String class startsWith and endsWith methods (part 1 of 2).

Chapter 10 Strings and Characters 547

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The first for structure (lines 19–23) uses the version of method startsWith that
takes a String argument. The condition in the if structure (line 21) determines whether
the String at location count of the array starts with the characters "st". If so, the
method returns true and the program appends strings[count]to output for dis-
play purposes.

The second for structure (lines 29–33) uses the version of method startsWith that
takes a String and an integer as arguments. The integer argument specifies the index at
which the comparison should begin in the String. The condition in the if structure (line
31) determines whether the String at location count of the array starts with the characters
"art" beginning with the character at index 2 in each String. If so, the method returns
true and the program appends strings[count]to output for display purposes.

The third for structure (line 38–42) uses method endsWith, which takes a String
argument. The condition in the if structure (40) determines whether the String at loca-
tion count of the array ends with the characters "ed". If so, the method returns true and
the program appends strings[count] to output for display purposes.

10.6 String Method hashCode
Often, it is necessary to store Strings and other data types in a manner that allows the
information to be found quickly. One of the best ways to store information for fast lookup

36
37 // test method endsWith
38 for (int count = 0; count < strings.length; count++)
39
40 if (strings[count].endsWith("ed"))
41 output += "\"" + strings[count] +
42 "\" ends with \"ed\"\n";
43
44 JOptionPane.showMessageDialog(null, output,
45 "Demonstrating String Class Comparisons",
46 JOptionPane.INFORMATION_MESSAGE);
47
48 System.exit(0);
49 }
50
51 } // end class StringStartEnd

Fig. 10.4Fig. 10.4Fig. 10.4Fig. 10.4 String class startsWith and endsWith methods (part 2 of 2).

548 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

is a hash table. A hash table stores information using a special calculation on the object to
be stored that produces a hash code. The hash code is used to choose the location in the
table at which to store the object. When the information needs to be retrieved, the same cal-
culation is performed, the hash code is determined and a lookup of that location in the table
results in the value that was stored there previously. Every object has the ability to be stored
in a hash table. Class Object defines method hashCode to perform the hash code cal-
culation. This method is inherited by all subclasses of Object. Method hashCode is
overridden by String to provide a good hash code distribution based on the contents of
the String. We will say more about hashing in Chapter 20.

The example in Fig. 10.5 demonstrates the hashCode method for two Strings con-
taining "hello" and "Hello". Note that the hash code value for each String is dif-
ferent. That is because the Strings themselves are lexicographically different.

1 // Fig. 10.5: StringHashCode.java1
2 // This program demonstrates the method
3 // hashCode of the String class.
4
5 // Java extension packages
6 import javax.swing.*;
7
8 public class StringHashCode {
9

10 // test String hashCode method
11 public static void main(String args[])
12 {
13 String s1 = "hello", s2 = "Hello";
14
15 String output =
16 "The hash code for \"" + s1 + "\" is " +
17 s1.hashCode() +
18 "\nThe hash code for \"" + s2 + "\" is " +
19 s2.hashCode();
20
21 JOptionPane.showMessageDialog(null, output,
22 "Demonstrating String Method hashCode",
23 JOptionPane.INFORMATION_MESSAGE);
24
25 System.exit(0);
26 }
27
28 } // end class StringHashCode

Fig. 10.5Fig. 10.5Fig. 10.5Fig. 10.5 String class hashCode method.

Chapter 10 Strings and Characters 549

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

10.7 Locating Characters and Substrings in Strings
Often it is useful to search for a character or set of characters in a String. For example,
if you are creating your own word processor, you might want to provide a capability for
searching through the document. The application of Fig. 10.6 demonstrates the many ver-
sions of String methods indexOf and lastIndexOf that search for a specified char-
acter or substring in a String. All the searches in this example are performed on the
String letters (initialized with "abcdefghijklmabcdefghijklm") in method
main of class StringIndexMethods.

1 // Fig. 10.6: StringIndexMethods.java
2 // This program demonstrates the String
3 // class index methods.
4
5 // Java extension packages
6 import javax.swing.*;
7
8 public class StringIndexMethods {
9

10 // String searching methods
11 public static void main(String args[])
12 {
13 String letters = "abcdefghijklmabcdefghijklm";
14
15 // test indexOf to locate a character in a string
16 String output = "'c' is located at index " +
17 letters.indexOf('c');
18
19 output += "\n'a' is located at index " +
20 letters.indexOf('a', 1);
21
22 output += "\n'$' is located at index " +
23 letters.indexOf('$');
24
25 // test lastIndexOf to find a character in a string
26 output += "\n\nLast 'c' is located at index " +
27 letters.lastIndexOf('c');
28
29 output += "\nLast 'a' is located at index " +
30 letters.lastIndexOf('a', 25);
31
32 output += "\nLast '$' is located at index " +
33 letters.lastIndexOf('$');
34
35 // test indexOf to locate a substring in a string
36 output += "\n\n\"def\" is located at index " +
37 letters.indexOf("def");
38
39 output += "\n\"def\" is located at index " +
40 letters.indexOf("def", 7);
41

Fig. 10.6Fig. 10.6Fig. 10.6Fig. 10.6 The String class searching methods (part 1 of 2).

550 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The statements at lines 16–23 use method indexOf to locate the first occurrence of
a character in a String. If indexOf finds the character, indexOf returns the index of
that character in the String; otherwise, indexOf returns –1. There are two versions of
indexOf that search for characters in a String. The expression on line 17 uses method
indexOf that takes one integer argument, which is the integer representation of a char-
acter. Remember that a character constant in single quotes is of type char and specifies
the integer representation of the character in the Unicode character set. The expression at
line 20 uses the second version of method indexOf, which takes two integer arguments—
the integer representation of a character and the starting index at which the search of the
String should begin.

42 output += "\n\"hello\" is located at index " +
43 letters.indexOf("hello");
44
45 // test lastIndexOf to find a substring in a string
46 output += "\n\nLast \"def\" is located at index " +
47 letters.lastIndexOf("def");
48
49 output += "\nLast \"def\" is located at index " +
50 letters.lastIndexOf("def", 25);
51
52 output += "\nLast \"hello\" is located at index " +
53 letters.lastIndexOf("hello");
54
55 JOptionPane.showMessageDialog(null, output,
56 "Demonstrating String Class \"index\" Methods",
57 JOptionPane.INFORMATION_MESSAGE);
58
59 System.exit(0);
60 }
61
62 } // end class StringIndexMethods

Fig. 10.6Fig. 10.6Fig. 10.6Fig. 10.6 The String class searching methods (part 2 of 2).

Chapter 10 Strings and Characters 551

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The statements at lines 26–33 use method lastIndexOf to locate the last occur-
rence of a character in a String. Method lastIndexOf performs the search from the
end of the String toward the beginning of the String. If method lastIndexOf finds
the character, lastIndexOf returns the index of that character in the String; other-
wise, lastIndexOf returns –1. There are two versions of lastIndexOf that search
for characters in a String. The expression at line 27 uses the version of method
lastIndexOf that takes one integer argument that is the integer representation of a char-
acter. The expression at line 30 uses the version of method lastIndexOf that takes two
integer arguments—the integer representation of a character and the highest index from
which to begin searching backward for the character.

Lines 36–53 of the program demonstrate versions of methods indexOf and
lastIndexOf that each take a String as the first argument. These versions of the
methods perform identically to those described above except that they search for sequences
of characters (or substrings) that are specified by their String arguments.

10.8 Extracting Substrings from Strings
Class String provides two substring methods to enable a new String object to be
created by copying part of an existing String object. Each method returns a new String
object. Both methods are demonstrated in Fig. 10.7.

1 // Fig. 10.7: SubString.java
2 // This program demonstrates the
3 // String class substring methods.
4
5 // Java extension packages
6 import javax.swing.*;
7
8 public class SubString {
9

10 // test String substring methods
11 public static void main(String args[])
12 {
13 String letters = "abcdefghijklmabcdefghijklm";
14
15 // test substring methods
16 String output = "Substring from index 20 to end is " +
17 "\"" + letters.substring(20) + "\"\n";
18
19 output += "Substring from index 0 up to 6 is " +
20 "\"" + letters.substring(0, 6) + "\"";
21
22 JOptionPane.showMessageDialog(null, output,
23 "Demonstrating String Class Substring Methods",
24 JOptionPane.INFORMATION_MESSAGE);
25
26 System.exit(0);
27 }
28
29 } // end class SubString

Fig. 10.7Fig. 10.7Fig. 10.7Fig. 10.7 String class substring methods (part 1 of 2).

552 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The expression letters.substring(20) from line 17 uses the substring
method that takes one integer argument. The argument specifies the starting index from
which characters are copied in the original String. The substring returned contains a
copy of the characters from the starting index to the end of the String. If the index spec-
ified as an argument is outside the bounds of the String, the program generates a
StringIndexOutOfBoundsException.

The expression letters.substring(0, 6) from line 17 uses the substring
method that takes two integer arguments. The first argument specifies the starting index
from which characters are copied in the original String. The second argument specifies
the index one beyond the last character to be copied (i.e., copy up to, but not including, that
index in the String). The substring returned contains copies of the specified characters
from the original String. If the arguments are outside the bounds of the String, the pro-
gram generates a StringIndexOutOfBoundsException.

10.9 Concatenating Strings
The String method concat (Fig. 10.8) concatenates two String objects and returns
a new String object containing the characters from both original Strings. If the argu-
ment String has no characters in it, the original String is returned. The expression
s1.concat(s2) at line 20 appends the characters from the String s2 to the end of
the String s1. The original Strings to which s1 and s2 refer are not modified.

Performance Tip 10.2
In programs that frequently perform String concatenation, or other String modifica-
tions, it is more efficient to implement those modifications with class StringBuffer (cov-
ered in Section 10.13–Section 10.18). 10.2

Fig. 10.7Fig. 10.7Fig. 10.7Fig. 10.7 String class substring methods (part 2 of 2).

1 // Fig. 10.8: StringConcatenation.java
2 // This program demonstrates the String class concat method.
3 // Note that the concat method returns a new String object. It
4 // does not modify the object that invoked the concat method.
5
6 // Java extension packages
7 import javax.swing.*;
8
9 public class StringConcatenation {

10

Fig. 10.8Fig. 10.8Fig. 10.8Fig. 10.8 String method concat (part 1 of 2).

Chapter 10 Strings and Characters 553

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

10.10 Miscellaneous String Methods
Class String provides several methods that return modified copies of Strings or that
return a character array. These methods are demonstrated in the application of Fig. 10.9.

Line 22 uses String method replace to return a new String object in which the
method replaces every occurrence in String s1 of character 'l' (el) with character 'L'.
Method replace leaves the original String unchanged. If there are no occurrences of the
first argument in the String, Method replace returns the original String.

Line 26 uses String method toUpperCase to generate a new String object with
uppercase letters where corresponding lowercase letters reside in s1. The method returns
a new String object containing the converted String and leaves the original String
unchanged. If there are no characters to convert to uppercase letters, method toUpper-
Case returns the original String.

Line 27 uses String method toLowerCase to return a new String object with
lowercase letters where corresponding uppercase letters reside in s1. The original String
remains unchanged. If there are no characters to convert to lowercase letters, method
toLowerCase returns the original String.

11 // test String method concat
12 public static void main(String args[])
13 {
14 String s1 = new String("Happy "),
15 s2 = new String("Birthday");
16
17 String output = "s1 = " + s1 + "\ns2 = " + s2;
18
19 output += "\n\nResult of s1.concat(s2) = " +
20 s1.concat(s2);
21
22 output += "\ns1 after concatenation = " + s1;
23
24 JOptionPane.showMessageDialog(null, output,
25 "Demonstrating String Method concat",
26 JOptionPane.INFORMATION_MESSAGE);
27
28 System.exit(0);
29 }
30
31 } // end class StringConcatenation

Fig. 10.8Fig. 10.8Fig. 10.8Fig. 10.8 String method concat (part 2 of 2).

554 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

1 // Fig. 10.9: StringMiscellaneous2.java
2 // This program demonstrates the String methods replace,
3 // toLowerCase, toUpperCase, trim, toString and toCharArray
4
5 // Java extension packages
6 import javax.swing.*;
7
8 public class StringMiscellaneous2 {
9

10 // test miscellaneous String methods
11 public static void main(String args[])
12 {
13 String s1 = new String("hello"),
14 s2 = new String("GOOD BYE"),
15 s3 = new String(" spaces ");
16
17 String output = "s1 = " + s1 + "\ns2 = " + s2 +
18 "\ns3 = " + s3;
19
20 // test method replace
21 output += "\n\nReplace 'l' with 'L' in s1: " +
22 s1.replace('l', 'L');
23
24 // test toLowerCase and toUpperCase
25 output +=
26 "\n\ns1.toUpperCase() = " + s1.toUpperCase() +
27 "\ns2.toLowerCase() = " + s2.toLowerCase();
28
29 // test trim method
30 output += "\n\ns3 after trim = \"" + s3.trim() + "\"";
31
32 // test toString method
33 output += "\n\ns1 = " + s1.toString();
34
35 // test toCharArray method
36 char charArray[] = s1.toCharArray();
37
38 output += "\n\ns1 as a character array = ";
39
40 for (int count = 0; count < charArray.length; ++count)
41 output += charArray[count];
42
43 JOptionPane.showMessageDialog(null, output,
44 "Demonstrating Miscellaneous String Methods",
45 JOptionPane.INFORMATION_MESSAGE);
46
47 System.exit(0);
48 }
49
50 } // end class StringMiscellaneous2

Fig. 10.9Fig. 10.9Fig. 10.9Fig. 10.9 Miscellaneous String methods (part 1 of 2).

Chapter 10 Strings and Characters 555

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Line 30 uses String method trim to generate a new String object that removes all
white-space characters that appear at the beginning or end of the String to which the trim
message is sent. The method returns a new String object containing the String without
leading or trailing white-space characters. The original String remains unchanged.

Line 33 uses String method toString to return the String s1. Why is the
toString method provided for class String? All objects can be converted to Strings
in Java by using method toString, which originates in class Object. If a class that
inherits from Object (such as String) does not override method toString, the default
version from class Object is used. The default version in Object creates a String con-
sisting of the object’s class name and the hash code for the object. The toString method
normally is used to express the contents of an object as text. Method toString is provided
in class String to ensure that the proper String value is returned.

Line 36 creates a new character array containing a copy of the characters in String
s1 and assigns it to charArray.

10.11 Using String Method valueOf
Class String provides a set of static class methods that take arguments of various
types, convert those arguments to Strings and return them as String objects. Class
StringValueOf (Fig. 10.10) demonstrates the String class valueOf methods.

1 // Fig. 10.10: StringValueOf.java
2 // This program demonstrates the String class valueOf methods.
3
4 // Java extension packages
5 import javax.swing.*;
6

Fig. 10.10Fig. 10.10Fig. 10.10Fig. 10.10 String class valueOf methods (part 1 of 2).

Fig. 10.9Fig. 10.9Fig. 10.9Fig. 10.9 Miscellaneous String methods (part 2 of 2).

556 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The expression String.valueOf(charArray) from line 23 copies the con-
tents of the character array charArray into a new String object and returns the new
String. The expression String.valueOf(charArray, 3, 3) from line 25

7 public class StringValueOf {
8
9 // test String valueOf methods

10 public static void main(String args[])
11 {
12 char charArray[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
13 boolean b = true;
14 char c = 'Z';
15 int i = 7;
16 long l = 10000000;
17 float f = 2.5f;
18 double d = 33.333;
19
20 Object o = "hello"; // assign to an Object reference
21 String output;
22
23 output = "char array = " + String.valueOf(charArray) +
24 "\npart of char array = " +
25 String.valueOf(charArray, 3, 3) +
26 "\nboolean = " + String.valueOf(b) +
27 "\nchar = " + String.valueOf(c) +
28 "\nint = " + String.valueOf(i) +
29 "\nlong = " + String.valueOf(l) +
30 "\nfloat = " + String.valueOf(f) +
31 "\ndouble = " + String.valueOf(d) +
32 "\nObject = " + String.valueOf(o);
33
34 JOptionPane.showMessageDialog(null, output,
35 "Demonstrating String Class valueOf Methods",
36 JOptionPane.INFORMATION_MESSAGE);
37
38 System.exit(0);
39 }
40
41 } // end class StringValueOf

Fig. 10.10Fig. 10.10Fig. 10.10Fig. 10.10 String class valueOf methods (part 2 of 2).

Chapter 10 Strings and Characters 557

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

copies a portion of the contents of the character array charArray into a new String
object and returns the new String. The second argument specifies the starting index
from which the characters are copied. The third argument specifies the number of charac-
ters to copy.

There are seven other versions of method valueOf, which take arguments of type
boolean, char, int, long, float, double and Object, respectively. These are
demonstrated in lines 26–32 of the program. Note that the version of valueOf that takes
an Object as an argument can do so because all Objects can be converted to Strings
with method toString.

10.12 String Method intern
Comparing large String objects is a relatively slow operation. String method intern
can improve String comparison performance. When String method intern is in-
voked on a String object, it returns a reference to a String object that is guaranteed to
have the same contents as the original String. Class String maintains the resulting
String during program execution. Subsequently, if the program invokes method in-
tern on other String objects with contents identical to the original String, method
intern returns a reference to the copy of the String maintained in memory by class
String. If a program uses intern on extremely large Strings, the program can com-
pare those Strings faster by using the == operator, which simply compares two referenc-
es—a fast operation. Using standard String methods such as equals and
equalsIgnoreCase can be slower, because they compare corresponding characters in
each String. For large Strings, this is a time-consuming, iterative operation. The pro-
gram of Fig. 10.11 demonstrates the intern method.

The program declares five String references—s1, s2, s3, s4 and output.
Strings s1 and s2 are initialized with new String objects that each contain a copy of
"hello". The first if structure (lines 20–23) uses operator == to determine that
Strings s1 and s2 are the same object. References s1 and s2 refer to different objects,
because they were initialized with new String objects.

The second if structure (lines 26–29) uses method equals to determine that the con-
tents of Strings s1 and s2 are equal. They were each initialized with copies of
"hello", so they have the same contents.

1 // Fig. 10.11: StringIntern.java
2 // This program demonstrates the intern method
3 // of the String class.
4
5 // Java extension packages
6 import javax.swing.*;
7
8 public class StringIntern {
9

10 // test String method intern
11 public static void main(String args[])
12 {
13 String s1, s2, s3, s4, output;

Fig. 10.11Fig. 10.11Fig. 10.11Fig. 10.11 String class intern method (part 1 of 3).

558 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

14
15 s1 = new String("hello");
16 s2 = new String("hello");
17
18 // test strings to determine if they are same
19 // String object in memory
20 if (s1 == s2)
21 output = "s1 and s2 are the same object in memory";
22 else
23 output = "s1 and s2 are not the same object in memory";
24
25 // test strings for equality of contents
26 if (s1.equals(s2))
27 output += "\ns1 and s2 are equal";
28 else
29 output += "\ns1 and s2 are not equal";
30
31 // use String intern method to get a unique copy of
32 // "hello" referred to by both s3 and s4
33 s3 = s1.intern();
34 s4 = s2.intern();
35
36 // test strings to determine if they are same
37 // String object in memory
38 if (s3 == s4)
39 output += "\ns3 and s4 are the same object in memory";
40 else
41 output +=
42 "\ns3 and s4 are not the same object in memory";
43
44 // determine if s1 and s3 refer to same object
45 if (s1 == s3)
46 output +=
47 "\ns1 and s3 are the same object in memory";
48 else
49 output +=
50 "\ns1 and s3 are not the same object in memory";
51
52 // determine if s2 and s4 refer to same object
53 if (s2 == s4)
54 output += "\ns2 and s4 are the same object in memory";
55 else
56 output +=
57 "\ns2 and s4 are not the same object in memory";
58
59 // determine if s1 and s4 refer to same object
60 if (s1 == s4)
61 output += "\ns1 and s4 are the same object in memory";
62 else
63 output +=
64 "\ns1 and s4 are not the same object in memory";
65

Fig. 10.11Fig. 10.11Fig. 10.11Fig. 10.11 String class intern method (part 2 of 3).

Chapter 10 Strings and Characters 559

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Line 33 uses method intern to get a reference to a String with the same contents
as object s1 and assigns the reference to s3. The String to which s3 refers is maintained
in memory by class String. Line 34 also uses method intern to get a reference to a
String object. However, because String s1 and String s2 have the same contents,
the reference returned by this call to intern is a reference to the same String object
returned by s1.intern(). The third if structure (lines 38–42) uses operator == to
determine that Strings s3 and s4 refer to the same object.

The fourth if structure (lines 45–50) uses operator == to determine that Strings s1
and s3 are not the same object. Technically, they could refer to the same object, but they
are not guaranteed to refer to the same object unless the objects they refer to were returned
by calls to intern on Strings with the same contents. In this case, s1 refers to the
String it was assigned in method main and s3 refers to the String with the same con-
tents maintained by class String.

The fifth if structure (lines 53–57) uses operator == to determine that Strings s2
and s4 are not the same object, because the second intern call results in a reference to
the same object returned by s1.intern(), not s2. Similarly, the sixth if structure
(lines 60–64) uses operator == to determine that Strings s1 and s4 are not the same
object, because the second intern call results in a reference to the same object returned
by s1.intern(), not s1.

10.13 StringBuffer Class
The String class provides many capabilities for processing Strings. However, once a
String object is created, its contents can never change. The next several sections discuss
the features of class StringBuffer for creating and manipulating dynamic string infor-
mation—i.e., modifiable Strings. Every StringBuffer is capable of storing a num-
ber of characters specified by its capacity. If the capacity of a StringBuffer is
exceeded, the capacity is automatically expanded to accommodate the additional charac-

66 JOptionPane.showMessageDialog(null, output,
67 "Demonstrating String Method intern",
68 JOptionPane.INFORMATION_MESSAGE);
69
70 System.exit(0);
71 }
72
73 } // end class StringIntern

Fig. 10.11Fig. 10.11Fig. 10.11Fig. 10.11 String class intern method (part 3 of 3).

560 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

ters. As we will see, class StringBuffer is also used to implement operators + and +=
for String concatenation.

Performance Tip 10.3
String objects are constant strings and StringBuffer objects are modifiable strings.
Java distinguishes constant strings from modifiable strings for optimization purposes; in
particular, Java can perform certain optimizations involving String objects (such as shar-
ing one String object among multiple references) because it knows these objects will not
change. 10.3

Performance Tip 10.4
When given the choice between using a String object to represent a string versus a
StringBuffer object to represent that string, always use a String object if indeed the
object will not change; this improves performance. 10.4

Common Programming Error 10.4
Invoking StringBuffer methods that are not methods of class String on String ob-
jects is a syntax error. 10.4

10.14 StringBuffer Constructors
Class StringBuffer provides three constructors (demonstrated in Fig. 10.12). Line 14
uses the default StringBuffer constructor to create a StringBuffer with no char-
acters in it and an initial capacity of 16 characters. Line 15 uses StringBuffer construc-
tor that takes an integer argument to create a StringBuffer with no characters in it and
the initial capacity specified in the integer argument (i.e., 10). Line 16 uses the String-
Buffer constructor that takes a String argument to create a StringBuffer contain-
ing the characters of the String argument. The initial capacity is the number of characters
in the String argument plus 16.

The statement on lines 18–21 uses StringBuffer method toString to convert
the StringBuffers into String objects that can be displayed with drawString.
Note the use of operator + to concatenate Strings for output. In Section 10.17, we discuss
how Java uses StringBuffers to implement the + and += operators for String con-
catenation.

1 // Fig. 10.12: StringBufferConstructors.java
2 // This program demonstrates the StringBuffer constructors.
3
4 // Java extension packages
5 import javax.swing.*;
6
7 public class StringBufferConstructors {
8
9 // test StringBuffer constructors

10 public static void main(String args[])
11 {
12 StringBuffer buffer1, buffer2, buffer3;
13

Fig. 10.12Fig. 10.12Fig. 10.12Fig. 10.12 StringBuffer class constructors (part 1 of 2).

Chapter 10 Strings and Characters 561

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

10.15 StringBuffer Methods length, capacity,
setLength and ensureCapacity
Class StringBuffer provides the length and capacity methods to return the num-
ber of characters currently in a StringBuffer and the number of characters that can be
stored in a StringBuffer without allocating more memory, respectively. Method en-
sureCapacity is provided to allow the programmer to guarantee that a String-
Buffer has a minimum capacity. Method setLength is provided to enable the
programmer to increase or decrease the length of a StringBuffer. The program of
Fig. 10.13 demonstrates these methods.

14 buffer1 = new StringBuffer();
15 buffer2 = new StringBuffer(10);
16 buffer3 = new StringBuffer("hello");
17
18 String output =
19 "buffer1 = \"" + buffer1.toString() + "\"" +
20 "\nbuffer2 = \"" + buffer2.toString() + "\"" +
21 "\nbuffer3 = \"" + buffer3.toString() + "\"";
22
23 JOptionPane.showMessageDialog(null, output,
24 "Demonstrating StringBuffer Class Constructors",
25 JOptionPane.INFORMATION_MESSAGE);
26
27 System.exit(0);
28 }
29
30 } // end class StringBufferConstructors

1 // Fig. 10.13: StringBufferCapLen.java
2 // This program demonstrates the length and
3 // capacity methods of the StringBuffer class.
4
5 // Java extension packages
6 import javax.swing.*;
7
8 public class StringBufferCapLen {
9

10 // test StringBuffer methods for capacity and length
11 public static void main(String args[])
12 {

Fig. 10.13Fig. 10.13Fig. 10.13Fig. 10.13 StringBuffer length and capacity methods (part 1 of 2).

Fig. 10.12Fig. 10.12Fig. 10.12Fig. 10.12 StringBuffer class constructors (part 2 of 2).

562 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The program contains one StringBuffer called buffer. Lines 13–14 of the pro-
gram use the StringBuffer constructor that takes a String argument to instantiate and
initialize the StringBuffer with "Hello, how are you?". Lines 16–18 append to
output the contents, the length and the capacity of the StringBuffer. Notice in the
output window that the capacity of the StringBuffer is initially 35. Remember that the
StringBuffer constructor that takes a String argument creates a StringBuffer
object with an initial capacity that is the length of the String passed as an argument plus 16.

Line 20 expands the capacity of the StringBuffer to a minimum of 75 characters.
Actually, if the original capacity is less than the argument, the method ensures a capacity
that is the greater of the number specified as an argument or twice the original capacity plus
2. If the StringBuffer’s current capacity is more than the specified capacity, the
StringBuffer’s capacity remains unchanged.

Line 23 uses method setLength to set the length of the StringBuffer to 10. If
the specified length is less than the current number of characters in the StringBuffer,

13 StringBuffer buffer =
14 new StringBuffer("Hello, how are you?");
15
16 String output = "buffer = " + buffer.toString() +
17 "\nlength = " + buffer.length() +
18 "\ncapacity = " + buffer.capacity();
19
20 buffer.ensureCapacity(75);
21 output += "\n\nNew capacity = " + buffer.capacity();
22
23 buffer.setLength(10);
24 output += "\n\nNew length = " + buffer.length() +
25 "\nbuf = " + buffer.toString();
26
27 JOptionPane.showMessageDialog(null, output,
28 "StringBuffer length and capacity Methods",
29 JOptionPane.INFORMATION_MESSAGE);
30
31 System.exit(0);
32 }
33
34 } // end class StringBufferCapLen

Fig. 10.13Fig. 10.13Fig. 10.13Fig. 10.13 StringBuffer length and capacity methods (part 2 of 2).

Chapter 10 Strings and Characters 563

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

the characters are truncated to the specified length (i.e., the characters in the String-
Buffer after the specified length are discarded). If the specified length is greater than the
number of characters currently in the StringBuffer, null characters (characters with
the numeric representation 0) are appended to the StringBuffer until the total number
of characters in the StringBuffer is equal to the specified length.

10.16 StringBuffer Methods charAt, setCharAt,
getChars and reverse
Class StringBuffer provides the charAt, setCharAt, getChars and reverse
methods to manipulate the characters in a StringBuffer. Method charAt takes an in-
teger argument and returns the character in the StringBuffer at that index. Method
setCharAt takes an integer and a character argument and sets the character at the spec-
ified position to the character argument. The index specified in the charAt and set-
CharAt methods must be greater than or equal to 0 and less than the StringBuffer
length; otherwise, a StringIndexOutOfBoundsException is generated.

Common Programming Error 10.5
Attempting to access a character that is outside the bounds of a StringBuffer (i.e., an
index less than 0 or an index greater than or equal to the StringBuffer’s length) results
in a StringIndexOutOfBoundsException. 10.5

Method getChars returns a character array containing a copy of the characters in the
StringBuffer. This method takes four arguments—the starting index from which char-
acters should be copied in the StringBuffer, the index one past the last character to be
copied from the StringBuffer, the character array into which the characters are to be
copied and the starting location in the character array where the first character should be
placed. Method reverse reverses the contents of the StringBuffer. Each of these
methods is demonstrated in Fig. 10.14.

1 // Fig. 10.14: StringBufferChars.java
2 // The charAt, setCharAt, getChars, and reverse methods
3 // of class StringBuffer.
4
5 // Java extension packages
6 import javax.swing.*;
7
8 public class StringBufferChars {
9

10 // test StringBuffer character methods
11 public static void main(String args[])
12 {
13 StringBuffer buffer = new StringBuffer("hello there");
14
15 String output = "buffer = " + buffer.toString() +
16 "\nCharacter at 0: " + buffer.charAt(0) +
17 "\nCharacter at 4: " + buffer.charAt(4);
18

Fig. 10.14Fig. 10.14Fig. 10.14Fig. 10.14 StringBuffer class character manipulation methods.

564 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

10.17 StringBuffer append Methods
Class StringBuffer provides 10 overloaded append methods to allow various data-
type values to be added to the end of a StringBuffer. Versions are provided for each
of the primitive data types and for character arrays, Strings and Objects. (Remember
that method toString produces a String representation of any Object.) Each of the
methods takes its argument, converts it to a String and appends it to the String-
Buffer. The append methods are demonstrated in Fig. 10.15. [Note: Line 20 specifies
the literal value 2.5f as the initial value of a float variable. Normally, Java treats a
floating-point literal value as type double. Appending the letter f to the literal 2.5 indi-
cates to the compiler that 2.5 should be treated as type float. Without this indication the
compiler generates a syntax error, because a double value cannot be assigned directly to
a float variable in Java.]

19 char charArray[] = new char[buffer.length()];
20 buffer.getChars(0, buffer.length(), charArray, 0);
21 output += "\n\nThe characters are: ";
22
23 for (int count = 0; count < charArray.length; ++count)
24 output += charArray[count];
25
26 buffer.setCharAt(0, 'H');
27 buffer.setCharAt(6, 'T');
28 output += "\n\nbuf = " + buffer.toString();
29
30 buffer.reverse();
31 output += "\n\nbuf = " + buffer.toString();
32
33 JOptionPane.showMessageDialog(null, output,
34 "Demonstrating StringBuffer Character Methods",
35 JOptionPane.INFORMATION_MESSAGE);
36
37 System.exit(0);
38 }
39
40 } // end class StringBufferChars

Fig. 10.14Fig. 10.14Fig. 10.14Fig. 10.14 StringBuffer class character manipulation methods.

Chapter 10 Strings and Characters 565

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

1 // Fig. 10.15: StringBufferAppend.java
2 // This program demonstrates the append
3 // methods of the StringBuffer class.
4
5 // Java extension packages
6 import javax.swing.*;
7
8 public class StringBufferAppend {
9

10 // test StringBuffer append methods
11 public static void main(String args[])
12 {
13 Object o = "hello";
14 String s = "good bye";
15 char charArray[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
16 boolean b = true;
17 char c = 'Z';
18 int i = 7;
19 long l = 10000000;
20 float f = 2.5f;
21 double d = 33.333;
22 StringBuffer buffer = new StringBuffer();
23
24 buffer.append(o);
25 buffer.append(" ");
26
27 buffer.append(s);
28 buffer.append(" ");
29 buffer.append(charArray);
30 buffer.append(" ");
31 buffer.append(charArray, 0, 3);
32 buffer.append(" ");
33 buffer.append(b);
34 buffer.append(" ");
35 buffer.append(c);
36 buffer.append(" ");
37 buffer.append(i);
38 buffer.append(" ");
39 buffer.append(l);
40 buffer.append(" ");
41 buffer.append(f);
42 buffer.append(" ");
43 buffer.append(d);
44
45 JOptionPane.showMessageDialog(null,
46 "buffer = " + buffer.toString(),
47 "Demonstrating StringBuffer append Methods",
48 JOptionPane.INFORMATION_MESSAGE);
49
50 System.exit(0);
51 }
52
53 } // end StringBufferAppend

Fig. 10.15Fig. 10.15Fig. 10.15Fig. 10.15 StringBuffer class append methods (part 1 of 2).

566 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Actually, StringBuffers and the append methods are used by the compiler to
implement the + and += operators for concatenating Strings. For example, assuming the
following declarations:

String string1 = "hello";
String string2 = "BC"
int value = 22;

the statement

String s = string1 + string2 + value;

concatenates "hello", "BC" and 22. The concatenation is performed as follows:

new StringBuffer().append("hello").append("BC").append(
22).toString();

First, Java creates a StringBuffer, then appends to the StringBuffer the String
"hello", the String "BC" and the integer 22. Next, StringBuffer’s toString
converts the StringBuffer to a String representation and the result is assigned to
String s. The statement

s += "!";

is performed as follows:

s = new StringBuffer().append(s).append("!").toString()

First, Java creates a StringBuffer, then appends to the StringBuffer the current
contents of s followed by "!". Next, StringBuffer’s toString converts the
StringBuffer to a String representation and the result is assigned to s

10.18 StringBuffer Insertion and Deletion Methods
Class StringBuffer provides nine overloaded insert methods to allow various data-
type values to be inserted at any position in a StringBuffer. Versions are provided for
each of the primitive data types and for character arrays, Strings and Objects. (Re-
member that method toString produces a String representation of any Object.)
Each of the methods takes its second argument, converts it to a String and inserts it pre-
ceding the index specified by the first argument. The index specified by the first argument
must be greater than or equal to 0 and less than the length of the StringBuffer; other-
wise, a StringIndexOutOfBoundsException is generated. Class String-
Buffer also provides methods delete and deleteCharAt for deleting characters at

Fig. 10.15Fig. 10.15Fig. 10.15Fig. 10.15 StringBuffer class append methods (part 2 of 2).

Chapter 10 Strings and Characters 567

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

any position in a StringBuffer. Method delete takes two arguments—the starting
subscript and the subscript one past the end of the characters to delete. All characters be-
ginning at the starting subscript up to, but not including the ending subscript are deleted.
Method deleteCharAt takes one argument—the subscript of the character to delete. In-
valid subscripts cause both methods to throw a StringIndexOutOfBounds-
Exception. The insert and delete methods are demonstrated in Fig. 10.16.

1 // Fig. 10.16: StringBufferInsert.java
2 // This program demonstrates the insert and delete
3 // methods of class StringBuffer.
4
5 // Java extension packages
6 import javax.swing.*;
7
8 public class StringBufferInsert {
9

10 // test StringBuffer insert methods
11 public static void main(String args[])
12 {
13 Object o = "hello";
14 String s = "good bye";
15 char charArray[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
16 boolean b = true;
17 char c = 'K';
18 int i = 7;
19 long l = 10000000;
20 float f = 2.5f;
21 double d = 33.333;
22 StringBuffer buffer = new StringBuffer();
23
24 buffer.insert(0, o);
25 buffer.insert(0, " ");
26 buffer.insert(0, s);
27 buffer.insert(0, " ");
28 buffer.insert(0, charArray);
29 buffer.insert(0, " ");
30 buffer.insert(0, b);
31 buffer.insert(0, " ");
32 buffer.insert(0, c);
33 buffer.insert(0, " ");
34 buffer.insert(0, i);
35 buffer.insert(0, " ");
36 buffer.insert(0, l);
37 buffer.insert(0, " ");
38 buffer.insert(0, f);
39 buffer.insert(0, " ");
40 buffer.insert(0, d);
41
42 String output =
43 "buffer after inserts:\n" + buffer.toString();
44

Fig. 10.16Fig. 10.16Fig. 10.16Fig. 10.16 StringBuffer class insert and delete methods (part 1 of 2).

568 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

10.19 Character Class Examples
Java provides a number of classes that enable primitive variables to be treated as objects.
The classes are Boolean, Character, Double, Float, Byte, Short, Integer
and Long. These classes (except Boolean and Character) are derived from Number.
These eight classes are known as type wrappers, and they are part of the java.lang
package. Objects of these classes can be used anywhere in a program that an Object or a
Number is expected. In this section, we present class Character—the type-wrapper
class for characters.

Most Character class methods are static, take at least a character argument and
perform either a test or a manipulation of the character. This class also contains a con-
structor that receives a char argument to initialize a Character object and several non-
static methods. Most of the methods of class Character are presented in the next
three examples. For more information on class Character (and all the wrapper classes),
see the java.lang package in the Java API documentation.

Figure 10.17 demonstrates some static methods that test characters to determine
whether they are a specific character type and the static methods that perform case con-
versions on characters. Each method is used in method buildOutput of class
StaticCharMethods. You can enter any character and apply the preceding methods to
the character. Note the use of inner classes for the event handling as demonstrated in
Chapter 9.

45 buffer.deleteCharAt(10); // delete 5 in 2.5
46 buffer.delete(2, 6); // delete .333 in 33.333
47
48 output +=
49 "\n\nbuffer after deletes:\n" + buffer.toString();
50
51 JOptionPane.showMessageDialog(null, output,
52 "Demonstrating StringBufferer Inserts and Deletes",
53 JOptionPane.INFORMATION_MESSAGE);
54
55 System.exit(0);
56 }
57
58 } // end class StringBufferInsert

Fig. 10.16Fig. 10.16Fig. 10.16Fig. 10.16 StringBuffer class insert and delete methods (part 2 of 2).

Chapter 10 Strings and Characters 569

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Line 63 uses Character method isDefined to determine if character c is defined
in the Unicode character set. If so, the method returns true; otherwise, it returns false.

1 // Fig. 10.17: StaticCharMethods.java
2 // Demonstrates the static character testing methods
3 // and case conversion methods of class Character
4 // from the java.lang package.
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class StaticCharMethods extends JFrame {
14 private char c;
15 private JLabel promptLabel;
16 private JTextField inputField;
17 private JTextArea outputArea;
18
19 // set up GUI
20 public StaticCharMethods()
21 {
22 super("Static Character Methods");
23
24 Container container = getContentPane();
25 container.setLayout(new FlowLayout());
26
27 promptLabel =
28 new JLabel("Enter a character and press Enter");
29 container.add(promptLabel);
30
31 inputField = new JTextField(5);
32
33 inputField.addActionListener(
34
35 // anonymous inner class
36 new ActionListener() {
37
38 // handle text field event
39 public void actionPerformed(ActionEvent event)
40 {
41 String s = event.getActionCommand();
42 c = s.charAt(0);
43 buildOutput();
44 }
45
46 } // end anonymous inner class
47
48); // end call to addActionListener

Fig. 10.17Fig. 10.17Fig. 10.17Fig. 10.17 static character testing methods and case conversion methods of class
Character (part 1 of 3).

570 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

49
50 container.add(inputField);
51
52 outputArea = new JTextArea(10, 20);
53 container.add(outputArea);
54
55 setSize(300, 250); // set the window size
56 show(); // show the window
57 }
58
59 // display character info in outputArea
60 public void buildOutput()
61 {
62 outputArea.setText(
63 "is defined: " + Character.isDefined(c) +
64 "\nis digit: " + Character.isDigit(c) +
65 "\nis Java letter: " +
66 Character.isJavaIdentifierStart(c) +
67 "\nis Java letter or digit: " +
68 Character.isJavaIdentifierPart(c) +
69 "\nis letter: " + Character.isLetter(c) +
70 "\nis letter or digit: " +
71 Character.isLetterOrDigit(c) +
72 "\nis lower case: " + Character.isLowerCase(c) +
73 "\nis upper case: " + Character.isUpperCase(c) +
74 "\nto upper case: " + Character.toUpperCase(c) +
75 "\nto lower case: " + Character.toLowerCase(c));
76 }
77
78 // execute application
79 public static void main(String args[])
80 {
81 StaticCharMethods application = new StaticCharMethods();
82
83 application.addWindowListener(
84
85 // anonymous inner class
86 new WindowAdapter() {
87
88 // handle event when user closes window
89 public void windowClosing(WindowEvent windowEvent)
90 {
91 System.exit(0);
92 }
93
94 } // end anonymous inner class
95
96); // end call to addWindowListener
97
98 } // end method main
99
100 } // end class StaticCharMethods

Fig. 10.17Fig. 10.17Fig. 10.17Fig. 10.17 static character testing methods and case conversion methods of class
Character (part 2 of 3).

Chapter 10 Strings and Characters 571

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Line 64 uses Character method isDigit to determine whether character c is a
defined Unicode digit. If so, the method returns true; otherwise, it returns false.

Line 66 uses Character method isJavaIdentifierStart to determine
whether c is a character that can be used as the first character of an identifier in Java—i.e.,
a letter, an underscore (_) or a dollar sign ($). If so, the method returns true; otherwise,
it returns false. Line 68 uses method Character method isJavaIdentifier-
Part to determine whether character c is a character that can be used in an identifier in
Java—i.e., a digit, a letter, an underscore (_) or a dollar sign ($). If so, the method returns
true; otherwise, it returns false.

Line 69 uses method Character method isLetter to determine whether char-
acter c is a letter. If so, the method returns true; otherwise, it returns false. Line 71 uses
method Character method isLetterOrDigit to determine whether character c is a
letter or a digit. If so, the method returns true; otherwise, it returns false.

Line 72 uses method Character method isLowerCase to determine whether char-
acter c is a lowercase letter. If so, the method returns true; otherwise, it returns false.
Line 73 uses method Character method isUpperCase to determine whether character
c is an uppercase letter. If so, the method returns true; otherwise, it returns false.

Line 74 uses method Character method toUpperCase to convert the character c
to its uppercase equivalent. The method returns the converted character if the character has
an uppercase equivalent; otherwise, the method returns its original argument. Line 75 uses
method Character method toLowerCase to convert the character c to its lowercase

Fig. 10.17Fig. 10.17Fig. 10.17Fig. 10.17 static character testing methods and case conversion methods of class
Character (part 3 of 3).

572 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

equivalent. The method returns the converted character if the character has a lowercase
equivalent; otherwise, the method returns its original argument.

Figure 10.18 demonstrates static Character methods digit and forDigit,
which perform conversions between characters and digits in different number systems.
Common number systems include decimal (base 10), octal (base 8), hexadecimal (base 16)
and binary (base 2). The base of a number is also known as its radix. For more information
on conversions between number systems, see Appendix E.

Line 52 uses method forDigit to convert the integer digit into a character in the
number system specified by the integer radix (also known as the base of the number). For
example, the integer 13 in base 16 (the radix) has the character value 'd'. Note that the
lowercase and uppercase letters are equivalent in number systems.

Line 77 uses method digit to convert the character c into an integer in the number
system specified by the integer radix (i.e., the base of the number). For example, the char-
acter 'A' in base 16 (the radix) has the integer value 10.

1 // Fig. 10.18: StaticCharMethods2.java
2 // Demonstrates the static character conversion methods
3 // of class Character from the java.lang package.
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class StaticCharMethods2 extends JFrame {
13 private char c;
14 private int digit, radix;
15 private JLabel prompt1, prompt2;
16 private JTextField input, radixField;
17 private JButton toChar, toInt;
18
19 public StaticCharMethods2()
20 {
21 super("Character Conversion Methods");
22
23 // set up GUI and event handling
24 Container container = getContentPane();
25 container.setLayout(new FlowLayout());
26
27 prompt1 = new JLabel("Enter a digit or character ");
28 input = new JTextField(5);
29 container.add(prompt1);
30 container.add(input);
31
32 prompt2 = new JLabel("Enter a radix ");
33 radixField = new JTextField(5);
34 container.add(prompt2);
35 container.add(radixField);

Fig. 10.18Fig. 10.18Fig. 10.18Fig. 10.18 Character class static conversion methods (part 1 of 3).

Chapter 10 Strings and Characters 573

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

36
37 toChar = new JButton("Convert digit to character");
38
39 toChar.addActionListener(
40
41 // anonymous inner class
42 new ActionListener() {
43
44 // handle toChar JButton event
45 public void actionPerformed(ActionEvent actionEvent)
46 {
47 digit = Integer.parseInt(input.getText());
48 radix =
49 Integer.parseInt(radixField.getText());
50 JOptionPane.showMessageDialog(null,
51 "Convert digit to character: " +
52 Character.forDigit(digit, radix));
53 }
54
55 } // end anonymous inner class
56
57); // end call to addActionListener
58
59 container.add(toChar);
60
61 toInt = new JButton("Convert character to digit");
62
63 toInt.addActionListener(
64
65 // anonymous inner class
66 new ActionListener() {
67
68 // handle toInt JButton event
69 public void actionPerformed(ActionEvent actionEvent)
70 {
71 String s = input.getText();
72 c = s.charAt(0);
73 radix =
74 Integer.parseInt(radixField.getText());
75 JOptionPane.showMessageDialog(null,
76 "Convert character to digit: " +
77 Character.digit(c, radix));
78 }
79
80 } // end anonymous inner class
81
82); // end call to addActionListener
83
84 container.add(toInt);
85
86 setSize(275, 150); // set the window size
87 show(); // show the window
88 }

Fig. 10.18Fig. 10.18Fig. 10.18Fig. 10.18 Character class static conversion methods (part 2 of 3).

574 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The program in Fig. 10.19 demonstrates the nonstatic methods of class Char-
acter—the constructor, charValue, toString, hashCode and equals.

89
90 // execute application
91 public static void main(String args[])
92 {
93 StaticCharMethods2 application = new StaticCharMethods2();
94
95 application.addWindowListener(
96
97 // anonymous inner class
98 new WindowAdapter() {
99
100 // handle event when user closes window
101 public void windowClosing(WindowEvent windowEvent)
102 {
103 System.exit(0);
104 }
105
106 } // end anonymous inner class
107
108); // end call to addWindowListener
109
110 } // end method main
111
112 } // end class StaticCharMethods2

1 // Fig. 10.19: OtherCharMethods.java
2 // Demonstrate the non-static methods of class
3 // Character from the java.lang package.
4
5 // Java extension packages
6 import javax.swing.*;

Fig. 10.19Fig. 10.19Fig. 10.19Fig. 10.19 Non-static methods of class Character (part 1 of 2).

Fig. 10.18Fig. 10.18Fig. 10.18Fig. 10.18 Character class static conversion methods (part 3 of 3).

Chapter 10 Strings and Characters 575

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Lines 15–16 instantiate two Character objects and pass character literals to the con-
structor to initialize those objects.

Line 18 uses Character method charValue to return the char value stored in
Character object c1. Line 19 returns a String representation of Character object
c2 using method toString.

Lines 20–21perform hashCode calculations on the Character objects c1 and c2,
respectively. Remember that hash code values are used to store objects in hash tables for
fast lookup capabilities (see Chapter 20).

7
8 public class OtherCharMethods {
9

10 // test non-static Character methods
11 public static void main(String args[])
12 {
13 Character c1, c2;
14
15 c1 = new Character('A');
16 c2 = new Character('a');
17
18 String output = "c1 = " + c1.charValue() +
19 "\nc2 = " + c2.toString() +
20 "\n\nhash code for c1 = " + c1.hashCode() +
21 "\nhash code for c2 = " + c2.hashCode();
22
23 if (c1.equals(c2))
24 output += "\n\nc1 and c2 are equal";
25 else
26 output += "\n\nc1 and c2 are not equal";
27
28 JOptionPane.showMessageDialog(null, output,
29 "Demonstrating Non-Static Character Methods",
30 JOptionPane.INFORMATION_MESSAGE);
31
32 System.exit(0);
33 }
34
35 } // end class OtherCharMethods

Fig. 10.19Fig. 10.19Fig. 10.19Fig. 10.19 Non-static methods of class Character (part 2 of 2).

576 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The condition in the if structure on line 23 uses method equals to determine
whether the object c1 has the same contents as the object c2 (i.e., the characters inside
each object are equal).

10.20 Class StringTokenizer
When you read a sentence, your mind breaks the sentence into individual words and punc-
tuation, or tokens, each of which conveys meaning to you. Compilers also perform tokeni-
zation. They break up statements into individual pieces like keywords, identifiers,
operators and other elements of a programming language. In this section, we study Java’s
StringTokenizer class (from package java.util), which breaks a string into its
component tokens. Tokens are separated from one another by delimiters, typically white-
space characters such as blank, tab, newline and carriage return. Other characters can also
be used as delimiters to separate tokens. The program in Fig. 10.20 demonstrates class
StringTokenizer. The window for class TokenTest displays a JTextField
where the user types a sentence to tokenize. Output in this program is displayed in a
JTextArea.

When the user presses the Enter key in the JTextField, method actionPer-
formed (lines 37–49) is invoked. Lines 39–40 assign String reference stringToTo-
kenize the value in the text in the JTextField returned by calling
event.getActionCommand(). Next, lines 41–42 create an instance of class
StringTokenizer. This StringTokenizer constructor takes a String argument
and creates a StringTokenizer for stringToTokenize that will use the default
delimiter string " \n\t\r" consisting of a space, a newline, a tab and a carriage return
for tokenization. There are two other constructors for class StringTokenizer. In the
version that takes two String arguments, the second String is the delimiter String.
In the version that takes three arguments, the second String is the delimiter String and
the third argument (a boolean) determines whether the delimiters are also returned as
tokens (only if the argument is true). This is useful if you need to know what the delim-
iters are.

1 // Fig. 10.20: TokenTest.java
2 // Testing the StringTokenizer class of the java.util package
3
4 // Java core packages
5 import java.util.*;
6 import java.awt.*;
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class TokenTest extends JFrame {
13 private JLabel promptLabel;
14 private JTextField inputField;
15 private JTextArea outputArea;
16

Fig. 10.20Fig. 10.20Fig. 10.20Fig. 10.20 Tokenizing strings with a StringTokenizer object (part 1 of 3).

Chapter 10 Strings and Characters 577

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

17 // set up GUI and event handling
18 public TokenTest()
19 {
20 super("Testing Class StringTokenizer");
21
22 Container container = getContentPane();
23 container.setLayout(new FlowLayout());
24
25 promptLabel =
26 new JLabel("Enter a sentence and press Enter");
27 container.add(promptLabel);
28
29 inputField = new JTextField(20);
30
31 inputField.addActionListener(
32
33 // anonymous inner class
34 new ActionListener() {
35
36 // handle text field event
37 public void actionPerformed(ActionEvent event)
38 {
39 String stringToTokenize =
40 event.getActionCommand();
41 StringTokenizer tokens =
42 new StringTokenizer(stringToTokenize);
43
44 outputArea.setText("Number of elements: " +
45 tokens.countTokens() + "\nThe tokens are:\n");
46
47 while (tokens.hasMoreTokens())
48 outputArea.append(tokens.nextToken() + "\n");
49 }
50
51 } // end anonymous inner class
52
53); // end call to addActionListener
54
55 container.add(inputField);
56
57 outputArea = new JTextArea(10, 20);
58 outputArea.setEditable(false);
59 container.add(new JScrollPane(outputArea));
60
61 setSize(275, 260); // set the window size
62 show(); // show the window
63 }
64
65 // execute application
66 public static void main(String args[])
67 {
68 TokenTest application = new TokenTest();
69

Fig. 10.20Fig. 10.20Fig. 10.20Fig. 10.20 Tokenizing strings with a StringTokenizer object (part 2 of 3).

578 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The statement at lines 44–45 uses the StringTokenizer method countTokens
to determine the number of tokens in the String to be tokenized.

The condition in the while structure at lines 47–48 StringTokenizer method
hasMoreTokens to determine whether there are more tokens in the String being
tokenized. If so, the append method is invoked for the JTextArea outputArea to
append the next token to the String in the JTextArea. The next token is obtained with
a call to StringTokenizer method nextToken that returns a String. The token is
output followed by a newline character, so subsequent tokens appear on separate lines.

If you would like to change the delimiter String while tokenizing a String, you
may do so by specifying a new delimiter string in a nextToken call as follows:

tokens.nextToken(newDelimiterString);

This feature is not demonstrated in the program.

70 application.addWindowListener(
71
72 // anonymous inner class
73 new WindowAdapter() {
74
75 // handle event when user closes window
76 public void windowClosing(WindowEvent windowEvent)
77 {
78 System.exit(0);
79 }
80
81 } // end anonymous inner class
82
83); // end call to addWindowListener
84
85 } // end method main
86
87 } // end class TokenTest

Fig. 10.20Fig. 10.20Fig. 10.20Fig. 10.20 Tokenizing strings with a StringTokenizer object (part 3 of 3).

Chapter 10 Strings and Characters 579

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

10.21 Card Shuffling and Dealing Simulation
In this section, we use random number generation to develop a card shuffling and dealing
simulation program. This program can then be used to implement programs that play spe-
cific card games.

We develop application DeckOfCards (Fig. 10.21), which creates a deck of 52
playing cards using Card objects, then enables the user to deal each card by clicking on a
“Deal card” button. Each card dealt is displayed in a JTextField. The user can also
shuffle the deck at any time by clicking on a “Shuffle cards” button.

1 // Fig. 10.21: DeckOfCards.java
2 // Card shuffling and dealing program
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class DeckOfCards extends JFrame {
12 private Card deck[];
13 private int currentCard;
14 private JButton dealButton, shuffleButton;
15 private JTextField displayField;
16 private JLabel statusLabel;
17
18 // set up deck of cards and GUI
19 public DeckOfCards()
20 {
21 super("Card Dealing Program");
22
23 String faces[] = { "Ace", "Deuce", "Three", "Four",
24 "Five", "Six", "Seven", "Eight", "Nine", "Ten",
25 "Jack", "Queen", "King" };
26 String suits[] =
27 { "Hearts", "Diamonds", "Clubs", "Spades" };
28
29 deck = new Card[52];
30 currentCard = -1;
31
32 // populate deck with Card objects
33 for (int count = 0; count < deck.length; count++)
34 deck[count] = new Card(faces[count % 13],
35 suits[count / 13]);
36
37 // set up GUI and event handling
38 Container container = getContentPane();
39 container.setLayout(new FlowLayout());
40
41 dealButton = new JButton("Deal card");

Fig. 10.21Fig. 10.21Fig. 10.21Fig. 10.21 Card dealing program (part 1 of 4).

580 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

42 dealButton.addActionListener(
43
44 // anonymous inner class
45 new ActionListener() {
46
47 // deal one card
48 public void actionPerformed(ActionEvent actionEvent)
49 {
50 Card dealt = dealCard();
51
52 if (dealt != null) {
53 displayField.setText(dealt.toString());
54 statusLabel.setText("Card #: " + currentCard);
55 }
56 else {
57 displayField.setText(
58 "NO MORE CARDS TO DEAL");
59 statusLabel.setText(
60 "Shuffle cards to continue");
61 }
62 }
63
64 } // end anonymous inner class
65
66); // end call to addActionListener
67
68 container.add(dealButton);
69
70 shuffleButton = new JButton("Shuffle cards");
71 shuffleButton.addActionListener(
72
73 // anonymous inner class
74 new ActionListener() {
75
76 // shuffle deck
77 public void actionPerformed(ActionEvent actionEvent)
78 {
79 displayField.setText("SHUFFLING ...");
80 shuffle();
81 displayField.setText("DECK IS SHUFFLED");
82 }
83
84 } // end anonymous inner class
85
86); // end call to addActionListener
87
88 container.add(shuffleButton);
89
90 displayField = new JTextField(20);
91 displayField.setEditable(false);
92 container.add(displayField);
93
94 statusLabel = new JLabel();

Fig. 10.21Fig. 10.21Fig. 10.21Fig. 10.21 Card dealing program (part 2 of 4).

Chapter 10 Strings and Characters 581

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

95 container.add(statusLabel);
96
97 setSize(275, 120); // set window size
98 show(); // show window
99 }
100
101 // shuffle deck of cards with one-pass algorithm
102 public void shuffle()
103 {
104 currentCard = -1;
105
106 // for each card, pick another random card and swap them
107 for (int first = 0; first < deck.length; first++) {
108 int second = (int) (Math.random() * 52);
109 Card temp = deck[first];
110 deck[first] = deck[second];
111 deck[second] = temp;
112 }
113
114 dealButton.setEnabled(true);
115 }
116
117 // deal one card
118 public Card dealCard()
119 {
120 if (++currentCard < deck.length)
121 return deck[currentCard];
122 else {
123 dealButton.setEnabled(false);
124 return null;
125 }
126 }
127
128 // execute application
129 public static void main(String args[])
130 {
131 DeckOfCards app = new DeckOfCards();
132
133 app.addWindowListener(
134
135 // anonymous inner class
136 new WindowAdapter() {
137
138 // terminate application when user closes window
139 public void windowClosing(WindowEvent windowEvent)
140 {
141 System.exit(0);
142 }
143
144 } // end anonymous inner class
145
146); // end call to addWindowListener
147

Fig. 10.21Fig. 10.21Fig. 10.21Fig. 10.21 Card dealing program (part 3 of 4).

582 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Class Card (lines 153–170) contains two String instance variables—face and
suit—that are used to store references to the face name and suit name for a specific
Card. The constructor for the class receives two Strings that it uses to initialize face
and suit. Method toString is provided to create a String consisting of the face of
the card, the string " of " and the suit of the card.

Class DeckOfCards (lines 11–150) consists of an array deck of 52 Cards, an integer
currentCard representing the most recently dealt card in the deck array (–1 if no cards
have been dealt yet) and the GUI components used to manipulate the deck of cards. The con-
structor method of the application instantiates the deck array (line 29) and uses the for
structure at lines 33–35 to fill the deck array with Cards. Note that each Card is instanti-
ated and initialized with two Strings—one from the faces array (Strings "Ace"
through "King") and one from the suits array ("Hearts", "Diamonds", "Clubs"
and "Spades"). The calculation count % 13 always results in a value from 0 to 12 (the

148 } // end method main
149
150 } // end class DeckOfCards
151
152 // class to represent a card
153 class Card {
154 private String face;
155 private String suit;
156
157 // constructor to initialize a card
158 public Card(String cardFace, String cardSuit)
159 {
160 face = cardFace;
161 suit = cardSuit;
162 }
163
164 // return String represenation of Card
165 public String toString()
166 {
167 return face + " of " + suit;
168 }
169
170 } // end class Card

Fig. 10.21Fig. 10.21Fig. 10.21Fig. 10.21 Card dealing program (part 4 of 4).

Chapter 10 Strings and Characters 583

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

thirteen subscripts of the faces array), and the calculation count / 13 always results in a
value from 0 to 3 (the four subscripts in the suits array). When the deck array is initialized,
it contains the cards with faces ace through king in order for each suit.

When the user clicks the Deal card button, method actionPerformed at lines
48–62 invokes method dealCard (defined at lines 118–126) to get the next card in the
array. If the deck is not empty, a Card object reference is returned; otherwise, null is
returned. If the reference is not null, lines 53–54 display the Card in the JTextField
displayField and display the card number in the JLabel statusLabel. If the ref-
erence returned by dealCard was null, the String “NO MORE CARDS TO DEAL” is
displayed in the JTextField and the String “Shuffle cards to continue” is
displayed in the JLabel.

When the user clicks the Shuffle cards button, its actionPerformed method at
lines 77–82 invokes method shuffle (defined on lines 102–115) to shuffle the cards. The
method loops through all 52 cards (array subscripts 0 to 51). For each card, a number
between 0 and 51 is picked randomly. Next, the current Card object and the randomly
selected Card object are swapped in the array. A total of only 52 swaps are made in a single
pass of the entire array, and the array of Card objects is shuffled! When the shuffling is
complete, the String “DECK IS SHUFFLED” is displayed in the JTextField.

Notice the use of method setEnabled at lines 114 and 123 to activate and deactivate
the dealButton. Method setEnabled can be used on many GUI components. When
it is called with a false argument, the GUI component for which it is called is disabled
so the user cannot interact with it. To reactivate the button, method setEnabled is called
with a true argument.

10.22 (Optional Case Study) Thinking About Objects: Event
Handling
Objects do not ordinarily perform their operations spontaneously. Rather, a specific oper-
ation is normally invoked when a sending object (a client object) sends a message to a re-
ceiving object (a server object) requesting that the receiving object perform that specific
operation. In earlier sections, we mentioned that objects interact by sending and receiving
messages. We began to model the behavior of our elevator system by using statechart and
activity diagrams in Section 5.11 and collaboration diagrams in Section 7.10. In this sec-
tion, we discuss how the objects of the elevator system interact.

Events
In Fig. 7.24, we presented an example of a person pressing a button by sending a press-
Button message to the button—specifically, the Person object called method press-
Button of the Button object. This message describes an action that is currently
happening; in other words, the Person presses a Button. In general, the message name
structure is a verb preceding a noun—e.g., the name of the pressButton message con-
sists of the verb “press” followed by the noun “button.”

An event is a message that notifies an object of an action that has already happened. For
example, in this section, we modify our simulation so the Elevator sends an eleva-
torArrived event to the Elevator’s Door when the Elevator arrives at a Floor.
In Section 7.10, the Elevator opens this Door directly by sending an openDoor mes-
sage. Listening for an elevatorArrived event allows the Door to determine the actions

584 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

to take when the Elevator has arrived, such as notifying the Person that the Door has
opened. This reinforces the OOD principle of encapsulation and models the real world more
closely. In reality, the door—not the elevator—“notifies” a person of a door’s opening.

Notice that the event-naming structure is the inverse of the first type of message’s
naming structure. By convention, the event name consists of the noun preceding the verb.
For instance, the elevatorArrived event name consists of the noun “elevator” pre-
ceding the verb “arrived.”

In our simulation, we create a superclass called ElevatorModelEvent
(Fig. 10.23) that represents an event in our model. ElevatorModelEvent contains a
Location reference (line 11) that represents the location where the event was generated
and an Object reference (line 14) to the source of the event. In our simulation, objects use
instances of ElevatorModelEvent to send events to other objects. When an object
receives an event, that object may use method getLocation (lines 31–34) and method
getSource (lines 43–46) to determine the event’s location and origin.

1 // ElevatorModelEvent.java
2 // Basic event packet holding Location object
3 package com.deitel.jhtp4.elevator.event;
4
5 // Deitel packages
6 import com.deitel.jhtp4.elevator.model.*;
7
8 public class ElevatorModelEvent {
9

10 // Location that generated ElevatorModelEvent
11 private Location location;
12
13 // source of generated ElevatorModelEvent
14 private Object source;
15
16 // ElevatorModelEvent constructor sets Location
17 public ElevatorModelEvent(Object source,
18 Location location)
19 {
20 setSource(source);
21 setLocation(location);
22 }
23
24 // set ElevatorModelEvent Location
25 public void setLocation(Location eventLocation)
26 {
27 location = eventLocation;
28 }
29
30 // get ElevatorModelEvent Location
31 public Location getLocation()
32 {
33 return location;
34 }

Fig. 10.23Fig. 10.23Fig. 10.23Fig. 10.23 Class ElevatorModelEvent is the superclass for all other event classes
in our model (part 1 of 2).

Chapter 10 Strings and Characters 585

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

For example, a Door may send an ElevatorModelEvent to a Person when
opening or closing, and the Elevator may send an ElevatorModelEvent informing
a person of a departure or arrival. Having different objects send the same event type to
describe different actions could be confusing. To eliminate ambiguity as we discuss what
events are sent by objects, we create several ElevatorModelEvent subclasses in
Fig. 10.24, so we will have an easier time associating each event with its sender. According
to Fig. 10.24, classes BellEvent, PersonMoveEvent, LightEvent, Button-
Event, ElevatorMoveEvent and DoorEvent are subclasses of class Elevator-
ModelEvent. Using these event subclasses, a Door sends a different event (a
DoorEvent) than does a Button (which sends a ButtonEvent). Figure 10.25 dis-
plays the triggering actions of the subclass events. Note that all actions in Fig. 10.25 appear
in the form “noun” + “verb”.

35
36 // set ElevatorModelEvent source
37 private void setSource(Object eventSource)
38 {
39 source = eventSource;
40 }
41
42 // get ElevatorModelEvent source
43 public Object getSource()
44 {
45 return source;
46 }
47 }

Fig. 10.24Fig. 10.24Fig. 10.24Fig. 10.24 Class diagram that models the generalization between
ElevatorModelEvent and its subclasses.

Fig. 10.23Fig. 10.23Fig. 10.23Fig. 10.23 Class ElevatorModelEvent is the superclass for all other event classes
in our model (part 2 of 2).

ElevatorModelEvent

BellEvent DoorEvent

PersonMoveEvent

ButtonEvent

ElevatorMoveEvent

LightEvent

586 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Event Handling
The concept of event handling in Java is similar to the concept of a collaboration described
in Section 7.10. Event handling consists of an object of one class sending a particular mes-
sage (which Java calls an event) to objects of other classes listening for that type of mes-
sage.1 The difference is that the objects receiving the message must register to receive the
message; therefore, event handling describes how an object sends an event to other objects
“listening” for that type of event—these objects are called event listeners. To send an event,
the sending object invokes a particular method of the receiving object while passing the de-
sired event object as a parameter. In our simulation, this event object belongs to a class that
extends ElevatorModelEvent.

We presented a collaboration diagram in Fig. 7.25 showing interactions of two
Person objects—waitingPassenger and ridingPassenger—as they enter and
exit the Elevator. Figure 10.26 shows a modified diagram that incorporates event han-
dling. There are three differences between the diagrams. First, we provide notes—explan-
atory remarks about some of the graphics in the diagram. The UML represents notes as
rectangles with the upper right corners “folded over.” Notes in the UML are similar to com-
ments in Java. A dotted line associates a note with any component of the UML (object,
class, arrow, etc.). In this diagram, the <<parameter>> notation specifies that the note
contains the parameters of a given message: all doorOpened events pass a DoorEvent
object as a parameter; all elevatorArrived events pass an ElevatorMoveEvent
object; all openDoor messages pass a Location object.

Event Sent when (triggering action) Sent by object of class

BellEvent the Bell has rung Bell

ButtonEvent a Button has been pressed
a Button has been reset

Button
Button

DoorEvent a Door has opened
a Door has closed

Door
Door

LightEvent a Light has turned on
a Light has turned off

Light

PersonMoveEvent a Person has been created
a Person has arrived at the Elevator
a Person has entered the Elevator
a Person has exited the Elevator
a Person has pressed a Button
a Person has exited the simulation

Person

ElevatorMoveEvent the Elevator has arrived at a Floor
the Elevator has departed from a Floor

Elevator

Fig. 10.25Fig. 10.25Fig. 10.25Fig. 10.25 Triggering actions of the ElevatorModelEvent subclass events.

1. Technically, one object sends a notification of an event—or some triggering action—to another
object. However, Java parlance refers to sending this notification as “sending an event.”

Chapter 10 Strings and Characters 587

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The second difference between the diagrams is that the interactions of Fig. 10.26 occur
on the first Floor. This allows us to name all Button and Door objects (first-
FloorDoor and firstFloorButton) to eliminate ambiguity, because the Button
and Door classes each have three objects in our simulation. The interactions that occur on
the second Floor are identical to the ones that occur on the first Floor.

The most substantial difference between Fig. 10.26 and Fig. 7.25 is that the Ele-
vator informs objects (via an event) of an action that has already happened—the Ele-
vator has arrived. The objects that receive the event then perform some action in
response to the type of message they receive.

According to messages 1, 2, 3 and 4, the Elevator performs only one action—it
sends elevatorArrived events to objects interested in receiving those events. Specif-

Fig. 10.26Fig. 10.26Fig. 10.26Fig. 10.26 Modified collaboration diagram for passengers entering and exiting the
Elevator on the first Floor.

firstFloorLight: Light

elevatorDoor: Door

: ElevatorShaft

: Elevator

: Bell

firstFloorButton : Button

elevatorButton: Button

waitingPassenger : Person

firstFloorDoor : Door

ridingPassenger : Person

3.2.1 doorOpened()

4.2.1 : turnOnLight()4.1.1 : resetButton()

3.3.1 : exitElevator()3.2.1.1 : enterElevator()

4 : elevatorArrived()

3 : elevator
 Arrived()

3.2 : openDoor()

3.3 : doorOpened()

3.1: openDoor()

1 : elevatorArrived()

1.1: resetButton()

2.1: ringBell()

2 : elevator
 Arrived()

4.1 : elevatorArrived() 4.2 : elevatorArrived()

<<parameter>>
(DoorEvent)

<<parameter>>
(ElevatorMoveEvent)

<<parameter>>
(Location)

588 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

ically, the Elevator object sends an ElevatorMoveEvent using the receiving
object’s elevatorArrived method. Figure 10.26 begins with the Elevator sending
an elevatorArrived event to the elevatorButton. The elevatorButton then
resets itself (message 1.1). The Elevator then sends an elevatorArrived event to
the Bell (message 2), and the Bell invokes its ringBell method, accordingly (i.e., the
Bell object sends itself a ringBell message in message 2.1).

The Elevator sends an elevatorArrived message to the elevatorDoor
(message 3). The elevatorDoor then opens itself by invoking its openDoor method
(message 3.1). At this point, the elevatorDoor is open but has not informed the
ridingPassenger of opening. Before informing the ridingPassenger, the ele-
vatorDoor opens the firstFloorDoor by sending an openDoor message to the
firstFloorDoor (message 3.2)—this guarantees that the ridingPassenger will
not exit before the firstFloorDoor opens. The firstFloorDoor then informs the
waitingPassenger that the firstFloorDoor has opened (message 3.2.1), and
the waitingPassenger enters the Elevator (message 3.2.1.1). All messages
nested in 3.2 have been passed, so the elevatorDoor may inform the ridingPas-
senger that elevatorDoor has opened by invoking method doorOpened of the
ridingPassenger (message 3.3). The ridingPassenger responds by exiting the
Elevator (message 3.3.1).2

 Lastly, the Elevator informs the ElevatorShaft of the arrival (message 4).
The ElevatorShaft then informs the firstFloorButton of the arrival (message
4.1), and the firstFloorButton resets itself (message 4.1.1). The Elevator-
Shaft then informs the firstFloorLight of the arrival (message 4.2), and the
firstFloorLight illuminates itself (message 4.2.1).

Event Listeners
We demonstrated event handling between the Elevator and object elevatorDoor us-
ing the modified collaboration diagram of Fig. 10.26—the Elevator sends an
elevatorArrived event to the elevatorDoor (message 3). We first must deter-
mine the event object that the Elevator will pass to the elevatorDoor. According to
the note in the lower left-hand corner of Fig. 10.26, the Elevator passes an Elevator-
MoveEvent (Fig. 10.27) object when the Elevator invokes an elevatorArrived
method. The generalization diagram of Fig. 10.24 indicates that ElevatorMoveEvent
is a subclass of ElevatorModelEvent, so ElevatorMoveEvent inherits the Ob-
ject and Location references from ElevatorModelEvent.3

2. The problem of the waitingPassenger entering the Elevator (message 3.2.1.1) before
the ridingPassenger has exited (message 3.3.1) remains in our collaboration diagram. We
show in “Thinking About Objects” Section 15.12 how to solve this problem by using multithread-
ing, synchronization and active classes.

3. In our simulation, all event classes have this structure—that is, the structure of class Elevator-
MoveEvent is identical to the structure of class DoorEvent, ButtonEvent, etc. When you
have finished reading the material in this section, we recommend that you view the implementa-
tion of the events in Appendix G to attain a better comprehension of the structure of our system
events—Fig. G.1–G.7 present the code for the events, and Fig. G.8–G.14 present the code for the
event listeners.

Chapter 10 Strings and Characters 589

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The elevatorDoor must implement an interface that “listens” for an Elevator-
MoveEvent—this makes the elevatorDoor an event listener. Interface Elevator-
MoveListener (Fig. 10.28) provides methods elevatorDeparted (line 8) and
elevatorArrived (line 11) that enable the Elevator to notify the Elevator-
MoveListener when the Elevator has arrived or departed. An interface that provides
the methods for an event listener, such as ElevatorMoveListener, is called an event
listener interface.

 Methods elevatorArrived and elevatorDeparted each receive an Ele-
vatorMoveEvent (Fig. 10.27) object as an argument. Therefore, when the Elevator
“sends an elevatorArrived event” to another object, the Elevator passes an Ele-
vatorMoveEvent object as an argument to the receiving object’s elevatorArrived
method. We implement class Door—the class of which the elevatorDoor is an
instance—in Appendix H, after we continue refining our design and learning more Java
capabilities.

1 // ElevatorMoveEvent.java
2 // Indicates on which Floor the Elevator arrived or departed
3 package com.deitel.jhtp4.elevator.event;
4
5 // Deitel package
6 import com.deitel.jhtp4.elevator.model.*;
7
8 public class ElevatorMoveEvent extends ElevatorModelEvent {
9

10 // ElevatorMoveEvent constructor
11 public ElevatorMoveEvent(Object source, Location location)
12 {
13 super(source, location);
14 }
15 }

Fig. 10.27Fig. 10.27Fig. 10.27Fig. 10.27 Class ElevatorMoveEvent, a subclass of ElevatorModelEvent,
is sent when the Elevator has arrived at or departed from, a Floor.

1 // ElevatorMoveListener.java
2 // Methods invoked when Elevator has either departed or arrived
3 package com.deitel.jhtp4.elevator.event;
4
5 public interface ElevatorMoveListener {
6
7 // invoked when Elevator has departed
8 public void elevatorDeparted(ElevatorMoveEvent moveEvent);
9

10 // invoked when Elevator has arrived
11 public void elevatorArrived(ElevatorMoveEvent moveEvent);
12 }

Fig. 10.28Fig. 10.28Fig. 10.28Fig. 10.28 Interface ElevatorMoveListener provides the methods required to
listen for Elevator departure and arrival events.

590 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Class Diagram Revisited
Figure 10.29 modifies the associations in the class diagram of Fig. 9.19 to include event
handling. Note that like the collaboration diagram of Fig. 10.26, Fig. 10.29 indicates that
an object informs, or signals, another object that some event has occurred. If an object re-
ceiving the event invokes a private method, the class diagram represents this method
invocation as a self association—that is, the class contains an association with itself. The
Button, Door, Light and Bell classes contain self associations; note that the associ-
ation does not include an arrowhead indicating the direction of the association, because the
class’s association is with itself. Lastly, the diagram includes an association between class
Door and class Person (the Door informs a Person that the Door has opened), be-
cause we established the relationship between all Door objects and a Person object.

Fig. 10.29Fig. 10.29Fig. 10.29Fig. 10.29 Class diagram of our simulator (including event handling).

Light ElevatorModel Floor

ElevatorShaft

Bell

Person

Elevator

Creates

Presses

2

2 2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

0..*

1
1

1

1

2

Signals to
move

ResetsOpens /
Closes

Occupies

Signals
arrival

Turns
on/off

Rings

Door Button

Location

Signals
arrival

Signals
arrival

Signals
arrival

Signals
arrival

Signals
arrival

Informs of
opening

1

1

1

1

1

1

1

1

1 1

Chapter 10 Strings and Characters 591

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

SUMMARY
• A character constant’s value is its integer value in the Unicode character set. Strings can include

letters, digits and special characters such as +, -, *, / and $. A string in Java is an object of class
String. String literals or string constants are often referred to as anonymous String objects
and are written in double quotes in a program.

• Class String provides nine constructors.

• String method length returns the number of characters in a String.

• String method charAt returns the character at a specific position.

• Method equals is used to test any two objects for equality (i.e., the contents of the two objects
are identical). The method returns true if the objects are equal, false otherwise. Method
equals uses a lexicographical comparison for Strings.

• When primitive-data type values are compared with ==, the result is true if both values are iden-
tical. When references are compared with ==, the result is true if both references refer to the
same object in memory.

• Java treats all anonymous Strings with the same contents as one anonymous String object.

• String method equalsIgnoreCase performs a case-insensitive String comparison.

• String method compareTo returns 0 if the Strings it is comparing are equal, a negative
number if the String that invokes compareTo is less than the String that is passed as an ar-
gument and a positive number if the String that invokes compareTo is greater than the
String that is passed as an argument. Method compareTo uses a lexicographical comparison.

• String method regionMatches compares portions of two Strings for equality.

• String method startsWith determines whether a String starts with the characters speci-
fied as an argument. String method endsWith determines whether a String ends with the
characters specified as an argument.

• Method hashCode performs a hash code calculation that enables a String object to be stored
in a hash table. This method is inherited from Object and overridden by String.

• String method indexOf locates the first occurrence of a character or a substring in a String.
Method lastIndexOf locates the last occurrence of a character or a substring in a String.

• String method substring copies and returns part of an existing String object.

• String method concat concatenates two String objects and returns a new String object
containing the characters from both original Strings.

• String method replace returns a new String object that replaces every occurrence in a
String of its first character argument with its second character argument.

• String method toUpperCase returns a new String with uppercase letters in the positions
where the original String had lowercase letters. Method toLowerCase returns a new
String with lowercase letters in the positions where the original String had uppercase letters.

• String method trim returns a new String object in which all white-space characters (such
as spaces, newlines and tabs) have been removed from the beginning or end of a String.

• String method toCharArray returns a new character array containing a copy of the charac-
ters in a String.

• String class method valueOf returns its argument converted to a string.

• The first time String method intern is invoked on a String it returns a reference to that
String object. Subsequent invocations of intern on different String objects that have the
same contents as the original String result in multiple references to the original String object.

592 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

• Class StringBuffer provides three constructors that enable StringBuffers to be initial-
ized with no characters and an initial capacity of 16 characters; with no characters and an initial
capacity specified in the integer argument or with a copy of the characters of the String argu-
ment and an initial capacity that is the number of characters in the String argument plus 16.

• StringBuffer method length returns the number of characters currently stored in a
StringBuffer. Method capacity returns the number of characters that can be stored in a
StringBuffer without allocating more memory.

• Method ensureCapacity ensures that a StringBuffer has a minimum capacity. Method
setLength increases or decreases the length of a StringBuffer.

• StringBuffer method charAt returns the character at the specified index. Method set-
CharAt sets the character at the specified position. Method getChars returns a character array
containing a copy of the characters in the StringBuffer.

• Class StringBuffer provides overloaded append methods to add primitive data-type, char-
acter array, String and Object values to the end of a StringBuffer.

• StringBuffers and the append methods are used by the Java compiler to implement the +
and += operators for concatenating Strings.

• Class StringBuffer provides overloaded insert methods to insert primitive data-type, char-
acter array, String and Object values at any position in a StringBuffer.

• Class Character provides a constructor that takes a character argument.

• Character method isDefined determines whether a character is defined in the Unicode
character set. If so, the method returns true; otherwise, it returns false.

• Character method isDigit determines whether a character is a defined Unicode digit. If so,
the method returns true; otherwise, it returns false.

• Character method isJavaIdentifierStart determines whether a character is a charac-
ter that can be used as the first character of an identifier in Java [i.e., a letter, an underscore (_) or
a dollar sign ($)]. If so, the method returns true; otherwise, it returns false.

• Character method isJavaIdentifierPart determines whether a character is a character
that can be used in an identifier in Java [i.e., a digit, a letter, an underscore (_) or a dollar sign ($)].
If so, the method returns true; otherwise, it returns false. Method isLetter determines
whether a character is a letter. If so, the method returns true; otherwise, it returns false. Meth-
od isLetterOrDigit determines whether a character is a letter or a digit. If so, the method
returns true; otherwise, it returns false.

• Character method isLowerCase determines whether a character is a lowercase letter. If so,
the method returns true; otherwise, false. Character method isUpperCase determines
if a character is an uppercase letter. If so, the method returns true; otherwise, false.

• Character method toUpperCase converts a character to its uppercase equivalent. Method
toLowerCase converts a character to its lowercase equivalent.

• Character method digit converts its character argument into an integer in the number system
specified by its integer argument radix. Method forDigit converts its integer argument dig-
it into a character in the number system specified by its integer argument radix.

• Character method charValue returns the char stored in a Character object. Method
toString returns a String representation of a Character.

• Character method hashCode performs a hash code calculation on a Character.

• StringTokenizer’s default constructor creates a StringTokenizer for its String argu-
ment that will use the default delimiter string " \n\t\r", consisting of a space, a newline, a tab
and a carriage return for tokenization.

Chapter 10 Strings and Characters 593

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

• StringTokenizer method countTokens returns the number of tokens in a String to be
tokenized.

• StringTokenizer method hasMoreTokens determines if there are more tokens in the
String being tokenized.

• StringTokenizer method nextToken returns a String with the next token.

TERMINOLOGY
append method of class StringBuffer isUpperCase method of class Character
appending strings to other strings lastIndexOf method of class String
array of strings length method of class String
capacity method of class StringBuffer length method of class StringBuffer
Character class length of a string
character code literal
character constant nextToken method of StringTokenizer
character set numeric code representation of a character
charAt method of class String printing character
charAt method of class StringBuffer regionMatches method of class String
charValue method of class Character replace method of class String
compareTo method of class String search string
comparing strings setCharAt method of class StringBuffer
concat method of class String startsWith method of class String
concatenation string
copying strings String class
countTokens method (StringTokenizer) string concatenation
delimiter string constant
digit method of class Character string literal
endsWith method of class String string processing
equals method of class String StringBuffer class
equalsIgnoreCase method of String StringIndexOutOfBoundsException
forDigit method of class Character StringTokenizer class
getChars method of class String substring method of String class
getChars method of class StringBuffer toCharArray method of class String
hash table token
hashCode method of class Character tokenizing strings
hashCode method of class String toLowerCase method of class Character
hasMoreTokens method toLowerCase method of class String
hexadecimal digits toString method of class Character
indexOf method of class String toString method of class String
insert method of class StringBuffer toString method of class StringBuffer
intern method of class String toUpperCase method of class Character
isDefined method of class Character toUpperCase method of class String
isDigit method of class Character trim method of class String
isJavaIdentifierPart method Unicode
isJavaIdentifierStart method valueOf method of class String
isLetter method of class Character white-space characters
isLetterOrDigit method of Character word processing
isLowerCase method of class Character

594 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

SELF-REVIEW EXERCISES
10.1 State whether each of the following is true or false. If false, explain why.

a) When String objects are compared with ==, the result is true if the Strings contain
the same values.

b) A String can be modified after it is created.

10.2 For each of the following, write a single statement that performs the indicated task.
a) Compare the string in s1 to the string in s2 for equality of contents.
b) Append the string s2 to the string s1, using +=.
c) Determine the length of the string in s1.

ANSWERS TO SELF-REVIEW EXERCISES
10.1 a) False. String objects that are compared with operator == are actually compared to de-
termine if they are the same object in memory.

b) False. String objects are constant and cannot be modified after they are created.
StringBuffer objects can be modified after they are created.

10.2 a) s1.equals(s2)
b) s1 += s2;
c) s1.length()

EXERCISES
Exercises 10.3 through 10.6 are reasonably challenging. Once you have done these problems, you
ought to be able to implement most popular card games easily.

10.3 Modify the program in Fig. 10.21 so that the card-dealing method deals a five-card poker
hand. Then write the following additional methods:

a) Determine if the hand contains a pair.
b) Determine if the hand contains two pairs.
c) Determine if the hand contains three of a kind (e.g., three jacks).
d) Determine if the hand contains four of a kind (e.g., four aces).
e) Determine if the hand contains a flush (i.e., all five cards of the same suit).
f) Determine if the hand contains a straight (i.e., five cards of consecutive face values).
g) Determine if the hand contains a full house (i.e., two cards of one face value and three

cards of another face value).

10.4 Use the methods developed in Exercise 10.3 to write a program that deals two five-card poker
hands, evaluates each hand and determines which is the better hand.

10.5 Modify the program developed in Exercise 10.4 so that it can simulate the dealer. The deal-
er’s five-card hand is dealt “face down” so the player cannot see it. The program should then evaluate
the dealer’s hand and, based on the quality of the hand, the dealer should draw one, two or three more
cards to replace the corresponding number of unneeded cards in the original hand. The program
should then reevaluate the dealer’s hand. (Caution: This is a difficult problem!)

10.6 Modify the program developed in Exercise 10.5 so that it can handle the dealer’s hand auto-
matically, but the player is allowed to decide which cards of the player’s hand to replace. The program
should then evaluate both hands and determine who wins. Now, use this new program to play 20
games against the computer. Who wins more games, you or the computer? Have one of your friends
play 20 games against the computer. Who wins more games? Based on the results of these games,
make appropriate modifications to refine your poker-playing program. (This, too, is a difficult prob-
lem.) Play 20 more games. Does your modified program play a better game?

Chapter 10 Strings and Characters 595

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

10.7 Write an application that uses String method compareTo to compare two strings input
by the user. Output whether the first string is less than, equal to or greater than the second.

10.8 Write an application that uses String method regionMatches to compare two strings
input by the user. The program should input the number of characters to be compared and the starting
index of the comparison. The program should state whether the first string is less than, equal to or
greater than the second string. Ignore the case of the characters when performing the comparison.

10.9 Write an application that uses random number generation to create sentences. Use four arrays
of strings called article, noun, verb and preposition. Create a sentence by selecting a word
at random from each array in the following order: article, noun, verb, preposition, ar-
ticle and noun. As each word is picked, concatenate it to the previous words in the sentence. The
words should be separated by spaces. When the final sentence is output, it should start with a capital
letter and end with a period. The program should generate 20 sentences and output them to a text area.

The arrays should be filled as follows: The article array should contain the articles "the",
"a", "one", "some" and "any"; the noun array should contain the nouns "boy", "girl",
"dog", "town" and "car"; the verb array should contain the verbs "drove", "jumped",
"ran", "walked" and "skipped"; the preposition array should contain the prepositions "to",
"from", "over", "under" and "on".

After the preceding program is written, modify the program to produce a short story consisting
of several of these sentences. (How about the possibility of a random term paper writer!)

10.10 (Limericks) A limerick is a humorous five-line verse in which the first and second lines
rhyme with the fifth, and the third line rhymes with the fourth. Using techniques similar to those de-
veloped in Exercise 10.9, write a Java program that produces random limericks. Polishing this pro-
gram to produce good limericks is a challenging problem, but the result will be worth the effort!

10.11 (Pig Latin) Write an application that encodes English language phrases into pig Latin. Pig
Latin is a form of coded language often used for amusement. Many variations exist in the methods
used to form pig Latin phrases. For simplicity, use the following algorithm:

To form a pig Latin phrase from an English language phrase, tokenize the phrase into words
with an object of class StringTokenizer. To translate each English word into a pig Latin word, place
the first letter of the English word at the end of the word and add the letters “ay.” Thus, the word
“jump” becomes “umpjay,” the word “the” becomes “hetay,” and the word “computer” becomes
“omputercay.” Blanks between words remain as blanks. Assume the following: The English phrase
consists of words separated by blanks, there are no punctuation marks and all words have two or
more letters. Method printLatinWord should display each word. Each token returned from
nextToken is passed to method printLatinWord to print the pig Latin word. Enable the user
to input the sentence. Keep a running display of all the converted sentences in a text area.

10.12 Write an application that inputs a telephone number as a string in the form (555) 555-
5555. The program should use an object of class StringTokenizer to extract the area code as a
token, the first three digits of the phone number as a token and the last four digits of the phone number
as a token. The seven digits of the phone number should be concatenated into one string. The program
should convert the area code string to int (remember parseInt!) and convert the phone number
string to long. Both the area code and the phone number should be printed. Remember that you will
have to change delimiter characters during the tokenization process.

10.13 Write an application that inputs a line of text, tokenizes the line with an object of class
StringTokenizer and outputs the tokens in reverse order.

10.14 Use the string comparison methods discussed and the techniques for sorting arrays developed
in Chapter 7 to write a program that alphabetizes a list of strings. Allow the user to enter the strings
in a text field. Display the results in a text area.

596 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

10.15 Write an application that inputs text and outputs the text in uppercase and lowercase letters.

10.16 Write an application that inputs several lines of text and a search character and uses method
String method indexOf to determine the number of occurrences of the character in the text.

10.17 Write an application based on the program in Exercise 10.16 that inputs several lines of text
and uses String method indexOf to determine the total number of occurrences of each letter of
the alphabet in the text. Uppercase and lowercase letters should be counted together. Store the totals
for each letter in an array and print the values in tabular format after the totals have been determined.

10.18 Write an application that reads a series of strings and outputs only those strings beginning
with the letter “b.” The results should be output to a text area.

10.19 Write an application that reads a series of strings and prints only those strings ending with
the letters “ED.” The results should be output to a text area.

10.20 Write an application that inputs an integer code for a character and displays the correspond-
ing character. Modify this program so that it generates all possible three-digit codes in the range form
000 to 255 and attempts to print the corresponding characters. Display the results in a text area.

10.21 Write your own versions of the String methods for searching strings.

10.22 Write a program that reads a five-letter word from the user and produces all possible three-
letter words that can be derived from the letters of the five-letter word. For example, the three-letter
words produced from the word “bathe” include the commonly used words “ate,” “bat,” “bet,” “tab,”
“hat,” “the” and “tea.”

SPECIAL SECTION: ADVANCED STRING MANIPULATION EXERCISES
The preceding exercises are keyed to the text and designed to test the reader’s understanding of fun-
damental string-manipulation concepts. This section includes a collection of intermediate and
advanced string-manipulation exercises. The reader should find these problems challenging, yet
entertaining. The problems vary considerably in difficulty. Some require an hour or two of program
writing and implementation. Others are useful for lab assignments that might require two or three
weeks of study and implementation. Some are challenging term projects.

10.23 (Text Analysis) The availability of computers with string-manipulation capabilities has re-
sulted in some rather interesting approaches to analyzing the writings of great authors. Much attention
has been focused on whether William Shakespeare ever lived. Some scholars believe there is substan-
tial evidence indicating that Christopher Marlowe or other authors actually penned the masterpieces
attributed to Shakespeare. Researchers have used computers to find similarities in the writings of
these two authors. This exercise examines three methods for analyzing texts with a computer.

a) Write an application that reads several lines of text from the keyboard and prints a table
indicating the number of occurrences of each letter of the alphabet in the text. For exam-
ple, the phrase

To be, or not to be: that is the question:

contains one “a,” two “b’s,” no “c’s,” etc.
b) Write an application that reads several lines of text and prints a table indicating the num-

ber of one-letter words, two-letter words, three-letter words, etc. appearing in the text.
For example, Fig. 10.30 shows the counts for the phrase

Whether 'tis nobler in the mind to suffer

Chapter 10 Strings and Characters 597

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

c) Write an application that reads several lines of text and prints a table indicating the num-
ber of occurrences of each different word in the text. The first version of your program
should include the words in the table in the same order in which they appear in the text.
For example, the lines

To be, or not to be: that is the question:
Whether 'tis nobler in the mind to suffer

contain the words “to” three times, the word “be” two times, the word “or” once, etc. A
more interesting (and useful) printout should then be attempted in which the words are
sorted alphabetically.

10.24 (Printing Dates in Various Formats) Dates are printed in several common formats. Two of
the more common formats are

04/25/1955 and April 25, 1955

Write an application that reads a date in the first format and prints that date in the second format.

10.25 (Check Protection) Computers are frequently employed in check-writing systems such as
payroll and accounts payable applications. Many strange stories circulate regarding weekly pay-
checks being printed (by mistake) for amounts in excess of $1 million. Incorrect amounts are printed
by computerized check-writing systems because of human error and/or machine failure. Systems de-
signers build controls into their systems to prevent such erroneous checks from being issued.

Another serious problem is the intentional alteration of a check amount by someone who
intends to cash a check fraudulently. To prevent a dollar amount from being altered, most computer-
ized check-writing systems employ a technique called check protection.

Checks designed for imprinting by computer contain a fixed number of spaces in which the
computer may print an amount. Suppose a paycheck contains eight blank spaces in which the com-
puter is supposed to print the amount of a weekly paycheck. If the amount is large, then all eight of
those spaces will be filled, for example:

1,230.60 (check amount)

12345678 (position numbers)

On the other hand, if the amount is less than $1000, then several of the spaces would ordinarily
be left blank. For example,

Word length Occurrences

1 0

2 2

3 1

4 2 (including 'tis)

5 0

6 2

7 1

Fig. 10.30Fig. 10.30Fig. 10.30Fig. 10.30 Counts for the string "Whether 'tis nobler in the mind to
suffer".

598 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

 99.87

12345678

contains three blank spaces. If a check is printed with blank spaces, it is easier for someone to alter
the amount of the check. To prevent a check from being altered, many check-writing systems insert
leading asterisks to protect the amount as follows:

***99.87

12345678

Write an application that inputs a dollar amount to be printed on a check, then prints the amount
in check-protected format with leading asterisks if necessary. Assume that nine spaces are available
for printing the amount.

10.26 (Writing the Word Equivalent of a Check Amount) Continuing the discussion of the previous
exercise, we reiterate the importance of designing check-writing systems to prevent alteration of
check amounts. One common security method requires that the check amount be written both in num-
bers and “spelled out” in words as well. Even if someone is able to alter the numerical amount of the
check, it is extremely difficult to change the amount in words.

a) Many computerized check-writing systems do not print the amount of the check in
words. Perhaps the main reason for this omission is the fact that most high-level languag-
es used in commercial applications do not contain adequate string-manipulation features.
Another reason is that the logic for writing word equivalents of check amounts is some-
what involved.

b) Write an application that inputs a numeric check amount and writes the word equivalent
of the amount. For example, the amount 112.43 should be written as

ONE HUNDRED TWELVE and 43/100

10.27 (Morse Code) Perhaps the most famous of all coding schemes is the Morse code, developed
by Samuel Morse in 1832 for use with the telegraph system. The Morse code assigns a series of dots
and dashes to each letter of the alphabet, each digit, and a few special characters (such as period, com-
ma, colon and semicolon). In sound-oriented systems, the dot represents a short sound and the dash
represents a long sound. Other representations of dots and dashes are used with light-oriented systems
and signal-flag systems.

Separation between words is indicated by a space, or, quite simply, the absence of a dot or dash.
In a sound-oriented system, a space is indicated by a short period of time during which no sound is
transmitted. The international version of the Morse code appears in Fig. 10.31.

Write an application that reads an English language phrase and encodes the phrase into Morse
code. Also write a program that reads a phrase in Morse code and converts the phrase into the
English language equivalent. Use one blank between each Morse-coded letter and three blanks
between each Morse-coded word.

10.28 (A Metric Conversion Program) Write an application that will assist the user with metric con-
versions. Your program should allow the user to specify the names of the units as strings (i.e., centi-
meters, liters, grams, etc. for the metric system and inches, quarts, pounds, etc. for the English system)
and should respond to simple questions such as

"How many inches are in 2 meters?"
"How many liters are in 10 quarts?"

Chapter 10 Strings and Characters 599

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Your program should recognize invalid conversions. For example, the question

"How many feet in 5 kilograms?"

is not a meaningful question because "feet" is a unit of length while "kilograms" is a unit of
mass.

SPECIAL SECTION: CHALLENGING STRING MANIPULATION PROJECTS
10.29 (Project: A Spelling Checker) Many popular word processing software packages have built-
in spell checkers.

In this project, you are asked to develop your own spell-checker utility. We make suggestions to
help get you started. You should then consider adding more capabilities. Use a computerized dictio-
nary (if you have access to one) as a source of words.

Why do we type so many words with incorrect spellings? In some cases, it is because we sim-
ply do not know the correct spelling, so we make a “best guess.” In some cases, it is because we
transpose two letters (e.g., “defualt” instead of “default”). Sometimes we double-type a letter acci-
dentally (e.g., “hanndy” instead of “handy”). Sometimes we type a nearby key instead of the one we
intended (e.g., “biryhday” instead of “birthday”), and so on.

Character Code Character Code

A .- T -

B -... U ..-

C -.-. V ...-

D -.. W .--

E . X -..-

F ..-. Y -.--

G --. Z --..

H

I .. Digits

J .--- 1 .----

K -.- 2 ..---

L .-.. 3 ...--

M -- 4-

N -. 5

O --- 6 -....

P .--. 7 --...

Q --.- 8 ---..

R .-. 9 ----.

S ... 0 -----

Fig. 10.31Fig. 10.31Fig. 10.31Fig. 10.31 The letters of the alphabet as expressed in international Morse code .

600 Strings and Characters Chapter 10

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Design and implement a spell-checker application in Java. Your program should maintain an
array wordList of strings. Enable the user to enter these strings. [Note: In Chapter 17, we intro-
duce file processing. Once you have this capability, you can obtain the words for the spell checker
from a computerized dictionary stored in a file.]

Your program should ask a user to enter a word. The program should then look up that word in
the wordList array. If the word is present in the array, your program should print “Word is
spelled correctly.”

If the word is not present in the array, your program should print “word is not spelled
correctly.” Then your program should try to locate other words in wordList that might be the
word the user intended to type. For example, you can try all possible single transpositions of adja-
cent letters to discover that the word “default” is a direct match to a word in wordList. Of course,
this implies that your program will check all other single transpositions, such as “edfault,” “dfeault,”
“deafult,” “defalut,” and “defautl.” When you find a new word that matches one in wordList,
print that word in a message, such as “Did you mean "default?".”

Implement other tests, such as replacing each double letter with a single letter and any other
tests you can develop to improve the value of your spell-checker.

10.30 (Project: A Crossword Puzzle Generator) Most people have worked a crossword puzzle, but
few have ever attempted to generate one. Generating a crossword puzzle is suggested here as a string-
manipulation project requiring substantial sophistication and effort.

There are many issues the programmer must resolve to get even the simplest crossword puzzle-
generator program working. For example, how does one represent the grid of a crossword puzzle
inside the computer? Should one use a series of strings, or should double-subscripted arrays be
used?

The programmer needs a source of words (i.e., a computerized dictionary) that can be directly
referenced by the program. In what form should these words be stored to facilitate the complex
manipulations required by the program?

The really ambitious reader will want to generate the “clues” portion of the puzzle, in which the
brief hints for each “across” word and each “down” word are printed for the puzzle worker. Merely
printing a version of the blank puzzle itself is not a simple problem.

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

11
Graphics and Java2D

Objectives
• To understand graphics contexts and graphics objects.
• To understand and be able to manipulate colors.
• To understand and be able to manipulate fonts.
• To use Graphics methods to draw lines, rectangles,

rectangles with rounded corners, three-dimensional
rectangles, ovals, arcs and polygons.

• To use methods of class Graphics2D from the
Java2D API to draw lines, rectangles, rectangles with
rounded corners, ellipses, arcs and general paths.

• To be able to specify Paint and Stroke
characteristics of shapes displayed with
Graphics2D.

One picture is worth ten thousand words.
Chinese proverb

Treat nature in terms of the cylinder, the sphere, the cone, all
in perspective.
Paul Cezanne

Nothing ever becomes real till it is experienced—even a
proverb is no proverb to you till your life has illustrated it.
John Keats

A picture shows me at a glance what it takes dozens of pages
of a book to expound.
Ivan Sergeyevich Turgenev

602 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

11.1 Introduction
In this chapter, we overview several of Java’s capabilities for drawing two-dimensional
shapes, controlling colors and controlling fonts. One of Java’s initial appeals was its sup-
port for graphics that enabled Java programmers to visually enhance their applets and ap-
plications. Java now contains many more sophisticated drawing capabilities as part of the
Java2D API. This chapter begins with an introduction to many of the original drawing ca-
pabilities of Java. Next, we present several of the new and more powerful Java2D capabil-
ities, such as controlling the style of lines used to draw shapes and controlling how shapes
are filled with color and patterns.

Figure 11.1 shows a portion of the Java class hierarchy that includes several of the
basic graphics classes and Java2D API classes and interfaces covered in this chapter. Class
Color contains methods and constants for manipulating colors. Class Font contains
methods and constants for manipulating fonts. Class FontMetrics contains methods for
obtaining font information. Class Polygon contains methods for creating polygons. Class
Graphics contains methods for drawing strings, lines, rectangles and other shapes. The
bottom half of the figure lists several classes and interfaces from the Java2D API. Class
BasicStroke helps specify the drawing characteristics of lines. Classes Gradient-
Paint and TexturePaint help specify the characteristics for filling shapes with colors
or patterns. Classes GeneralPath, Arc2D, Ellipse2D, Line2D, Rectangle2D
and RoundRectangle2D define a variety of Java2D shapes.

To begin drawing in Java, we must first understand Java’s coordinate system
(Figure 11.2), which is a scheme for identifying every possible point on the screen. By
default, the upper-left corner of a GUI component (such as an applet or a window) has the
coordinates (0, 0). A coordinate pair is composed of an x-coordinate (the horizontal coor-
dinate) and a y-coordinate (the vertical coordinate). The x-coordinate is the horizontal dis-
tance moving right from the upper-left corner. The y-coordinate is the vertical distance
moving down from the upper-left corner. The x-axis describes every horizontal coordinate,
and the y-axis describes every vertical coordinate.

Outline

11.1 Introduction
11.2 Graphics Contexts and Graphics Objects
11.3 Color Control
11.4 Font Control
11.5 Drawing Lines, Rectangles and Ovals
11.6 Drawing Arcs
11.7 Drawing Polygons and Polylines
11.8 The Java2D API
11.9 Java2D Shapes
11.10 (Optional Case Study) Thinking About Objects: Designing

Interfaces with the UML

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 11 Graphics and Java2D 603

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Software Engineering Observation 11.1
The upper-left coordinate (0, 0) of a window is actually behind the title bar of the window.
For this reason, drawing coordinates should be adjusted to draw inside the borders of the
window. Class Container (a superclass of all windows in Java) has method getInsets,
which returns an Insets object (package java.awt) for this purpose. An Insets object
has four public members—top, bottom, left and right—that represent the number
of pixels from each edge of the window to the drawing area for the window. 11.1

Text and shapes are displayed on the screen by specifying coordinates. Coordinate
units are measured in pixels. A pixel is a display monitor’s smallest unit of resolution.

Fig. 11.1Fig. 11.1Fig. 11.1Fig. 11.1 Some classes and interfaces used in this chapter from Java’s original
graphics capabilities and from the Java2D API.

java.lang.Object

java.awt.Color

java.awt.Font

java.awt.FontMetrics

java.awt.Component

java.awt.Graphics

java.awt.Polygon

java.awt.geom.RectangularShape

class

interface

java.awt.Graphics2D

java.awt.geom.Arc2D

java.awt.geom.Ellipse2D

java.awt.geom.Rectangle2D

java.awt.geom.RoundRectangle2D

java.awt.GradientPaint

java.awt.TexturePaint

Classes and interfaces from the Java2D API

java.awt.BasicStroke

java.awt.geom.GeneralPath

java.awt.geom.Line2D

java.awt.Paint

java.awt.Shape

java.awt.Stroke

Key

java.awt.geom.Arc2D

604 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Portability Tip 11.1
Different display monitors have different resolutions (i.e., the density of pixels varies). This
can cause graphics to appear to be different sizes on different monitors. 11.1

11.2 Graphics Contexts and Graphics Objects
A Java graphics context enables drawing on the screen. A Graphics object manages a
graphics context by controlling how information is drawn. Graphics objects contain meth-
ods for drawing, font manipulation, color manipulation and the like. Every applet we have
seen in the text that performs drawing on the screen has used the Graphics object g (the
argument to the applet’s paint method) to manage the applet’s graphics context. In this
chapter, we demonstrate drawing in applications. However, every technique shown here
can be used in applets.

The Graphics class is an abstract class (i.e., Graphics objects cannot be
instantiated). This contributes to Java’s portability. Because drawing is performed differ-
ently on each platform that supports Java, there cannot be one class that implements
drawing capabilities on all systems. For example, the graphics capabilities that enable a PC
running Microsoft Windows to draw a rectangle are different from the graphics capabilities
that enable a UNIX workstation to draw a rectangle—and those are both different from the
graphics capabilities that enable a Macintosh to draw a rectangle. When Java is imple-
mented on each platform, a derived class of Graphics is created that actually implements
all the drawing capabilities. This implementation is hidden from us by the Graphics
class, which supplies the interface that enables us to write programs that use graphics in a
platform-independent manner.

Class Component is the superclass for many of the classes in the java.awt
package (we discuss class Component in Chapter 12). Component method paint
takes a Graphics object as an argument. This object is passed to the paint method by
the system when a paint operation is required for a Component. The header for the
paint method is

public void paint(Graphics g)

The Graphics object g receives a reference to an object of the system’s derived Graph-
ics class. The preceding method header should look familiar to you—it is the same one

Fig. 11.2Fig. 11.2Fig. 11.2Fig. 11.2 Java coordinate system. Units are measured in pixels.

X axis

Y axis

(0, 0)

(x, y)

+x

+y

Chapter 11 Graphics and Java2D 605

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

we have been using in our applet classes. Actually, the Component class is an indirect
base class of class JApplet—the superclass of every applet in this book. Many capabili-
ties of class JApplet are inherited from class Component. The paint method defined in
class Component does nothing by default—it must be overridden by the programmer.

The paint method is seldom called directly by the programmer because drawing
graphics is an event-driven process. When an applet executes, the paint method is automat-
ically called (after calls to the JApplet’s init and start methods). For paint to be
called again, an event must occur (such as covering and uncovering the applet). Similarly,
when any Component is displayed, that Component’s paint method is called.

If the programmer needs to call paint, a call is made to the Component class
repaint method. Method repaint requests a call to the Component class update
method as soon as possible to clear the Component’s background of any previous
drawing, then update calls paint directly. The repaint method is frequently called by
the programmer to force a paint operation. Method repaint should not be overridden,
because it performs some system-dependent tasks. The update method is seldom called
directly and sometimes overridden. Overriding the update method is useful for
“smoothing” animations (i.e., reducing “flicker”) as we will discuss in Chapter 18, Multi-
media. The headers for repaint and update are

public void repaint()
public void update(Graphics g)

Method update takes a Graphics object as an argument, which is supplied automati-
cally by the system when update is called.

In this chapter, we focus on the paint method. In the next chapter, we concentrate
more on the event-driven nature of graphics and discuss the repaint and update
methods in more detail. We also discuss in that chapter class JComponent—a superclass
of many GUI components in package javax.swing. Subclasses of JComponent typi-
cally paint from their paintComponent methods.

11.3 Color Control
Colors enhance the appearance of a program and help convey meaning. For example, a traf-
fic light has three different color lights—red indicates stop, yellow indicates caution and
green indicates go.

Class Color defines methods and constants for manipulating colors in a Java pro-
gram. The predefined color constants are summarized in Fig. 11.3, and several color
methods and constructors are summarized in Fig. 11.4. Note that two of the methods in
Fig. 11.4 are Graphics methods that are specific to colors.

Every color is created from a red, a green and a blue component. Together these com-
ponents are called RGB values. All three RGB components can be integers in the range
from 0 to 255, or all three RGB parts can be floating-point values in the range 0.0 to 1.0.
The first RGB part defines the amount of red, the second defines the amount of green and
the third defines the amount of blue. The larger the RGB value, the greater the amount of
that particular color. Java enables the programmer to choose from 256 × 256 × 256 (or
approximately 16.7 million) colors. However, not all computers are capable of displaying
all these colors. If this is the case, the computer will display the closest color it can.

606 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Color Constant Color RGB value

public final static Color orange orange 255, 200, 0

public final static Color pink pink 255, 175, 175

public final static Color cyan cyan 0, 255, 255

public final static Color magenta magenta 255, 0, 255

public final static Color yellow yellow 255, 255, 0

public final static Color black black 0, 0, 0

public final static Color white white 255, 255, 255

public final static Color gray gray 128, 128, 128

public final static Color lightGray light gray 192, 192, 192

public final static Color darkGray dark gray 64, 64, 64

public final static Color red red 255, 0, 0

public final static Color green green 0, 255, 0

public final static Color blue blue 0, 0, 255

Fig. 11.3Fig. 11.3Fig. 11.3Fig. 11.3 Color class static constants and RGB values

Method Description

public Color(int r, int g, int b)

Creates a color based on red, green and blue contents expressed as integers from
0 to 255.

public Color(float r, float g, float b)

Creates a color based on red, green and blue contents expressed as floating-
point values from 0.0 to 1.0.

public int getRed() // Color class

Returns a value between 0 and 255 representing the red content.

public int getGreen() // Color class

Returns a value between 0 and 255 representing the green content.

public int getBlue() // Color class

Returns a value between 0 and 255 representing the blue content.

public Color getColor() // Graphics class

Returns a Color object representing the current color for the graphics context.

public void setColor(Color c) // Graphics class

Sets the current color for drawing with the graphics context.

Fig. 11.4Fig. 11.4Fig. 11.4Fig. 11.4 Color methods and color-related Graphics methods .

Chapter 11 Graphics and Java2D 607

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Common Programming Error 11.1
Spelling any static Color class constant with an initial capital letter is a syntax error. 11.1

Two Color constructors are shown in Fig. 11.4—one that takes three int arguments,
and one that takes three float arguments, with each argument specifying the amount of
red, green and blue, respectively. The int values must be between 0 and 255 and the float
values must be between 0.0 and 1.0. The new Color object will have the specified
amounts of red, green and blue. Color methods getRed, getGreen and getBlue
return integer values from 0 to 255 representing the amount of red, green and blue, respec-
tively. Graphics method getColor returns a Color object representing the current
drawing color. Graphics method setColor sets the current drawing color.

The application of Fig. 11.5 demonstrates several methods from Fig. 11.4 by drawing
filled rectangles and strings in several different colors.

1 // Fig. 11.5: ShowColors.java
2 // Demonstrating Colors.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class ShowColors extends JFrame {
12
13 // constructor sets window's title bar string and dimensions
14 public ShowColors()
15 {
16 super("Using colors");
17
18 setSize(400, 130);
19 setVisible(true);
20 }
21
22 // draw rectangles and Strings in different colors
23 public void paint(Graphics g)
24 {
25 // call superclass's paint method
26 super.paint(g);
27
28 // set new drawing color using integers
29 g.setColor(new Color(255, 0, 0));
30 g.fillRect(25, 25, 100, 20);
31 g.drawString("Current RGB: " + g.getColor(), 130, 40);
32
33 // set new drawing color using floats
34 g.setColor(new Color(0.0f, 1.0f, 0.0f));
35 g.fillRect(25, 50, 100, 20);
36 g.drawString("Current RGB: " + g.getColor(), 130, 65);

Fig. 11.5Fig. 11.5Fig. 11.5Fig. 11.5 Demonstrating setting and getting a Color (part 1 of 2).

608 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

When the application begins execution, class ShowColors’s paint method (lines
23–49) is called to paint the window. Line 29 uses Graphics method setColor to set
the current drawing color. Method setColor receives a Color object. The expression
new Color(255, 0, 0) creates a new Color object that represents red (red value
255, and 0 for the green and blue values). Line 30 uses Graphics method fillRect to
draw a filled rectangle in the current color. Method fillRect receives the same parame-
ters as method drawRect (discussed in Chapter 3). Line 31uses Graphics method
drawString to draw a String in the current color. The expression g.getColor()
retrieves the current color from the Graphics object. The returned Color is concatenated
with string "Current RGB: ", resulting in an implicit call to class Color’s toString
method. Notice that the String representation of the Color object contains the class
name and package (java.awt.Color), and the red, green and blue values.

Lines 34–36 and lines 39–41 perform the same tasks again. Line 34 uses the Color
constructor with three float arguments to create the color green (0.0f for red, 1.0f for
green and 0.0f for blue). Note the syntax of the constants. The letter f appended to a
floating-point constant indicates that the constant should be treated as type float. Nor-
mally, floating-point constants are treated as type double.

37
38 // set new drawing color using static Color objects
39 g.setColor(Color.blue);
40 g.fillRect(25, 75, 100, 20);
41 g.drawString("Current RGB: " + g.getColor(), 130, 90);
42
43 // display individual RGB values
44 Color color = Color.magenta;
45 g.setColor(color);
46 g.fillRect(25, 100, 100, 20);
47 g.drawString("RGB values: " + color.getRed() + ", " +
48 color.getGreen() + ", " + color.getBlue(), 130, 115);
49 }
50
51 // execute application
52 public static void main(String args[])
53 {
54 ShowColors application = new ShowColors();
55
56 application.setDefaultCloseOperation(
57 JFrame.EXIT_ON_CLOSE);
58 }
59
60 } // end class ShowColors

Fig. 11.5Fig. 11.5Fig. 11.5Fig. 11.5 Demonstrating setting and getting a Color (part 2 of 2).

Chapter 11 Graphics and Java2D 609

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Line 39 sets the current drawing color to one of the predefined Color constants
(Color.blue). Note that the new operator is not needed to create the constant. The
Color constants are static, so they are defined when class Color is loaded into
memory at execution time.

The statement at lines 47–48 demonstrates Color methods getRed, getGreen and
getBlue on the predefined Color.magenta object.

Notice lines 56–57 in main. JFrame method setDefaultCloseOperation
specifies the default action to take when the user clicks the close box on an application
window. In this case, we specify JFrame.EXIT_ON_CLOSE to indicate that the program
should terminate when the user clicks the close box. Other options are
DO_NOTHING_ON_CLOSE (to ignore the window-closing event), HIDE_ON_CLOSE (to
hide the window, such that it can be redisplayed later) and DISPOSE_ON_CLOSE (to dis-
pose of the window, such that it cannot be redisplayed later). From this point forward, we
implement our own WindowListener only if the program should perform additional
tasks when the user clicks the window’s close box. Otherwise, we use method setDe-
faultCloseOperation to specify that the program should terminate when the user
clicks the close box.

Software Engineering Observation 11.2
To change the color, you must create a new Color object (or use one of the predefined
Color constants); there are no set methods in class Color to change the characteristics of
the current color. 11.2

One of the newer features of Java is the predefined GUI component JColor-
Chooser (package javax.swing) for selecting colors. The application of Fig. 11.6
enables you to press a button to display a JColorChooser dialog. When you select a
color and press the dialog’s OK button, the background color of the application window
changes colors.

1 // Fig. 11.6: ShowColors2.java
2 // Demonstrating JColorChooser.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class ShowColors2 extends JFrame {
12 private JButton changeColorButton;
13 private Color color = Color.lightGray;
14 private Container container;
15
16 // set up GUI
17 public ShowColors2()
18 {
19 super("Using JColorChooser");
20

Fig. 11.6Fig. 11.6Fig. 11.6Fig. 11.6 Demonstrating the JColorChooser dialog (part 1 of 3).

610 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

21 container = getContentPane();
22 container.setLayout(new FlowLayout());
23
24 // set up changeColorButton and register its event handler
25 changeColorButton = new JButton("Change Color");
26
27 changeColorButton.addActionListener(
28
29 // anonymous inner class
30 new ActionListener() {
31
32 // display JColorChooser when user clicks button
33 public void actionPerformed(ActionEvent event)
34 {
35 color = JColorChooser.showDialog(
36 ShowColors2.this, "Choose a color", color);
37
38 // set default color, if no color is returned
39 if (color == null)
40 color = Color.lightGray;
41
42 // change content pane's background color
43 container.setBackground(color);
44 }
45
46 } // end anonymous inner class
47
48); // end call to addActionListener
49
50 container.add(changeColorButton);
51
52 setSize(400, 130);
53 setVisible(true);
54 }
55
56 // execute application
57 public static void main(String args[])
58 {
59 ShowColors2 application = new ShowColors2();
60
61 application.setDefaultCloseOperation(
62 JFrame.EXIT_ON_CLOSE);
63 }
64
65 } // end class ShowColors2

Fig. 11.6Fig. 11.6Fig. 11.6Fig. 11.6 Demonstrating the JColorChooser dialog (part 2 of 3).

Chapter 11 Graphics and Java2D 611

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Lines 35–36 (from method actionPerformed for changeColor) use static
method showDialog of class JColorChooser to display the color chooser dialog.
This method returns the selected Color object (null, if the user presses Cancel or closes
the dialog without pressing OK).

Method showDialog takes three arguments—a reference to its parent Component,
a String to display in the title bar of the dialog and the initial selected Color for the
dialog. The parent component is the window from which the dialog is displayed. While the
color chooser dialog is on the screen, the user cannot interact with the parent component.
This type of dialog is called a modal dialog and is discussed in Chapter 13. Notice the spe-
cial syntax ShowColors2.this used in the preceding statement. When using an inner
class, you can access the outer class object’s this reference by qualifying this with the
name of the outer class and the dot (.) operator.

After the user selects a color, lines 39–40 determine whether color is null, and, if
so, set color to the default Color.lightGray. Line 43 uses method setBack-
ground to change the background color of the content pane (represented by container
in this program). Method setBackground is one of the many Component methods
that can be used on most GUI components.

The second screen capture of Fig. 11.6 demonstrates the default JColorChooser
dialog that allows the user to select a color from a variety of color swatches. Notice that
there are actually three tabs across the top of the dialog—Swatches, HSB and RGB.

Fig. 11.6Fig. 11.6Fig. 11.6Fig. 11.6 Demonstrating the JColorChooser dialog (part 3 of 3).

Select a color
from one of
the color
swatches.

612 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

These represent three different ways to select a color. The HSB tab allows you to select a
color based on hue, saturation and brightness. The RGB tab allows you to select a color
by using sliders to select the red, green and blue components of the color. The HSB and
RGB tabs are shown in Fig. 11.7.

11.4 Font Control
This section introduces methods and constants for font control. Most font methods and font
constants are part of class Font. Some methods of class Font and class Graphics are
summarized in Fig. 11.8.

Fig. 11.7Fig. 11.7Fig. 11.7Fig. 11.7 The HSB and RGB tabs of the JColorChooser dialog.

Sliders to
select the
red, green
and blue
color
components

Chapter 11 Graphics and Java2D 613

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Class Font’s constructor takes three arguments—the font name, font style and font
size. The font name is any font currently supported by the system where the program is
running, such as standard Java fonts Monospaced, SansSerif and Serif. The font
style is Font.PLAIN, Font.ITALIC or Font.BOLD (static constants of class
Font). Font styles can be used in combination (e.g., Font.ITALIC + Font.BOLD).
The font size is measured in points. A point is 1/72 of an inch. Graphics method set-
Font sets the current drawing font—the font in which text will be displayed—to its
Font argument.

Method or constant Description

public final static int PLAIN // Font class

A constant representing a plain font style.

public final static int BOLD // Font class

A constant representing a bold font style.

public final static int ITALIC // Font class

A constant representing an italic font style.

public Font(String name, int style, int size)

Creates a Font object with the specified font, style and size.

public int getStyle() // Font class

Returns an integer value indicating the current font style.

public int getSize() // Font class

Returns an integer value indicating the current font size.

public String getName() // Font class

Returns the current font name as a string.

public String getFamily() // Font class

Returns the font’s family name as a string.

public boolean isPlain() // Font class

Tests a font for a plain font style. Returns true if the font is plain.

public boolean isBold() // Font class

Tests a font for a bold font style. Returns true if the font is bold.

public boolean isItalic() // Font class

Tests a font for an italic font style. Returns true if the font is italic.

public Font getFont() // Graphics class

Returns a Font object reference representing the current font.

public void setFont(Font f) // Graphics class

Sets the current font to the font, style and size specified by the Font
object reference f.

Fig. 11.8Fig. 11.8Fig. 11.8Fig. 11.8 Font methods, constants and font-related Graphics methods .

614 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Portability Tip 11.2
The number of fonts varies greatly across systems. The J2SDK guarantees that the fonts
Serif, Monospaced, SansSerif, Dialog and DialogInput will be available. 11.2

Common Programming Error 11.2
Specifying a font that is not available on a system is a logic error. Java will substitute that
system’s default font. 11.2

The program of Fig. 11.9 displays text in four different fonts, with each font in a dif-
ferent size. The program uses the Font constructor to initialize Font objects on lines 30,
35, 40 and 47 (each in a call to Graphics method setFont to change the drawing font).
Each call to the Font constructor passes a font name (Serif, Monospaced or Sans-
Serif) as a String, a font style (Font.PLAIN, Font.ITALIC or Font.BOLD) and
a font size. Once Graphics method setFont is invoked, all text displayed following the
call will appear in the new font until the font is changed. Note that line 35 changes the
drawing color to red, so the next string displayed appears in red.

1 // Fig. 11.9: Fonts.java
2 // Using fonts
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class Fonts extends JFrame {
12
13 // set window's title bar and dimensions
14 public Fonts()
15 {
16 super("Using fonts");
17
18 setSize(420, 125);
19 setVisible(true);
20 }
21
22 // display Strings in different fonts and colors
23 public void paint(Graphics g)
24 {
25 // call superclass's paint method
26 super.paint(g);
27
28 // set current font to Serif (Times), bold, 12pt
29 // and draw a string
30 g.setFont(new Font("Serif", Font.BOLD, 12));
31 g.drawString("Serif 12 point bold.", 20, 50);
32

Fig. 11.9Fig. 11.9Fig. 11.9Fig. 11.9 Using Graphics method setFont to change Fonts (part 1 of 2).

Chapter 11 Graphics and Java2D 615

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Software Engineering Observation 11.3
To change the font, you must create a new Font object; there are no set methods in class
Font to change the characteristics of the current font. 11.3

Often, it is necessary to get information about the current font, such as the font name,
the font style and the font size. Several Font methods used to get font information are sum-
marized in Fig. 11.8. Method getStyle returns an integer value representing the current
style. The integer value returned is either Font.PLAIN, Font.ITALIC, Font.BOLD
or any combination of Font.PLAIN, Font.ITALIC and Font.BOLD.

Method getSize returns the font size in points. Method getName returns the cur-
rent font name as a String. Method getFamily returns the name of the font family to
which the current font belongs. The name of the font family is platform specific.

33 // set current font to Monospaced (Courier),
34 // italic, 24pt and draw a string
35 g.setFont(new Font("Monospaced", Font.ITALIC, 24));
36 g.drawString("Monospaced 24 point italic.", 20, 70);
37
38 // set current font to SansSerif (Helvetica),
39 // plain, 14pt and draw a string
40 g.setFont(new Font("SansSerif", Font.PLAIN, 14));
41 g.drawString("SansSerif 14 point plain.", 20, 90);
42
43 // set current font to Serif (times), bold/italic,
44 // 18pt and draw a string
45 g.setColor(Color.red);
46 g.setFont(
47 new Font("Serif", Font.BOLD + Font.ITALIC, 18));
48 g.drawString(g.getFont().getName() + " " +
49 g.getFont().getSize() +
50 " point bold italic.", 20, 110);
51 }
52
53 // execute application
54 public static void main(String args[])
55 {
56 Fonts application = new Fonts();
57
58 application.setDefaultCloseOperation(
59 JFrame.EXIT_ON_CLOSE);
60 }
61
62 } // end class Fonts

Fig. 11.9Fig. 11.9Fig. 11.9Fig. 11.9 Using Graphics method setFont to change Fonts (part 2 of 2).

616 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Portability Tip 11.3
Java provides several standardized font names and maps these into system-specific font
names for portability. This is transparent to the programmer. 11.3

Font methods are also available to test the style of the current font and are summarized
in Fig. 11.8. The isPlain method returns true if the current font style is plain. The
isBold method returns true if the current font style is bold. The isItalic method
returns true if the current font style is italic.

Sometimes precise information about a font’s metrics must be known—such as height,
descent (the amount a character dips below the baseline), ascent (the amount a character
rises above the baseline) and leading (the difference between the descent of one line of text
and the ascent of the line of text below it—i.e., the interline spacing). Figure 11.10 illus-
trates some of the common font metrics. Note that the coordinate passed to drawString
corresponds to the lower-left corner of the baseline of the font.

Class FontMetrics defines several methods for obtaining font metrics. These
methods and Graphics method getFontMetrics are summarized in Fig. 11.11.

Fig. 11.10Fig. 11.10Fig. 11.10Fig. 11.10 Font metrics.

Method Description

public int getAscent() // FontMetrics class

Returns a value representing the ascent of a font in points.

public int getDescent() // FontMetrics class

Returns a value representing the descent of a font in points.

public int getLeading() // FontMetrics class

Returns a value representing the leading of a font in points.

public int getHeight() // FontMetrics class

Returns a value representing the height of a font in points.

public FontMetrics getFontMetrics() // Graphics class

Returns the FontMetrics object for the current drawing Font.

public FontMetrics getFontMetrics(Font f) // Graphics class

 Returns the FontMetrics object for the specified Font argument.

Fig. 11.11Fig. 11.11Fig. 11.11Fig. 11.11 FontMetrics and Graphics methods for obtaining font metrics.

leading

ascent

baseline
descent

height Xy1Õ

Chapter 11 Graphics and Java2D 617

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The program of Fig. 11.12 uses the methods of Fig. 11.11 to obtain font metric infor-
mation for two fonts.

1 // Fig. 11.12: Metrics.java
2 // Demonstrating methods of class FontMetrics and
3 // class Graphics useful for obtaining font metrics.
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class Metrics extends JFrame {
13
14 // set window's title bar String and dimensions
15 public Metrics()
16 {
17 super("Demonstrating FontMetrics");
18
19 setSize(510, 210);
20 setVisible(true);
21 }
22
23 // display font metrics
24 public void paint(Graphics g)
25 {
26 // call superclass's paint method
27 super.paint(g);
28
29 g.setFont(new Font("SansSerif", Font.BOLD, 12));
30 FontMetrics metrics = g.getFontMetrics();
31 g.drawString("Current font: " + g.getFont(), 10, 40);
32 g.drawString("Ascent: " + metrics.getAscent(), 10, 55);
33 g.drawString("Descent: " + metrics.getDescent(), 10, 70);
34 g.drawString("Height: " + metrics.getHeight(), 10, 85);
35 g.drawString("Leading: " + metrics.getLeading(), 10, 100);
36
37 Font font = new Font("Serif", Font.ITALIC, 14);
38 metrics = g.getFontMetrics(font);
39 g.setFont(font);
40 g.drawString("Current font: " + font, 10, 130);
41 g.drawString("Ascent: " + metrics.getAscent(), 10, 145);
42 g.drawString("Descent: " + metrics.getDescent(), 10, 160);
43 g.drawString("Height: " + metrics.getHeight(), 10, 175);
44 g.drawString("Leading: " + metrics.getLeading(), 10, 190);
45 }
46
47 // execute application
48 public static void main(String args[])
49 {
50 Metrics application = new Metrics();

Fig. 11.12Fig. 11.12Fig. 11.12Fig. 11.12 Obtaining font metric information (part 1 of 2).

618 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Line 29 creates and sets the current drawing font to a SansSerif, bold, 12-point
font. Line 30 uses Graphics method getFontMetrics to obtain the FontMetrics
object for the current font. Line 31 uses an implicit call to class Font’s toString
method to output the string representation of the font. Lines 32–35 use FontMetric
methods to obtain the ascent, descent, height and leading for the font.

Line 37 creates a new Serif, italic, 14-point font. Line 38 uses a second version of
Graphics method getFontMetrics, which receives a Font argument and returns a
corresponding FontMetrics object. Lines 41–44 obtain the ascent, descent, height and
leading for the font. Notice that the font metrics are slightly different for the two fonts.

11.5 Drawing Lines, Rectangles and Ovals
This section presents a variety of Graphics methods for drawing lines, rectangles and
ovals. The methods and their parameters are summarized in Fig. 11.13. For each drawing
method that requires a width and height parameter, the width and height must be
nonnegative values. Otherwise, the shape will not display..

51
52 application.setDefaultCloseOperation(
53 JFrame.EXIT_ON_CLOSE);
54 }
55
56 } // end class Metrics

Method Description

public void drawLine(int x1, int y1, int x2, int y2)

Draws a line between the point (x1, y1) and the point (x2, y2).

public void drawRect(int x, int y, int width, int height)

Draws a rectangle of the specified width and height. The top-
left corner of the rectangle has the coordinates (x, y).

Fig. 11.13Fig. 11.13Fig. 11.13Fig. 11.13 Graphics methods that draw lines, rectangles and ovals (part 1 of 2).

Fig. 11.12Fig. 11.12Fig. 11.12Fig. 11.12 Obtaining font metric information (part 2 of 2).

Chapter 11 Graphics and Java2D 619

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

public void fillRect(int x, int y, int width, int height)

Draws a solid rectangle with the specified width and height.
The top-left corner of the rectangle has the coordinate (x, y).

public void clearRect(int x, int y, int width, int height)

Draws a solid rectangle with the specified width and height
in the current background color. The top-left corner of the rectan-
gle has the coordinate (x, y).

public void drawRoundRect(int x, int y, int width, int height,
int arcWidth, int arcHeight)

Draws a rectangle with rounded corners in the current color with
the specified width and height. The arcWidth and
arcHeight determine the rounding of the corners (see
Fig. 11.15).

public void fillRoundRect(int x, int y, int width, int height,
int arcWidth, int arcHeight)

Draws a solid rectangle with rounded corners in the current color
with the specified width and height. The arcWidth and
arcHeight determine the rounding of the corners (see
Fig. 11.15).

public void draw3DRect(int x, int y, int width, int height,
boolean b)

Draws a three-dimensional rectangle in the current color with the
specified width and height. The top-left corner of the rectan-
gle has the coordinates (x, y). The rectangle appears raised when
b is true and is lowered when b is false.

public void fill3DRect(int x, int y, int width, int height,
boolean b)

Draws a filled three-dimensional rectangle in the current color
with the specified width and height. The top-left corner of the
rectangle has the coordinates (x, y). The rectangle appears raised
when b is true and is lowered when b is false.

public void drawOval(int x, int y, int width, int height)

Draws an oval in the current color with the specified width and
height. The bounding rectangle’s top-left corner is at the coor-
dinates (x, y). The oval touches all four sides of the bounding
rectangle at the center of each side (see Fig. 11.16).

public void fillOval(int x, int y, int width, int height)

Draws a filled oval in the current color with the specified width
and height. The bounding rectangle’s top-left corner is at the
coordinates (x, y). The oval touches all four sides of the bound-
ing rectangle at the center of each side (see Fig. 11.16).

Method Description

Fig. 11.13Fig. 11.13Fig. 11.13Fig. 11.13 Graphics methods that draw lines, rectangles and ovals (part 2 of 2).

620 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The application of Fig. 11.14 demonstrates drawing a variety of lines, rectangles, 3D
rectangles, rounded rectangles and ovals.

1 // Fig. 11.14: LinesRectsOvals.java
2 // Drawing lines, rectangles and ovals
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class LinesRectsOvals extends JFrame {
12
13 // set window's title bar String and dimensions
14 public LinesRectsOvals()
15 {
16 super("Drawing lines, rectangles and ovals");
17
18 setSize(400, 165);
19 setVisible(true);
20 }
21
22 // display various lines, rectangles and ovals
23 public void paint(Graphics g)
24 {
25 // call superclass's paint method
26 super.paint(g);
27
28 g.setColor(Color.red);
29 g.drawLine(5, 30, 350, 30);
30
31 g.setColor(Color.blue);
32 g.drawRect(5, 40, 90, 55);
33 g.fillRect(100, 40, 90, 55);
34
35 g.setColor(Color.cyan);
36 g.fillRoundRect(195, 40, 90, 55, 50, 50);
37 g.drawRoundRect(290, 40, 90, 55, 20, 20);
38
39 g.setColor(Color.yellow);
40 g.draw3DRect(5, 100, 90, 55, true);
41 g.fill3DRect(100, 100, 90, 55, false);
42
43 g.setColor(Color.magenta);
44 g.drawOval(195, 100, 90, 55);
45 g.fillOval(290, 100, 90, 55);
46 }
47

Fig. 11.14Fig. 11.14Fig. 11.14Fig. 11.14 Demonstrating Graphics method drawLine (part 1 of 2).

Chapter 11 Graphics and Java2D 621

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Methods fillRoundRect (line 36) and drawRoundRect (line 37) draw rectan-
gles with rounded corners. Their first two arguments specify the coordinates of the upper-
left corner of the bounding rectangle—the area in which the rounded rectangle will be
drawn. Note that the upper-left corner coordinates are not the edge of the rounded rectangle,
but the coordinates where the edge would be if the rectangle had square corners. The third
and fourth arguments specify the width and height of the rectangle. Their last two argu-
ments—arcWidth and arcHeight—determine the horizontal and vertical diameters of
the arcs used to represent the corners.

Methods draw3DRect (line 40) and fill3DRect (line 41) take the same argu-
ments. The first two arguments specify the top-left corner of the rectangle. The next two
arguments specify the width and height of the rectangle, respectively. The last argu-
ment determines whether the rectangle is raised (true) or lowered (false). The three-
dimensional effect of draw3DRect appears as two edges of the rectangle in the original
color and two edges in a slightly darker color. The three-dimensional effect of
fill3DRect appears as two edges of the rectangle in the original drawing color and the
fill and other two edges in a slightly darker color. Raised rectangles have the original
drawing color edges at the top and left of the rectangle. Lowered rectangles have the orig-
inal drawing color edges at the bottom and right of the rectangle. The three-dimensional
effect is difficult to see in some colors.

Figure 11.15 labels the arc width, arc height, width and height of a rounded rectangle.
Using the same value for arcWidth and arcHeight produces a quarter circle at each
corner. When width, height, arcWidth and arcHeight have the same values, the
result is a circle. If the values for width and height are the same and the values of arc-
Width and arcHeight are 0, the result is a square.

48 // execute application
49 public static void main(String args[])
50 {
51 LinesRectsOvals application = new LinesRectsOvals();
52
53 application.setDefaultCloseOperation(
54 JFrame.EXIT_ON_CLOSE);
55 }
56
57 } // end class LinesRectsOvals

Fig. 11.14Fig. 11.14Fig. 11.14Fig. 11.14 Demonstrating Graphics method drawLine (part 2 of 2).

drawRect

drawLine

fillRect

draw3DRect

fill3DRect

fillRoundRect

drawRoundRect

drawOval

fillOval

622 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The drawOval and fillOval methods take the same four arguments. The first two
arguments specify the top-left coordinate of the bounding rectangle that contains the oval.
The last two arguments specify the width and height of the bounding rectangle, respec-
tively. Figure 11.16 shows an oval bounded by a rectangle. Note that the oval touches the
center of all four sides of the bounding rectangle (the bounding rectangle is not displayed
on the screen).

11.6 Drawing Arcs
An arc is a portion of a oval. Arc angles are measured in degrees. Arcs sweep from a start-
ing angle the number of degrees specified by their arc angle. The starting angle indicates
in degrees where the arc begins. The arc angle specifies the total number of degrees through
which the arc sweeps. Figure 11.17 illustrates two arcs. The left set of axes shows an arc
sweeping from zero degrees to approximately 110 degrees. Arcs that sweep in a counter-
clockwise direction are measured in positive degrees. The right set of axes shows an arc
sweeping from zero degrees to approximately –110 degrees. Arcs that sweep in a clockwise
direction are measured in negative degrees. Notice the dashed boxes around the arcs in
Fig. 11.17. When drawing an arc, we specify a bounding rectangle for an oval. The arc will
sweep along part of the oval. The Graphics methods drawArc and fillArc for draw-
ing arcs are summarized in Fig. 11.18.

Fig. 11.15Fig. 11.15Fig. 11.15Fig. 11.15 The arc width and arc height for rounded rectangles.

Fig. 11.16Fig. 11.16Fig. 11.16Fig. 11.16 An oval bounded by a rectangle.

arc width

width

height

(x, y)

arc height

(x, y)

height

width

Chapter 11 Graphics and Java2D 623

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The program of Fig. 11.19 demonstrates the arc methods of Fig. 11.18. The program
draws six arcs (three unfilled and three filled). To illustrate the bounding rectangle that
helps determine where the arc appears, the first three arcs are displayed inside a yellow rect-
angle that has the same x, y, width and height arguments as the arcs.

Fig. 11.17Fig. 11.17Fig. 11.17Fig. 11.17 Positive and negative arc angles.

Method Description

public void drawArc(int x, int y, int width, int height,
int startAngle, int arcAngle)

Draws an arc relative to the bounding rectangle’s top-left coordinates (x, y)
with the specified width and height. The arc segment is drawn starting at
startAngle and sweeps arcAngle degrees.

public void fillArc(int x, int y, int width, int height,
int startAngle, int arcAngle)

Draws a solid arc (i.e., a sector) relative to the bounding rectangle’s top-left
coordinates (x, y) with the specified width and height. The arc segment
is drawn starting at startAngle and sweeps arcAngle degrees.

Fig. 11.18Fig. 11.18Fig. 11.18Fig. 11.18 Graphics methods for drawing arcs.

1 // Fig. 11.19: DrawArcs.java
2 // Drawing arcs
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class DrawArcs extends JFrame {
12

Fig. 11.19Fig. 11.19Fig. 11.19Fig. 11.19 Demonstrating drawArc and fillArc (part 1 of 3).

90°

0°180°

270°

90°

0°180°

270°

Positive angles Negative angles

624 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

13 // set window's title bar String and dimensions
14 public DrawArcs()
15 {
16 super("Drawing Arcs");
17
18 setSize(300, 170);
19 setVisible(true);
20 }
21
22 // draw rectangles and arcs
23 public void paint(Graphics g)
24 {
25 // call superclass's paint method
26 super.paint(g);
27
28 // start at 0 and sweep 360 degrees
29 g.setColor(Color.yellow);
30 g.drawRect(15, 35, 80, 80);
31 g.setColor(Color.black);
32 g.drawArc(15, 35, 80, 80, 0, 360);
33
34 // start at 0 and sweep 110 degrees
35 g.setColor(Color.yellow);
36 g.drawRect(100, 35, 80, 80);
37 g.setColor(Color.black);
38 g.drawArc(100, 35, 80, 80, 0, 110);
39
40 // start at 0 and sweep -270 degrees
41 g.setColor(Color.yellow);
42 g.drawRect(185, 35, 80, 80);
43 g.setColor(Color.black);
44 g.drawArc(185, 35, 80, 80, 0, -270);
45
46 // start at 0 and sweep 360 degrees
47 g.fillArc(15, 120, 80, 40, 0, 360);
48
49 // start at 270 and sweep -90 degrees
50 g.fillArc(100, 120, 80, 40, 270, -90);
51
52 // start at 0 and sweep -270 degrees
53 g.fillArc(185, 120, 80, 40, 0, -270);
54 }
55
56 // execute application
57 public static void main(String args[])
58 {
59 DrawArcs application = new DrawArcs();
60
61 application.setDefaultCloseOperation(
62 JFrame.EXIT_ON_CLOSE);
63 }
64
65 } // end class DrawArcs

Fig. 11.19Fig. 11.19Fig. 11.19Fig. 11.19 Demonstrating drawArc and fillArc (part 2 of 3).

Chapter 11 Graphics and Java2D 625

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

11.7 Drawing Polygons and Polylines
Polygons are multisided shapes. Polylines are a series of connected points. Graphics meth-
ods for drawing polygons and polylines are discussed in Fig. 11.20. Note that some meth-
ods require a Polygon object (package java.awt). Class Polygon’s constructors are
also described in Fig. 11.20.

Method Description

public void drawPolygon(int xPoints[], int yPoints[],
int points)

Draws a polygon. The x-coordinate of each point is specified in the xPoints
array and the y-coordinate of each point is specified in the yPoints array. The
last argument specifies the number of points. This method draws a closed
polygon—even if the last point is different from the first point.

public void drawPolyline(int xPoints[], int yPoints[],
int points)

Draws a series of connected lines. The x-coordinate of each point is specified in
the xPoints array and the y-coordinate of each point is specified in the
yPoints array. The last argument specifies the number of points. If the last
point is different from the first point, the polyline is not closed.

public void drawPolygon(Polygon p)

Draws the specified closed polygon.

public void fillPolygon(int xPoints[], int yPoints[],
 int points)

Draws a solid polygon. The x-coordinate of each point is specified in the
xPoints array and the y-coordinate of each point is specified in the yPoints
array. The last argument specifies the number of points. This method draws a
closed polygon—even if the last point is different from the first point.

public void fillPolygon(Polygon p)

Draws the specified solid polygon. The polygon is closed.

Fig. 11.20Fig. 11.20Fig. 11.20Fig. 11.20 Graphics methods for drawing polygons and class Polygon
constructors (part 1 of 2).

Fig. 11.19Fig. 11.19Fig. 11.19Fig. 11.19 Demonstrating drawArc and fillArc (part 3 of 3).

626 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The program of Fig. 11.21 draws polygons and polylines, using the methods and con-
structors in Fig. 11.20.

public Polygon() // Polygon class

Constructs a new polygon object. The polygon does not contain any points.

public Polygon(int xValues[], int yValues[], // Polygon class
int numberOfPoints)

Constructs a new polygon object. The polygon has numberOfPoints sides,
with each point consisting of an x-coordinate from xValues and a y-coordi-
nate from yValues.

1 // Fig. 11.21: DrawPolygons.java
2 // Drawing polygons
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class DrawPolygons extends JFrame {
12
13 // set window's title bar String and dimensions
14 public DrawPolygons()
15 {
16 super("Drawing Polygons");
17
18 setSize(275, 230);
19 setVisible(true);
20 }
21
22 // draw polygons and polylines
23 public void paint(Graphics g)
24 {
25 // call superclass's paint method
26 super.paint(g);
27
28 int xValues[] = { 20, 40, 50, 30, 20, 15 };
29 int yValues[] = { 50, 50, 60, 80, 80, 60 };
30 Polygon polygon1 = new Polygon(xValues, yValues, 6);
31
32 g.drawPolygon(polygon1);

Fig. 11.21Fig. 11.21Fig. 11.21Fig. 11.21 Demonstrating drawPolygon and fillPolygon.

Method Description

Fig. 11.20Fig. 11.20Fig. 11.20Fig. 11.20 Graphics methods for drawing polygons and class Polygon
constructors (part 2 of 2).

Chapter 11 Graphics and Java2D 627

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Lines 28–29 create two int arrays and use them to specify the points for Polygon
polygon1. The Polygon constructor call at line 30 receives array xValues, which
contains the x-coordinate of each point, array yValues, which contains the y-coordinate
of each point, and 6 (the number of points in the polygon). Line 32 displays polygon1 by
passing it as an argument to Graphics method drawPolygon.

Lines 34–35 create two int arrays and use them to specify the points for a series of
connected lines. Array xValues2 contains the x-coordinate of each point and array

33
34 int xValues2[] = { 70, 90, 100, 80, 70, 65, 60 };
35 int yValues2[] = { 100, 100, 110, 110, 130, 110, 90 };
36
37 g.drawPolyline(xValues2, yValues2, 7);
38
39 int xValues3[] = { 120, 140, 150, 190 };
40 int yValues3[] = { 40, 70, 80, 60 };
41
42 g.fillPolygon(xValues3, yValues3, 4);
43
44 Polygon polygon2 = new Polygon();
45 polygon2.addPoint(165, 135);
46 polygon2.addPoint(175, 150);
47 polygon2.addPoint(270, 200);
48 polygon2.addPoint(200, 220);
49 polygon2.addPoint(130, 180);
50
51 g.fillPolygon(polygon2);
52 }
53
54 // execute application
55 public static void main(String args[])
56 {
57 DrawPolygons application = new DrawPolygons();
58
59 application.setDefaultCloseOperation(
60 JFrame.EXIT_ON_CLOSE);
61 }
62
63 } // end class DrawPloygons

Fig. 11.21Fig. 11.21Fig. 11.21Fig. 11.21 Demonstrating drawPolygon and fillPolygon.

Result of line 32

Result of line 37

Result of line 42

Result of line 51

628 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

yValues2 contains the y-coordinate of each point. Line 37 uses Graphics method
drawPolyline to display the series of connected lines specified with the arguments
xValues2, yValues2 and 7 (the number of points).

Lines 39–40 create two int arrays and use them to specify the points of a polygon.
Array xValues3 contains the x-coordinate of each point and array yValues3 contains
the y-coordinate of each point. Line 42 displays a polygon by passing to Graphics
method fillPolygon the two arrays (xValues3 and yValues3) and the number of
points to draw (4).

Common Programming Error 11.3
An ArrayIndexOutOfBoundsException is thrown if the number of points specified
in the third argument to method drawPolygon or method fillPolygon is greater than
the number of elements in the arrays of coordinates that define the polygon to display. 11.3

Line 44 creates Polygon polygon2 with no points. Lines 45–49 use Polygon
method addPoint to add pairs of x- and y-coordinates to the Polygon. Line 51 displays
Polygon polygon2 by passing it to Graphics method fillPolygon.

11.8 The Java2D API
The new Java2D API provides advanced two-dimensional graphics capabilities for pro-
grammers who require detailed and complex graphical manipulations. The API includes
features for processing line art, text and images in packages java.awt, java.awt.im-
age, java.awt.color, java.awt.font, java.awt.geom, java.awt.print
and java.awt.image.renderable. The capabilities of the API are far too broad to
cover in this textbook. For an overview of the capabilities, see the Java2D demo (demon-
strated in Chapter 3). In this section, we present an overview of several Java2D capabilities.

Drawing with the Java2D API is accomplished with an instance of class
Graphics2D (package java.awt). Class Graphics2D is a subclass of class
Graphics, so it has all the graphics capabilities demonstrated earlier in this chapter. In
fact, the actual object we have used to draw in every paint method is a Graphics2D
object that is passed to method paint and accessed via the superclass Graphics refer-
ence g. To access the Graphics2D capabilities, we must downcast the Graphics ref-
erence passed to paint to a Graphics2D reference with a statement such as

Graphics2D g2d = (Graphics2D) g;

The programs of the next several sections use this technique.

11.9 Java2D Shapes
Next, we present several Java2D shapes from package java.awt.geom, including
Ellipse2D.Double, Rectangle2D.Double, RoundRectangle2D.Double,
Arc2D.Double and Line2D.Double. Note the syntax of each class name. Each of
these classes represents a shape with dimensions specified as double-precision floating-
point values. There is a separate version of each represented with single-precision floating-
point values (such as Ellipse2D.Float). In each case, Double is a static inner
class of the class to the left of the dot operator (e.g., Ellipse2D). To use the static
inner class, we simply qualify its name with the outer class name.

Chapter 11 Graphics and Java2D 629

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The program of Fig. 11.22 demonstrates several Java2D shapes and drawing charac-
teristics, such as thickening lines, filling shapes with patterns and drawing dashed lines.
These are just a few of the many capabilities provided by Java2D.

1 // Fig. 11.22: Shapes.java
2 // Demonstrating some Java2D shapes
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.awt.geom.*;
8 import java.awt.image.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class Shapes extends JFrame {
14
15 // set window's title bar String and dimensions
16 public Shapes()
17 {
18 super("Drawing 2D shapes");
19
20 setSize(425, 160);
21 setVisible(true);
22 }
23
24 // draw shapes with Java2D API
25 public void paint(Graphics g)
26 {
27 // call superclass's paint method
28 super.paint(g);
29
30 // create 2D by casting g to Graphics2D
31 Graphics2D g2d = (Graphics2D) g;
32
33 // draw 2D ellipse filled with a blue-yellow gradient
34 g2d.setPaint(new GradientPaint(5, 30, Color.blue, 35,
35 100, Color.yellow, true));
36 g2d.fill(new Ellipse2D.Double(5, 30, 65, 100));
37
38 // draw 2D rectangle in red
39 g2d.setPaint(Color.red);
40 g2d.setStroke(new BasicStroke(10.0f));
41 g2d.draw(new Rectangle2D.Double(80, 30, 65, 100));
42
43 // draw 2D rounded rectangle with a buffered background
44 BufferedImage buffImage = new BufferedImage(
45 10, 10, BufferedImage.TYPE_INT_RGB);
46
47 Graphics2D gg = buffImage.createGraphics();
48 gg.setColor(Color.yellow); // draw in yellow

Fig. 11.22Fig. 11.22Fig. 11.22Fig. 11.22 Demonstrating some Java2D shapes.

630 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

49 gg.fillRect(0, 0, 10, 10); // draw a filled rectangle
50 gg.setColor(Color.black); // draw in black
51 gg.drawRect(1, 1, 6, 6); // draw a rectangle
52 gg.setColor(Color.blue); // draw in blue
53 gg.fillRect(1, 1, 3, 3); // draw a filled rectangle
54 gg.setColor(Color.red); // draw in red
55 gg.fillRect(4, 4, 3, 3); // draw a filled rectangle
56
57 // paint buffImage onto the JFrame
58 g2d.setPaint(new TexturePaint(
59 buffImage, new Rectangle(10, 10)));
60 g2d.fill(new RoundRectangle2D.Double(
61 155, 30, 75, 100, 50, 50));
62
63 // draw 2D pie-shaped arc in white
64 g2d.setPaint(Color.white);
65 g2d.setStroke(new BasicStroke(6.0f));
66 g2d.draw(new Arc2D.Double(
67 240, 30, 75, 100, 0, 270, Arc2D.PIE));
68
69 // draw 2D lines in green and yellow
70 g2d.setPaint(Color.green);
71 g2d.draw(new Line2D.Double(395, 30, 320, 150));
72
73 float dashes[] = { 10 };
74
75 g2d.setPaint(Color.yellow);
76 g2d.setStroke(new BasicStroke(4, BasicStroke.CAP_ROUND,
77 BasicStroke.JOIN_ROUND, 10, dashes, 0));
78 g2d.draw(new Line2D.Double(320, 30, 395, 150));
79 }
80
81 // execute application
82 public static void main(String args[])
83 {
84 Shapes application = new Shapes();
85
86 application.setDefaultCloseOperation(
87 JFrame.EXIT_ON_CLOSE);
88 }
89
90 } // end class Shapes

Fig. 11.22Fig. 11.22Fig. 11.22Fig. 11.22 Demonstrating some Java2D shapes.

Chapter 11 Graphics and Java2D 631

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Line 31 casts the Graphics reference received by paint to a Graphics2D refer-
ence and assigns it to g2d to allow access to the Java2D features.

The first shape we draw is an oval filled with gradually changing colors. Lines 34–
35 invoke Graphics2D method setPaint to set the Paint object that determines
the color for the shape to display. A Paint object is an object of any class that imple-
ments interface java.awt.Paint. The Paint object can be something as simple as
one of the predefined Color objects introduced in Section 11.3 (class Color imple-
ments Paint), or the Paint object can be an instance of the Java2D API’s Gradi-
entPaint, SystemColor or TexturePaint classes. In this case, we use a
GradientPaint object.

Class GradientPaint helps draw a shape in a gradually changing colors—called
a gradient. The GradientPaint constructor used here requires seven arguments. The
first two arguments specify the starting coordinate for the gradient. The third argument
specifies the starting Color for the gradient. The fourth and fifth arguments specify the
ending coordinate for the gradient. The sixth argument specifies the ending Color for
the gradient. The last argument specifies if the gradient is cyclic (true) or acyclic
(false). The two coordinates determine the direction of the gradient. Because the
second coordinate (35, 100) is down and to the right of the first coordinate (5, 30), the
gradient goes down and to the right at an angle. Because this gradient is cyclic (true),
the color starts with blue, gradually becomes yellow, then gradually returns to blue. If the
gradient is acyclic, the color transitions from the first color specified (e.g., blue) to the
second color (e.g., yellow).

Line 36 uses Graphics2D method fill to draw a filled Shape object. The Shape
object is an instance of any class that implements interface Shape (package
java.awt)—in this case, an instance of class Ellipse2D.Double. The
Ellipse2D.Double constructor receives four arguments specifying the bounding rect-
angle for the ellipse to display.

Next we draw a red rectangle with a thick border. Line 39 uses setPaint to set the
Paint object to Color.red. Line 40 uses Graphics2D method setStroke to set
the characteristics of the rectangle’s border (or the lines for any other shape). Method set-
Stroke requires a Stroke object as its argument. The Stroke object is an instance of
any class that implements interface Stroke (package java.awt)—in this case, an
instance of class BasicStroke. Class BasicStroke provides a variety of constructors
to specify the width of the line, how the line ends (called the end caps), how lines join
together (called line joins) and the dash attributes of the line (if it is a dashed line). The con-
structor here specifies that the line should be 10 pixels wide.

Line 41uses Graphics2D method draw to draw a Shape object—in this case, an
instance of class Rectangle2D.Double. The Rectangle2D.Double constructor
receives four arguments specifying the upper-left x-coordinate, upper-left y-coordinate,
width and height of the rectangle.

Next we draw a rounded rectangle filled with a pattern created in a BufferedImage
(package java.awt.image) object. Lines 44–45 create the BufferedImage object.
Class BufferedImage can be used to produce images in color and gray scale. This par-
ticular BufferedImage is 10 pixels wide and 10 pixels tall. The third constructor argu-
ment BufferedImage.TYPE_INT_RGB indicates that the image is stored in color
using the RGB color scheme.

632 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

To create the fill pattern for the rounded rectangle, we must first draw into the Buff-
eredImage. Line 47 creates a Graphics2D object that can be used to draw into the
BufferedImage. Lines 48–55 use methods setColor, fillRect and drawRect
(discussed earlier in this chapter) to create the pattern.

Lines 58–59 set the Paint object to a new TexturePaint (package java.awt)
object. A TexturePaint object uses the image stored in its associated Buffered-
Image as the fill texture for a filled-in shape. The second argument specifies the Rect-
angle area from the BufferedImage that will be replicated through the texture. In this
case, the Rectangle is the same size as the BufferedImage. However, a smaller por-
tion of the BufferedImage can be used.

Lines 60–61use Graphics2D method fill to draw a filled Shape object—in this
case, an instance of class RoundRectangle2D.Double. The constructor for class
RoundRectangle2D.Double receives six arguments specifying the rectangle dimen-
sions and the arc width and arc height used to determine the rounding of the corners.

Next we draw a pie-shaped arc with a thick white line. Line 64 sets the Paint object
to Color.white. Line 65 sets the Stroke object to a new BasicStroke for a line 6
pixels wide. Lines 66–67 use Graphics2D method draw to draw a Shape object—in
this case, an Arc2D.Double. The Arc2D.Double constructor’s first four arguments
specifying the upper-left x-coordinate, upper-left y-coordinate, width and height of the
bounding rectangle for the arc. The fifth argument specifies the start angle. The sixth argu-
ment specifies the arc angle. The last argument specifies the how the arc is closed. Constant
Arc2D.PIE indicates that the arc is closed by drawing two lines. One line from the arc’s
starting point to the center of the bounding rectangle and one line from the center of the
bounding rectangle to the ending point. Class Arc2D provides two other static con-
stants for specifying how the arc is closed. Constant Arc2D.CHORD draws a line from the
starting point to the ending point. Constant Arc2D.OPEN specifies that the arc is not
closed.

Finally, we draw two lines using Line2D objects—one solid and one dashed. Line 70
sets the Paint object to Color.green. Line 71 uses Graphics2D method draw to
draw a Shape object—in this case, an instance of class Line2D.Double. The
Line2D.Double constructor’s arguments specify starting coordinates and ending coor-
dinates of the line.

Line 73 defines a one-element float array containing the value 10. This array will
be used to describe the dashes in the dashed line. In this case, each dash will be 10 pixels
long. To create dashes of different lengths in a pattern, simply provide the lengths of each
dash as an element in the array. Line 75 sets the Paint object to Color.yellow. Lines
76–77 set the Stroke object to a new BasicStroke. The line will be 4 pixels wide and
will have rounded ends (BasicStroke.CAP_ROUND). If lines join together (as in a rect-
angle at the corners), the joining of the lines will be rounded (Basic-
Stroke.JOIN_ROUND). The dashes argument specifies the dash lengths for the line.
The last argument indicates the starting subscript in the dashes array for the first dash in
the pattern. Line 78 then draws a line with the current Stroke.

Next we present a general path—a shape constructed from straight lines and complex
curves. A general path is represented with an object of class GeneralPath (package
java.awt.geom). The program of Fig. 11.23 demonstrates drawing a general path in the
shape of a five-pointed star.

Chapter 11 Graphics and Java2D 633

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

1 // Fig. 11.23: Shapes2.java
2 // Demonstrating a general path
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.awt.geom.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class Shapes2 extends JFrame {
13
14 // set window's title bar String, background color
15 // and dimensions
16 public Shapes2()
17 {
18 super("Drawing 2D Shapes");
19
20 getContentPane().setBackground(Color.yellow);
21 setSize(400, 400);
22 setVisible(true);
23 }
24
25 // draw general paths
26 public void paint(Graphics g)
27 {
28 // call superclass's paint method
29 super.paint(g);
30
31 int xPoints[] =
32 { 55, 67, 109, 73, 83, 55, 27, 37, 1, 43 };
33 int yPoints[] =
34 { 0, 36, 36, 54, 96, 72, 96, 54, 36, 36 };
35
36 Graphics2D g2d = (Graphics2D) g;
37
38 // create a star from a series of points
39 GeneralPath star = new GeneralPath();
40
41 // set the initial coordinate of the General Path
42 star.moveTo(xPoints[0], yPoints[0]);
43
44 // create the star--this does not draw the star
45 for (int count = 1; count < xPoints.length; count++)
46 star.lineTo(xPoints[count], yPoints[count]);
47
48 // close the shape
49 star.closePath();
50
51 // translate the origin to (200, 200)
52 g2d.translate(200, 200);

Fig. 11.23Fig. 11.23Fig. 11.23Fig. 11.23 Demonstrating some Java2D shapes

634 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Lines 31–34 define two int arrays representing the x- and y-coordinates of the points
in the star. Line 39 defines GeneralPath object star.

53
54 // rotate around origin and draw stars in random colors
55 for (int count = 1; count <= 20; count++) {
56
57 // rotate coordinate system
58 g2d.rotate(Math.PI / 10.0);
59
60 // set random drawing color
61 g2d.setColor(new Color(
62 (int) (Math.random() * 256),
63 (int) (Math.random() * 256),
64 (int) (Math.random() * 256)));
65
66 // draw filled star
67 g2d.fill(star);
68 }
69
70 } // end method paint
71
72 // execute application
73 public static void main(String args[])
74 {
75 Shapes2 application = new Shapes2();
76
77 application.setDefaultCloseOperation(
78 JFrame.EXIT_ON_CLOSE);
79 }
80
81 } // end class Shapes2

Fig. 11.23Fig. 11.23Fig. 11.23Fig. 11.23 Demonstrating some Java2D shapes

Chapter 11 Graphics and Java2D 635

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Line 42 uses GeneralPath method moveTo to specify the first point in the star.
The for structure at lines 45–46 use GeneralPath method lineTo to draw a line to the
next point in the star. Each new call to lineTo draws a line from the previous point to the
current point. Line 49 uses GeneralPath method closePath to draw a line from the last
point to the point specified in the last call to moveTo. This completes the general path.

Line 52 uses Graphics2D method translate to move the drawing origin to loca-
tion (200, 200). All drawing operations now use location (200, 200) as (0, 0).

The for structure at line 55–68 draws the star 20 times by rotating it around the new
origin point. Line 58 uses Graphics2D method rotate to rotate the next displayed
shape. The argument specifies the rotation angle in radians (with 360° = 2π radians). Line
67 uses Graphics2D method fill to draw a filled version of the star.

11.10 (Optional Case Study) Thinking About Objects:
Designing Interfaces with the UML
In Section 10.22, we incorporated event handling into our simulation by modifying the col-
laboration diagram that deals with passengers entering and exiting the elevator. We includ-
ed both event handling and inheritance in that diagram. The Elevator informs its Door
of the Elevator’s arrival. This Door opens the arrival Floor’s Door by obtaining its
handle through a Location object (which was included in the arrival event), and poten-
tially two Person objects exit and enter the Elevator after both Doors open. We also
discussed listener interfaces. In this section, we represent our listener interface with the
UML.

Realizations
The UML expresses the relationship between a class and an interface through a realization.
A class realizes, or implements, the behaviors of an interface. A class diagram can show a
realization between classes and interfaces. As mentioned in “Thinking About Objects”
Section 3.8, the UML provides two notations to draw a class diagram—the complete dia-
gram and the elided (condensed) diagram. Figure 11.24 shows the complete class diagram
that models the realization between class Person and interface DoorListener. The di-
agram is similar to the generalization diagram, except that the arrow expressing the rela-
tionship is dashed instead of solid. Note that the middle compartment in interface
DoorListener is empty, because interfaces do not contain variables—interfaces can
contain constants, but interface DoorListener does not contain any constants. Lastly,
note the word interface placed in guillemets (« ») located in the first compartment of
interface DoorListener. This notation distinguishes interface DoorListener as an
interface in our system. Items placed in guillemets are called stereotypes in the UML. A
stereotype indicates an element’s role—or purpose—in a UML diagram.

Figure 11.25 shows the alternate way to represent the realization of class Person and
interface DoorListener in the UML. Figure 11.25 is the elided diagram of Fig. 11.24.
The small circle represents the interface, and the solid line represents the realization. By
hiding its operations, we condense the interface, making it easier to read; however, in doing
so, we sacrifice the information about its behaviors. When constructing an elided diagram,
common practice is to place the information regarding any behavior in a separate dia-
gram—for example, we place the full DoorListener class in the class diagram of
Fig. 11.28.

636 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Forward engineering from the UML to implemented Java code benefits from well-con-
structed realization diagrams. When declaring any class, specify the realization between
that class and its interface—that class will “implement” the interface and override the inter-
face’s methods. For example, we use Fig. 11.24 to begin constructing Person.java:

public class Person implements DoorListener {

// constructor
public Person() {}

// methods of DoorListener
public void doorOpened(DoorEvent doorEvent) {}
public void doorClosed(DoorEvent doorEvent) {}

}

Figure 11.26 shows the Java complete implementation for Fig. 11.24. Lines 6–8 and
lines 14–15 include the attributes and operations of Person, respectively—in this case,
the doorOpened operation (line 14) was already included when we implemented the
DoorListener interface, so we include only the attributes of Person:

Fig. 11.24Fig. 11.24Fig. 11.24Fig. 11.24 Class diagram that models class Person realizing interface
DoorListener.

Fig. 11.25Fig. 11.25Fig. 11.25Fig. 11.25 Elided class diagram that models class Person realizing interface
DoorListener.

«interface»
DoorListener

+ doorOpened(DoorEvent : doorEvent) : void
+ doorClosed(DoorEvent : doorEvent) : void

Person

- ID : Integer
- moving : Boolean = true
- location : Location

+ doorOpened() : void

DoorListener
Person

- ID : Integer
- moving : Boolean = true
- location : Location

+ doorOpened() : void

1 // Person.java
2 // Generated from Fig. 11.24
3 public class Person implements DoorListener {

Fig. 11.26Fig. 11.26Fig. 11.26Fig. 11.26 Class Person is generated from Fig. 11.24 (part 1 of 2).

Chapter 11 Graphics and Java2D 637

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

When a Door opens or closes, that Door invokes only those methods declared in
interface DoorListener, but only if the Person has registered with that Door to
receive DoorEvents. Finally, we present the elided class diagram that models the realiza-
tions in our elevator model in Fig. 11.27—the elided diagram does not contain any interface
methods (making the diagram easier to read), so we present the class diagram for interfaces
in Fig. 11.28, which shows all interface methods. Refer to these diagrams when studying
the elevator simulation implementation in Appendices G, H and I.

4
5 // attributes
6 private int ID;
7 private boolean moving = true;
8 private Location location;
9

10 // constructor
11 public Person() {}
12
13 // methods of DoorListener
14 public void doorOpened(DoorEvent doorEvent) {}
15 public void doorClosed(DoorEvent doorEvent) {}
16 }

Fig. 11.27Fig. 11.27Fig. 11.27Fig. 11.27 Class diagram that models realizations in the elevator model.

Fig. 11.26Fig. 11.26Fig. 11.26Fig. 11.26 Class Person is generated from Fig. 11.24 (part 2 of 2).

Light

ElevatorModel

ElevatorShaft

Bell

Elevator

Person

Door Button

ButtonListener DoorListener

ElevatorMoveListener

PersonMoveListener

BellListenerLightListener

ButtonListener DoorListener BellListener

638 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

 According to Fig. 11.27, classes Door, Light, Bell and Button implement inter-
face ElevatorMoveListener. Class Elevator implements interfaces Button-
Listener, DoorListener and BellListener. Class ElevatorModel
implements interface PersonMoveListener. Class ElevatorShaft implements
interfaces LightListener, ButtonListener and DoorListener. Lastly, class

Fig. 11.28Fig. 11.28Fig. 11.28Fig. 11.28 Class diagram for listener interfaces.

«interface»
DoorListener

+ doorOpened(DoorEvent : doorEvent) : void
+ doorClosed(DoorEvent : doorEvent) : void

«interface»
BellListener

+ bellRang(BellEvent : bellEvent) : void

«interface»
ElevatorMoveListener

+ elevatorArrived(ElevatorMoveEvent : elevatorMoveEvent) : void
+ elevatorDeparted(ElevatorMoveEvent : elevatorMoveEvent) : void

«interface»
PersonMoveListener

+ personCreated(PersonMoveEvent : personMoveEvent) : void
+ personArrived(PersonMoveEvent : personMoveEvent) : void
+ personDeparted(PersonMoveEvent : personMoveEvent) : void
+ personPressedButton(PersonMoveEvent : personMoveEvent) : void
+ personEntered(PersonMoveEvent : personMoveEvent) : void
+ personExited(PersonMoveEvent : personMoveEvent) : void

«interface»
LightListener

+ lightTurnedOn(LightEvent : lightEvent) : void
+ lightTurnedOff(LightEvent : lightEvent) : void

«interface»
ButtonListener

+ buttonPressed(ButtonEvent : buttonEvent) : void
+ buttonReset(ButtonEvent : buttonEvent) : void

Chapter 11 Graphics and Java2D 639

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Person implements interface DoorListener. We reexamine Fig. 11.27 in
Appendix H when we begin coding our model.

In this section we showed how to represent interfaces and realizations with the UML.
We also presented class diagrams showing the listener interfaces and their realizations for
our elevator simulation. In “Thinking About Objects” Section 12.16, we model how the
user interacts with our simulation.

SUMMARY
• A coordinate system is a scheme for identifying every possible point on the screen.

• The upper-left corner of a GUI component has the coordinates (0, 0). A coordinate pair is com-
posed of an x-coordinate (the horizontal coordinate) and a y-coordinate (the vertical coordinate).

• Coordinate units are measured in pixels. A pixel is a display monitor’s smallest unit of resolution.

• A graphics context enables drawing on the screen in Java. A Graphics object manages a graphics
context by controlling how information is drawn.

• Graphics objects contain methods for drawing, font manipulation, color manipulation and so on.

• Method paint is normally called in response to an event, such as uncovering a window.

• Method repaint requests a call to Component method update as soon as possible to clear
the Component’s background of any previous drawing, then update calls paint directly.

• Class Color defines methods and constants for manipulating colors in a Java program.

• Java uses RGB colors in which the red, green and blue color components are integers in the range
from 0 to 255 or floating-point values in the range from 0.0 to 1.0. The larger the RGB value, the
greater the amount of that particular color.

• Color methods getRed, getGreen and getBlue return integer values from 0 to 255 repre-
senting the amount of red, green and blue in a Color.

• Class Color provides 13 predefined Color objects.

• Graphics method getColor returns a Color object representing the current drawing color.
Graphics method setColor sets the current drawing color.

• Java provides class JColorChooser to display a dialog for selecting colors.

• static method showDialog of class JColorChooser displays a color chooser dialog. This
method returns the selected Color object (null, if none is selected).

• The default JColorChooser dialog allows you to select a color from a variety of color
swatches. The HSB tab allows you to select a color based on hue, saturation and brightness. The
RGB tab allows you to select a color by using sliders for the red, green and blue components of
the color.

• Component method setBackground (one of the many Component methods that can be
used on most GUI components) changes the background color of a component.

• Class Font’s constructor takes three arguments—the font name, the font style and the font size.
The font name is any font currently supported by the system. The font style is Font.PLAIN,
Font.ITALIC or Font.BOLD. The font size is measured in points.

• Graphics method setFont sets the drawing font.

• Class FontMetrics defines several methods for obtaining font metrics.

• Graphics method getFontMetrics with no arguments obtains the FontMetrics object
for the current font. Graphics method getFontMetrics that receives a Font argument re-
turns a corresponding FontMetrics object.

640 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

• Methods draw3DRect and fill3DRect take five arguments specifying the top-left corner of
the rectangle, the width and height of the rectangle and whether the rectangle is raised (true)
or lowered (false).

• Methods drawRoundRect and fillRoundRect draw rectangles with rounded corners. Their
first two arguments specify the upper-left corner, the third and fourth arguments specify the
width and height, and the last two arguments—arcWidth and arcHeight—determine the
horizontal and vertical diameters of the arcs used to represent the corners.

• Methods drawOval and fillOval take the same arguments—the top-left coordinate and the
width and the height of the bounding rectangle that contains the oval.

• An arc is a portion of an oval. Arcs sweep from a starting angle the number of degrees specified
by their arc angle. The starting angle specifies where the arc begins and the arc angle specifies the
total number of degrees through which the arc sweeps. Arcs that sweep counterclockwise are mea-
sured in positive degrees and arcs that sweep clockwise are measured in negative degrees.

• Methods drawArc and fillArc take the same arguments—the top-left coordinate, the width
and the height of the bounding rectangle that contains the arc and the startAngle and arc-
Angle that define the sweep of the arc.

• Polygons are multisided shapes. Polylines are a series of connected points.

• One Polygon constructor receives an array containing the x-coordinate of each point, an array
containing the y-coordinate of each point and the number of points in the polygon.

• One version of Graphics method drawPolygon displays a Polygon object. Another version
receives an array containing the x-coordinate of each point, an array containing the y-coordinate
of each point and the number of points in the polygon and displays the corresponding polygon.

• Graphics method drawPolyline displays a series of connected lines specified by its argu-
ments (an array containing the x-coordinate of each point, an array containing the y-coordinate of
each point and the number of points).

• Polygon method addPoint adds pairs of x- and y-coordinates to a Polygon.

• The Java2D API provides advanced two-dimensional graphics capabilities for processing line art,
text and images.

• To access the Graphics2D capabilities, downcast the Graphics reference passed to paint
to a Graphics2d reference.

• Graphics2D method setPaint sets the Paint object that determines the color and texture
for the shape to display. A Paint object is an object of any class that implements interface ja-
va.awt.Paint. The Paint object can be a Color or an instance of the Java2D API’s Gra-
dientPaint, SystemColor or TexturePaint classes.

• Class GradientPaint draws a shape in a gradually changing color called a gradient.

• Graphics2D method fill draws a filled Shape object. The Shape object is an instance of
any class that implements interface Shape.

• The Ellipse2D.Double constructor receives four arguments specifying the bounding rectan-
gle for the ellipse to display.

• Graphics2D method setStroke sets the characteristics of the lines used to draw a shape.
Method setStroke requires a Stroke object as its argument. The Stroke object is an in-
stance of any class that implements interface Stroke, such as a BasicStroke.

• Graphics2D method draw draws a Shape object. The Shape object is an instance of any
class that implements interface Shape.

• The Rectangle2D.Double constructor receives four arguments specifying the upper-left x-
coordinate, upper-left y-coordinate, width and height of the rectangle.

Chapter 11 Graphics and Java2D 641

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

• Class BufferedImage can be used to produce images in color and gray scale.

• A TexturePaint object uses the image stored in its associated BufferedImage as the fill
texture for a filled-in shape.

• The RoundRectangle2D.Double constructor receives six arguments specifying the rectan-
gle’s dimensions and the arc width and arc height used to determine the rounding of the corners.

• The Arc2D.Double constructor’s first four arguments specify the upper-left x-coordinate, up-
per-left y-coordinate, width and height of the bounding rectangle for the arc. The fifth argument
specifies the start angle. The sixth argument specifies the end angle. The last argument specifies
the type of arc (Arc2D.PIE, Arc2D.CHORD or Arc2D.OPEN).

• The Line2D.Double constructor’s arguments specify starting and ending line coordinates.

• A general path is a shape constructed from straight lines and complex curves represented with an
object of class GeneralPath (package java.awt.geom).

• GeneralPath method moveTo specifies the first point in a general path. GeneralPath
method lineTo draws a line to the next point in the general path. Each new call to lineTo
draws a line from the previous point to the current point. GeneralPath method closePath
draws a line from the last point to the point specified in the last call to moveTo.

• Graphics2D method translate moves the drawing origin to a new location. All drawing op-
erations now use that location as (0, 0).

• Graphics2D method rotate to rotate the next that is displayed. Its argument specifies the ro-
tation angle in radians (with 360° = 2π radians).

TERMINOLOGY
addPoint method drawPolygon method
angle drawPolyline method
arc bounded by a rectangle drawRect method
arc height drawRoundRect method
arc sweeping through an angle Ellipse2D.Double class
arc width event
Arc2D.Double class event-driven process
ascent fill method
background color fill3DRect method
baseline fillArc method
bounding rectangle filled polygon
BufferedImage class fillOval method
closed polygon fillPolygon method
closePath method fillRect method
Color class fillRoundRect method
Component class font
coordinate Font class
coordinate system font metrics
degree font name
descent font style
draw an arc FontMetrics class
draw method GeneralPath class
draw3DRect method getAscent method
drawArc method getBlue method
drawLine method getDescent method
drawOval method getFamily method

642 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

SELF-REVIEW EXERCISES
11.1 Fill in the blanks in each of the following statements:

a) In Java2D, method of class sets the characteristics of a line used
to draw a shape.

b) Class helps define the fill for a shape such that the fill gradually changes
from one color to another.

c) The method of class Graphics draws a line between two points.
d) RGB is short for , and .
e) Font sizes are measured in units called .
f) Class helps define the fill for a shape using a pattern drawn in a Buff-

eredImage.

11.2 State whether each of the following is true or false. If false, explain why.
a) The first two arguments of Graphics method drawOval specify the center coordinate

of the oval.
b) In the Java coordinate system, x values increase from left to right.
c) Method fillPolygon draws a solid polygon in the current color.
d) Method drawArc allows negative angles.
e) Method getSize returns the size of the current font in centimeters.
f) Pixel coordinate (0, 0) is located at the exact center of the monitor.

11.3 Find the error(s) in each of the following and explain how to correct the error(s). Assume that
g is a Graphics object.

getFont method pixel
getFontList method point
getFontMetrics method polygon
getGreen method Polygon class
getHeight method positive degrees
getLeading method Rectangle2D.Double class
getName method repaint method
getRed method RGB value
getSize method rotate method
getStyle method RoundRectangle2D.Double class
GradientPaint class SansSerif font
Graphics class Serif font
graphics context setColor method
graphics object setFont method
Graphics2D class setPaint method
isBold method setStroke method
isItalic method Shape interface
isPlain method Stroke interface
Java2D API SystemColor class
leading TexturePaint class
Line2D.Double class translate method
lineTo method update method
Monospaced font vertical component
moveTo method x-axis
negative degrees x-coordinate
Paint interface y-axis
paint method y-coordinate

Chapter 11 Graphics and Java2D 643

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

a) g.setFont("SansSerif");
b) g.erase(x, y, w, h); // clear rectangle at (x, y)
c) Font f = new Font("Serif", Font.BOLDITALIC, 12);
d) g.setColor(Color.Yellow); // change color to yellow

ANSWERS TO SELF-REVIEW EXERCISES
11.1 a) setStroke, Graphics2D. b) GradientPaint. c) drawLine. d) red, green,
blue. e) points. f) TexturePaint.

11.2 a) False. The first two arguments specify the upper-left corner of the bounding rectangle.
b) True.
c) True.
d) True.
e) False. Font sizes are measured in points.
f) False. The coordinate (0,0) corresponds to the upper-left corner of a GUI component on

which drawing occurs.

11.3 a) The setFont method takes a Font object as an argument—not a String.
b) The Graphics class does not have an erase method. The clearRect method

should be used.
c) Font.BOLDITALIC is not a valid font style. To get a bold italic font, use Font.BOLD

+ Font.ITALIC.
d) Yellow should begin with a lowercase letter: g.setColor(Color.yellow);.

EXERCISES
11.4 Fill in the blanks in each of the following statements:

a) Class of the Java2D API is used to define ovals.
b) Methods draw and fill of class Graphics2D require an object of type

as their argument.
c) The three constants that specify font style are , and .
d) Graphics2D method sets the painting color for Java2D shapes.

11.5 State whether each of the following is true or false. If false, explain why.
a) The drawPolygon method automatically connects the endpoints of the polygon.
b) The drawLine method draws a line between two points.
c) The fillArc method uses degrees to specify the angle.
d) In the Java coordinate system, y values increase from top to bottom.
e) The Graphics class inherits directly from class Object.
f) The Graphics class is an abstract class.
g) The Font class inherits directly from class Graphics.

11.6 Write a program that draws a series of eight concentric circles. The circles should be sepa-
rated by 10 pixels. Use the drawOval method of class Graphics.

11.7 Write a program that draws a series of eight concentric circles. The circles should be sepa-
rated by 10 pixels. Use the drawArc method.

11.8 Modify your solution to Exercise 11.6 to draw the ovals by using instances of class
Ellipse2D.Double and method draw of class Graphics2D.

11.9 Write a program that draws lines of random lengths in random colors.

11.10 Modify your solution to Exercise 11.9 to draw random lines, in random colors and random line
thicknesses. Use class Line2D.Double and method draw of class Graphics2D to draw the lines.

644 Graphics and Java2D Chapter 11

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

11.11 Write a program that displays randomly generated triangles in different colors. Each triangle
should be filled with a different color. Use class GeneralPath and method fill of class
Graphics2D to draw the triangles.

11.12 Write a program that randomly draws characters in different font sizes and colors.

11.13 Write a program that draws an 8-by-8 grid. Use the drawLine method.

11.14 Modify your solution to Exercise 11.13 to draw the grid using instances of class
Line2D.Double and method draw of class Graphics2D.

11.15 Write a program that draws a 10-by-10 grid. Use the drawRect method.

11.16 Modify your solution to Exercise 11.15 to draw the grid by using instances of class
Rectangle2D.Double and method draw of class Graphics2D.

11.17 Write a program that draws a tetrahedron (a pyramid). Use class GeneralPath and method
draw of class Graphics2D.

11.18 Write a program that draws a cube. Use class GeneralPath and method draw of class
Graphics2D.

11.19 In Exercise 3.9, you wrote an applet that input the radius of a circle from the user and dis-
played the circle’s diameter, circumference and area. Modify your solution to Exercise 3.9 to read a
set of coordinates in addition to the radius. Then draw the circle and display the circle’s diameter, cir-
cumference and area, using an Ellipse2D.Double object to represent the circle and method
draw of class Graphics2D to display the circle.

11.20 Write an application that simulates a screen saver. The application should randomly draw
lines using method drawLine of class Graphics. After drawing 100 lines, the application should
clear itself and start drawing lines again. To allow the program to draw continuously, place a call to
repaint as the last line in method paint. Do you notice any problems with this on your system?

11.21 Here is a peek ahead. Package javax.swing contains a class called Timer that is capable
of calling method actionPerformed of interface ActionListener at a fixed time interval
(specified in milliseconds). Modify your solution to Exercise 11.20 to remove the call to repaint
from method paint. Define your class so it implements ActionListener. (The actionPer-
formed method should simply call repaint.) Define an instance variable of type Timer called
timer in your class. In the constructor for your class, write the following statements:

timer = new Timer(1000, this);
timer.start();

This creates an instance of class Timer that will call this object’s actionPerformed method
every 1000 milliseconds (i.e., every second).

11.22 Modify your solution to Exercise 11.21 to enable the user to enter the number of random lines
that should be drawn before the application clears itself and starts drawing lines again. Use a JText-
Field to obtain the value. The user should be able to type a new number into the JTextField at
any time during the program’s execution. Use an inner class definition to perform event handling for
the JTextField.

11.23 Modify your solution to Exercise 11.21 such that it uses random number generation to choose
different shapes to display (use methods of class Graphics).]

11.24 Modify your solution to Exercise 11.23 to use classes and drawing capabilities of the Java2D
API. For shapes such as rectangles and ellipses, draw them with randomly generated gradients (use
class GradientPaint to generate the gradient).

Chapter 11 Graphics and Java2D 645

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

11.25 Write a graphical version of your solution to Exercise 6.37—the Towers of Hanoi. After
studying Chapter 18, you will be able to implement a version of this exercise using Java’s image, an-
imation and audio capabilities.

11.26 Modify the die-rolling program of Fig. 7.8 so that it updates the counts for each side of the
die after each roll. Convert the application into a windowed application (i.e., a subclass of JFrame)
and use Graphics method drawString to output the totals.

11.27 Modify your solution to Exercise 7.21—Turtle Graphics—to add a graphical user interface
using JTextFields and JButtons. Also, draw lines rather than drawing asterisks (*). When the
turtle graphics program specifies a move, translate the number of positions into a number of pixels
on the screen by multiplying the number of positions by 10 (or any value you choose). Implement the
drawing with Java2D API features.

11.28 Produce a graphical version of the Knight’s Tour problem (Exercises 7.22, 7.23 and 7.26).
As each move is made, the appropriate cell of the chessboard should be updated with the proper move
number. If the result of the program is a full tour or a closed tour, the program should display an ap-
propriate message. If you would like, use class Timer (see Exercise 11.24) to help animate the
Knight’s Tour. Every second, the next move should be made.

11.29 Produce a graphical version of the Tortoise and the Hare simulation (Exercise 7.41). Simu-
late the mountain by drawing an arc that extends from the bottom-left of the window to the top-right
of the window. The tortoise and the hare should race up the mountain. Implement the graphical output
so the tortoise and the hare are actually printed on the arc every move. [Note: Extend the length of the
race from 70 to 300 to allow yourself a larger graphics area.]

11.30 Produce a graphical version of the Maze Traversal problem (Exercises 7.38-7.40). Use the
mazes you produced as guides for creating the graphical versions. While the maze is being solved, a
small circle should be displayed in the maze indicating the current position. If you would like, use
class Timer (see Exercise 11.24) to help animate the traversal of the maze. Every second, the next
move should be made.

11.31 Produce a graphical version of the Bucket Sort (Exercise 7.28) that shows each value being
placed into the appropriate bucket and eventually being copied back to the original array.

11.32 Write a program that uses method drawPolyline to draw a spiral.

11.33 Write a program that inputs four numbers and graphs the numbers as a pie chart. Use class
Arc2D.Double and method fill of class Graphics2D to perform the drawing. Draw each
piece of the pie in a separate color.

11.34 Write an applet that inputs four numbers and graphs the numbers as a bar graph. Use class
Rectangle2D.Double and method fill of class Graphics2D to perform the drawing. Draw
each bar in a different color.

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

12
Graphical User Interface

Components: Part 1

Objectives
• To understand the design principles of graphical user

interfaces (GUI).
• To be able to build graphical user interfaces.
• To understand the packages containing GUI compo-

nents and event-handling classes and interfaces.
• To be able to create and manipulate buttons, labels,

lists, text fields and panels.
• To understand mouse events and keyboard events.
• To understand and be able to use layout managers.
… the wisest prophets make sure of the event first.
Horace Walpole

Do you think I can listen all day to such stuff?
Lewis Carroll

Speak the affirmative; emphasize your choice by utter
ignoring of all that you reject.
Ralph Waldo Emerson

You pays your money and you takes your choice.
Punch

Guess if you can, choose if you dare.
Pierre Corneille

All hope abandon, ye who enter here!
Dante Alighieri

Exit, pursued by a bear.
William Shakespeare

Chapter 12 Graphical User Interface Components: Part 1 647

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

12.1 Introduction
A graphical user interface (GUI) presents a pictorial interface to a program. A GUI (pro-
nounced “GOO-EE”) gives a program a distinctive “look” and “feel.” Providing different
programs with a consistent set of intuitive user interface components provides users with a
basic level of familiarity with each program before they ever use it. In turn, this reduces the
time users require to learn a program and increases their ability to use the program in a pro-
ductive manner.

Look-and-Feel Observation 12.1
Consistent user interfaces enable a user to learn new applications faster. 12.1

As an example of a GUI, Fig. 12.1 contains a Netscape Navigator window with some
of its GUI components labeled. In the window, there is a menu bar containing menus (File,
Edit, View etc.). Below the menu bar there is a set of buttons that each have a defined task
in Netscape Navigator. To the right of the buttons there is a text field in which the user can
type the name of the World Wide Web site to visit. The menus, buttons and text fields are
part of Netscape Navigator’s GUI. They enable you to interact with the Navigator program.

Outline

12.1 Introduction
12.2 Swing Overview
12.3 JLabel

12.4 Event-Handling Model
12.5 JTextField and JPasswordField

12.5.1 How Event Handling Works
12.6 JButton

12.7 JCheckBox and JRadioButton
12.8 JComboBox

12.10 Multiple-Selection Lists
12.11 Mouse Event Handling
12.12 Adapter Classes
12.13 Keyboard Event Handling
12.14 Layout Managers

12.14.1 FlowLayout

12.14.2 BorderLayout

12.14.3 GridLayout

12.15 Panels
12.16 (Optional Case Study) Thinking About Objects: Use Cases

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

648 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

In this chapter and the next, we demonstrate many GUI components that enable users to
interact with your programs.

GUIs are built from GUI components (sometimes called controls or widgets—short-
hand notation for window gadgets). A GUI component is an object with which the user
interacts via the mouse, the keyboard or another form of input, such as voice recognition.
Several common GUI components are listed in Figure 12.2. In the sections that follow, we
discuss each of these GUI components in detail. In the next chapter, we discuss more
advanced GUI components.

Fig. 12.1Fig. 12.1Fig. 12.1Fig. 12.1 A sample Netscape Navigator window with GUI components.

Component Description

JLabel An area where uneditable text or icons can be displayed.

JTextField An area in which the user inputs data from the keyboard. The area can also
display information.

JButton An area that triggers an event when clicked.

JCheckBox A GUI component that is either selected or not selected.

JComboBox A drop-down list of items from which the user can make a selection by click-
ing an item in the list or possibly by typing into the box.

JList An area where a list of items is displayed from which the user can make a
selection by clicking once on any element in the list. Double-clicking an ele-
ment in the list generates an action event. Multiple elements can be selected.

JPanel A container in which components can be placed.

Fig. 12.2Fig. 12.2Fig. 12.2Fig. 12.2 Some basic GUI components.

menu menu barbutton text field

Chapter 12 Graphical User Interface Components: Part 1 649

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

12.2 Swing Overview
The classes that create the GUI components of Fig. 12.2 are part of the Swing GUI compo-
nents from package javax.swing. These GUI components became standard in Java with
the release of the Java 2 platform version 1.2. Most Swing components (as they are com-
monly called) are written, manipulated and displayed completely in Java (so-called pure
Java components).

The original GUI components from the Abstract Windowing Toolkit package
java.awt (also called the AWT) are tied directly to the local platform’s graphical user
interface capabilities. When a Java program with an AWT GUI executes on different Java
platforms, the program’s GUI components display differently on each platform. Consider
a program that displays an object of type Button (package java.awt). On a computer
running the Microsoft Windows operating system, the Button will have the same look
and feel as the buttons in other Windows applications. Similarly, on a computer running the
Apple Macintosh operating system, the Button will have the same look and feel as the
buttons in other Macintosh applications. In addition to the differences in appearance, some-
times the manner in which a user interacts with a particular AWT component differs
between platforms.

Together, the appearance and how the user interacts with the program are known as that
program’s look and feel. The Swing components allow the programmer to specify a uniform
look and feel across all platforms. In addition, Swing enables programs to provide a custom
look and feel for each platform or even to change the look and feel while the program is run-
ning. For example, a program could enable users to choose their preferred look and feel.

Look-and-Feel Observation 12.2
Swing components are written in Java, so they provide a greater level of portability and flex-
ibility than the original Java GUI components from package java.awt. 12.2

Swing components are often referred to as lightweight components—they are written
completely in Java so they are not “weighed down” by the complex GUI capabilities of the
platform on which they are used. AWT components (many of which parallel the Swing
components) that are tied to the local platform are correspondingly called heavyweight
components—they rely on the local platform’s windowing system to determine their func-
tionality and their look and feel. Each heavyweight component has a peer (from package
java.awt.peer) that is responsible for the interactions between the component and the
local platform that display and manipulate the component. Several Swing components are
still heavyweight components. In particular, subclasses of java.awt.Window (such as
JFrame used in several previous chapters) that display windows on the screen and sub-
classes of java.applet.Applet (such as JApplet) still require direct interaction
with the local windowing system. As such, heavyweight Swing GUI components are less
flexible than many of the lightweight components we will demonstrate.

Portability Tip 12.1
The look of a GUI defined with heavyweight GUI components from package java.awt may
vary across platforms. Heavyweight components “tie” into the “local” platform GUI, which
varies from platform to platform. 12.1

Figure 12.3 shows an inheritance hierarchy of the classes that define attributes and
behaviors that are common to most Swing components. Each class is displayed with its

650 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

fully qualified package name and class name. Much of each GUI component’s functionality
is derived from these classes. A class that inherits from the Component class is a Com-
ponent. For example, class Container inherits from class Component, and class
Component inherits from Object. Thus, a Container is a Component and is an
Object, and a Component is an Object. A class that inherits from class Container
is a Container. Thus, a JComponent is a Container.

Software Engineering Observation 12.1
To use GUI components effectively, the javax.swing and java.awt inheritance hier-
archies must be understood—especially class Component, class Container and class
JComponent, which define features common to most Swing components. 12.1

Class Component defines the common attributes and behaviors of all subclasses of
Component. With few exceptions, most GUI components extend class Component
directly or indirectly. One method that originates in class Component that has been used
frequently to this point is paint. Other methods discussed previously that originated in
Component are repaint and update. It is important to understand the methods of class
Component because much of the functionality inherited by every subclass of Compo-
nent is defined by the Component class originally. Operations common to most GUI
components (both Swing and AWT) are found in class Component.

Good Programming Practice 12.1
Study the methods of class Component in the Java 2 SDK on-line documentation to learn
the capabilities common to most GUI components. 12.1

A Container is a collection of related components. In applications with JFrames
and in applets, we attach components to the content pane, which is an object of class Con-
tainer. Class Container defines the common attributes and behaviors for all sub-
classes of Container. One method that originates in class Container is add for
adding components to a Container. Another method that originates in class Con-
tainer is setLayout, which enables a program to specify the layout manager that
helps a Container position and size its components.

Good Programming Practice 12.2
Study the methods of class Container in the Java 2 SDK on-line documentation to learn
the capabilities common to every container for GUI components. 12.2

Class JComponent is the superclass to most Swing components. This class defines
the common attributes and behaviors of all subclasses of JComponent.

Fig. 12.3Fig. 12.3Fig. 12.3Fig. 12.3 Common superclasses of many of the Swing components.

java.lang.Object

java.awt.Component

java.awt.Container

javax.swing.JComponent

Chapter 12 Graphical User Interface Components: Part 1 651

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Good Programming Practice 12.3
Study the methods of class JComponent in the Java 2 SDK on-line documentation to learn
the capabilities common to every container for GUI components. 12.3

Swing components that subclass JComponent have many features, including:

1. A pluggable look and feel that can be used to customize the look and feel when
the program executes on different platforms.

2. Shortcut keys (called mnemonics) for direct access to GUI components through
the keyboard.

3. Common event-handling capabilities for cases where several GUI components
initiate the same actions in a program.

4. Brief descriptions of a GUI component’s purpose (called tool tips) that are dis-
played when the mouse cursor is positioned over the component for a short time.

5. Support for assistive technologies such as braille screen readers for blind people.

6. Support for user interface localization—customizing the user interface for display
in different languages and cultural conventions.

These are just some of the many features of the Swing components. We discuss several of
these features here and in Chapter 13.

12.3 JLabel
Labels provide text instructions or information on a GUI. Labels are defined with class
JLabel—a subclass of JComponent. A label displays a single line of read-only text, an
image or both text and an image. Programs rarely change a label’s contents after creating
it. The application of Figure 12.4 demonstrates several JLabel features.

1 // Fig. 12.4: LabelTest.java
2 // Demonstrating the JLabel class.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class LabelTest extends JFrame {
12 private JLabel label1, label2, label3;
13
14 // set up GUI
15 public LabelTest()
16 {
17 super("Testing JLabel");
18

Fig. 12.4Fig. 12.4Fig. 12.4Fig. 12.4 Demonstrating class JLabel (part 1 of 2).

652 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

19 // get content pane and set its layout
20 Container container = getContentPane();
21 container.setLayout(new FlowLayout());
22
23 // JLabel constructor with a string argument
24 label1 = new JLabel("Label with text");
25 label1.setToolTipText("This is label1");
26 container.add(label1);
27
28 // JLabel constructor with string, Icon and
29 // alignment arguments
30 Icon bug = new ImageIcon("bug1.gif");
31 label2 = new JLabel("Label with text and icon",
32 bug, SwingConstants.LEFT);
33 label2.setToolTipText("This is label2");
34 container.add(label2);
35
36 // JLabel constructor no arguments
37 label3 = new JLabel();
38 label3.setText("Label with icon and text at bottom");
39 label3.setIcon(bug);
40 label3.setHorizontalTextPosition(SwingConstants.CENTER);
41 label3.setVerticalTextPosition(SwingConstants.BOTTOM);
42 label3.setToolTipText("This is label3");
43 container.add(label3);
44
45 setSize(275, 170);
46 setVisible(true);
47 }
48
49 // execute application
50 public static void main(String args[])
51 {
52 LabelTest application = new LabelTest();
53
54 application.setDefaultCloseOperation(
55 JFrame.EXIT_ON_CLOSE);
56 }
57
58 } // end class LabelTest

Fig. 12.4Fig. 12.4Fig. 12.4Fig. 12.4 Demonstrating class JLabel (part 2 of 2).

Chapter 12 Graphical User Interface Components: Part 1 653

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Good Programming Practice 12.4
Study the methods of class javax.swing.JLabel in the Java 2 SDK on-line documen-
tation to learn the complete capabilities of the class before using it. 12.4

The program declares three JLabels at line 12. The JLabel objects are instantiated
in the LabelTest constructor (line 15–47). Line 24 creates a JLabel object with the
text "Label with text". The label displays this text when the label appears on the
screen (i.e., when the window is displayed in this program).

Line 25 uses method setToolTipText (inherited into class JLabel from class
JComponent) to specify the tool tip (see the second screen capture in Fig. 12.4) that is
displayed automatically when the user positions the mouse cursor over the label in the GUI.
When you execute this program, try positioning the mouse over each label to see its tool
tip. Line 26 adds label1 to the content pane.

Look-and-Feel Observation 12.3
Use tool tips (set with JComponent method setToolTipText) to add descriptive text
to your GUI components. This text helps the user determine the GUI component’s purpose
in the user interface. 12.3

Several Swing components can display images by specifying an Icon as an argument
to their constructor or by using a method that is normally called setIcon. An Icon is an
object of any class that implements interface Icon (package javax.swing). One such
class is ImageIcon (package javax.swing), which supports several image formats,
including Graphics Interchange Format (GIF), Portable Network Graphics (PNG) and
Joint Photographic Experts Group (JPEG). File names for each of these types typically end
with .gif, .png or .jpg (or .jpeg), respectively. We discuss images in more detail in
Chapter 18, Multimedia. Line 30 defines an ImageIcon object. The file bug1.gif con-
tains the image to load and store in the ImageIcon object. This file is assumed to be in
the same directory as the program (we will discuss locating the file elsewhere in
Chapter 18). The ImageIcon object is assigned to Icon reference bug. Remember,
class ImageIcon implements interface Icon, therefore an ImageIcon is an Icon.

Class JLabel supports the display of Icons. Lines 31–32 use another JLabel con-
structor to create a label that displays the text "Label with text and icon" and the
Icon to which bug refers and is left justified or left aligned (i.e., the icon and text are at
the left side of the label’s area on the screen). Interface SwingConstants (package
javax.swing) defines a set of common integer constants (such as SwingCon-
stants.LEFT) that are used with many Swing components. By default, the text appears
to the right of the image when a label contains both text and an image. The horizontal and
vertical alignments of a label can be set with methods setHorizontalAlignment and
setVerticalAlignment, respectively. Line 33 specifies the tool tip text for label2.
Line 34 adds label2 to the content pane.

Common Programming Error 12.1
If you do not explicitly add a GUI component to a container, the GUI component will not be
displayed when the container appears on the screen. 12.1

Common Programming Error 12.2
Adding to a container a component that has not been instantiated throws a NullPointer-
Exception. 12.2

654 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Class JLabel provides many methods to configure a label after it has been instanti-
ated. Line 37 creates a JLabel and invokes the no-argument (default constructor). Such a
label has no text or Icon. Line 38 uses JLabel method setText to set the text dis-
played on the label. A corresponding method getText retrieves the current text displayed
on a label. Line 39 uses JLabel method setIcon to set the Icon displayed on the label.
A corresponding method getIcon retrieves the current Icon displayed on a label. Lines
40–41 use JLabel methods setHorizontalTextPosition and setVertical-
TextPosition to specify the text position in the label. In this case, the text will be cen-
tered horizontally and will appear at the bottom of the label. Thus, the Icon will appear
above the text. Line 42 sets the tool tip text for the label3. Line 43 adds label3 to the
content pane.

12.4 Event-Handling Model
In the preceding section, we did not discuss event handling because there are no specific
events for JLabel objects. GUIs are event driven (i.e., they generate events when the user
of the program interacts with the GUI). Some common interactions are moving the mouse,
clicking the mouse, clicking a button, typing in a text field, selecting an item from a menu,
closing a window, etc. When a user interaction occurs, an event is sent to the program. GUI
event information is stored in an object of a class that extends AWTEvent. Figure 12.5 il-
lustrates a hierarchy containing many of the event classes we use from package ja-
va.awt.event. Many of these event classes are discussed throughout this chapter and
Chapter 13. The event types from package java.awt.event are used with both AWT
and Swing components. Additional event types have also been added that are specific to
several types of Swing components. New Swing-component event types are defined in
package javax.swing.event.

Fig. 12.5Fig. 12.5Fig. 12.5Fig. 12.5 Some event classes of package java.awt.event.

Class name

Key

java.lang.Object

java.awt.AWTEvent

ActionEvent

ItemEvent

AdjustmentEvent

ComponentEvent

java.util.EventObject

ContainerEvent

PaintEvent

FocusEvent

WindowEvent

InputEvent

KeyEvent MouseEventInterface name

Chapter 12 Graphical User Interface Components: Part 1 655

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

There are three parts to the event-handling mechanism—the event source, the event
object and the event listener. The event source is the particular GUI component with which
the user interacts. The event object encapsulates information about the event that occurred.
This information includes a reference to the event source and any event-specific informa-
tion that may be required by the event listener to handle the event. The event listener is an
object that is notified by the event source when an event occurs. The event listener receives
an event object when it is notified of the event, then uses the object to respond to the event.
The event source is required to provide methods that enable listeners to be registered and
unregistered. The event source also is required to maintain a list of its registered listeners
and be able to notify its listeners when an event occurs.

The programmer must perform two key tasks to process a graphical user interface
event in a program—register an event listener for the GUI component that is expected to
generate the event, and implement an event handling method (or set of event-handling
methods). Commonly, event-handling methods are called event handlers. An event listener
for a GUI event is an object of a class that implements one or more of the event-listener
interfaces from package java.awt.event and package javax.swing.event.
Many of the event-listener types are common to both Swing and AWT components. Such
types are defined in package java.awt.event, and many of these are shown in
Fig. 12.6. Additional event-listener types that are specific to Swing components are defined
in package javax.swing.event.

Fig. 12.6Fig. 12.6Fig. 12.6Fig. 12.6 Event-listener interfaces of package java.awt.event.

java.util.EventListener

ActionListener

ComponentListener

AdjustmentListener

ContainerListener

MouseListener

TextListener

ItemListener

FocusListener

KeyListener

MouseMotionListener

WindowListener

Class name

Key

Interface name

656 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

An event listener object “listens” for specific types of events generated by event
sources (normally GUI components) in a program. An event handler is a method that is
called in response to a particular type of event. Each event-listener interface specifies one
or more event-handling methods that must be defined in the class that implements the
event-listener interface. Remember that interfaces define abstract methods. Any class
that implements an interface must define all the methods of that interface; otherwise, the
class is an abstract class and cannot be used to create objects. The use of event listeners
in event handling is known as the delegation event model—the processing of an event is
delegated to a particular object (the listener) in the program.

When an event occurs, the GUI component with which the user interacted notifies its
registered listeners by calling each listener’s appropriate event handling method. For
example, when the user presses the Enter key in a JTextField, the registered listener’s
actionPerformed method is called. How did the event handler get registered? How
does the GUI component know to call actionPerformed as opposed to some other
event handling method? We answer these questions and diagram the interaction as part of
the next example.

12.5 JTextField and JPasswordField
JTextFields and JPasswordFields (package javax.swing) are single-line areas
in which text can be entered by the user from the keyboard or text can simply be displayed.
A JPasswordField shows that a character was typed as the user enters characters, but
hides the characters, assuming that they represent a password that should remain known
only to the user. When the user types data into a JTextField or JPasswordField
and presses the Enter key, an action event occurs. If the program registers an event listener,
the listener processes the event and can use the data in the JTextField or JPassword-
Field at the time of the event in the program. Class JTextField extends class JTex-
tComponent (package javax.swing.text), which provides many features common
to Swing’s text-based components. Class JPasswordField extends JTextField and
adds several methods that are specific to processing passwords.

Common Programming Error 12.3
Using a lowercase f in the class names JTextField or JPasswordField is a syntax
error. 12.3

The application of Fig. 12.7 uses classes JTextField and JPasswordField to
create and manipulate four fields. When the user presses Enter in the currently active field
(the currently active component “has the focus”), a message dialog box containing the text
in the field is displayed. When an event occurs in the JPasswordField, the password
is revealed.

1 // Fig. 12.7: TextFieldTest.java
2 // Demonstrating the JTextField class.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;

Fig. 12.7Fig. 12.7Fig. 12.7Fig. 12.7 Demonstrating JTextFields and JPasswordFields (part 1 of 4).

Chapter 12 Graphical User Interface Components: Part 1 657

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class TextFieldTest extends JFrame {
12 private JTextField textField1, textField2, textField3;
13 private JPasswordField passwordField;
14
15 // set up GUI
16 public TextFieldTest()
17 {
18 super("Testing JTextField and JPasswordField");
19
20 Container container = getContentPane();
21 container.setLayout(new FlowLayout());
22
23 // construct textfield with default sizing
24 textField1 = new JTextField(10);
25 container.add(textField1);
26
27 // construct textfield with default text
28 textField2 = new JTextField("Enter text here");
29 container.add(textField2);
30
31 // construct textfield with default text and
32 // 20 visible elements and no event handler
33 textField3 = new JTextField("Uneditable text field", 20);
34 textField3.setEditable(false);
35 container.add(textField3);
36
37 // construct textfield with default text
38 passwordField = new JPasswordField("Hidden text");
39 container.add(passwordField);
40
41 // register event handlers
42 TextFieldHandler handler = new TextFieldHandler();
43 textField1.addActionListener(handler);
44 textField2.addActionListener(handler);
45 textField3.addActionListener(handler);
46 passwordField.addActionListener(handler);
47
48 setSize(325, 100);
49 setVisible(true);
50 }
51
52 // execute application
53 public static void main(String args[])
54 {
55 TextFieldTest application = new TextFieldTest();
56
57 application.setDefaultCloseOperation(
58 JFrame.EXIT_ON_CLOSE);
59 }

Fig. 12.7Fig. 12.7Fig. 12.7Fig. 12.7 Demonstrating JTextFields and JPasswordFields (part 2 of 4).

658 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

60
61 // private inner class for event handling
62 private class TextFieldHandler implements ActionListener {
63
64 // process text field events
65 public void actionPerformed(ActionEvent event)
66 {
67 String string = "";
68
69 // user pressed Enter in JTextField textField1
70 if (event.getSource() == textField1)
71 string = "textField1: " + event.getActionCommand();
72
73 // user pressed Enter in JTextField textField2
74 else if (event.getSource() == textField2)
75 string = "textField2: " + event.getActionCommand();
76
77 // user pressed Enter in JTextField textField3
78 else if (event.getSource() == textField3)
79 string = "textField3: " + event.getActionCommand();
80
81 // user pressed Enter in JTextField passwordField
82 else if (event.getSource() == passwordField) {
83 JPasswordField pwd =
84 (JPasswordField) event.getSource();
85 string = "passwordField: " +
86 new String(passwordField.getPassword());
87 }
88
89 JOptionPane.showMessageDialog(null, string);
90 }
91
92 } // end private inner class TextFieldHandler
93
94 } // end class TextFieldTest

Fig. 12.7Fig. 12.7Fig. 12.7Fig. 12.7 Demonstrating JTextFields and JPasswordFields (part 3 of 4).

Chapter 12 Graphical User Interface Components: Part 1 659

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Lines 12–13 declare three references for JTextFields (textField1,
textField2 and textField3) and a JPasswordField (passwordField).
Each of these is instantiated in the constructor (line 16–50). Line 24 defines JTextField
textField1 with 10 columns of text. The width of the text field will be the width in
pixels of the average character in the text field’s current font multiplied by 10. Line 25 adds
textField1 to the content pane.

Line 28 defines textField2 with the initial text "Enter text here" to display
in the text field. The width of the text field is determined by the text. Line 29 adds
textField2 to the content pane.

Line 33 defines textField3 and call the JTextField constructor with two argu-
ments—the default text "Uneditable text field" to display in the text field and the
number of columns (20). The width of the text field is determined by the number of col-
umns specified. Line 34 uses method setEditable (inherited into JTextField from
class JTextComponent) to indicate that the user cannot modify the text in the text field.
Line 35 adds textField3 to the content pane.

Line 38 defines JPasswordField passwordField with the text "Hidden
text" to display in the text field. The width of the text field is determined by the text.
Notice that the text is displayed as a string of asterisks when the program executes. Line 39
adds passwordField to the content pane.

For the event-handling in this example, we defined inner class TextFieldHandler
(lines 62–92), which implements interface ActionListener (class TextFieldHan-
dler is discussed shortly). Thus, every instance of class TextFieldHandler is an
ActionListener. Line 42 defines an instance of class TextFieldHandler and
assigns it to reference handler. This one instance will be used as the event-listener object
for the JTextFields and the JPasswordField in this example.

Lines 43–46 are the event registration statements that specify the event listener object for
each of the three JTextFields and for the JPasswordField. After these statements
execute, the object to which handler refers is listening for events (i.e., it will be notified
when an event occurs) on these four objects. The program calls JTextField method
addActionListener to register the event for each component. Method addAction-
Listener receives as its argument an ActionListener object. Thus, any object of a
class that implements interface ActionListener (i.e., any object that is an Action-

Fig. 12.7Fig. 12.7Fig. 12.7Fig. 12.7 Demonstrating JTextFields and JPasswordFields (part 4 of 4).

660 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Listener) can be supplied as an argument to this method. The object to which handler
refers is an ActionListener because its class implements interface Action-
Listener. Now, when the user presses Enter in any of these four fields, method action-
Performed (line 65–90) in class TextFieldHandler is called to handle the event.

Software Engineering Observation 12.2
The event listener for an event must implement the appropriate event-listener interface. 12.2

Method actionPerformed uses its ActionEvent argument’s method get-
Source to determine the GUI component with which the user interacted and creates a
String to display in a message dialog box. ActionEvent method getActionCom-
mand returns the text in the JTextField that generated the event. If the user interacted
with the JPasswordField, lines 83–84 cast the Component reference returned by
event.getSource() to a JPasswordField reference so that lines 85–86 can use
JPasswordField method getPassword to obtain the password and create the
String to display. Method getPassword returns the password as an array of type
char that is used as an argument to a String constructor to create a String. Line 89
displays a message box indicating the GUI component reference name and the text the user
typed in the field.

Note that even an uneditable JTextField can generate an event. Simply click the
text field, then press Enter. Also note that the actual text of the password is displayed when
you press Enter in the JPasswordField (of course, you would normally not do this!).

Common Programming Error 12.4
Forgetting to register an event handler object for a particular GUI component’s event type
results in no events being handled for that component for that event type. 12.4

Using a separate class to define an event listener is a common programming practice
for separating the GUI interface from the implementation of its event handler. For the
remainder of this chapter and Chapter 13, many programs use separate event-listener
classes to process GUI events.

12.5.1 How Event Handling Works

Let us illustrate how the event-handling mechanism works using textField1 from the
preceding example. We have two remaining open questions from Section 12.4:

1. How did the event handler get registered?

2. How does the GUI component know to call actionPerformed as opposed to
some other event handling method?

The first question is answered by the event registration performed in lines 43–46 of the pro-
gram. Figure 12.8 diagrams JTextField reference textField1, the JTextField
object to which it refers and the listener object that is registered to handle the JText-
Field’s event.

Every JComponent has an object of class EventListenerList (package
javax.swing.event) called listenerList as an instance variable. All registered
listeners are stored in the listenerList (diagramed as an array in Figure 12.8). When
the statement

Chapter 12 Graphical User Interface Components: Part 1 661

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

textField1.addActionListener(handler);

executes in Fig. 12.7, a new entry is placed in the listenerList for JTextField
textField1, indicating both the reference to the listener object and the type of listener
(in this case ActionListener).

The type is important in answering the second question—how does the GUI compo-
nent know to call actionPerformed rather than another event handling method? Every
JComponent actually supports several different event types, including mouse events, key
events and others. When an event occurs, the event is dispatched only to the event listeners
of the appropriate type. The dispatching of an event is simply calling the event handling
method for each registered listener for that event type.

Each event type has a corresponding event-listener interface. For example, Action-
Events are handled by ActionListeners, MouseEvents are handled by MouseLis-
teners (and MouseMotionListeners as we will see) and KeyEvents are handled by
KeyListeners. When an event is generated by a user interaction with a component, the
component is handed a unique event ID specifying the event type that occurred. The GUI
component uses the event ID to decide the type of listener to which the event should be dis-
patched and the method to call. In the case of an ActionEvent, the event is dispatched to
every registered ActionListener’s actionPerformed method (the only method in
interface ActionListener). In the case of a MouseEvent, the event is dispatched to
every registered MouseListener (or MouseMotionListener, depending on the
event that occurs). The event ID of the MouseEvent determines which of the seven dif-
ferent mouse event handling methods are called. All of this decision logic is handled for you
by the GUI components. We discuss other event types and event-listener interfaces as they
are needed with each new component we cover.

Fig. 12.8Fig. 12.8Fig. 12.8Fig. 12.8 Event registration for JTextField textField1.

textField1

This is the JTextField
object. It contains an
instance variable of type
EventListenerList
called listenerList that
it inherited from class
JComponent.

listenerList

...

handler

This is the TextFieldHandler
object that implements
ActionListener and defines
method actionPerformed.

public void
 actionPerformed(
 ActionEvent event)
{
 // event handled here
}

This reference is created by the statement

 textField1.addActionListener(handler);

662 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

12.6 JButton
A button is a component the user clicks to trigger a specific action. A Java program can use
several types of buttons, including command buttons, check boxes, toggle buttons and radio
buttons. Figure 12.9 shows the inheritance hierarchy of the Swing buttons we cover in this
chapter. As you can see in the diagram, all the button types are subclasses of Abstract-
Button (package javax.swing), which defines many of the features that are common
to Swing buttons. In this section, we concentrate on buttons that are typically used to ini-
tiate a command. Other button types are covered in the next several sections.

A command button generates an ActionEvent when the user clicks the button with
the mouse. Command buttons are created with class JButton, which inherits from class
AbstractButton. The text on the face of a JButton is called a button label. A GUI
can have many JButtons, but each button label typically should be unique.

Look-and-Feel Observation 12.4
Having more than one JButton with the same label makes the JButtons ambiguous to
the user. Be sure to provide a unique label for each button. 12.4

The application of Fig. 12.10 creates two JButtons and demonstrates that JBut-
tons (like JLabels) support the display of Icons. Event handling for the buttons is per-
formed by a single instance of inner class ButtonHandler (defined at lines 53–62).

Fig. 12.9Fig. 12.9Fig. 12.9Fig. 12.9 The button hierarchy.

1 // Fig. 12.10: ButtonTest.java
2 // Creating JButtons.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class ButtonTest extends JFrame {
12 private JButton plainButton, fancyButton;

Fig. 12.10Fig. 12.10Fig. 12.10Fig. 12.10 Demonstrating command buttons and action events (part 1 of 3).

javax.swing.JComponent

javax.swing.AbstractButton

javax.swing.JButton javax.swing.ToggleButton

javax.swing.JCheckBox javax.swing.JRadioButton

Chapter 12 Graphical User Interface Components: Part 1 663

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

13
14 // set up GUI
15 public ButtonTest()
16 {
17 super("Testing Buttons");
18
19 // get content pane and set its layout
20 Container container = getContentPane();
21 container.setLayout(new FlowLayout());
22
23 // create buttons
24 plainButton = new JButton("Plain Button");
25 container.add(plainButton);
26
27 Icon bug1 = new ImageIcon("bug1.gif");
28 Icon bug2 = new ImageIcon("bug2.gif");
29 fancyButton = new JButton("Fancy Button", bug1);
30 fancyButton.setRolloverIcon(bug2);
31 container.add(fancyButton);
32
33 // create an instance of inner class ButtonHandler
34 // to use for button event handling
35 ButtonHandler handler = new ButtonHandler();
36 fancyButton.addActionListener(handler);
37 plainButton.addActionListener(handler);
38
39 setSize(275, 100);
40 setVisible(true);
41 }
42
43 // execute application
44 public static void main(String args[])
45 {
46 ButtonTest application = new ButtonTest();
47
48 application.setDefaultCloseOperation(
49 JFrame.EXIT_ON_CLOSE);
50 }
51
52 // inner class for button event handling
53 private class ButtonHandler implements ActionListener {
54
55 // handle button event
56 public void actionPerformed(ActionEvent event)
57 {
58 JOptionPane.showMessageDialog(null,
59 "You pressed: " + event.getActionCommand());
60 }
61
62 } // end private inner class ButtonHandler
63
64 } // end class ButtonTest

Fig. 12.10Fig. 12.10Fig. 12.10Fig. 12.10 Demonstrating command buttons and action events (part 2 of 3).

664 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Line 12 declares two references to instances of class JButton—plainButton and
fancyButton—that are instantiated in the constructor.

Line 24 creates plainButton with the button label "Plain Button". Line 25
adds the button to the content pane.

A JButton can display Icons. To provide the user with an extra level of visual inter-
activity with the GUI, a JButton can also have a rollover Icon—an Icon that is dis-
played when the mouse is positioned over the button. The icon on the button changes as the
mouse moves in and out of the button’s area on the screen. Lines 27–28 create two Image-
Icon objects that represent the default Icon and rollover Icon for the JButton created
at line 29. Both statements assume the image files are stored in the same directory as the
program (this is commonly the case for applications that use images).

Line 29 creates fancyButton with default text "Fancy Button" and the Icon
bug1. By default, the text is displayed to the right of the icon. Line 30 uses method set-
RolloverIcon (inherited from class AbstractButton into class JButton) to
specify the image displayed on the button when the user positions the mouse over the
button. Line 31 adds the button to the content pane.

Look-and-Feel Observation 12.5
Using rollover icons for JButtons provides the user with visual feedback indicating that
if they click the mouse, the button’s action will occur. 12.5

JButtons (like JTextFields) generate ActionEvents. As mentioned previ-
ously, an ActionEvent can be processed by any ActionListener object. Lines 35–
37 register an ActionListener object for each JButton. Inner class ButtonHan-
dler (lines 53–62) defines actionPerformed to display a message dialog box con-

Fig. 12.10Fig. 12.10Fig. 12.10Fig. 12.10 Demonstrating command buttons and action events (part 3 of 3).

Chapter 12 Graphical User Interface Components: Part 1 665

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

taining the label for the button that was pressed by the user. ActionEvent method
getActionCommand returns the label on the button that generated the event.

12.7 JCheckBox and JRadioButton
The Swing GUI components contain three types of state buttons—JToggleButton,
JCheckBox and JRadioButton—that have on/off or true/false values. JToggle-
Buttons are frequently used with toolbars (sets of small buttons typically located on a bar
across the top of a window) and are covered in Chapter 13. Classes JCheckBox and JRa-
dioButton are subclasses of JToggleButton. A JRadioButton is different from
a JCheckBox in that there are normally several JRadioButtons that are grouped to-
gether and only one of the JRadioButtons in the group can be selected (true) at any
time. We first discuss class JCheckBox.

Look-and-Feel Observation 12.6
Because class AbstractButton supports displaying text and images on a button, all sub-
classes of AbstractButton also support displaying text and images. 12.6

The application of Fig. 12.11 uses two JCheckBox objects to change the font style
of the text displayed in a JTextField. One JCheckBox applies a bold style when
selected and the other applies an italic style when selected. If both are selected, the style of
the font is bold and italic. When the program initially executes, neither JCheckBox is
checked (true).

1 // Fig. 12.11: CheckBoxTest.java
2 // Creating Checkbox buttons.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class CheckBoxTest extends JFrame {
12 private JTextField field;
13 private JCheckBox bold, italic;
14
15 // set up GUI
16 public CheckBoxTest()
17 {
18 super("JCheckBox Test");
19
20 // get content pane and set its layout
21 Container container = getContentPane();
22 container.setLayout(new FlowLayout());
23
24 // set up JTextField and set its font
25 field =
26 new JTextField("Watch the font style change", 20);

Fig. 12.11Fig. 12.11Fig. 12.11Fig. 12.11 Program that creates two JCheckBox buttons (part 1 of 3).

666 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

27 field.setFont(new Font("Serif", Font.PLAIN, 14));
28 container.add(field);
29
30 // create checkbox objects
31 bold = new JCheckBox("Bold");
32 container.add(bold);
33
34 italic = new JCheckBox("Italic");
35 container.add(italic);
36
37 // register listeners for JCheckBoxes
38 CheckBoxHandler handler = new CheckBoxHandler();
39 bold.addItemListener(handler);
40 italic.addItemListener(handler);
41
42 setSize(275, 100);
43 setVisible(true);
44 }
45
46 // execute application
47 public static void main(String args[])
48 {
49 CheckBoxTest application = new CheckBoxTest();
50
51 application.setDefaultCloseOperation(
52 JFrame.EXIT_ON_CLOSE);
53 }
54
55 // private inner class for ItemListener event handling
56 private class CheckBoxHandler implements ItemListener {
57 private int valBold = Font.PLAIN;
58 private int valItalic = Font.PLAIN;
59
60 // respond to checkbox events
61 public void itemStateChanged(ItemEvent event)
62 {
63 // process bold checkbox events
64 if (event.getSource() == bold)
65
66 if (event.getStateChange() == ItemEvent.SELECTED)
67 valBold = Font.BOLD;
68 else
69 valBold = Font.PLAIN;
70
71 // process italic checkbox events
72 if (event.getSource() == italic)
73
74 if (event.getStateChange() == ItemEvent.SELECTED)
75 valItalic = Font.ITALIC;
76 else
77 valItalic = Font.PLAIN;
78

Fig. 12.11Fig. 12.11Fig. 12.11Fig. 12.11 Program that creates two JCheckBox buttons (part 2 of 3).

Chapter 12 Graphical User Interface Components: Part 1 667

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

After the JTextField is created and initialized, line 27 sets the font of the JText-
Field to Serif, PLAIN style and 14-point size. Next, the constructor creates two
JCheckBox objects with lines 31 and 34. The String passed to the constructor is the
check box label that appears to the right of the JCheckBox by default.

When the user clicks a JCheckBox, an ItemEvent occurs that can be handled by
an ItemListener (any object of a class that implements interface ItemListener).
An ItemListener must define method itemStateChanged. In this example, the
event handling is performed by an instance of inner class CheckBoxHandler (lines 56–
84). Lines 38–40 create an instance of class CheckBoxHandler and register it with
method addItemListener as the ItemListener for both the bold and italic
JCheckBoxes.

Method itemStateChanged (lines 61–82) is called when the user clicks either the
bold or the italic checkbox. The method uses event.getSource() to determine
which JCheckBox was clicked. If it was JCheckBox bold, the if/else structure at
lines 66–69 uses ItemEvent method getStateChange to determine the state of the
button (ItemEvent.SELECTED or ItemEvent.DESELECTED). If the state is
selected, integer valBold is assigned Font.BOLD; otherwise, valBold is assigned
Font.PLAIN. A similar if/else structure is executed if JCheckBox italic is
clicked. If the italic state is selected, integer valItalic is assigned Font.ITALIC;
otherwise, valItalic is assigned Font.PLAIN. The sum of valBold and valI-
talic is used at lines 80–81 as the style of the new font for the JTextField.

Radio buttons (defined with class JRadioButton) are similar to check boxes in that
they have two states—selected and not selected (also called deselected). However, radio
buttons normally appear as a group in which only one radio button can be selected at a time.
Selecting a different radio button in the group automatically forces all other radio buttons
in the group to be deselected. Radio buttons are used to represent a set of mutually exclusive

79 // set text field font
80 field.setFont(
81 new Font("Serif", valBold + valItalic, 14));
82 }
83
84 } // end private inner class CheckBoxHandler
85
86 } // end class CheckBoxTest

Fig. 12.11Fig. 12.11Fig. 12.11Fig. 12.11 Program that creates two JCheckBox buttons (part 3 of 3).

668 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

options (i.e., multiple options in the group would not be selected at the same time). The log-
ical relationship between radio buttons is maintained by a ButtonGroup object (package
javax.swing). The ButtonGroup object itself is not a GUI component. Therefore, a
ButtonGroup object is not displayed in a user interface. Rather, the individual
JRadioButton objects from the group are displayed in the GUI.

Common Programming Error 12.5
Adding a ButtonGroup object (or an object of any other class that does not derive from
Component) to a container is a syntax error. 12.5

The application of Fig. 12.12 is similar to the preceding program. The user can alter
the font style of a JTextField’s text. The program uses radio buttons that permit only a
single font style in the group to be selected at a time.

1 // Fig. 12.12: RadioButtonTest.java
2 // Creating radio buttons using ButtonGroup and JRadioButton.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class RadioButtonTest extends JFrame {
12 private JTextField field;
13 private Font plainFont, boldFont, italicFont, boldItalicFont;
14 private JRadioButton plainButton, boldButton, italicButton,
15 boldItalicButton;
16 private ButtonGroup radioGroup;
17
18 // create GUI and fonts
19 public RadioButtonTest()
20 {
21 super("RadioButton Test");
22
23 // get content pane and set its layout
24 Container container = getContentPane();
25 container.setLayout(new FlowLayout());
26
27 // set up JTextField
28 field =
29 new JTextField("Watch the font style change", 25);
30 container.add(field);
31
32 // create radio buttons
33 plainButton = new JRadioButton("Plain", true);
34 container.add(plainButton);
35
36 boldButton = new JRadioButton("Bold", false);
37 container.add(boldButton);

Fig. 12.12Fig. 12.12Fig. 12.12Fig. 12.12 Creating and manipulating radio button (part 1 of 3).

Chapter 12 Graphical User Interface Components: Part 1 669

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

38
39 italicButton = new JRadioButton("Italic", false);
40 container.add(italicButton);
41
42 boldItalicButton = new JRadioButton(
43 "Bold/Italic", false);
44 container.add(boldItalicButton);
45
46 // register events for JRadioButtons
47 RadioButtonHandler handler = new RadioButtonHandler();
48 plainButton.addItemListener(handler);
49 boldButton.addItemListener(handler);
50 italicButton.addItemListener(handler);
51 boldItalicButton.addItemListener(handler);
52
53 // create logical relationship between JRadioButtons
54 radioGroup = new ButtonGroup();
55 radioGroup.add(plainButton);
56 radioGroup.add(boldButton);
57 radioGroup.add(italicButton);
58 radioGroup.add(boldItalicButton);
59
60 // create font objects
61 plainFont = new Font("Serif", Font.PLAIN, 14);
62 boldFont = new Font("Serif", Font.BOLD, 14);
63 italicFont = new Font("Serif", Font.ITALIC, 14);
64 boldItalicFont =
65 new Font("Serif", Font.BOLD + Font.ITALIC, 14);
66 field.setFont(plainFont);
67
68 setSize(300, 100);
69 setVisible(true);
70 }
71
72 // execute application
73 public static void main(String args[])
74 {
75 RadioButtonTest application = new RadioButtonTest();
76
77 application.setDefaultCloseOperation(
78 JFrame.EXIT_ON_CLOSE);
79 }
80
81 // private inner class to handle radio button events
82 private class RadioButtonHandler implements ItemListener {
83
84 // handle radio button events
85 public void itemStateChanged(ItemEvent event)
86 {
87 // user clicked plainButton
88 if (event.getSource() == plainButton)
89 field.setFont(plainFont);
90

Fig. 12.12Fig. 12.12Fig. 12.12Fig. 12.12 Creating and manipulating radio button (part 2 of 3).

670 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Lines 33–44 in the constructor define each JRadioButton object and add it to the
application window’s content pane. Each JRadioButton is initialized with a constructor
call like line 33. This constructor supplies the label that appears to the right of the JRa-
dioButton by default and the initial state of the JRadioButton. A true second argu-
ment indicates that the JRadioButton should appear selected when it is displayed.

JRadioButtons, like JCheckBoxes, generate ItemEvents when they are
clicked. Lines 47–51 create an instance of inner class RadioButtonHandler (defined
at lines 82–104) and register it to handle the ItemEvent generated when the user clicks
any one of the JRadioButtons.

Line 54 instantiates a ButtonGroup object and assigns it to reference radioGroup.
This object is the “glue” that binds the four JRadioButton objects together to form the
logical relationship that allows only one of the four buttons to be selected at a time. Lines 55–
58 use ButtonGroup method add to associate each of the JRadioButtons with
radioGroup. If more than one selected JRadioButton object is added to the group, the
first selected JRadioButton added will be selected when the GUI is displayed.

Class RadioButtonHandler (line 82–104) implements interface ItemLis-
tener so it can handle item events generated by the JRadioButtons. Each JRa-
dioButton in the program has an instance of this class (handler) registered as its
ItemListener. When the user clicks a JRadioButton, radioGroup turns off the
previously selected JRadioButton and method itemStateChanged (line 85–102)

91 // user clicked boldButton
92 else if (event.getSource() == boldButton)
93 field.setFont(boldFont);
94
95 // user clicked italicButton
96 else if (event.getSource() == italicButton)
97 field.setFont(italicFont);
98
99 // user clicked boldItalicButton
100 else if (event.getSource() == boldItalicButton)
101 field.setFont(boldItalicFont);
102 }
103
104 } // end private inner class RadioButtonHandler
105
106 } // end class RadioButtonTest

Fig. 12.12Fig. 12.12Fig. 12.12Fig. 12.12 Creating and manipulating radio button (part 3 of 3).

Chapter 12 Graphical User Interface Components: Part 1 671

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

executes. The method determines which JRadioButton was clicked using method
getSource (inherited indirectly from EventObject into ItemEvent), then sets the
font in the JTextField to one of the Font objects created in the constructor.

12.8 JComboBox
A combo box (sometimes called a drop-down list) provides a list of items from which the
user can make a selection. Combo boxes are implemented with class JComboBox, which
inherits from class JComponent. JComboBoxes generate ItemEvents like JCheck-
Boxes and JRadioButtons.

 The application of Fig. 12.13 uses a JComboBox to provide a list of four image file
names. When an image file name is selected, the corresponding image is displayed as an
Icon on a JLabel. The screen captures for this program show the JComboBox list after
the selection was made to illustrate which image file name was selected.

Lines 17–19 declare and initialize array icons with four new ImageIcon objects.
String array names (defined on lines 15–16) contains the names of the four image files
that are stored in the same directory as the application.

Line 31 creates a JComboBox object, using the Strings in array names as the ele-
ments in the list. A numeric index keeps track of the ordering of items in the JComboBox.
The first item is added at index 0; the next item is added at index 1, and so forth. The first
item added to a JComboBox appears as the currently selected item when the JComboBox
is displayed. Other items are selected by clicking the JComboBox. When clicked, the
JComboBox expands into a list from which the user can make a selection.

Line 32 uses JComboBox method setMaximumRowCount to set the maximum
number of elements that are displayed when the user clicks the JComboBox. If there are
more items in the JComboBox than the maximum number of elements that are displayed,
the JComboBox automatically provides a scrollbar (see the first screen capture) that
allows the user to view all the elements in the list. The user can click the scroll arrows at
the top and bottom of the scrollbar to move up and down through the list one element at a
time, or the user can drag the scroll box in the middle of the scrollbar up and down to move
through the list. To drag the scroll box, hold the mouse button down with the mouse cursor
on the scroll box and move the mouse.

1 // Fig. 12.13: ComboBoxTest.java
2 // Using a JComboBox to select an image to display.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class ComboBoxTest extends JFrame {
12 private JComboBox imagesComboBox;
13 private JLabel label;
14

Fig. 12.13Fig. 12.13Fig. 12.13Fig. 12.13 Program that uses a JComboBox to select an icon (part 1 of 3).

672 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

15 private String names[] =
16 { "bug1.gif", "bug2.gif", "travelbug.gif", "buganim.gif" };
17 private Icon icons[] = { new ImageIcon(names[0]),
18 new ImageIcon(names[1]), new ImageIcon(names[2]),
19 new ImageIcon(names[3]) };
20
21 // set up GUI
22 public ComboBoxTest()
23 {
24 super("Testing JComboBox");
25
26 // get content pane and set its layout
27 Container container = getContentPane();
28 container.setLayout(new FlowLayout());
29
30 // set up JComboBox and register its event handler
31 imagesComboBox = new JComboBox(names);
32 imagesComboBox.setMaximumRowCount(3);
33
34 imagesComboBox.addItemListener(
35
36 // anonymous inner class to handle JComboBox events
37 new ItemListener() {
38
39 // handle JComboBox event
40 public void itemStateChanged(ItemEvent event)
41 {
42 // determine whether check box selected
43 if (event.getStateChange() == ItemEvent.SELECTED)
44 label.setIcon(icons[
45 imagesComboBox.getSelectedIndex()]);
46 }
47
48 } // end anonymous inner class
49
50); // end call to addItemListener
51
52 container.add(imagesComboBox);
53
54 // set up JLabel to display ImageIcons
55 label = new JLabel(icons[0]);
56 container.add(label);
57
58 setSize(350, 100);
59 setVisible(true);
60 }
61
62 // execute application
63 public static void main(String args[])
64 {
65 ComboBoxTest application = new ComboBoxTest();
66

Fig. 12.13Fig. 12.13Fig. 12.13Fig. 12.13 Program that uses a JComboBox to select an icon (part 2 of 3).

Chapter 12 Graphical User Interface Components: Part 1 673

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Look-and-Feel Observation 12.7
Set the maximum row count for a JComboBox to a number of rows that prevents the list from
expanding outside the bounds of the window or applet in which it is used. This will ensure
that the list displays correctly when it is expanded by the user. 12.7

Lines 34–50 register an instance of an anonymous inner class that implements Item-
Listener as the listener for JComboBox images. When the user makes a selection
from images, method itemStateChanged (line 40–46) sets the Icon for label.
The Icon is selected from array icons by determining the index number of the selected
item in the JComboBox with method getSelectedIndex in line 45. Note that line 43
changes the icon only for a selected item. The reason for the if structure here is that for
each item that is selected from a JComboBox, another item is deselected. Thus, two events
occur for each item selected. We wish to display only the icon for the item the user just
selected.

12.9 JList
A list displays a series of items from which the user may select one or more items. Lists are
created with class JList, which inherits from class JComponent. Class JList sup-
ports single-selection lists (i.e., lists that allow only one item to be selected at a time) and
multiple-selection lists (lists that allow any number of items to be selected). In this section,
we discuss single-selection lists.

67 application.setDefaultCloseOperation(
68 JFrame.EXIT_ON_CLOSE);
69 }
70
71 } // end class ComboBoxTest

Fig. 12.13Fig. 12.13Fig. 12.13Fig. 12.13 Program that uses a JComboBox to select an icon (part 3 of 3).

A scrollbar to scroll through
the items in the list.

scroll arrows scroll box

674 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The application of Fig. 12.14 creates a JList of 13 colors. When a color name is
clicked in the JList, a ListSelectionEvent occurs and the application window
content pane’s background color changes.

1 // Fig. 12.14: ListTest.java
2 // Selecting colors from a JList.
3
4 // Java core packages
5 import java.awt.*;
6
7 // Java extension packages
8 import javax.swing.*;
9 import javax.swing.event.*;

10
11 public class ListTest extends JFrame {
12 private JList colorList;
13 private Container container;
14
15 private String colorNames[] = { "Black", "Blue", "Cyan",
16 "Dark Gray", "Gray", "Green", "Light Gray", "Magenta",
17 "Orange", "Pink", "Red", "White", "Yellow" };
18
19 private Color colors[] = { Color.black, Color.blue,
20 Color.cyan, Color.darkGray, Color.gray, Color.green,
21 Color.lightGray, Color.magenta, Color.orange, Color.pink,
22 Color.red, Color.white, Color.yellow };
23
24 // set up GUI
25 public ListTest()
26 {
27 super("List Test");
28
29 // get content pane and set its layout
30 container = getContentPane();
31 container.setLayout(new FlowLayout());
32
33 // create a list with items in colorNames array
34 colorList = new JList(colorNames);
35 colorList.setVisibleRowCount(5);
36
37 // do not allow multiple selections
38 colorList.setSelectionMode(
39 ListSelectionModel.SINGLE_SELECTION);
40
41 // add a JScrollPane containing JList to content pane
42 container.add(new JScrollPane(colorList));
43
44 // set up event handler
45 colorList.addListSelectionListener(
46
47 // anonymous inner class for list selection events
48 new ListSelectionListener() {

Fig. 12.14Fig. 12.14Fig. 12.14Fig. 12.14 Selecting colors from a JList (part 1 of 2).

Chapter 12 Graphical User Interface Components: Part 1 675

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

A JList object is instantiated at line 34 and assigned to reference colorList in the
constructor. The argument to the JList constructor is the array of Objects (in this case
Strings) to display in the list. Line 35 uses JList method setVisibleRowCount
to determine the number of items that are visible in the list.

Lines 38–39 use JList method setSelectionMode to specify the list selection
mode. Class ListSelectionModel (package javax.swing) defines constants
SINGLE_SELECTION, SINGLE_INTERVAL_SELECTION and MULTIPLE_INTER-
VAL_SELECTION to specify a JList’s selection mode. A SINGLE_SELECTION list
allows only one item to be selected at a time. A SINGLE_INTERVAL_SELECTION list
is a multiple-selection list that allows several items in a contiguous range in the list to be
selected. A MULTIPLE_INTERVAL_SELECTION list is a multiple-selection list that
does not restrict the items that can be selected.

Unlike JComboBox, JLists do not provide a scrollbar if there are more items in the
list than the number of visible rows. In this case, a JScrollPane object is used to provide

49
50 // handle list selection events
51 public void valueChanged(ListSelectionEvent event)
52 {
53 container.setBackground(
54 colors[colorList.getSelectedIndex()]);
55 }
56
57 } // end anonymous inner class
58
59); // end call to addListSelectionListener
60
61 setSize(350, 150);
62 setVisible(true);
63 }
64
65 // execute application
66 public static void main(String args[])
67 {
68 ListTest application = new ListTest();
69
70 application.setDefaultCloseOperation(
71 JFrame.EXIT_ON_CLOSE);
72 }
73
74 } // end class ListTest

Fig. 12.14Fig. 12.14Fig. 12.14Fig. 12.14 Selecting colors from a JList (part 2 of 2).

676 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

the automatic scrolling capability for the JList. Line 42 adds a new instance of class
JScrollPane to the content pane. The JScrollPane constructor receives as its argu-
ment the JComponent for which it will provide automatic scrolling functionality (in this
case JList colorList). Notice in the screen captures that a scrollbar created by the
JScrollPane appears at the right side of the JList. By default, the scrollbar appears
only when the number of items in the JList exceeds the number of visible items.

Lines 45–59 use JList method addListSelectionListener to register an
instance of an anonymous inner class that implements ListSelectionListener
(defined in package javax.swing.event) as the listener for JList colorList.
When the user makes a selection from colorList, method valueChanged (line 51–
55) executes and sets the background color of the content pane with method setBack-
ground (inherited from class Component into class Container). The color is selected
from the array colors with the selected item’s index in the list that is returned by JList
method getSelectedIndex (as with arrays, JList indexing is zero based).

12.10 Multiple-Selection Lists
A multiple-selection list enables the user to select many items from a JList. A
SINGLE_INTERVAL_SELECTION list allows selection of a contiguous range of items
in the list by clicking the first item, then holding the Shift key while clicking the last item
to select in the range. A MULTIPLE_INTERVAL_SELECTION list allows continuous
range selection as described for a SINGLE_INTERVAL_SELECTION list and allows mis-
cellaneous items to be selected by holding the Ctrl key (sometimes called to Control
key)while clicking each item to select. To deselect an item, hold the Ctrl key while clicking
the item a second time.

The application of Fig. 12.15 uses multiple-selection lists to copy items from one
JList to another. One list is a MULTIPLE_INTERVAL_SELECTION list and the other
is a SINGLE_INTERVAL_SELECTION list. When you execute the program, try using the
selection techniques described above to select items in both lists.

1 // Fig. 12.15: MultipleSelection.java
2 // Copying items from one List to another.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class MultipleSelection extends JFrame {
12 private JList colorList, copyList;
13 private JButton copyButton;
14
15 private String colorNames[] = { "Black", "Blue", "Cyan",
16 "Dark Gray", "Gray", "Green", "Light Gray",
17 "Magenta", "Orange", "Pink", "Red", "White", "Yellow" };

Fig. 12.15Fig. 12.15Fig. 12.15Fig. 12.15 Using a multiple-selection JList (part 1 of 3).

Chapter 12 Graphical User Interface Components: Part 1 677

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

18
19 // set up GUI
20 public MultipleSelection()
21 {
22 super("Multiple Selection Lists");
23
24 // get content pane and set its layout
25 Container container = getContentPane();
26 container.setLayout(new FlowLayout());
27
28 // set up JList colorList
29 colorList = new JList(colorNames);
30 colorList.setVisibleRowCount(5);
31 colorList.setFixedCellHeight(15);
32 colorList.setSelectionMode(
33 ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);
34 container.add(new JScrollPane(colorList));
35
36 // create copy button and register its listener
37 copyButton = new JButton("Copy >>>");
38
39 copyButton.addActionListener(
40
41 // anonymous inner class for button event
42 new ActionListener() {
43
44 // handle button event
45 public void actionPerformed(ActionEvent event)
46 {
47 // place selected values in copyList
48 copyList.setListData(
49 colorList.getSelectedValues());
50 }
51
52 } // end anonymous inner class
53
54); // end call to addActionListener
55
56 container.add(copyButton);
57
58 // set up JList copyList
59 copyList = new JList();
60 copyList.setVisibleRowCount(5);
61 copyList.setFixedCellWidth(100);
62 copyList.setFixedCellHeight(15);
63 copyList.setSelectionMode(
64 ListSelectionModel.SINGLE_INTERVAL_SELECTION);
65 container.add(new JScrollPane(copyList));
66
67 setSize(300, 120);
68 setVisible(true);
69 }
70

Fig. 12.15Fig. 12.15Fig. 12.15Fig. 12.15 Using a multiple-selection JList (part 2 of 3).

678 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Line 29 creates JList colorList and initializes it with the Strings in the array
colorNames. Line 30 sets the number of visible rows in colorList to 5. Line 31 uses
JList method setFixedCellHeight to specify the height in pixels of each item in
the JList. We do this to ensure that the rows in both JLists in the example have the
same height. Lines 32–33 specify that colorList is a MULTIPLE_INTER-
VAL_SELECTION list. Line 34 adds a new JScrollPane containing colorList to
the content pane. Lines 59–65 perform similar tasks for JList copyList, which is
defined as a SINGLE_INTERVAL_SELECTION list. Line 61 uses JList method set-
FixedCellWidth to set copyList’s width to 100 pixels.

A multiple-selection list does not have a specific event associated with making mul-
tiple selections. Normally, an event generated by another GUI component (known as an
external event) specifies when the multiple selections in a JList should be processed. In
this example, the user clicks JButton copyButton to trigger the event that copies the
selected items in colorList to copyList.

When the user clicks copyButton, method actionPerformed (line 45–50) is
called. Lines 48–49 use JList method setListData to set the items displayed in
copyList. Line 49 calls colorList’s method getSelectedValues, which returns
an array of Objects representing the selected items in colorList. In this example, the
returned array is passed as the argument to copyList’s setListData method.

Many students ask how reference copyList can be used in line 48, when the program
does not create the object to which it refers until Line 59. Remember that method action-
Performed at lines 45–50 does not execute until the user presses the copyButton, which
cannot occur until after the call to the constructor completes. At that point in the program’s
execution, line 59 already has initialized copyList with a new JList object.

12.11 Mouse Event Handling
This section presents the MouseListener and MouseMotionListener event-lis-
tener interfaces for handling mouse events. Mouse events can be trapped for any GUI com-

71 // execute application
72 public static void main(String args[])
73 {
74 MultipleSelection application = new MultipleSelection();
75
76 application.setDefaultCloseOperation(
77 JFrame.EXIT_ON_CLOSE);
78 }
79
80 } // end class MultipleSelection

Fig. 12.15Fig. 12.15Fig. 12.15Fig. 12.15 Using a multiple-selection JList (part 3 of 3).

Chapter 12 Graphical User Interface Components: Part 1 679

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

ponent that derives from java.awt.Component. The methods of interfaces
MouseListener and MouseMotionListener are summarized in Figure 12.16.

Each of the mouse event handling methods takes a MouseEvent object as its argument.
A MouseEvent object contains information about the mouse event that occurred, including
the x- and y-coordinates of the location where the event occurred. The MouseListener
and MouseMotionListener methods are called automatically when the mouse interacts
with a Component if listener objects are registered for a particular Component. Method
mousePressed is called when a mouse button is pressed with the mouse cursor over a
component. Using methods and constants of class InputEvent (the superclass of Mou-
seEvent), a program can determine which mouse button the user clicked. Method mouse-
Clicked is called whenever a mouse button is released without moving the mouse after a
mousePressed operation. Method mouseReleased is called whenever a mouse button
is released. Method mouseEntered is called when the mouse cursor enters the physical
boundaries of a Component. Method mouseExited is called when the mouse cursor
leaves the physical boundaries of a Component. Method mouseDragged is called when
the mouse button is pressed and held, and the mouse is moved (a process known as dragging).
The mouseDragged event is preceded by a mousePressed event and followed by a
mouseReleased event. Method mouseMoved is called when the mouse is moved with
the mouse cursor over a component (and no mouse buttons pressed).

MouseListener and MouseMotionListener interface methods

Methods of interface MouseListener

public void mousePressed(MouseEvent event)

Called when a mouse button is pressed with the mouse cursor on a component.

public void mouseClicked(MouseEvent event)

Called when a mouse button is pressed and released on a component without moving the
mouse cursor.

public void mouseReleased(MouseEvent event)

Called when a mouse button is released after being pressed. This event is always pre-
ceded by a mousePressed event.

public void mouseEntered(MouseEvent event)

Called when the mouse cursor enters the bounds of a component.

public void mouseExited(MouseEvent event)

Called when the mouse cursor leaves the bounds of a component.

Methods of interface MouseMotionListener

public void mouseDragged(MouseEvent event)

Called when the mouse button is pressed with the mouse cursor on a component and the
mouse is moved. This event is always preceded by a call to mousePressed.

public void mouseMoved(MouseEvent event)

Called when the mouse is moved with the mouse cursor on a component.

Fig. 12.16Fig. 12.16Fig. 12.16Fig. 12.16 MouseListener and MouseMotionListener interface methods.

680 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Look-and-Feel Observation 12.8
Method calls to mouseDragged are sent to the MouseMotionListener for the Com-
ponent on which the drag operation started. Similarly, the mouseReleased method call
is sent to the MouseListener for the Component on which the drag operation started. 12.8

The MouseTracker application (Fig. 12.17) demonstrates the MouseListener
and MouseMotionListener methods. The application class implements both inter-
faces so it can listen for its own mouse events. Note that all seven methods from these two
interfaces must be defined by the programmer when a class implements both interfaces.
The message dialog box in the sample output windows appears when the user moves the
mouse into the application window.

1 // Fig. 12.17: MouseTracker.java
2 // Demonstrating mouse events.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class MouseTracker extends JFrame
12 implements MouseListener, MouseMotionListener {
13
14 private JLabel statusBar;
15
16 // set up GUI and register mouse event handlers
17 public MouseTracker()
18 {
19 super("Demonstrating Mouse Events");
20
21 statusBar = new JLabel();
22 getContentPane().add(statusBar, BorderLayout.SOUTH);
23
24 // application listens to its own mouse events
25 addMouseListener(this);
26 addMouseMotionListener(this);
27
28 setSize(275, 100);
29 setVisible(true);
30 }
31
32 // MouseListener event handlers
33
34 // handle event when mouse released immediately after press
35 public void mouseClicked(MouseEvent event)
36 {
37 statusBar.setText("Clicked at [" + event.getX() +
38 ", " + event.getY() + "]");
39 }

Fig. 12.17Fig. 12.17Fig. 12.17Fig. 12.17 Demonstrating mouse event handling (part 1 of 3).

Chapter 12 Graphical User Interface Components: Part 1 681

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

40
41 // handle event when mouse pressed
42 public void mousePressed(MouseEvent event)
43 {
44 statusBar.setText("Pressed at [" + event.getX() +
45 ", " + event.getY() + "]");
46 }
47
48 // handle event when mouse released after dragging
49 public void mouseReleased(MouseEvent event)
50 {
51 statusBar.setText("Released at [" + event.getX() +
52 ", " + event.getY() + "]");
53 }
54
55 // handle event when mouse enters area
56 public void mouseEntered(MouseEvent event)
57 {
58 JOptionPane.showMessageDialog(null, "Mouse in window");
59 }
60
61 // handle event when mouse exits area
62 public void mouseExited(MouseEvent event)
63 {
64 statusBar.setText("Mouse outside window");
65 }
66
67 // MouseMotionListener event handlers
68
69 // handle event when user drags mouse with button pressed
70 public void mouseDragged(MouseEvent event)
71 {
72 statusBar.setText("Dragged at [" + event.getX() +
73 ", " + event.getY() + "]");
74 }
75
76 // handle event when user moves mouse
77 public void mouseMoved(MouseEvent event)
78 {
79 statusBar.setText("Moved at [" + event.getX() +
80 ", " + event.getY() + "]");
81 }
82
83 // execute application
84 public static void main(String args[])
85 {
86 MouseTracker application = new MouseTracker();
87
88 application.setDefaultCloseOperation(
89 JFrame.EXIT_ON_CLOSE);
90 }
91
92 } // end class MouseTracker

Fig. 12.17Fig. 12.17Fig. 12.17Fig. 12.17 Demonstrating mouse event handling (part 2 of 3).

682 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Each mouse event results in a String displayed in JLabel statusBar at the
bottom of the window.

Lines 21–22 in the constructor define JLabel statusBar and attach it to the con-
tent pane. Until now, each time we used the content pane, method setLayout was called
to set the content pane’s layout manager to a FlowLayout. This allowed the content pane
to display the GUI components we attached to it from left to right. If the GUI components
do not fit on one line, the FlowLayout creates additional lines to continue displaying the
GUI components. Actually, the default layout manager is a BorderLayout that divides
the content pane’s area into five regions—north, south, east, west and center. Line 22 uses
a new version of Container method add to attach statusBar to the region Border-
Layout.SOUTH, which extends across the entire bottom of the content pane. We discuss
BorderLayout and several other layout managers in detail later in this chapter.

Lines 25–26 in the constructor register the MouseTracker window object as the lis-
tener for its own mouse events. Methods addMouseListener and addMouse-
MotionListener are Component methods that can be used to register mouse event
listeners for an object of any class that extends Component.

When the mouse enters or exits the application area, method mouseEntered (lines
56–59) and method mouseExited (lines 62–65) are called, respectively. Method mouse-
Exited displays a message in statusBar indicating that the mouse is outside the appli-
cation (see the first sample output window). Method mouseEntered displays a message
dialog box indicating that the mouse entered the application window. [Note: Be sure to press
Enter to dismiss the message dialog, rather than using the mouse. If you use the mouse to dis-
miss the dialog, when you move the mouse over the window again, mouseEntered redis-
plays the dialog. This will prevent you from trying the other mouse events.]

Fig. 12.17Fig. 12.17Fig. 12.17Fig. 12.17 Demonstrating mouse event handling (part 3 of 3).

Chapter 12 Graphical User Interface Components: Part 1 683

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

When any of the other five events occur, they display a message in statusBar that
includes a String that represents the event that occurred and the coordinates where the
mouse event occurred. The x and y coordinates of the mouse when the event occurred are
obtained with MouseEvent methods getX and getY, respectively.

12.12 Adapter Classes
Many of the event-listener interfaces provide multiple methods; MouseListener and
MouseMotionListener are examples. It is not always desirable to define every meth-
od in an event-listener interface. For example, a program may only need the mouse-
Clicked handler from interface MouseListener or the mouseDragged handler
from MouseMotionListener. In our windowed applications (subclasses of JFrame)
terminating the application has been handled with windowClosing from interface Win-
dowListener, which actually specifies seven window-event-handling methods. For
many of the listener interfaces that contain multiple methods, package ja-
va.awt.event and package javax.swing.event provide event-listener adapter
classes. An adapter class implements an interface and provides a default implementation
(with an empty method body) of every method in the interface. The java.awt.event
adapter classes are shown in Fig. 12.18 along with the interfaces they implement.

The programmer can extend the adapter class to inherit the default implementation of
every method, then override the method(s) needed for event handling. The default imple-
mentation of each method in the adapter class has an empty body. This is exactly what we
have been doing in each application example that extends JFrame and defines method
windowClosing to handle the closing of the window and termination of the application.

Software Engineering Observation 12.3
When a class implements an interface, the class has an “is a” relationship with that inter-
face. All direct and indirect subclasses of that class inherit this relationship. Thus, an object
of a class that extends an event adapter class is an object of the corresponding event listener
type (e.g., an object of a subclass of MouseAdapter is a MouseListener). 12.3

Event adapter class Implements interface

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

WindowAdapter WindowListener

Fig. 12.18Fig. 12.18Fig. 12.18Fig. 12.18 Event adapter classes and the interfaces they implement.

684 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The Painter application of Fig. 12.19 uses the mouseDragged event handler to
create a simple drawing program. The user can draw pictures with the mouse by dragging
the mouse on the background of the window. This example does not use method mouse-
Moved, so our MouseMotionListener is defined as a subclass of Mouse-
MotionAdapter. This class already defines both mouseMoved and mouseDragged,
so we can simply override mouseDragged to provide the drawing functionality.

1 // Fig. 12.19: Painter.java
2 // Using class MouseMotionAdapter.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class Painter extends JFrame {
12 private int xValue = -10, yValue = -10;
13
14 // set up GUI and register mouse event handler
15 public Painter()
16 {
17 super("A simple paint program");
18
19 // create a label and place it in SOUTH of BorderLayout
20 getContentPane().add(
21 new Label("Drag the mouse to draw"),
22 BorderLayout.SOUTH);
23
24 addMouseMotionListener(
25
26 // anonymous inner class
27 new MouseMotionAdapter() {
28
29 // store drag coordinates and repaint
30 public void mouseDragged(MouseEvent event)
31 {
32 xValue = event.getX();
33 yValue = event.getY();
34 repaint();
35 }
36
37 } // end anonymous inner class
38
39); // end call to addMouseMotionListener
40
41 setSize(300, 150);
42 setVisible(true);
43 }
44

Fig. 12.19Fig. 12.19Fig. 12.19Fig. 12.19 Program that demonstrates adapter classes (part 1 of 2).

Chapter 12 Graphical User Interface Components: Part 1 685

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The instance variables xValue and yValue store the coordinates of the mouse-
Dragged event. Initially, the coordinates are set outside the window area to prevent an
oval from drawing on the background area in the first call to paint when the window is
displayed. Lines 24–39 register a MouseMotionListener to listen for the window’s
mouse motion events (remember that a call to a method that is not preceded by a reference
and a dot operator is really preceded by “this.”, indicating that the method is called for
the current instance of the class at execution time). Lines 27–37 define an anonymous inner
class that extends class MouseMotionAdapter (which implements MouseMotion-
Listener). The anonymous inner class inherits a default implementation of both method
mouseMoved and method mouseDragged. Thus, the anonymous inner class already
satisfies the requirement that in all methods an interface must be implemented. However,

45 // draw oval in a 4-by-4 bounding box at the specified
46 // location on the window
47 public void paint(Graphics g)
48 {
49 // we purposely did not call super.paint(g) here to
50 // prevent repainting
51
52 g.fillOval(xValue, yValue, 4, 4);
53 }
54
55 // execute application
56 public static void main(String args[])
57 {
58 Painter application = new Painter();
59
60 application.addWindowListener(
61
62 // adapter to handle only windowClosing event
63 new WindowAdapter() {
64
65 public void windowClosing(WindowEvent event)
66 {
67 System.exit(0);
68 }
69
70 } // end anonymous inner class
71
72); // end call to addWindowListener
73 }
74
75 } // end class Painter

Fig. 12.19Fig. 12.19Fig. 12.19Fig. 12.19 Program that demonstrates adapter classes (part 2 of 2).

686 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

the default methods do nothing when they are called. So, we override method mouse-
Dragged at lines 30–35 to capture the x- and y-coordinates of the mouse-dragged event
and store them in instance variables xValue and yValue, then call repaint to initiate
drawing the next oval on the background (performed by method paint at lines 47–53).
Note that paint does not call the superclass version of paint inherited from JFrame.
The superclass version normally clears the background of the window. Not calling the
superclass version enables our program to keep all the ovals on the window at once. How-
ever, notice that if you cover the window with another window, only the last oval displayed
still appears, because our program does not keep track of all the ovals displayed previously.

Lines 60–72 register a WindowListener to listen for the application window’s
window events (such as closing the window). Lines 63–70 define an anonymous inner class
that extends class WindowAdapter (which implements WindowListener). The
anonymous inner class inherits a default implementation of seven different window-event-
handler methods. Thus, the anonymous inner class already satisfies the requirement that in
all methods an interface must be implemented. However, the default methods do nothing
when they are called. So, we override method windowClosing at lines 65–68 to termi-
nate the application when the user clicks the application window’s close box.

The MouseDetails application of Fig. 12.20 demonstrates how to determine the
number of mouse clicks (i.e., the click count) and how to distinguish between the different
mouse buttons. The event listener in this program is an object of inner class Mouse-
ClickHandler (lines 47–75) that extends MouseAdapter so we can define just the
mouseClicked method we need in this example.

1 // Fig. 12.20: MouseDetails.java
2 // Demonstrating mouse clicks and
3 // distinguishing between mouse buttons.
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class MouseDetails extends JFrame {
13 private int xPos, yPos;
14
15 // set title bar String, register mouse listener and size
16 // and show window
17 public MouseDetails()
18 {
19 super("Mouse clicks and buttons");
20
21 addMouseListener(new MouseClickHandler());
22
23 setSize(350, 150);
24 setVisible(true);
25 }

Fig. 12.20Fig. 12.20Fig. 12.20Fig. 12.20 Distinguishing among left, center and right mouse-button clicks (part 1 of 3).

Chapter 12 Graphical User Interface Components: Part 1 687

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

26
27 // draw String at location where mouse was clicked
28 public void paint(Graphics g)
29 {
30 // call superclass's paint method
31 super.paint(g);
32
33 g.drawString("Clicked @ [" + xPos + ", " + yPos + "]",
34 xPos, yPos);
35 }
36
37 // execute application
38 public static void main(String args[])
39 {
40 MouseDetails application = new MouseDetails();
41
42 application.setDefaultCloseOperation(
43 JFrame.EXIT_ON_CLOSE);
44 }
45
46 // inner class to handle mouse events
47 private class MouseClickHandler extends MouseAdapter {
48
49 // handle mouse click event and determine which mouse
50 // button was pressed
51 public void mouseClicked(MouseEvent event)
52 {
53 xPos = event.getX();
54 yPos = event.getY();
55
56 String title =
57 "Clicked " + event.getClickCount() + " time(s)";
58
59 // right mouse button
60 if (event.isMetaDown())
61 title += " with right mouse button";
62
63 // middle mouse button
64 else if (event.isAltDown())
65 title += " with center mouse button";
66
67 // left mouse button
68 else
69 title += " with left mouse button";
70
71 setTitle(title); // set title bar of window
72 repaint();
73 }
74
75 } // end private inner class MouseClickHandler
76
77 } // end class MouseDetails

Fig. 12.20Fig. 12.20Fig. 12.20Fig. 12.20 Distinguishing among left, center and right mouse-button clicks (part 2 of 3).

688 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

A user of a Java program may be on a system with a one-, two- or three-button mouse.
Java provides a mechanism to distinguish among mouse buttons. Class MouseEvent
inherits several methods from class InputEvent that can distinguish between mouse but-
tons on a multi-button mouse or can mimic a multi-button mouse with a combined key-
stroke and mouse-button click. Figure 12.21 shows the InputEvent methods used to
distinguish between mouse-button clicks. Java assumes that every mouse contains a left
mouse button. Thus, it is simple to test for a left-mouse-button click. However, users with
a one- or two-button mouse must use a combination of pressing keys on the keyboard and
clicking the mouse at the same time to simulate the missing buttons on the mouse. In the
case of a one- or two-button mouse, this program assumes that the center mouse button is
clicked if the user holds the Alt key and clicks the left mouse button on a two-button mouse
or the only mouse button on a one-button mouse. In the case of a one-button mouse, this
program assumes that the right mouse button is clicked if the user holds the Meta key and
clicks the mouse button.

Method mouseClicked (lines 51–73) first captures the coordinates where the event
occurred and stores them in instance variables xPos and yPos of class MouseDetails.
Lines 56–57 create a string containing the number of mouse clicks (as returned by Mouse-
Event method getClickCount at line 57). The nested if structure at lines 60–69 uses
methods isMetaDown and isAltDown to determine which mouse button the user
clicked and appends an appropriate string to title in each case. The resulting string is
displayed in the title bar of the window with method setTitle (inherited into class
JFrame from class Frame) at line 71. Line 72 calls repaint to initiate a call to paint
to draw a string at the location where the user clicked the mouse.

Fig. 12.20Fig. 12.20Fig. 12.20Fig. 12.20 Distinguishing among left, center and right mouse-button clicks (part 3 of 3).

Chapter 12 Graphical User Interface Components: Part 1 689

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

12.13 Keyboard Event Handling
This section presents the KeyListener event-listener interface for handling key events.
Key events are generated when keys on the keyboard are pressed and released. A class that
implements KeyListener must provide definitions for methods keyPressed, key-
Released and keyTyped, each of which receives a KeyEvent as its argument. Class
KeyEvent is a subclass of InputEvent. Method keyPressed is called in response
to pressing any key. Method keyTyped is called in response to pressing any key that is
not an action key (e.g., an arrow key, Home, End, Page Up, Page Down, a function key,
Num Lock, Print Screen, Scroll Lock, Caps Lock and Pause). Method keyReleased is
called when the key is released after any keyPressed or keyTyped event.

Figure 12.22 demonstrates the KeyListener methods. Class KeyDemo implements
the KeyListener interface, so all three methods are defined in the application.

InputEvent method Description

isMetaDown() This method returns true when the user clicks the right mouse
button on a mouse with two or three buttons. To simulate a right-
mouse-button click on a one-button mouse, the user can press the
Meta key on the keyboard and click the mouse button.

isAltDown() This method returns true when the user clicks the middle mouse
button on a mouse with three buttons. To simulate a middle-
mouse-button click on a one- or two-button mouse, the user can
press the Alt key on the keyboard and click the mouse button.

Fig. 12.21Fig. 12.21Fig. 12.21Fig. 12.21 InputEvent methods that help distinguish among left-, center- and
right-mouse-button clicks .

1 // Fig. 12.22: KeyDemo.java
2 // Demonstrating keystroke events.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class KeyDemo extends JFrame implements KeyListener {
12 private String line1 = "", line2 = "";
13 private String line3 = "";
14 private JTextArea textArea;
15
16 // set up GUI
17 public KeyDemo()
18 {
19 super("Demonstrating Keystroke Events");

Fig. 12.22Fig. 12.22Fig. 12.22Fig. 12.22 Demonstrating key event-handling (part 1 of 3).

690 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

20
21 // set up JTextArea
22 textArea = new JTextArea(10, 15);
23 textArea.setText("Press any key on the keyboard...");
24 textArea.setEnabled(false);
25 getContentPane().add(textArea);
26
27 // allow frame to process Key events
28 addKeyListener(this);
29
30 setSize(350, 100);
31 setVisible(true);
32 }
33
34 // handle press of any key
35 public void keyPressed(KeyEvent event)
36 {
37 line1 = "Key pressed: " +
38 event.getKeyText(event.getKeyCode());
39 setLines2and3(event);
40 }
41
42 // handle release of any key
43 public void keyReleased(KeyEvent event)
44 {
45 line1 = "Key released: " +
46 event.getKeyText(event.getKeyCode());
47 setLines2and3(event);
48 }
49
50 // handle press of an action key
51 public void keyTyped(KeyEvent event)
52 {
53 line1 = "Key typed: " + event.getKeyChar();
54 setLines2and3(event);
55 }
56
57 // set second and third lines of output
58 private void setLines2and3(KeyEvent event)
59 {
60 line2 = "This key is " +
61 (event.isActionKey() ? "" : "not ") +
62 "an action key";
63
64 String temp =
65 event.getKeyModifiersText(event.getModifiers());
66
67 line3 = "Modifier keys pressed: " +
68 (temp.equals("") ? "none" : temp);
69
70 textArea.setText(
71 line1 + "\n" + line2 + "\n" + line3 + "\n");
72 }

Fig. 12.22Fig. 12.22Fig. 12.22Fig. 12.22 Demonstrating key event-handling (part 2 of 3).

Chapter 12 Graphical User Interface Components: Part 1 691

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

The constructor (lines 17–32) registers the application to handle its own key events
with method addKeyListener at line 28. Method addKeyListener is defined in
class Component, so every subclass of Component can notify KeyListeners of key
events for that Component.

Line 25 in the constructor adds JTextArea textArea (where the program’s output
is displayed) to the content pane. Notice, in the screen captures, that textArea occupies
the entire window. This is due to the content pane’s default BorderLayout (discussed
in Section 12.14.2 and demonstrated in Fig. 12.25). When a single Component is added
to a BorderLayout, the Component occupies the entire Container.

Methods keyPressed (lines 35–40) and keyReleased (lines 43–48) use
KeyEvent method getKeyCode to get the virtual key code of the key that was pressed.
Class KeyEvent maintains a set of constants—the virtual key code constants—that rep-
resent every key on the keyboard. These constants can be compared with the return value
of getKeyCode to test for individual keys on the keyboard. The value returned by get-
KeyCode is passed to KeyEvent method getKeyText, which returns a String con-

73
74 // execute application
75 public static void main(String args[])
76 {
77 KeyDemo application = new KeyDemo();
78
79 application.setDefaultCloseOperation(
80 JFrame.EXIT_ON_CLOSE);
81 }
82
83 } // end class KeyDemo

Fig. 12.22Fig. 12.22Fig. 12.22Fig. 12.22 Demonstrating key event-handling (part 3 of 3).

692 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

taining the name of the key that was pressed. For a complete list of virtual key constants,
see the on-line documentation for class KeyEvent (package java.awt.event).
Method keyTyped (lines 51–55) uses KeyEvent method getKeyChar to get the Uni-
code value of the character typed.

All three event handling methods finish by calling method setLines2and3 (lines
58–72) and passing it the KeyEvent object. This method uses KeyEvent method
isActionKey to determine if the key in the event was an action key. Also,
InputEvent method getModifiers is called to determine if any modifier keys (such
as Shift, Alt and Ctrl) were pressed when the key event occurred. The result of this method
is passed to KeyEvent method getKeyModifiersText, which produces a string con-
taining the names of the pressed modifier keys.

[Note: If you need to test for a specific key on the keyboard, class KeyEvent provides
a key constant for every key on the keyboard. These constants can be used from the key
event handlers to determine if a particular key was pressed. Also, to determine whether the
Alt, Ctrl, Meta and Shift keys are pressed individually, InputEvent methods isAlt-
Down, isControlDown, isMetaDown and isShiftDown each return a boolean
indicating if the particular key was pressed during the key event.]

12.14 Layout Managers
Layout managers are provided to arrange GUI components on a container for presentation
purposes. The layout managers provide basic layout capabilities that are easier to use than
determining the exact position and size of every GUI component. This enables the pro-
grammer to concentrate on the basic “look and feel” and lets the layout managers process
most of the layout details.

Look-and-Feel Observation 12.9
Most Java programming environments provide GUI design tools that help a programmer
graphically design a GUI, then automatically write Java code to create the GUI. 12.9

Some GUI designers also allow the programmer to use the layout managers described here
and in Chapter 13. Figure 12.23 summarizes the layout managers presented in this chapter.
Other layout managers are discussed in Chapter 13.

Layout manager Description

FlowLayout Default for java.awt.Applet, java.awt.Panel and
javax.swing.JPanel. Places components sequentially (left to
right) in the order they were added. It is also possible to specify the
order of the components using the Container method add that takes
a Component and an integer index position as arguments.

BorderLayout Default for the content panes of JFrames (and other windows) and
JApplets. Arranges the components into five areas: North, South,
East, West and Center.

GridLayout Arranges the components into rows and columns.

Fig. 12.23Fig. 12.23Fig. 12.23Fig. 12.23 Layout managers.

Chapter 12 Graphical User Interface Components: Part 1 693

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Most previous applet and application examples in which we created our own GUI used
layout manager FlowLayout. Class FlowLayout inherits from class Object and
implements interface LayoutManager, which defines the methods a layout manager
uses to arrange and size GUI components on a container.

12.14.1 FlowLayout

FlowLayout is the most basic layout manager. GUI components are placed on a container
from left to right in the order in which they are added to the container. When the edge of
the container is reached, components are continued on the next line. Class FlowLayout
allows GUI components to be left-aligned, centered (the default) and right-aligned.

The application of Fig. 12.24 creates three JButton objects and adds them to the
application, using a FlowLayout layout manager. The components are automatically
center-aligned. When the user clicks Left, the alignment for the layout manager is changed
to a left-aligned FlowLayout. When the user clicks Right, the alignment for the layout
manager is changed to a right-aligned FlowLayout. When the user clicks Center, the
alignment for the layout manager is changed to a center-aligned FlowLayout. Each
button has its own event handler that is defined with an inner class that implements
ActionListener. The sample output windows show each of the FlowLayout align-
ments. Also, the last sample output window shows the centered alignment after the window
has been resized to a smaller width. Notice that the button Right now appears on a new
line.

1 // Fig. 12.24: FlowLayoutDemo.java
2 // Demonstrating FlowLayout alignments.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class FlowLayoutDemo extends JFrame {
12 private JButton leftButton, centerButton, rightButton;
13 private Container container;
14 private FlowLayout layout;
15
16 // set up GUI and register button listeners
17 public FlowLayoutDemo()
18 {
19 super("FlowLayout Demo");
20
21 layout = new FlowLayout();
22
23 // get content pane and set its layout
24 container = getContentPane();
25 container.setLayout(layout);
26

Fig. 12.24Fig. 12.24Fig. 12.24Fig. 12.24 Program that demonstrates components in FlowLayout (part 1 of 3).

694 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

27 // set up leftButton and register listener
28 leftButton = new JButton("Left");
29
30 leftButton.addActionListener(
31
32 // anonymous inner class
33 new ActionListener() {
34
35 // process leftButton event
36 public void actionPerformed(ActionEvent event)
37 {
38 layout.setAlignment(FlowLayout.LEFT);
39
40 // re-align attached components
41 layout.layoutContainer(container);
42 }
43
44 } // end anonymous inner class
45
46); // end call to addActionListener
47
48 container.add(leftButton);
49
50 // set up centerButton and register listener
51 centerButton = new JButton("Center");
52
53 centerButton.addActionListener(
54
55 // anonymous inner class
56 new ActionListener() {
57
58 // process centerButton event
59 public void actionPerformed(ActionEvent event)
60 {
61 layout.setAlignment(FlowLayout.CENTER);
62
63 // re-align attached components
64 layout.layoutContainer(container);
65 }
66 }
67);
68
69 container.add(centerButton);
70
71 // set up rightButton and register listener
72 rightButton = new JButton("Right");
73
74 rightButton.addActionListener(
75
76 // anonymous inner class
77 new ActionListener() {
78

Fig. 12.24Fig. 12.24Fig. 12.24Fig. 12.24 Program that demonstrates components in FlowLayout (part 2 of 3).

Chapter 12 Graphical User Interface Components: Part 1 695

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

As seen previously, a container’s layout is set with method setLayout of class
Container. Line 25 sets the content pane’s layout manager to the FlowLayout defined
at line 21. Normally, the layout is set before any GUI components are added to a container.

Look-and-Feel Observation 12.10
Each container can have only one layout manager at a time. (Separate containers in the same
program can have different layout managers.) 12.10

79 // process rightButton event
80 public void actionPerformed(ActionEvent event)
81 {
82 layout.setAlignment(FlowLayout.RIGHT);
83
84 // re-align attached components
85 layout.layoutContainer(container);
86 }
87 }
88);
89
90 container.add(rightButton);
91
92 setSize(300, 75);
93 setVisible(true);
94 }
95
96 // execute application
97 public static void main(String args[])
98 {
99 FlowLayoutDemo application = new FlowLayoutDemo();
100
101 application.setDefaultCloseOperation(
102 JFrame.EXIT_ON_CLOSE);
103 }
104
105 } // end class FlowLayoutDemo

Fig. 12.24Fig. 12.24Fig. 12.24Fig. 12.24 Program that demonstrates components in FlowLayout (part 3 of 3).

696 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Each button’s actionPerformed event handler executes two statements. For
example, line 38 in method actionPerformed for button left uses FlowLayout
method setAlignment to change the alignment for the FlowLayout to a left-aligned
(FlowLayout.LEFT) FlowLayout. Line 41 uses LayoutManager interface
method layoutContainer to specify that the content pane should be rearranged based
on the adjusted layout.

According to which button was clicked, the actionPerformed method for each
button sets the FlowLayout’s alignment to FlowLayout.LEFT, Flow-
Layout.CENTER or FlowLayout.RIGHT.

12.14.2 BorderLayout

The BorderLayout layout manager (the default layout manager for the content pane) ar-
ranges components into five regions: NORTH, SOUTH, EAST, WEST and CENTER (North
corresponds to the top of the container). Class BorderLayout inherits from Object
and implements interface LayoutManager2 (a subinterface of LayoutManager that
adds several methods for enhanced layout processing).

Up to five components can be added directly to a BorderLayout—one for each
region. The component placed in each region can be a container to which other components
are attached. The components placed in the NORTH and SOUTH regions extend horizontally
to the sides of the container and are as tall as the components placed in those regions. The
EAST and WEST regions expand vertically between the NORTH and SOUTH regions and are
as wide as the components placed in those regions. The component placed in the CENTER
region expands to take all remaining space in the layout (this is the reason the JTextArea
in Fig. 12.22 occupies the entire window). If all five regions are occupied, the entire con-
tainer’s space is covered by GUI components. If the NORTH or SOUTH region is not occu-
pied, the GUI components in the EAST, CENTER and WEST regions expand vertically to
fill the remaining space. If the EAST or WEST region is not occupied, the GUI component
in the CENTER region expands horizontally to fill the remaining space. If the CENTER
region is not occupied, the area is left empty—the other GUI components do not expand to
fill the remaining space.

The application of Fig. 12.25 demonstrates the BorderLayout layout manager by
using five JButtons.

1 // Fig. 12.25: BorderLayoutDemo.java
2 // Demonstrating BorderLayout.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class BorderLayoutDemo extends JFrame
12 implements ActionListener {
13

Fig. 12.25Fig. 12.25Fig. 12.25Fig. 12.25 Demonstrating components in BorderLayout (part 1 of 3).

Chapter 12 Graphical User Interface Components: Part 1 697

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

14 private JButton buttons[];
15 private String names[] = { "Hide North", "Hide South",
16 "Hide East", "Hide West", "Hide Center" };
17 private BorderLayout layout;
18
19 // set up GUI and event handling
20 public BorderLayoutDemo()
21 {
22 super("BorderLayout Demo");
23
24 layout = new BorderLayout(5, 5);
25
26 // get content pane and set its layout
27 Container container = getContentPane();
28 container.setLayout(layout);
29
30 // instantiate button objects
31 buttons = new JButton[names.length];
32
33 for (int count = 0; count < names.length; count++) {
34 buttons[count] = new JButton(names[count]);
35 buttons[count].addActionListener(this);
36 }
37
38 // place buttons in BorderLayout; order not important
39 container.add(buttons[0], BorderLayout.NORTH);
40 container.add(buttons[1], BorderLayout.SOUTH);
41 container.add(buttons[2], BorderLayout.EAST);
42 container.add(buttons[3], BorderLayout.WEST);
43 container.add(buttons[4], BorderLayout.CENTER);
44
45 setSize(300, 200);
46 setVisible(true);
47 }
48
49 // handle button events
50 public void actionPerformed(ActionEvent event)
51 {
52 for (int count = 0; count < buttons.length; count++)
53
54 if (event.getSource() == buttons[count])
55 buttons[count].setVisible(false);
56 else
57 buttons[count].setVisible(true);
58
59 // re-layout the content pane
60 layout.layoutContainer(getContentPane());
61 }
62
63 // execute application
64 public static void main(String args[])
65 {
66 BorderLayoutDemo application = new BorderLayoutDemo();

Fig. 12.25Fig. 12.25Fig. 12.25Fig. 12.25 Demonstrating components in BorderLayout (part 2 of 3).

698 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Line 24 in the constructor defines a BorderLayout. The arguments specify the
number of pixels between components that are arranged horizontally (horizontal gap
space) and the number of pixels between components that are arranged vertically (vertical
gap space), respectively. The default BorderLayout constructor supplies 0 pixels of gap
space horizontally and vertically. Line 28 uses method setLayout to set the content
pane’s layout to layout.

Adding Components to a BorderLayout requires a different add method from
class Container, which takes two arguments—the Component to add and the region
in which the Component will be placed. For example, line 39 specifies that the
buttons[0] should appear in the NORTH position. The components can be added in
any order, but only one component can be added to each region.

67
68 application.setDefaultCloseOperation(
69 JFrame.EXIT_ON_CLOSE);
70 }
71
72 } // end class BorderLayoutDemo

Fig. 12.25Fig. 12.25Fig. 12.25Fig. 12.25 Demonstrating components in BorderLayout (part 3 of 3).

Chapter 12 Graphical User Interface Components: Part 1 699

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Look-and-Feel Observation 12.11
If no region is specified when adding a Component to a BorderLayout, it is assumed
that the Component should be added to region BorderLayout.CENTER. 12.11

Common Programming Error 12.6
Adding more than one component to a particular region in a BorderLayout results in
only the last component added being displayed. There is no error message to indicate this
problem. 12.6

When the user clicks on a particular JButton in the layout, method actionPer-
formed (lines 50–61) executes. The for loop at lines 52–57 uses an if/else structure
to hide the particular JButton that generated the event. Method setVisible (inherited
into JButton from class Component) is called with a false argument to hide the
JButton. If the current JButton in the array is not the one that generated the event,
method setVisible is called with a true argument to ensure that the JButton is dis-
played on the screen. Line 60 uses LayoutManager method layoutContainer to
recalculate the layout of the content pane. Notice in the screen captures of Fig. 12.25 that
certain regions in the BorderLayout change shape as JButtons are hidden and dis-
played in other regions. Try resizing the application window to see how the various regions
resize based on the width and height of the window.

12.14.3 GridLayout

The GridLayout layout manager divides the container into a grid so that components can
be placed in rows and columns. Class GridLayout inherits directly from class Object
and implements interface LayoutManager. Every Component in a GridLayout has
the same width and height. Components are added to a GridLayout starting at the top-
left cell of the grid and proceeding left-to-right until the row is full. Then the process con-
tinues left-to-right on the next row of the grid, etc. Figure 12.26 demonstrates the Grid-
Layout layout manager using six JButtons.

1 // Fig. 12.26: GridLayoutDemo.java
2 // Demonstrating GridLayout.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class GridLayoutDemo extends JFrame
12 implements ActionListener {
13
14 private JButton buttons[];
15 private String names[] =
16 { "one", "two", "three", "four", "five", "six" };
17 private boolean toggle = true;

Fig. 12.26Fig. 12.26Fig. 12.26Fig. 12.26 Program that demonstrates components in GridLayout.

700 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

18 private Container container;
19 private GridLayout grid1, grid2;
20
21 // set up GUI
22 public GridLayoutDemo()
23 {
24 super("GridLayout Demo");
25
26 // set up layouts
27 grid1 = new GridLayout(2, 3, 5, 5);
28 grid2 = new GridLayout(3, 2);
29
30 // get content pane and set its layout
31 container = getContentPane();
32 container.setLayout(grid1);
33
34 // create and add buttons
35 buttons = new JButton[names.length];
36
37 for (int count = 0; count < names.length; count++) {
38 buttons[count] = new JButton(names[count]);
39 buttons[count].addActionListener(this);
40 container.add(buttons[count]);
41 }
42
43 setSize(300, 150);
44 setVisible(true);
45 }
46
47 // handle button events by toggling between layouts
48 public void actionPerformed(ActionEvent event)
49 {
50 if (toggle)
51 container.setLayout(grid2);
52 else
53 container.setLayout(grid1);
54
55 toggle = !toggle; // set toggle to opposite value
56 container.validate();
57 }
58
59 // execute application
60 public static void main(String args[])
61 {
62 GridLayoutDemo application = new GridLayoutDemo();
63
64 application.setDefaultCloseOperation(
65 JFrame.EXIT_ON_CLOSE);
66 }
67
68 } // end class GridLayoutDemo

Fig. 12.26Fig. 12.26Fig. 12.26Fig. 12.26 Program that demonstrates components in GridLayout.

Chapter 12 Graphical User Interface Components: Part 1 701

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Lines 27–28 in the constructor define two GridLayout objects. The GridLayout
constructor used at line 27 specifies a GridLayout with 2 rows, 3 columns, 5 pixels of
horizontal-gap space between Components in the grid and 5 pixels of vertical-gap space
between Components in the grid. The GridLayout constructor used at line 28 specifies
a GridLayout with 3 rows, 2 columns and no gap space.

The JButton objects in this example initially are arranged using grid1 (set for the
content pane at line 32 with method setLayout). The first component is added to the first
column of the first row. The next component is added to the second column of the first row,
and so on. When a JButton is pressed, method actionPerformed (lines 48–57) is
called. Every call to actionPerformed toggles the layout between grid2 and grid1.

Line 56 illustrates another way to relayout a container for which the layout has changed.
Container method validate recomputes the container’s layout based on the current
layout manager for the Container and the current set of displayed GUI components.

12.15 Panels
Complex GUIs (like Fig. 12.1) require that each component be placed in an exact location.
They often consist of multiple panels with each panel’s components arranged in a specific
layout. Panels are created with class JPanel—a subclass of JComponent. Class JCom-
ponent inherits from class java.awt.Container, so every JPanel is a Con-
tainer. Thus JPanels may have components, including other panels, added to them.

The program of Fig. 12.27 demonstrates how a JPanel can be used to create a more
complex layout for Components.

1 // Fig. 12.27: PanelDemo.java
2 // Using a JPanel to help lay out components.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class PanelDemo extends JFrame {
12 private JPanel buttonPanel;

Fig. 12.27Fig. 12.27Fig. 12.27Fig. 12.27 A JPanel with five JButtons in a GridLayout attached to the
SOUTH region of a BorderLayout (part 1 of 2).

Fig. 12.26Fig. 12.26Fig. 12.26Fig. 12.26 Program that demonstrates components in GridLayout.

702 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

13 private JButton buttons[];
14
15 // set up GUI
16 public PanelDemo()
17 {
18 super("Panel Demo");
19
20 // get content pane
21 Container container = getContentPane();
22
23 // create buttons array
24 buttons = new JButton[5];
25
26 // set up panel and set its layout
27 buttonPanel = new JPanel();
28 buttonPanel.setLayout(
29 new GridLayout(1, buttons.length));
30
31 // create and add buttons
32 for (int count = 0; count < buttons.length; count++) {
33 buttons[count] =
34 new JButton("Button " + (count + 1));
35 buttonPanel.add(buttons[count]);
36 }
37
38 container.add(buttonPanel, BorderLayout.SOUTH);
39
40 setSize(425, 150);
41 setVisible(true);
42 }
43
44 // execute application
45 public static void main(String args[])
46 {
47 PanelDemo application = new PanelDemo();
48
49 application.setDefaultCloseOperation(
50 JFrame.EXIT_ON_CLOSE);
51 }
52
53 } // end class PanelDemo

Fig. 12.27Fig. 12.27Fig. 12.27Fig. 12.27 A JPanel with five JButtons in a GridLayout attached to the
SOUTH region of a BorderLayout (part 2 of 2).

Chapter 12 Graphical User Interface Components: Part 1 703

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

After JPanel buttonPanel is created at line 27, lines 28–29 set button-
Panel’s layout to a GridLayout of one row and five columns (there are five JButtons
in array buttons). The five JButtons in array buttons are added to the JPanel in
the loop with line 35. Notice that the buttons are added directly to the JPanel—class
JPanel does not have a content pane like an applet or a JFrame. Line 38 uses the content
pane’s default BorderLayout to add buttonPanel to the SOUTH region. Note that
the SOUTH region is as tall as the buttons on buttonPanel. A JPanel is sized to the
components it contains. As more components are added, the JPanel grows (according to
the restrictions of its layout manager) to accommodate the components. Resize the window
to see how the layout manager affects the size of the JButtons.

12.16 (Optional Case Study) Thinking About Objects: Use
Cases
The previous eight “Thinking About Objects” sections have concentrated on the elevator-
simulation model. We have identified and honed the structure and behavior of our system.
In this section, we model the interaction between the user and our elevator simulation
through the UML use-case diagram, which describes the sets of scenarios that occur be-
tween the user and the system.

Use-Case Diagrams
When developers begin a project, they rarely start with as detailed a problem statement as
the one we provided in Section 2.9. This document and others are the result of the object-
oriented analysis (OOA) phase. In this phase you meet with the people who want you to
build a system and with the people who will eventually use that system. You use the infor-
mation gained in these meetings to compile a list of system requirements. These require-
ments guide you and your fellow developers as you design the system. In our case study,
the problem statement described the requirements of our elevator simulation in sufficient
detail that you did not need to go through an analysis phase. The analysis phase is enor-
mously important—you should consult the references we provide in Section 2.9 to learn
more about object-oriented analysis.

The UML provides the use-case diagram to facilitate requirements gathering. This dia-
gram models the interactions between the system’s external clients and the use cases of the
system. Each use case represents a different capability that the system provides to clients.
For example, automated teller machines typically have several use cases, including
“Deposit Money,” “Withdraw Money” and “Transfer Funds.”

In larger systems, use-case diagrams are indispensable tools that help system designers
remain focused on satisfying the users’ needs. The goal of the use-case diagram is to show
the kinds of interactions users have with a system without providing the details of those
interactions: those details are, of course, provided in other UML diagrams.

Figure 12.28 shows the use-case diagram for our elevator simulation. The stick figure
represents an actor, which, in turn, represents a set of roles that an external entity—such as
a person or another system—can play. Consider again our automated teller machine
example. The actor is a BankCustomer who can deposit, withdraw and transfer funds
from the ATM. In this sense, BankCustomer is more like a class rather than an object—
it is not an actual person, but rather describes the roles that a real person—when playing the
part of a BankCustomer—can perform while interacting with the ATM (deposit, with-

704 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

draw and transfer funds). A person is an external entity that can play the part of a Bank-
Customer. In the same manner as an object is an instance of a class, a person playing the
part of a BankCustomer performing one of its roles (such as making a deposit) is an
instance of actor BankCustomer. For example, when a person named Mary plays the
part of a BankCustomer making a deposit, Mary—in the role of the depositor—becomes
an instance of actor BankCustomer. Later in that day, another person named Jon can be
another instance of actor BankCustomer. In the course of a day, several hundred people
might use the ATM machine—some are “depositors”, some are “withdrawers” and some
are “transferrers,” but all of these people are instances of actor BankCustomer.

The problem statement in our elevator simulation supplies the actors—“The user
requires the ability to create a person in the simulation and situate that person on a given
floor.” Therefore, the actor of our system is the user who controls the simulation (i.e., the
user who clicks the buttons to create new Persons in the simulation). An external entity—
a real person—plays the part of the user to control the simulation. In our system, the use
case is “Create Person,” which encompasses creating a Person object, then placing that
Person on either the first or second Floor. Figure 12.28 models one actor called “User.”
The actor’s name appears underneath the actor.

The system box (i.e., the enclosing rectangle in the figure) contains the use cases for
the system. Notice that the box is labeled “Elevator Simulation.” This title shows that this
use-case model focuses on the one use case that our simulation provides to users (i.e.,
“Create Person”). The UML models each use case as an oval. The system box for a system
with multiple use cases would have one oval per use case.

There is a reasonable alternate view of the use case of our elevator simulation. The
problem statement from Section 2.9 mentioned that the company requested the elevator
simulation to “determine whether the elevator will meet the company’s needs.” We are
designing a simulation of a real-world scenario—the Person object in the simulation rep-
resents an actual human being using an actual elevator. Thus, we may view the user of the
elevator simulation as the user of the elevator. Therefore, specifying a use case from the
Person object’s perspective helps model how a real person uses a real elevator system.
We offer the use case of Fig. 12.29, titled “Relocate Person.” This use case describes the
Person moving (relocating) to the other Floor. (The Person travels to the second
Floor if starting on the first Floor and to the first Floor if starting on the second
Floor.) This use case encompasses all actions that the Person performs along his or her
journey, such as walking across a Floor to the Elevator, pressing Buttons and riding
the Elevator to the other Floor.

Fig. 12.28Fig. 12.28Fig. 12.28Fig. 12.28 Use-case diagram for elevator simulation from user’s perspective.

Create Person

Elevator Simulation

User

Chapter 12 Graphical User Interface Components: Part 1 705

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

We must ensure that our use cases do not model interactions that are too specific
between the external client and the system. For example, we do not subdivide each use case
into two separate use cases—such as “Create Person on first Floor” and “Create Person on
second Floor,” or “Relocate Person to first Floor” and “Relocate Person to second Floor”—
because the functionality of such use cases is repetitive (i.e., these seemingly alternative use
cases are really the same). Improper and repetitive subdivision of use cases can create prob-
lems during implementation. For example, if the designer of an automated teller machine
separated its “Withdraw Money” use case into “Withdraw Specific Amounts” use cases
(e.g., “Withdraw $1.00,” “Withdraw $2.00,” etc.), there could exist an enormous number
of use cases for the system. This would make the implementation tedious. (Our elevator
system contains only two floors—separating the use case into two would not cause that
much extra work; if our system contained 100 floors, however, creating 100 use cases
would be unwieldy.)

Constructing the Graphical User Interface
Our simulation implements both the “Create Person” and “Relocate Person” use cases. We
have studied the “Relocate Person” use case through the activity diagram of the Person
in Fig. 5.29—we implement this use case and the activity diagram in Appendix H when we
create class Person. We implement the “Create Person” use case through a graphical user
interface (GUI). We implement our GUI in class ElevatorController (Fig. 12.30,
line 17), which is a JPanel subclass containing two JButton objects—firstCon-
trollerButton (line 21) and secondControllerButton (line 22). Each JBut-
ton corresponds to a Floor on which to place a Person.1 Lines 33–38 instantiate these
JButtons and add them to the ElevatorController.

We discuss in Section 13.17 how class ElevatorModel ties together all objects
composing our elevator simulation model. Line 25 of class ElevatorController
declares a reference to the ElevatorModel, because the ElevatorController
allows the user to interact with the model. Lines 42–56 and 60–74 declare two anonymous
ActionListener objects and register them with firstFloorController-
Button and secondFloorControllerButton, respectively, for ActionEvents.
When the user presses either JButton, lines 49–50 and 67–68 of methods actionPer-

Fig. 12.29Fig. 12.29Fig. 12.29Fig. 12.29 Use-case diagram from the perspective of a Person.

1. This approach is feasible with only two Floors. If the building had 100 Floors, we might have
opted for the user to specify the desired Floor in a JTextField and press a JButton to pro-
cess the request.

Relocate Person

Elevator

Person

706 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

formed call the ElevatorModel’s method placePersonOnFloor, which instan-
tiates a Person object in the ElevatorModel on the specified Floor. Method
placePersonOnFloor takes as an argument a String defined in interface Eleva-
torConstants (Fig. 12.31). This interface—used by such classes as ElevatorCon-
troller, ElevatorModel, Elevator, Floor and ElevatorView—provides
constants that specify the names of Locations in our simulation.

1 // ElevatorController.java
2 // Controller for Elevator Simulation
3 package com.deitel.jhtp4.elevator.controller;
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 // Deitel packages
13 import com.deitel.jhtp4.elevator.model.*;
14 import com.deitel.jhtp4.elevator.event.*;
15 import com.deitel.jhtp4.elevator.ElevatorConstants;
16
17 public class ElevatorController extends JPanel
18 implements ElevatorConstants {
19
20 // controller contains two JButtons
21 private JButton firstControllerButton;
22 private JButton secondControllerButton;
23
24 // reference to model
25 private ElevatorModel elevatorModel;
26
27 public ElevatorController(ElevatorModel model)
28 {
29 elevatorModel = model;
30 setBackground(Color.white);
31
32 // add first button to controller
33 firstControllerButton = new JButton("First Floor");
34 add(firstControllerButton);
35
36 // add second button to controller
37 secondControllerButton = new JButton("Second Floor");
38 add(secondControllerButton);
39
40 // anonymous inner class registers to receive ActionEvents
41 // from first Controller JButton
42 firstControllerButton.addActionListener(
43 new ActionListener() {
44

Fig. 12.30Fig. 12.30Fig. 12.30Fig. 12.30 Class ElevatorController processes user input (part 1 of 3).

Chapter 12 Graphical User Interface Components: Part 1 707

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

45 // invoked when a JButton has been pressed
46 public void actionPerformed(ActionEvent event)
47 {
48 // place Person on first Floor
49 elevatorModel.placePersonOnFloor(
50 FIRST_FLOOR_NAME);
51
52 // disable user input
53 firstControllerButton.setEnabled(false);
54 }
55 } // end anonymous inner class
56);
57
58 // anonymous inner class registers to receive ActionEvents
59 // from second Controller JButton
60 secondControllerButton.addActionListener(
61 new ActionListener() {
62
63 // invoked when a JButton has been pressed
64 public void actionPerformed(ActionEvent event)
65 {
66 // place Person on second Floor
67 elevatorModel.placePersonOnFloor(
68 SECOND_FLOOR_NAME);
69
70 // disable user input
71 secondControllerButton.setEnabled(false);
72 }
73 } // end anonymous inner class
74);
75
76 // anonymous inner class enables user input on Floor if
77 // Person enters Elevator on that Floor
78 elevatorModel.addPersonMoveListener(
79 new PersonMoveListener() {
80
81 // invoked when Person has entered Elevator
82 public void personEntered(
83 PersonMoveEvent event)
84 {
85 // get Floor of departure
86 String location =
87 event.getLocation().getLocationName();
88
89 // enable first JButton if first Floor departure
90 if (location.equals(FIRST_FLOOR_NAME))
91 firstControllerButton.setEnabled(true);
92
93 // enable second JButton if second Floor
94 else
95 secondControllerButton.setEnabled(true);
96
97 } // end method personEntered

Fig. 12.30Fig. 12.30Fig. 12.30Fig. 12.30 Class ElevatorController processes user input (part 2 of 3).

708 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Lines 53 and 71 of methods actionPerformed disable the respective JButtons
to prevent the user from creating more than one Person per Floor. Lines 78–116 of class
ElevatorController declare an anonymous PersonMoveListener that regis-
ters with the ElevatorModel to reenable the JButtons. Method personEntered
(lines 82–97) of the PersonMoveListener reenables the JButton associated with
the Floor that the Elevator services—after the Person has entered the Elevator,
the user may place another Person on the Floor.

We mentioned in Section 9.23 that classes Elevator and Floor inherited attribute
capacity from superclass Location—in Appendix H, we were going to use this
attribute to prevent more than one Person from occupying a Location. However, the
PersonMoveListener’s method personEntered in class ElevatorCon-
troller prevents the user from creating more than one Person per Floor. Therefore,
we have negated the need for attribute capacity in class Location. Figure 12.32 is the
modified class diagram of Fig. 9.18 removing this attribute.

98
99 // other methods implementing PersonMoveListener
100 public void personCreated(
101 PersonMoveEvent event) {}
102
103 public void personArrived(
104 PersonMoveEvent event) {}
105
106 public void personExited(
107 PersonMoveEvent event) {}
108
109 public void personDeparted(
110 PersonMoveEvent event) {}
111
112 public void personPressedButton(
113 PersonMoveEvent event) {}
114
115 } // end anonymous inner class
116);
117 } // end ElevatorController constructor
118 }

1 // ElevatorConstants.java
2 // Constants used between ElevatorModel and ElevatorView
3 package com.deitel.jhtp4.elevator;
4
5 public interface ElevatorConstants {
6
7 public static final String FIRST_FLOOR_NAME = "firstFloor";
8 public static final String SECOND_FLOOR_NAME = "secondFloor";
9 public static final String ELEVATOR_NAME = "elevator";

10 }

Fig. 12.31Fig. 12.31Fig. 12.31Fig. 12.31 Interface ElevatorConstants provides Location name constants.

Fig. 12.30Fig. 12.30Fig. 12.30Fig. 12.30 Class ElevatorController processes user input (part 3 of 3).

Chapter 12 Graphical User Interface Components: Part 1 709

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

In this section we mentioned that the goal of object-oriented ananlysis is to produce a
system-requirements document. We introduced the UML use-case diagram that facilitates
gathering system requirements, and we examined the two use cases in our elevator simula-
tion. We implemented our simulator’s Graphical User Interface in Java.

This section concludes the discussion on the interaction between the user and the sim-
ulation model. In “Thinking About Objects” Section 13.17, we integrate class Eleva-
torController with the rest of the simulation. We also introduce the UML Component
diagram, which models the .class, .java, image and sound files that comprise our
system.

SUMMARY
• A graphical user interface (GUI) presents a pictorial interface to a program. A GUI (pronounced

“GOO-EE”) gives a program a distinctive “look” and “feel.”

• By providing different applications with a consistent set of intuitive user interface components,
GUIs allow the user to spend more time using the program in a productive manner.

• GUIs are built from GUI components (sometimes called controls or widgets). A GUI component
is a visual object with which the user interacts via the mouse or the keyboard.

• Swing GUI components are defined in package javax.swing. Swing components are written,
manipulated and displayed completely in Java.

Fig. 12.32Fig. 12.32Fig. 12.32Fig. 12.32 Modified class diagram showing generalization of superclass
Location and subclasses Elevator and Floor.

Location

- locationName : String
setLocationName(String) : void
+ getLocationName() : String
+ getButton() : Button
+ getDoor() : Door

Floor

+ getButton() : Button
+ getDoor() : Door

Elevator

- moving : Boolean = false
- summoned : Boolean = false
- currentFloor : Location
- destinationFloor : Location
- travelTime : Integer = 5
+ ride() : void
+ requestElevator() : void
+ enterElevator() : void
+ exitElevator() : void
+ departElevator() : void
+ getButton() : Button
+ getDoor() : Door

710 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

• The original GUI components from the Abstract Windowing Toolkit package java.awt are tied
directly to the local platform’s graphical user interface capabilities.

• Swing components are lightweight components. AWT components are tied to the local platform
and are called heavyweight components—they must rely on the local platform’s windowing sys-
tem to determine their functionality and their look and feel.

• Several Swing GUI components are heavyweight GUI components: in particular, subclasses of
java.awt.Window (such as JFrame) that display windows on the screen. Heavyweight
Swing GUI components are less flexible than lightweight components.

• Much of each Swing GUI component’s functionality is inherited from classes Component,
Container and JComponent (the superclass to most Swing components).

• A Container is an area where components can be placed.

• JLabels provide text instructions or information on a GUI.

• JComponent method setToolTipText specifies the tool tip that is displayed automatically
when the user positions the mouse cursor over a JComponent in the GUI.

• Many Swing components can display images by specifying an Icon as an argument to their con-
structor or by using a method setIcon.

• Class ImageIcon (package javax.swing) supports several image formats, including Porta-
ble Network Graphics (PNG), Graphics Interchange Format (GIF) and Joint Photographic Experts
Group (JPEG).

• Interface SwingConstants (package javax.swing) defines a set of common integer con-
stants (such as SwingConstants.LEFT) that are used with many Swing components.

• By default, the text of a JComponent appears to the right of the image when the JComponent
contains both text and an image.

• The horizontal and vertical alignments of a JLabel can be set with methods setHorizontal-
Alignment and setVerticalAlignment. Method setText sets the text displayed on the
label. Method getText retrieves the current text displayed on a label. Methods setHorizon-
talTextPosition and setVerticalTextPosition specify the text position in a label.

• JComponent method setIcon sets the Icon displayed on a JComponent. Method get-
Icon retrieves the current Icon displayed on a JComponent.

• GUIs generate events when the user interacts with the GUI. Information about a GUI event is
stored in an object of a class that extends AWTEvent.

• To process an event, the programmer must register an event listener and implement one or more
event handlers.

• The use of event listeners in event handling is known as the delegation event model—the process-
ing of an event is delegated to a particular object in the program.

• When an event occurs, the GUI component with which the user interacted notifies its registered
listeners by calling each listener’s appropriate event handling method.

• JTextFields and JPasswordFields are single-line areas in which text can be entered by
the user from the keyboard or text can simply be displayed. A JPasswordField shows that a
character was typed as the user enters characters, but automatically hides the characters.

• When the user types data into a JTextField or JPasswordField and presses the Enter key,
an ActionEvent occurs.

• JTextComponent method setEditable determines whether the user can modify the text in
a JTextComponent.

• JPasswordField method getPassword returns the password as an array of type char.

Chapter 12 Graphical User Interface Components: Part 1 711

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

• Every JComponent contains an object of class EventListenerList (package jav-
ax.swing.event) called listenerList in which all registered listeners are stored.

• Every JComponent supports several different event types, including mouse events, key events
and others. When an event occurs, the event is dispatched only to the event listeners of the appro-
priate type. Each event type has a corresponding event-listener interface.

• When an event is generated by a user interaction with a component, the component is handed a
unique event ID specifying the event type. The GUI component uses the event ID to decide the
type of listener to which the event should be dispatched and the event handler method to call.

• A JButton generates an ActionEvent when the user clicks the button with the mouse.

• An AbstractButton can have a rollover Icon that is displayed when the mouse is positioned
over the button. The icon changes as the mouse moves in and out of the button’s area on the screen.
AbstractButton method setRolloverIcon specifies the image displayed on a button
when the user positions the mouse over the button.

• The Swing GUI components contain three state button types—JToggleButton, JCheckBox
and JRadioButton—that have on/off or true/false values. Classes JCheckBox and JRadio-
Button are subclasses of JToggleButton.

• When the user clicks a JCheckBox, an ItemEvent is generated that can be handled by an
ItemListener. ItemListeners must define method itemStateChanged. Item-
Event method getStateChange determines the state of a JToggleButton.

• JRadioButtons are similar to JCheckBoxes in that they have two states—selected and not
selected (also called deselected). JRadioButtons normally appear as a group in which only
one radio button can be selected at a time.

• The logical relationship between radio buttons is maintained by a ButtonGroup object.

• The JRadioButton constructor supplies the label that appears to the right of the JRadioBut-
ton by default and the initial state of the JRadioButton. A true second argument indicates
that the JRadioButton should appear selected when it is displayed.

• JRadioButtons generate ItemEvents when they are clicked.

• ButtonGroup method add associates a JRadioButton with a ButtonGroup. If more than
one selected JRadioButton object is added to the group, the last selected JRadioButton
added will be selected when the GUI is displayed.

• A JComboBox (sometimes called a drop-down list) provides a list of items from which the user
can make a selection. JComboBoxes generate ItemEvents. A numeric index keeps track of the
ordering of items in a JComboBox. The first item is added at index 0, the next item is added at
index 1 and so forth. The first item added to a JComboBox appears as the currently selected item
when the JComboBox is displayed. JComboBox method getSelectedIndex returns the in-
dex number of the selected item.

• A JList displays a series of items from which the user may select one or more items. Class
JList supports single- and multiple-selection lists. When an item is clicked in a JList, a
ListSelectionEvent occurs.

• JList method setVisibleRowCount determines the number of items that are visible in the
list. Method setSelectionMode specifies the selection mode for the list.

• Class JList does not automatically provide a scrollbar if there are more items in the list than the
number of visible rows. A JScrollPane object is used to provide the automatic scrolling capa-
bility for a JList.

• A SINGLE_INTERVAL_SELECTION list allows selection of a contiguous range of items by
clicking the first item, then holding the Shift key while clicking the last item to select in the range.

712 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

• A MULTIPLE_INTERVAL_SELECTION list allows continuous range selection as described for
a SINGLE_INTERVAL_SELECTION list and allows miscellaneous items to be selected by hold-
ing the Ctrl key while clicking each item to select.

• JList method setFixedCellHeight specifies the height in pixels of each item in a JList.
Method setFixedCellWidth sets the width in pixels of a JList.

• Normally, an event generated by another GUI component (known as an external event) specifies
when the multiple selections in a JList should be processed.

• JList method setListData sets the items displayed in a JList. Method getSelected-
Values returns the selected items as an array of Objects.

• Mouse events can be trapped for any GUI component that derives from java.awt.Component
using MouseListeners and MouseMotionListeners.

• Each mouse event handling method takes as its argument a MouseEvent object containing in-
formation about the mouse event and the location where the event occurred.

• Methods addMouseListener and addMouseMotionListener are Component meth-
ods used to register mouse event listeners for an object of any class that extends Component.

• Many of the event-listener interfaces provide multiple methods. For each, there is a corresponding
event-listener adapter class that provides a default implementation of every method in the inter-
face. The programmer can extend the adapter class to inherit the default implementation of every
method and simply override the method or methods needed for event handling in the program.

• MouseEvent method getClickCount returns the number of mouse clicks.

• InputEvent methods isMetaDown and isAltDown are used to determine which mouse but-
ton the user clicked.

• KeyListeners handle key events that are generated when keys on the keyboard are pressed and
released. A KeyListener must provide definitions for methods keyPressed, keyRe-
leased and keyTyped, each of which receives a KeyEvent as its argument.

• Method keyPressed is called in response to pressing any key. Method keyTyped is called in
response to pressing any key that is not an action key (i.e., an arrow key, Home, End, Page Up,
Page Down, a function key, Num Lock, Print Screen, Scroll Lock, Caps Lock and Pause). Method
keyReleased is called when the key is released after any keyPressed or keyTyped event.

• KeyEvent method getKeyCode gets the virtual key code of the key that was pressed. Class
KeyEvent maintains a set of virtual key code constants that represent every key on the keyboard.

• KeyEvent method getKeyText returns a String containing the name of the key that corre-
sponds to its virtual key code argument. Method getKeyChar gets the Unicode value of the
character typed. Method isActionKey determines if the key in the event was an action key.

• InputEvent method getModifiers determines if any modifier keys (such as Shift, Alt and
Ctrl) were pressed when the key event occurred. KeyEvent method getKeyModifiersText
produces a string containing the names of the pressed modifier keys.

• Layout managers arrange GUI components on a container for presentation purposes.

• FlowLayout lays out components from left to right in the order in which they are added to the
container. When the edge of the container is reached, components are continued on the next line.

• FlowLayout method setAlignment changes the alignment for the FlowLayout to Flow-
Layout.LEFT, FlowLayout.CENTER or FlowLayout.RIGHT.

• The BorderLayout layout manager arranges components into five regions: North, South, East,
West and Center. One component can be added to each region.

Chapter 12 Graphical User Interface Components: Part 1 713

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

• LayoutManager method layoutContainer recalculates the layout of its Container ar-
gument.

• The GridLayout layout manager divides the container into a grid of rows and columns. Compo-
nents are added to a GridLayout starting at the top-left cell and proceeding from left to right until
the row is full. Then the process continues from left to right on the next row of the grid, and so on.

• Container method validate recomputes the container’s layout based on the current layout
manager for the Container and the current set of displayed GUI components.

• Panels are created with class JPanel, which inherits from class JComponent. JPanels may have
components, including other panels, added to them.

TERMINOLOGY
.gif file name extension dispatch an event
.jpg file name extension dragging
“listen” for an event drop-down list
Abstract Windowing Toolkit event
AbstractButton class event driven
ActionEvent class event handler
ActionListener interface event ID
actionPerformed method event listener
adapter class event-listener interface
add method of ButtonGroup EventListenerList class
add method of class Container EventObject class
addItemListener method FlowLayout class
addKeyListener method FlowLayout.CENTER
addListSelectionListener method FlowLayout.LEFT
addMouseListener method FlowLayout.RIGHT
addMouseMotionListener method focus
assistive technologies FocusAdapter class
BorderLayout class FocusListener interface
BorderLayout.CENTER Font.BOLD
BorderLayout.EAST Font.ITALIC
BorderLayout.NORTH Font.PLAIN
BorderLayout.SOUTH getActionCommand method
BorderLayout.WEST getClickCount method
button getIcon method
button label getKeyChar method of KeyEvent
ButtonGroup class getKeyCode method of KeyEvent
centered getKeyModifiersText method
check box getKeyText method of KeyEvent
check box label getModifiers method of InputEvent
command button getPassword method of JPasswordField
Component class getSelectedIndex method of JComboBox
ComponentAdapter class getSelectedIndex method of JList
ComponentListener interface getSelectedValues method of JList
Container class getSource method of ActionEvent
ContainerAdapter class getStateChange method of ItemEvent
ContainerListener interface getText method of JLabel
control getX method of MouseEvent
delegation event model getY method of MouseEvent

714 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

Graphics Interchange Format (GIF) look and feel
GridLayout class menu
GUI component menu bar
heavyweight component MouseAdapter class
horizontal gap space mouseClicked method
Icon interface mouseDragged method
ImageIcon class mouseEntered method
InputEvent class MouseEvent class
isActionKey method of KeyEvent mouseExited method
isAltDown method of InputEvent MouseListener interface
isMetaDown method of InputEvent MouseMotionAdapter class
ItemEvent class MouseMotionListener interface
ItemEvent.DESELECTED mouseMoved method
ItemEvent.SELECTED mousePressed method
ItemListener interface mouseReleased method
itemStateChanged method multiple-selection list
java.awt package password
java.awt.event package pluggable look and feel
javax.swing package radio button
javax.swing.event package read-only text
JButton class register an event listener
JCheckBox class right-aligned
JComboBox class rollover icon
JComponent class scroll arrow
JLabel class scroll box
JList class scrollbar
Joint Photographic Experts Group (JPEG) selection mode
JPanel class setAlignment method
JPasswordField class setBackground method
JRadioButton class setEditable method
JScrollPane class setFixedCellHeight method
JTextComponent class setFixedCellWidth method
JTextField class setHorizontalAlignment method
JToggleButton class setHorizontalTextPosition method
KeyAdapter class setIcon method
KeyEvent class setLayout method of class Container
KeyListener interface setListData method of JList
keyPressed method of KeyListener setMaximumRowCount method
keyReleased method of KeyListener setRolloverIcon method
keyTyped method of KeyListener setSelectionMode method
label setToolTipText method
layout manager setVerticalAlignment method
layoutContainer method setVerticalTextPosition method
LayoutManger interface setVisible method
left aligned setVisibleRowCount method
left justified shortcut key (mnemonics)
lightweight component single-selection list
ListSelectionEvent class SwingConstants interface
ListSelectionListener interface tool tips
ListSelectionModel interface toolbar

Chapter 12 Graphical User Interface Components: Part 1 715

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

SELF-REVIEW EXERCISES
12.1 Fill in the blanks in each of the following statements:

a) Method is called when the mouse is moved and an event listener is registered
to handle the event.

b) Text that cannot be modified by the user is called text.
c) A arranges GUI components on a Container.
d) The add method for attaching GUI components is a class method.
e) GUI is an acronym for .
f) Method is used to set the layout manager for a container.
g) A mouseDragged method call is preceded by a method call and followed

by a method call.

12.2 State whether each of the following is true or false. If false, explain why.
a) BorderLayout is the default layout manager for a content pane.
b) When the mouse cursor is moved into the bounds of a GUI component, method mouse-

Over is called.
c) A JPanel cannot be added to another JPanel.
d) In a BorderLayout, two buttons added to the NORTH region will be placed side by side.
e) When one is using BorderLayout, a maximum of five components may be used.

12.3 Find the error(s) in each of the following and explain how to correct it (them).
a) buttonName = JButton("Caption");
b) JLabel aLabel, JLabel; // create references
c) txtField = new JTextField(50, "Default Text");
d) Container container = getContentPane();

setLayout(new BorderLayout());
button1 = new JButton("North Star");
button2 = new JButton("South Pole");
container.add(button1);
container.add(button2);

ANSWERS TO SELF-REVIEW EXERCISES
12.1 a) mouseMoved. b) uneditable (read-only). c) layout manager. d) Container. e) graph-
ical user interface. f) setLayout. g) mousePressed, mouseReleased.

12.2 a) True.
b) False. Method mouseEntered is called.
c) False. A JPanel can be added to another JPanel because JPanel derives indirectly

from Component. Therefore, a JPanel is a Component. Any Component can be
added to a Container.

d) False. Only the last button added will be displayed. Remember that only one component
can be added to each region in a BorderLayout.

e) True.

12.3 a) new is needed to instantiate the object.
b) JLabel is a class name and cannot be used as a variable name.

user interface localization window
validate method WindowAdapter class
valueChanged method windowClosing method
vertical gap space windowing system
widget (window gadget) WindowListener interface

716 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

c) The arguments passed to the constructor are reversed. The String must be passed first.
d) BorderLayout has been set and components are being added without specifying the

region. Proper add statements might be

 container.add(button1, BorderLayout.NORTH);
 container.add(button2, BorderLayout.SOUTH);

EXERCISES
12.4 Fill in the blanks in each of the following statements:

a) The JTextField class inherits directly from .
b) The layout managers discussed in this chapter are , and

.
c) Container method attaches a GUI component to a container.
d) Method is called when a mouse button is released (without moving the

mouse).
e) The class is used to create a group of JRadioButtons.

12.5 State whether each of the following is true or false. If false, explain why.
a) Only one layout manager can be used per Container.
b) GUI components can be added to a Container in any order in a BorderLayout.
c) JRadioButtons provide a series of mutually exclusive options (only one can be true

at a time).
d) Graphics method setFont is used to set the font for text fields.
e) A JList displays a scrollbar if there are more items in the list than can be displayed.
f) A Mouse object contains a method called mouseDragged.

12.6 State whether each of the following is true or false. If false, explain why.
a) A JApplet does not have a content pane.
b) A JPanel is a JComponent.
c) A JPanel is a Component.
d) A JLabel is a Container.
e) A JList is a JPanel.
f) An AbstractButton is a JButton.
g) A JTextField is an Object.
h) ButtonGroup inherits from JComponent.

12.7 Find any error(s) in each of the following and explain how to correct it (them).
a) import javax.swing.* // include swing package
b) panelObject.GridLayout(8, 8); // set GridLayout
c) container.setLayout(

 new FlowLayout(FlowLayout.DEFAULT));
d) container.add(eastButton, EAST); // BorderLayout

12.8 Create the following GUI. You do not have to provide any functionality.

Chapter 12 Graphical User Interface Components: Part 1 717

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

12.9 Create the following GUI. You do not have to provide any functionality.

12.10 Create the following GUI. You do not have to provide any functionality.

12.11 Create the following GUI. You do not have to provide any functionality.

12.12 Write a temperature conversion program that converts from Fahrenheit to Celsius. The Fahr-
enheit temperature should be entered from the keyboard (via a JTextField). A JLabel should
be used to display the converted temperature. Use the following formula for the conversion:

Celsius = 5 / 9 × (Fahrenheit – 32)

12.13 Enhance the temperature conversion program of Exercise 12.12 by adding the Kelvin tem-
perature scale. The program should also allow the user to make conversions between any two scales.
Use the following formula for the conversion between Kelvin and Celsius (in addition to the formula
in Exercise 12.12):

Kelvin = Celsius + 273

12.14 Write an application that allows the user to draw a rectangle by dragging the mouse on the
application window. The upper-left coordinate should be the location where the user presses the
mouse button, and the lower-right coordinate should be the location where the user releases the mouse
button. Also display the area of the rectangle in a JLabel in the SOUTH region of a BorderLay-
out. Use the following formula for the area:

area = width × height

12.15 Modify the program of Exercise 12.14 to draw different shapes. The user should be allowed
to choose from an oval, an arc, a line, a rectangle with rounded corners and a predefined polygon.
Also display the mouse coordinates in the status bar.

718 Graphical User Interface Components: Part 1 Chapter 12

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

12.16 Write a program that will allow the user to draw a shape with the mouse. The shape to draw
should be determined by a KeyEvent using the following keys: c draws a circle, o draws an oval, r
draws a rectangle and l draws a line. The size and placement of the shape should be determined by
the mousePressed and mouseReleased events. Display the name of the current shape in a
JLabel in the SOUTH region of a BorderLayout. The initial shape should default to a circle.

12.17 Create an application that enables the user to paint a picture. The user should be able to
choose the shape to draw, the color in which the shape should appear and whether the shape should
be filled with color. Use the graphical user interface components we discussed in this chapter, such
as JComboBoxes, JRadioButtons and JCheckBoxes, to allow the user to select various op-
tions. The program should provide a JButton object that allows the user to erase the window.

12.18 Write a program that uses System.out.println statements to print out events as they
occur. Provide a JComboBox with a minimum of four items. The user should be able to choose an
event to “monitor” from the JComboBox. When that particular event occurs, display information
about the event in a message dialog box. Use method toString on the event object to convert it to
a string representation.

12.19 Write a program that draws a square. As the mouse moves over the drawing area, repaint the
square with the upper-left corner of the square following the exact path of the mouse cursor.

12.20 Modify the program of Fig. 12.19 to incorporate colors. In a separate window, provide a
“toolbar” of JRadioButton objects that lists the following six colors: red, black, magenta, blue,
green and yellow. The toolbar should be implemented as a subclass of JFrame called ToolBar-
Window and should consist of six buttons, each with the appropriate color name. When a new color
is selected, drawing should occur in the new color. Determine the currently selected color in the
mousePressed event handler of the main window by calling a public method getCurrentCol-
or on the ToolBarWindow. [Note: In Chapter 13, we discuss how to combine GUI components
and drawing, using separate JPanels for each. This provides programs with more flexibility in lay-
ing out the components and drawing.]

12.21 Write a program that plays “guess the number” as follows: Your program chooses the num-
ber to be guessed by selecting an integer at random in the range 1–1000. The program then displays
in a label:

I have a number between 1 and 1000 can you guess my number?
Please enter your first guess.

A JTextField should be used to input the guess. As each guess is input the background color
should change to either red or blue. Red indicates that the user is getting “warmer” and blue indicates
that the user is getting “colder.” A JLabel should display either “Too High” or “Too Low” to
help the user zero in on the correct answer. When the user gets the correct answer, “Correct!”
should be displayed and the JTextField used for input should be changed to uneditable. A JBut-
ton should be provided to allow the user to play the game again. When the JButton is clicked, a
new random number should be generated and the input JTextField changed to editable.

12.22 It is often useful to display the events that occur during the execution of a program to help
understand when the events occur and how they are generated. Write a program that enables the user
to generate and process every event discussed in this chapter. The program should provide methods
from the ActionListener, ItemListener, ListSelectionListener, MouseLis-
tener, MouseMotionListener and KeyListener interfaces to display messages when the
events occur. Use method toString to convert the event objects received in each event handler into
a String that can be displayed. Method toString creates a String containing all the informa-
tion in the event object.

Chapter 12 Graphical User Interface Components: Part 1 719

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/7/01

12.23 Modify your solution to Exercise 12.17 to enable the user to select a font and a font size, then
type text into a JTextField. When the user presses Enter, the text should be displayed on the back-
ground in the chosen font and size. Modify the program further to allow the user to specify the exact
position at which the text should be displayed.

12.24 Write a program that allows the user to select a shape from a JComboBox, then draws that
shape 20 times with random locations and dimensions in method paint. The first item in the JCom-
boBox should be the default shape that is displayed the first time paint is called.

12.25 Modify Exercise 12.24 to draw each of the 20 randomly sized shapes in a randomly selected
color. Use all 13 predefined Color objects in an array of Colors.

12.26 Modify Exercise 12.25 to allow the user to select the color in which shapes should be drawn
from a JColorChooser dialog.

12.27 Write a program using methods from interface MouseListener that allows the user to
press the mouse button, drag the mouse and release the mouse button. When the mouse is released,
draw a rectangle with the appropriate upper-left corner, width and height. (Hint: The mouse-
Pressed method should capture the set of coordinates at which the user presses and holds the mouse
button initially, and the mouseReleased method should capture the set of coordinates at which the
user releases the mouse button. Both methods should store the appropriate coordinate values. All cal-
culations of the width, height and upper-left corner should be performed by the paint method before
the shape is drawn.)

12.28 Modify Exercise 12.27 to provided a “rubber-banding” effect. As the user drags the mouse,
the user should be able to see the current size of the rectangle to know exactly what the rectangle will
look like when the mouse button is released. (Hint: Method mouseDragged should perform the
same tasks as mouseReleased.)

12.29 Modify Exercise 12.28 to allow the user to select which shape to draw. A JComboBox
should provide options including at least rectangle, oval, line and rounded rectangle.

12.30 Modify Exercise 12.29 to allow the user to select the drawing color from a JColor-
Chooser dialog box.

12.31 Modify Exercise 12.30 to allow the user to specify whether a shape should be filled or empty
when it is drawn. The user should click a JCheckBox to indicate filled or empty.

12.32 (Painting program) Using the techniques of Exercise 9.28–Exercise 9.29 and Exercise 12.27–
Exercise 12.30 and the graphics techniques of Chapter 11, rewrite Exercise 12.31 to allow the user to
draw multiple shapes and store each shape in an array of shapes. (If you feel ambitious, investigate the
capabilities of class Vector in Chapter 20.) For this program, create your own classes (like those in
the class hierarchy described in Exercise 9.28–Exercise 9.29) from which objects will be created to
store each shape the user draws. The classes should store the location, dimensions and color of each
shape and should indicate whether the shape is filled or unfilled. Your classes should all derive from a
class called MyShape that has all the common features of every shape type. Every subclass of My-
Shape should have its own method draw, which returns void and receives a Graphics object as
its argument. When the application window’s paint method is called, it should walk through the ar-
ray of shapes and display each shape by polymorphically calling the shape’s draw method (passing
the Graphics object as an argument). Each shape’s draw method should know how to draw the
shape. As a minimum, your program should provide the following classes: MyLine, MyOval,
MyRect, MyRoundRect. Design the class hierarchy for maximum software reuse, and place all your
classes in the package shapes. Import this package into your program.

12.33 Modify Exercise 12.32 to provide an Undo button that can be used repeatedly to undo the
last painting operation. If there are no shapes in the array of shapes, the Undo button should be dis-
abled.

13
Graphical User Interface

Components: Part 2

Objectives
• To create and manipulate text areas, sliders, menus,

popup menus and windows.
• To be able to create customized JPanel objects.
• To be able to create a program that can execute as

either an applet or an application.
• To be able to change the look-and-feel of a GUI, using

Swing’s pluggable look-and-feel (PLAF).
• To be able to create a multiple document interface

with JDesktopPane and JInternalFrame.
• To be able to use advanced layout managers.
I claim not to have controlled events, but confess plainly that
events have controlled me.
Abraham Lincoln

A good symbol is the best argument, and is a missionary to
persuade thousands.
Ralph Waldo Emerson

Capture its reality in paint!
Paul Cézanne

Chapter 13 Graphical User Interface Components: Part 2 721

13.1 Introduction
In this chapter, we continue our study of GUIs. We discuss more advanced components and
layout managers and lay the groundwork for building complex GUIs.

We begin our discussion with another text-based GUI component—JTextArea—
which allows multiple lines of text to be displayed or input. We continue with two examples
of customizing class JPanel in which we discuss issues that relate to painting on Swing
GUI components. Next, we illustrate how to design a Java program that can execute as both
an applet and an application. An important aspect of any complete GUI is a system of
menus that enable the user to effectively perform tasks in the program. The next two exam-
ples discuss how to create and use menus. The look-and-feel of a Swing GUI can be uni-
form across all platforms on which the Java program is executed, or the GUI can be

Outline

13.1 Introduction
13.2 JTextArea

13.3 Creating a Customized Subclass of JPanel
13.4 Creating a Self-Contained Subclass of JPanel
13.5 JSlider

13.6 Windows
13.7 Designing Programs that Execute as Applets or Applications
13.8 Using Menus with Frames
13.9 Using JPopupMenus
13.10 Pluggable Look-and-Feel
13.11 Using JDesktopPane and JInternalFrame
13.12 Layout Managers
13.13 BoxLayout Layout Manager
13.14 CardLayout Layout Manager
13.15 GridBagLayout Layout Manager
13.16 GridBagConstraints Constants RELATIVE and REMAINDER
13.17 (Optional Case Study) Thinking About Objects: Model-View-

Controller
13.18 (Optional) Discovering Design Patterns: Design Patterns Used in

Packages java.awt and javax.swing
13.18.1 Creational Design Patterns
13.18.2 Structural Design Patterns
13.18.3 Behavioral Design Patterns
13.18.4 Conclusion

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

722 Graphical User Interface Components: Part 2 Chapter 13

customized by using Swing’s pluggable look-and-feel (PLAF). The next example illus-
trates how to change between Swing’s default metal look-and-feel, a look-and-feel that
simulates Motif (a popular UNIX look-and-feel) and one that simulates Microsoft’s Win-
dows look-and-feel. Many of today’s applications use a multiple document interface
(MDI), [i.e., a main window (often called the parent window) containing other windows
(often called child windows) to manage several open documents in parallel. For example,
many e-mail programs allow you to have several e-mail windows open at the same time so
you can compose and/or read multiple e-mail messages. The next example discusses
Swing’s classes that provide support for creating multiple document interfaces. Finally, the
chapter finishes with a series of examples discussing several advanced layout managers for
organizing graphical user interfaces.

Swing is a large and complex topic. There are many more GUI components and capa-
bilities than can be presented here. Several more Swing GUI components are introduced in
the remaining chapters of this book as they are needed. Our book Advanced Java 2 Platform
How to Program discusses other, more advanced Swing components and capabilities.

13.2 JTextArea
JTextAreas provide an area for manipulating multiple lines of text. Like class JText-
Field, class JTextArea inherits from JTextComponent, which defines common
methods for JTextFields, JTextAreas and several other text-based GUI components.

The application of Fig. 13.1 demonstrates JTextAreas. One JTextArea displays
text that the user can select. The other JTextArea is uneditable. Its purpose is to display
the text the user selected in the first JTextArea. JTextAreas do not have action events
like JTextFields. Often, an external event—an event generated by a different GUI com-
ponent—indicates when to process the text in a JTextArea. For example, when typing
an e-mail message, you often click a Send button to take the text of the message and send
it to the recipient. Similarly, when editing a document in a word processor, you normally
save the file by selecting a menu item called Save or Save As…. In this program, the
button Copy >>> generates the external event that copies the selected text in the left
JTextArea and displays it in the right JTextArea.

1 // Fig. 13.1: TextAreaDemo.java
2 // Copying selected text from one text area to another.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class TextAreaDemo extends JFrame {
12 private JTextArea textArea1, textArea2;
13 private JButton copyButton;
14

Fig. 13.1Fig. 13.1Fig. 13.1Fig. 13.1 Copying selected text from one text area to another (part 1 of 3).

Chapter 13 Graphical User Interface Components: Part 2 723

15 // set up GUI
16 public TextAreaDemo()
17 {
18 super("TextArea Demo");
19
20 Box box = Box.createHorizontalBox();
21
22 String string = "This is a demo string to\n" +
23 "illustrate copying text\n" +
24 "from one TextArea to \n" +
25 "another TextArea using an\n" + "external event\n";
26
27 // set up textArea1
28 textArea1 = new JTextArea(string, 10, 15);
29 box.add(new JScrollPane(textArea1));
30
31 // set up copyButton
32 copyButton = new JButton("Copy >>>");
33 copyButton.addActionListener(
34
35 // anonymous inner class to handle copyButton event
36 new ActionListener() {
37
38 // set text in textArea2 to selected
39 // text from textArea1
40 public void actionPerformed(ActionEvent event)
41 {
42 textArea2.setText(textArea1.getSelectedText());
43 }
44
45 } // end anonymous inner class
46
47); // end call to addActionListener
48
49 box.add(copyButton);
50
51 // set up textArea2
52 textArea2 = new JTextArea(10, 15);
53 textArea2.setEditable(false);
54 box.add(new JScrollPane(textArea2));
55
56 // add box to content pane
57 Container container = getContentPane();
58 container.add(box); // place in BorderLayout.CENTER
59
60 setSize(425, 200);
61 setVisible(true);
62 }
63
64 // execute application
65 public static void main(String args[])
66 {
67 TextAreaDemo application = new TextAreaDemo();

Fig. 13.1Fig. 13.1Fig. 13.1Fig. 13.1 Copying selected text from one text area to another (part 2 of 3).

724 Graphical User Interface Components: Part 2 Chapter 13

Look-and-Feel Observation 13.1
Often an external event determines when the text in a JTextArea should be processed. 13.1

In the constructor method (lines 16–62), line 20 creates a Box container (package
javax.swing) for organizing the GUI components. Class Box is a subclass of Con-
tainer that uses a BoxLayout layout manager to arrange the GUI components either
horizontally or vertically. Section 13.13 discusses BoxLayout in detail. Class Box pro-
vides static method createHorizontalBox to create a Box that arranges components
from left to right in the order that the components are attached.

The application instantiates JTextArea objects textArea1 (line 28) and
textArea2 (line 52). Each JTextArea has 10 visible rows and 15 visible columns. Line
28 specifies that string should be displayed as the default JTextArea content. A JTex-
tArea does not provide scrollbars if it cannot display its complete contents. For this reason,
line 29 creates a JScrollPane object, initializes it with textArea1 and attaches it to
container box. By default, horizontal and vertical scrollbars will appear as necessary.

Lines 32–49 instantiate JButton object copyButton with the label “Copy >>>,”
create an anonymous inner class to handle copyButton’s ActionEvent and add
copyButton to container box. This button provides the external event that determines
when the program should copy the selected text in textArea1 to textArea2. When
the user clicks copyButton, line 42 in actionPerformed indicates that method

68
69 application.setDefaultCloseOperation(
70 JFrame.EXIT_ON_CLOSE);
71 }
72
73 } // end class TextAreaDemo

Fig. 13.1Fig. 13.1Fig. 13.1Fig. 13.1 Copying selected text from one text area to another (part 3 of 3).

Chapter 13 Graphical User Interface Components: Part 2 725

getSelectedText (inherited into JTextArea from JTextComponent) should
return the selected text from textArea1. The user selects text by dragging the mouse
over the desired text to highlight it. Method setText changes the text in textArea2 to
the String that method getSelectedText returns.

Lines 52–54 create textArea2 and add it to container box. Lines 57–58 obtain the
content pane for the window and add box to the content pane. Remember that the default
layout of the content pane is a BorderLayout and that the add method attaches its argu-
ment to the CENTER of the BorderLayout if method add does not specify the region.

It is sometimes desirable when text reaches the right side of a JTextArea to have the
text wrap to the next line. This is referred to as automatic word wrap.

Look-and-Feel Observation 13.2
To provide automatic word wrap functionality for a JTextArea, invoke JTextArea
method setLineWrap with a true argument. 13.2

This example uses a JScrollPane to provide scrolling functionality for a JText-
Area. By default, JScrollPane provides scrollbars only if they are required. You can
set the horizontal and vertical scrollbar policies for the JScrollPane when a
JScrollPane is constructed or with methods setHorizontalScrollBarPolicy
and setVerticalScrollBarPolicy of class JScrollPane at any time. Class
JScrollPane provides the constants

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS
JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS

to indicate that a scrollbar should always appear, constants

JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED
JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED

to indicate that a scrollbar should appear only if necessary, and constants

JScrollPane.VERTICAL_SCROLLBAR_NEVER
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER

to indicate that a scrollbar should never appear. If the horizontal scrollbar policy is set to
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER, a JTextArea attached to the
JScrollPane will exhibit automatic word wrap behavior.

13.3 Creating a Customized Subclass of JPanel
In Chapter 12, we saw that JPanels can aggregate a set of GUI components for layout
purposes. JPanels are quite flexible. Some of their many uses include creating dedicated
drawing areas and creating areas that receive mouse events. Programs often extend class
JPanel to create new components. Our next example uses a JPanel to create a dedicated
drawing area. Dedicated drawing areas help separate drawing from the rest of your graph-
ical user interface. This can be beneficial in Swing graphical user interfaces. If graphics and
Swing GUI components are not displayed in the correct order, it is possible that the GUI
components will not display correctly. For example, to ensure that graphics and GUI both
display correctly, we can separate the GUI and the graphics by creating dedicated drawing
areas as subclasses of JPanel.

726 Graphical User Interface Components: Part 2 Chapter 13

Look-and-Feel Observation 13.3
Combining graphics and Swing GUI components can lead to incorrect display of the graph-
ics, the GUI components or both. Using JPanels for drawing can eliminate this problem
by providing a dedicated area for graphics. 13.3

Swing components that inherit from class JComponent contain method paint-
Component that helps them draw properly in the context of a Swing GUI. When custom-
izing a JPanel for use as a dedicated drawing area, the subclass should override method
paintComponent and call the superclass version of paintComponent as the first
statement in the body of the overridden method. This ensures that painting occurs in the
proper order and that Swing’s painting mechanism remains intact. An important part of
this mechanism is that subclasses of JComponent support transparency, which can be
set with method setOpaque (a false argument indicates the component is trans-
parent). To paint a component correctly, the program must determine whether the compo-
nent is transparent. The code that performs this check is in the superclass version of
paintComponent. When a component is transparent, paintComponent will not
clear the component’s background when the program paints the component. When a com-
ponent is opaque, paintComponent clears the background before continuing the
painting operation. If the superclass version of paintComponent is not called, an
opaque GUI component typically will not display correctly on the user interface. Also, if
the superclass version is called after performing the customized drawing statements, the
results typically will be erased.

Look-and-Feel Observation 13.4
When overriding a JComponent’s paintComponent method, the first statement in the
body should always be a call to the superclass’s original version of the method. 13.4

Common Programming Error 13.1
When overriding a JComponent’s paintComponent method, not calling the super-
class’s original version of paintComponent might prevent the GUI component from dis-
playing properly on the GUI. 13.1

Common Programming Error 13.2
When overriding a JComponent’s paintComponent method, calling the superclass’s
paintComponent method after other drawing is performed erases the other drawings. 13.2

Classes JFrame and JApplet are not subclasses of JComponent; therefore, they
do not contain method paintComponent. To draw directly on subclasses of JFrame
and JApplet, override method paint.

Look-and-Feel Observation 13.5
Calling repaint for a Swing GUI component indicates that the component should be paint-
ed as soon as possible. The background of the GUI component is cleared only if the compo-
nent is opaque. Most Swing components are transparent by default. JComponent method
setOpaque can be passed a boolean argument indicating whether the component is
opaque (true) or transparent (false). The GUI components of package java.awt are
different from Swing components, in that repaint results in a call to Component method
update (which clears the component’s background) and update calls method paint
(rather than paintComponent). 13.5

Chapter 13 Graphical User Interface Components: Part 2 727

The program of Fig. 13.2 and Fig. 13.3 demonstrates a customized subclass of
JPanel. Class CustomPanel (Fig. 13.2) has its own paintComponent method that
draws a circle or a square, depending on the value passed to CustomPanel’s draw
method. For this purpose, CustomPanel line 11 defines constants that enable the pro-
gram to specify the shape a CustomPanel draws on itself with each call to its paint-
Component method. Class CustomPanelTest (Fig. 13.3) creates a CustomPanel
and a GUI that enable the user to choose which shape to draw.

Class CustomPanel contains one instance variable, shape, that stores an integer
representing the shape to draw. Method paintComponent (lines 15–23) draws a shape
on the panel. If shape is CIRCLE, Graphics method fillOval draws a solid circle.
If shape is SQUARE, Graphics method fillRect draws a solid square. Method
draw (lines 26–30) sets instance variable shape and calls repaint to refresh the Cus-
tomPanel object. Note that calling repaint (which is really this.repaint()) for
the CustomPanel schedules a painting operation for the CustomPanel. Method
paintComponent will be called to repaint the CustomPanel and draw the appropriate
shape.

1 // Fig. 13.2: CustomPanel.java
2 // A customized JPanel class.
3
4 // Java core packages
5 import java.awt.*;
6
7 // Java extension packages
8 import javax.swing.*;
9

10 public class CustomPanel extends JPanel {
11 public final static int CIRCLE = 1, SQUARE = 2;
12 private int shape;
13
14 // use shape to draw an oval or rectangle
15 public void paintComponent(Graphics g)
16 {
17 super.paintComponent(g);
18
19 if (shape == CIRCLE)
20 g.fillOval(50, 10, 60, 60);
21 else if (shape == SQUARE)
22 g.fillRect(50, 10, 60, 60);
23 }
24
25 // set shape value and repaint CustomPanel
26 public void draw(int shapeToDraw)
27 {
28 shape = shapeToDraw;
29 repaint();
30 }
31
32 } // end class CustomPanel

Fig. 13.2Fig. 13.2Fig. 13.2Fig. 13.2 Defining a custom drawing area by subclassing JPanel.

728 Graphical User Interface Components: Part 2 Chapter 13

Class CustomPanelTest (Fig. 13.3) instantiates a CustomPanel object (line 22
of its constructor) and sets its background color to green, so the CustomPanel area is vis-
ible on the application. Next, the constructor instantiates JButton objects square-
Button and circleButton. Lines 27–40 register an event handler for
squareButton’s ActionEvent. Lines 43–56 register an event handler for cir-
cleButton’s ActionEvent. Lines 35 and 51 each call CustomPanel method
draw. In each case, the appropriate constant (CustomPanel.SQUARE or Custom-
Panel.CIRCLE) is passed as an argument to indicate which shape to draw.

1 // Fig. 13.3: CustomPanelTest.java
2 // Using a customized Panel object.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class CustomPanelTest extends JFrame {
12 private JPanel buttonPanel;
13 private CustomPanel myPanel;
14 private JButton circleButton, squareButton;
15
16 // set up GUI
17 public CustomPanelTest()
18 {
19 super("CustomPanel Test");
20
21 // create custom drawing area
22 myPanel = new CustomPanel();
23 myPanel.setBackground(Color.green);
24
25 // set up squareButton
26 squareButton = new JButton("Square");
27 squareButton.addActionListener(
28
29 // anonymous inner class to handle squareButton events
30 new ActionListener() {
31
32 // draw a square
33 public void actionPerformed(ActionEvent event)
34 {
35 myPanel.draw(CustomPanel.SQUARE);
36 }
37
38 } // end anonymous inner class
39
40); // end call to addActionListener
41
42 circleButton = new JButton("Circle");

Fig. 13.3Fig. 13.3Fig. 13.3Fig. 13.3 Drawing on a customized subclass of class JPanel (part 1 of 2).

Chapter 13 Graphical User Interface Components: Part 2 729

For layout of the buttons, CustomPanelTest creates JPanel buttonPanel
with a GridLayout of one row and two columns (lines 59–60), then attaches the buttons
to the panel (lines 61–62). Finally, CustomPanelTest adds myPanel to the CENTER

43 circleButton.addActionListener(
44
45 // anonymous inner class to handle circleButton events
46 new ActionListener() {
47
48 // draw a circle
49 public void actionPerformed(ActionEvent event)
50 {
51 myPanel.draw(CustomPanel.CIRCLE);
52 }
53
54 } // end anonymous inner class
55
56); // end call to addActionListener
57
58 // set up panel containing buttons
59 buttonPanel = new JPanel();
60 buttonPanel.setLayout(new GridLayout(1, 2));
61 buttonPanel.add(circleButton);
62 buttonPanel.add(squareButton);
63
64 // attach button panel & custom drawing area to content pane
65 Container container = getContentPane();
66 container.add(myPanel, BorderLayout.CENTER);
67 container.add(buttonPanel, BorderLayout.SOUTH);
68
69 setSize(300, 150);
70 setVisible(true);
71 }
72
73 // execute application
74 public static void main(String args[])
75 {
76 CustomPanelTest application = new CustomPanelTest();
77
78 application.setDefaultCloseOperation(
79 JFrame.EXIT_ON_CLOSE);
80 }
81
82 } // end class CustomPanelTest

Fig. 13.3Fig. 13.3Fig. 13.3Fig. 13.3 Drawing on a customized subclass of class JPanel (part 2 of 2).

730 Graphical User Interface Components: Part 2 Chapter 13

region of the content pane and adds buttonPanel to the SOUTH region of the content
pane. Note that the BorderLayout expands myPanel to fill the center region.

13.4 Creating a Self-Contained Subclass of JPanel
JPanels do not support conventional events supported by other GUI components, like but-
tons, text fields and windows. However, JPanels are capable of recognizing such lower-
level events as mouse events and key events. The program of Fig. 13.4 and Fig. 13.5 allows
the user to draw an oval on a subclass of JPanel by dragging the mouse across the panel.
Class SelfContainedPanel (Fig. 13.4) listens for its own mouse events and draws an
oval on itself in response to those mouse events. The location and size of the oval are deter-
mined from the coordinates of the mouse events. The coordinates at which the user presses
the mouse button specify the starting point for the oval’s bounding box. As the user drags the
mouse, the coordinates of the mouse pointer specify another point. Together, the program
uses these points to calculate the upper-left x-y coordinate, the width and the height of the
oval’s bounding box. The size of the oval changes continuously while the user drags the
mouse. When the user releases the mouse button, the program calculates the final bounding
box for the oval and draws the oval. Line 4 of Fig. 13.4 indicates that class SelfCon-
tainedPanel is in package com.deitel.jhtp4.ch13 for future reuse. Class Self-
ContainedPanelTest imports SelfContainedPanel at line 13 of Fig. 13.5.

1 // Fig. 13.4: SelfContainedPanel.java
2 // A self-contained JPanel class that
3 // handles its own mouse events.
4 package com.deitel.jhtp4.ch13;
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class SelfContainedPanel extends JPanel {
14 private int x1, y1, x2, y2;
15
16 // set up mouse event handling for SelfContainedPanel
17 public SelfContainedPanel()
18 {
19 // set up mouse listener
20 addMouseListener(
21
22 // anonymous inner class for mouse pressed and
23 // released event handling
24 new MouseAdapter() {
25
26 // handle mouse press event
27 public void mousePressed(MouseEvent event)
28 {
29 x1 = event.getX();

Fig. 13.4Fig. 13.4Fig. 13.4Fig. 13.4 Customized subclass of JPanel that processes mouse events (part 1 of 2).

Chapter 13 Graphical User Interface Components: Part 2 731

30 y1 = event.getY();
31 }
32
33 // handle mouse release event
34 public void mouseReleased(MouseEvent event)
35 {
36 x2 = event.getX();
37 y2 = event.getY();
38 repaint();
39 }
40
41 } // end anonymous inner class
42
43); // end call to addMouseListener
44
45 // set up mouse motion listener
46 addMouseMotionListener(
47
48 // anonymous inner class to handle mouse drag events
49 new MouseMotionAdapter() {
50
51 // handle mouse drag event
52 public void mouseDragged(MouseEvent event)
53 {
54 x2 = event.getX();
55 y2 = event.getY();
56 repaint();
57 }
58
59 } // end anonymous inner class
60
61); // end call to addMouseMotionListener
62
63 } // end constructor
64
65 // return preferred width and height of SelfContainedPanel
66 public Dimension getPreferredSize()
67 {
68 return new Dimension(150, 100);
69 }
70
71 // paint an oval at the specified coordinates
72 public void paintComponent(Graphics g)
73 {
74 super.paintComponent(g);
75
76 g.drawOval(Math.min(x1, x2), Math.min(y1, y2),
77 Math.abs(x1 - x2), Math.abs(y1 - y2));
78 }
79
80 } // end class SelfContainedPanel

Fig. 13.4Fig. 13.4Fig. 13.4Fig. 13.4 Customized subclass of JPanel that processes mouse events (part 2 of 2).

732 Graphical User Interface Components: Part 2 Chapter 13

Class SelfContainedPanel (Fig. 13.4) extends class JPanel. Instance vari-
ables x1 and y1 store the initial coordinates where the mousePressed event occurs on
the SelfContainedPanel. Instance variables x2 and y2 store the coordinates where
the user drags the mouse or releases the mouse button. All the coordinates are with respect
to the upper-left corner of the SelfContainedPanel.

Look-and-Feel Observation 13.6
Drawing on any GUI component is performed with coordinates that are measured from the
upper-left corner (0, 0) of that GUI component. 13.6

The SelfContainedPanel constructor (lines 17–63) uses methods
addMouseListener and addMouseMotionListener to register anonymous
inner-class objects to handle mouse events and mouse motion events for the SelfCon-
tainedPanel. Only mousePressed (lines 27–31), mouseReleased (lines 34–39)
and mouseDragged (lines 52–57) are overridden to perform tasks. The other mouse
event-handling methods are inherited by the anonymous inner classes from the adapter
classes MouseAdapter and MouseMotionAdapter.

By extending class JPanel, we are actually creating a new GUI component. Layout
managers often use a GUI component’s getPreferredSize method (inherited from
class java.awt.Component) to determine the preferred width and height of a compo-
nent when laying out that component as part of a GUI. If a new component has a preferred
width and height, it should override method getPreferredSize (lines 66–69) to return
that width and height as an object of class Dimension (package java.awt).

Look-and-Feel Observation 13.7
The default size of a JPanel object is 10 pixels wide and 10 pixels tall. 13.7

Look-and-Feel Observation 13.8
When subclassing JPanel (or any other JComponent), override method getPre-
ferredSize if the new component should have a specific preferred width and height. 13.8

Method paintComponent (lines 72–78) draws an oval, using the current values of
instance variables x1, y1, x2 and y2. The width, height and upper-left corner are deter-
mined by the pressing and holding of the mouse button, the dragging of the mouse and
releasingof the mouse button on the SelfContainedPanel drawing area.

The initial coordinates x1 and y1 on the SelfContainedPanel drawing area are
captured in method mousePressed (lines 27–31). As the user drags the mouse after the
initial mousePressed operation, the program generates a series of calls to mouse-
Dragged (lines 52–57) while the user continues to hold the mouse button and move the
mouse. Each call captures in variables x2 and y2 the current location of the mouse with
respect to the upper-left corner of the SelfContainedPanel and calls repaint to
draw the current version of the oval. Drawing is strictly confined to the SelfCon-
tainedPanel, even if the user drags outside the SelfContainedPanel drawing
area. Anything drawn off the SelfContainedPanel is clipped—pixels are not dis-
played outside the bounds of the SelfContainedPanel.

The calculations provided in method paintComponent determine the proper upper-
left corner, using method Math.min twice to find the smaller x coordinate and y coordi-
nate. The oval’s width and height must be positive values or the oval is not displayed.

Chapter 13 Graphical User Interface Components: Part 2 733

Method Math.abs gets the absolute value of the subtractions x1 - x2 and y1 - y2 that
determine the width and height of the oval’s bounding rectangle, respectively. When the
calculations are complete, paintComponent draws the oval. The call to the superclass
version of paintComponent at the beginning of the method guarantees that the previous
oval displayed on the SelfContainedPanel is erased before the new one is displayed.

Look-and-Feel Observation 13.9
Most Swing GUI components can be transparent or opaque. If a Swing GUI component is
opaque, when its paintComponent method is called, its background will be cleared. Oth-
erwise, its background will not be cleared. Only opaque components can display a custom-
ized background color. 13.9

Look-and-Feel Observation 13.10
JPanel objects are opaque by default. 13.10

When the user releases the mouse button, method mouseReleased (lines 34–39)
captures in variables x2 and y2 the final location of the mouse and invokes repaint to
draw the final version of the oval.

Class SelfContainedPanelTest’s constructor (lines 21–57 of Fig. 13.5) creates
an instance of class SelfContainedPanel (line 24) and sets the background color (line
25) of the SelfContainedPanel to yellow so that its area is visible against the back-
ground of the application window.

1 // Fig. 13.5: SelfContainedPanelTest.java
2 // Creating a self-contained subclass of JPanel
3 // that processes its own mouse events.
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 // Deitel packages
13 import com.deitel.jhtp4.ch13.SelfContainedPanel;
14
15 public class SelfContainedPanelTest extends JFrame {
16 private SelfContainedPanel myPanel;
17
18
19 // set up GUI and mouse motion event handlers for
20 // application window
21 public SelfContainedPanelTest()
22 {
23 // set up a SelfContainedPanel
24 myPanel = new SelfContainedPanel();
25 myPanel.setBackground(Color.yellow);
26
27 Container container = getContentPane();

Fig. 13.5Fig. 13.5Fig. 13.5Fig. 13.5 Capturing mouse events with a JPanel (part 1 of 3).

734 Graphical User Interface Components: Part 2 Chapter 13

28 container.setLayout(new FlowLayout());
29 container.add(myPanel);
30
31 // set up mouse motion event handling
32 addMouseMotionListener(
33
34 // anonymous inner class for mouse motion event handling
35 new MouseMotionListener() {
36
37 // handle mouse drag event
38 public void mouseDragged(MouseEvent event)
39 {
40 setTitle("Dragging: x=" + event.getX() +
41 "; y=" + event.getY());
42 }
43
44 // handle mouse move event
45 public void mouseMoved(MouseEvent event)
46 {
47 setTitle("Moving: x=" + event.getX() +
48 "; y=" + event.getY());
49 }
50
51 } // end anonymous inner class
52
53); // end call to addMouseMotionListener
54
55 setSize(300, 200);
56 setVisible(true);
57 }
58
59 // execute application
60 public static void main(String args[])
61 {
62 SelfContainedPanelTest application =
63 new SelfContainedPanelTest();
64
65 application.setDefaultCloseOperation(
66 JFrame.EXIT_ON_CLOSE);
67 }
68
69 } // end class SelfContainedPanelTest

Fig. 13.5Fig. 13.5Fig. 13.5Fig. 13.5 Capturing mouse events with a JPanel (part 2 of 3).

Chapter 13 Graphical User Interface Components: Part 2 735

We would like this program to distinguish between mouse motion events on the
SelfContainedPanel and mouse motion events on the application window, so lines
32–53 register an object of an anonymous inner class to handle the application’s mouse
motion events. Event handlers mouseDragged (lines 38–42) and mouseMoved (lines
45–49) use method setTitle (inherited from class java.awt.Frame) to display a
String in the window’s title bar indicating the x-y coordinate where the mouse motion
event occurred.

When executing this program, try dragging from the background of the application
window into the SelfContainedPanel area to see that the drag events are sent to the
application window rather than the SelfContainedPanel. Then, start a new drag
operation in the SelfContainedPanel area and drag out to the background of the
application window to see that the drag events are sent to the SelfContainedPanel
rather than to the application window.

Look-and-Feel Observation 13.11
A mouse drag operation begins with a mouse-pressed event. All subsequent mouse drag
events (until the user releases the mouse button) are sent to the GUI component that received
the original mouse-pressed event. 13.11

13.5 JSlider
JSliders enable the user to select from a range of integer values. Class JSlider inher-
its from JComponent. Figure 13.6 shows a horizontal JSlider with tick marks and the
thumb that allows the user to select a value. JSliders are highly customizable in that they
can display major tick marks, minor tick marks and labels for the tick marks. They also sup-
port snap-to ticks where positioning the thumb between two tick marks causes the thumb
to snap to the closest tick mark.

Fig. 13.5Fig. 13.5Fig. 13.5Fig. 13.5 Capturing mouse events with a JPanel (part 3 of 3).

Fig. 13.6Fig. 13.6Fig. 13.6Fig. 13.6 Horizontal JSlider component.

thumb tick mark

736 Graphical User Interface Components: Part 2 Chapter 13

Most Swing GUI components support user interactions through the mouse and the key-
board. For example, if a JSlider has the focus (i.e., it is the currently selected GUI com-
ponent in the user interface), the left arrow key and right arrow key cause the thumb of the
JSlider to decrease or increase by 1, respectively. The down arrow key and up arrow
key also cause the thumb of the JSlider to decrease or increase by 1, respectively. The
PgDn key (page down) and PgUp key (page up) cause the thumb of the JSlider to
decrease or increase by block increments of one-tenth of the range of values, respectively.
The Home key moves the thumb to the minimum value of the JSlider and the End key
moves the thumb to the maximum value of the JSlider.

Look-and-Feel Observation 13.12
Most Swing components support user interactions through the mouse and the keyboard. 13.12

JSliders have either a horizontal orientation or a vertical orientation. For a hori-
zontal JSlider, the minimum value is at the extreme left and the maximum value is at
the extreme right of the JSlider. For a vertical JSlider, the minimum value is at the
extreme bottom and the maximum value is at the extreme top of the JSlider. The relative
position of the thumb indicates the current value of the JSlider.

Look-and-Feel Observation 13.13
The minimum and maximum value positions on a JSlider can be switched by calling the
JSlider method setInverted with boolean argument true. 13.13

The program of Fig. 13.7 and Fig. 13.8 allows the user to size a circle drawn on a sub-
class of JPanel called OvalPanel (Fig. 13.7). The user specifies the diameter of the
circle with a horizontal JSlider. Application class SliderDemo (Fig. 13.8) creates the
JSlider that controls the diameter of the circle. Class OvalPanel is a subclass of
JPanel that knows how to draw a circle on itself, using its own instance variable diam-
eter to determine the diameter of the circle—the diameter is used as the width and
height of the bounding box in which the circle is displayed. The diameter value is set
when the user interacts with the JSlider. The event handler calls method setDiam-
eter in class OvalPanel to set the diameter and calls repaint to draw the new
circle. The repaint call results in a call to OvalPanel’s paintComponent method.

Class OvalPanel (Fig. 13.7) contains a paintComponent method (lines 14–19)
that draws a filled oval (a circle in this example), a setDiameter method (lines 22–28)
that changes the diameter of the circle and repaints the OvalPanel, a getPre-
ferredSize method (lines 31–34) that defines the preferred width and height of an
OvalPanel and a getMinimumSize method (lines 37–40) that defines the minimum
width and height of an OvalPanel.

Look-and-Feel Observation 13.14
If a new GUI component has a minimum width and height (i.e., smaller dimensions would
render the component ineffective on the display), override method getMinimumSize to
return the minimum width and height as an instance of class Dimension. 13.14

Look-and-Feel Observation 13.15
For many GUI components, method getMinimumSize is defined to return the result of a
call to that component’s getPreferredSize method. 13.15

Chapter 13 Graphical User Interface Components: Part 2 737

Class SliderDemo’s constructor (lines 17–54 of Fig. 13.8) instantiates Oval-
Panel object myPanel and sets its background color (lines 22–23). Lines 26–27 instan-
tiate JSlider object diameterSlider to control the diameter of the circle drawn on
the OvalPanel. The orientation of diameterSlider is HORIZONTAL (a constant in
interface SwingConstants). The second and third constructor arguments to the
JSlider constructor indicate the minimum and maximum integer values in the range of
values for this JSlider. The last constructor argument indicates that the initial value of
the JSlider (i.e., where the thumb is displayed) should be 10.

1 // Fig. 13.7: OvalPanel.java
2 // A customized JPanel class.
3
4 // Java core packages
5 import java.awt.*;
6
7 // Java extension packages
8 import javax.swing.*;
9

10 public class OvalPanel extends JPanel {
11 private int diameter = 10;
12
13 // draw an oval of the specified diameter
14 public void paintComponent(Graphics g)
15 {
16 super.paintComponent(g);
17
18 g.fillOval(10, 10, diameter, diameter);
19 }
20
21 // validate and set diameter, then repaint
22 public void setDiameter(int newDiameter)
23 {
24 // if diameter invalid, default to 10
25 diameter = (newDiameter >= 0 ? newDiameter : 10);
26
27 repaint();
28 }
29
30 // used by layout manager to determine preferred size
31 public Dimension getPreferredSize()
32 {
33 return new Dimension(200, 200);
34 }
35
36 // used by layout manager to determine minimum size
37 public Dimension getMinimumSize()
38 {
39 return getPreferredSize();
40 }
41
42 } // end class OvalPanel

Fig. 13.7Fig. 13.7Fig. 13.7Fig. 13.7 Custom subclass of JPanel for drawing circles of a specified diameter.

738 Graphical User Interface Components: Part 2 Chapter 13

1 // Fig. 13.8: SliderDemo.java
2 // Using JSliders to size an oval.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10 import javax.swing.event.*;
11
12 public class SliderDemo extends JFrame {
13 private JSlider diameterSlider;
14 private OvalPanel myPanel;
15
16 // set up GUI
17 public SliderDemo()
18 {
19 super("Slider Demo");
20
21 // set up OvalPanel
22 myPanel = new OvalPanel();
23 myPanel.setBackground(Color.yellow);
24
25 // set up JSlider to control diameter value
26 diameterSlider =
27 new JSlider(SwingConstants.HORIZONTAL, 0, 200, 10);
28 diameterSlider.setMajorTickSpacing(10);
29 diameterSlider.setPaintTicks(true);
30
31 // register JSlider event listener
32 diameterSlider.addChangeListener(
33
34 // anonymous inner class to handle JSlider events
35 new ChangeListener() {
36
37 // handle change in slider value
38 public void stateChanged(ChangeEvent e)
39 {
40 myPanel.setDiameter(diameterSlider.getValue());
41 }
42
43 } // end anonymous inner class
44
45); // end call to addChangeListener
46
47 // attach components to content pane
48 Container container = getContentPane();
49 container.add(diameterSlider, BorderLayout.SOUTH);
50 container.add(myPanel, BorderLayout.CENTER);
51
52 setSize(220, 270);

Fig. 13.8Fig. 13.8Fig. 13.8Fig. 13.8 Using a JSlider to determine the diameter of a circle (part 1 of 2).

Chapter 13 Graphical User Interface Components: Part 2 739

Lines 28–29 customize the appearance of the JSlider. Method setMajorTick-
Spacing indicates that each tick mark represents 10 values in the range of values sup-
ported by the JSlider. Method setPaintTicks with a true argument indicates that
the tick marks should be displayed (they are not displayed by default). See the JSlider
on-line documentation for more information on methods that are used to customize a
JSlider’s appearance.

JSliders generate ChangeEvents (package javax.swing.event) when the
user interacts with a JSlider. An object of a class that implements interface Change-
Listener (package javax.swing.event) and defines method stateChanged
can respond to ChangeEvents. Lines 32–45 register an object of an anonymous inner
class that implements ChangeListener to handle diameterSlider’s events. When
method stateChanged is called in response to a user interaction, it calls myPanel’s
setDiameter method and passes the current value of the JSlider as an argument.
Method getValue of class JSlider returns the current thumb position.

13.6 Windows
From Chapter 9 to this chapter, most applications have used an instance of a subclass of
JFrame as the application window. In this section, we discuss several important issues re-
garding JFrames.

53 setVisible(true);
54 }
55
56 // execute application
57 public static void main(String args[])
58 {
59 SliderDemo application = new SliderDemo();
60
61 application.setDefaultCloseOperation(
62 JFrame.EXIT_ON_CLOSE);
63 }
64
65 } // end class SliderDemo

Fig. 13.8Fig. 13.8Fig. 13.8Fig. 13.8 Using a JSlider to determine the diameter of a circle (part 2 of 2).

740 Graphical User Interface Components: Part 2 Chapter 13

A JFrame is a window with a title bar and a border. Class JFrame is a subclass of
java.awt.Frame (which is a subclass of java.awt.Window). As such, JFrame is
one of the few Swing GUI components that is not a lightweight GUI component. Unlike
most Swing components, JFrame is not written completely in Java. In fact, when you dis-
play a window from a Java program, the window is provided by the local platform’s set of
GUI components—the window will look like all other windows displayed on that platform.
When a Java program executes on a Macintosh and displays a window, the window’s title
bar and borders will look like other Macintosh applications. When a Java program executes
on Microsoft Windows and displays a window, the window’s title bar and borders will look
like other Microsoft Windows applications. And when a Java program executes on a Unix
platform and displays a window, the window’s title bar and borders will look like other
Unix applications on that platform.

Class JFrame supports three operations when the user closes the window. By default,
a window is hidden (i.e., removed from the screen) when the user closes a window. This
can be controlled with JFrame method setDefaultCloseOperation. Interface
WindowConstants (package javax.swing) defines three constants for use with this
method—DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE and HIDE_ON_CLOSE
(the default). Most platforms only allow a limited number of windows to be displayed on
the screen. As such, a window is a valuable resource that should be given back to the system
when it is no longer needed. Class Window (an indirect superclass of JFrame) defines
method dispose for this purpose. When a Window is no longer needed in an application,
you should explicitly dispose of the Window. This can be done by calling the Window’s
dispose method or by calling method setDefaultCloseOperation with the argu-
ment WindowConstants.DISPOSE_ON_CLOSE. Also, terminating an application
will return window resources to the system. Setting the default close operation to
DO_NOTHING_ON_CLOSE indicates that you will determine what to do when the user
indicates that the window should be closed.

Software Engineering Observation 13.1
Windows are a valuable system resource that should be returned to the system when they are
no longer needed. 13.1

By default, a window is not displayed on the screen until the program invokes the
window’s setVisible method (inherited from class java.awt.Component) with a
true argument or invokes the window’s show method, which takes no arguments. Also,
a window’s size should be set with a call to method setSize (inherited from class
java.awt.Component). The position of a window when it appears on the screen is
specified with method setLocation (inherited from class java.awt.Component).

Common Programming Error 13.3
Forgetting to call method show or method setVisible on a window is a run-time logic
error; the window is not displayed. 13.3

Common Programming Error 13.4
Forgetting to call the setSize method on a window is a run-time logic error—only the title
bar appears. 13.4

All windows generate window events when the user manipulates the window. Event
listeners are registered for window events with method addWindowListener of class

Chapter 13 Graphical User Interface Components: Part 2 741

Window. Interface WindowListener (implemented by window event listeners) pro-
vides seven methods for handling window events—windowActivated (called when the
user makes a window the active window), windowClosed (called after the window is
closed), windowClosing (called when the user initiates closing of the window), win-
dowDeactivated (called when the user makes another window the active window),
windowIconified (called when the user minimizes a window), windowDeiconi-
fied (called when the user restores a window from being minimized) and win-
dowOpened (called when a program first displays a window on the screen).

Most windows have an icon at the top-left or top-right corner that enables a user to
close the window and terminate a program. Most windows also have an icon in the upper-
left corner of the window that displays a menu when the user clicks the icon. This menu
normally contains a Close option to close the window and several other options for manip-
ulating the window.

13.7 Designing Programs that Execute as Applets or
Applications
It is sometimes desirable to design a Java program that can execute both as a stand-alone
application and as an applet in a Web browser. Such a program can be used to provide the
same functionality to users worldwide by making the applet available for download via
Web and can be installed on a computer as a stand-alone application. The next example dis-
cusses how to create a small program that can execute both as an applet and as an applica-
tion. [Note: In Chapter 16 and Chapter 17, we discuss several issues that make applets
different from applications and security restrictions placed on applets that prevent certain
application features from working in an applet.]

Frequently, programs use JFrames to create GUI-based applications. The JFrame
provides the space in which the application GUI appears. When the user closes the
JFrame, the application terminates. In this section, we demonstrate how to convert an
applet into a GUI-based application. The program of Fig. 13.9 presents an applet that also
can be executed as an application.

Software Engineering Observation 13.2
When designing a program to execute as both an applet and an application, begin by defining
it as an applet, because applets have limitations due to security restrictions imposed on them
by Web browsers. If the program executes properly as an applet, it can be made to work
properly as an application. However, the reverse is not always true. 13.2

Our applet class DrawShapes presents the user with three buttons which, when
pressed, cause an instance of class DrawPanel (lines 121–126) to draw a random line, rect-
angle or oval (depending on which button is pressed). The applet does not contain any new
features as far as GUI components, layouts or drawing are concerned. The only new feature
is that the DrawShapes class now also contains a main method (lines 60–99) that can be
used to execute the program as an application. We discuss this method in detail below.

The HTML document that loads the applet into the appletviewer or a Web
browser specifies the applet’s width and height as 300 and 200, respectively. When the pro-
gram executes as an application with the java interpreter, you can supply arguments to the
program (called command-line arguments) that specify the width and height of the appli-
cation window. For example, the command

742 Graphical User Interface Components: Part 2 Chapter 13

java DrawShapes 600 400

contains two command-line arguments—600 and 400—that specify the width and height
of the application window. Java passes the command-line arguments to main as the array
of Strings called args, which we have declared in the parameter list of every applica-
tion’s main method, but not used until this point. The first argument after the application
class name is the first String in the array args, and the length of the array is the total
number of command-line arguments. Line 60 begins the definition of main and declares
array args as an array of Strings that allows the application to access the command-line
arguments. Line 62 defines variables width and height that are used to specify the size
of the application window.

1 // Fig. 13.9: DrawShapes\.java
2 // Draw random lines, rectangles and ovals
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class DrawShapes extends JApplet {
12 private JButton choices[];
13 private String names[] = { "Line", "Rectangle", "Oval" };
14 private JPanel buttonPanel;
15 private DrawPanel drawingPanel;
16 private int width = 300, height = 200;
17
18 // initialize applet; set up GUI
19 public void init()
20 {
21 // set up DrawPanel
22 drawingPanel = new DrawPanel(width, height);
23
24 // create array of buttons
25 choices = new JButton[names.length];
26
27 // set up panel for buttons
28 buttonPanel = new JPanel();
29 buttonPanel.setLayout(
30 new GridLayout(1, choices.length));
31
32 // set up buttons and register their listeners
33 ButtonHandler handler = new ButtonHandler();
34
35 for (int count = 0; count < choices.length; count++) {
36 choices[count] = new JButton(names[count]);
37 buttonPanel.add(choices[count]);
38 choices[count].addActionListener(handler);
39 }

Fig. 13.9Fig. 13.9Fig. 13.9Fig. 13.9 Creating a GUI-based application from an applet (part 1 of 4).

Chapter 13 Graphical User Interface Components: Part 2 743

40
41 // attach components to content pane
42 Container container = getContentPane();
43 container.add(buttonPanel, BorderLayout.NORTH);
44 container.add(drawingPanel, BorderLayout.CENTER);
45 }
46
47 // enables application to specify width of drawing area
48 public void setWidth(int newWidth)
49 {
50 width = (newWidth >= 0 ? newWidth : 300);
51 }
52
53 // enables application to specify height of drawing area
54 public void setHeight(int newHeight)
55 {
56 height = (newHeight >= 0 ? newHeight : 200);
57 }
58
59 // execute applet as an application
60 public static void main(String args[])
61 {
62 int width, height;
63
64 // check for command-line arguments
65 if (args.length != 2) {
66 width = 300;
67 height = 200;
68 }
69 else {
70 width = Integer.parseInt(args[0]);
71 height = Integer.parseInt(args[1]);
72 }
73
74 // create window in which applet will execute
75 JFrame applicationWindow =
76 new JFrame("An applet running as an application");
77
78 applicationWindow.setDefaultCloseOperation(
79 JFrame.EXIT_ON_CLOSE);
80
81 // create one applet instance
82 DrawShapes appletObject = new DrawShapes();
83 appletObject.setWidth(width);
84 appletObject.setHeight(height);
85
86 // call applet's init and start methods
87 appletObject.init();
88 appletObject.start();
89
90 // attach applet to center of window
91 applicationWindow.getContentPane().add(appletObject);
92

Fig. 13.9Fig. 13.9Fig. 13.9Fig. 13.9 Creating a GUI-based application from an applet (part 2 of 4).

744 Graphical User Interface Components: Part 2 Chapter 13

93 // set the window's size
94 applicationWindow.setSize(width, height);
95
96 // showing the window causes all GUI components
97 // attached to the window to be painted
98 applicationWindow.setVisible(true);
99 }
100
101 // private inner class to handle button events
102 private class ButtonHandler implements ActionListener {
103
104 // determine button user pressed and set drawing area's
105 // current choice
106 public void actionPerformed(ActionEvent event)
107 {
108 for (int count = 0; count < choices.length; count++)
109
110 if (event.getSource() == choices[count]) {
111 drawingPanel.setCurrentChoice(count);
112 break;
113 }
114 }
115
116 } // end private inner class ButtonHandler
117
118 } // end class DrawShapes
119
120 // subclass of JPanel to allow drawing in a separate area
121 class DrawPanel extends JPanel {
122 private int currentChoice = -1; // don't draw first time
123 private int width = 100, height = 100;
124
125 // initialize width and height of DrawPanel
126 public DrawPanel(int newWidth, int newHeight)
127 {
128 width = (newWidth >= 0 ? newWidth : 100);
129 height = (newHeight >= 0 ? newHeight : 100);
130 }
131
132 // draw line, rectangle or oval based on user's choice
133 public void paintComponent(Graphics g)
134 {
135 super.paintComponent(g);
136
137 switch(currentChoice) {
138
139 case 0:
140 g.drawLine(randomX(), randomY(),
141 randomX(), randomY());
142 break;
143

Fig. 13.9Fig. 13.9Fig. 13.9Fig. 13.9 Creating a GUI-based application from an applet (part 3 of 4).

Chapter 13 Graphical User Interface Components: Part 2 745

Lines 65–72 determine the initial width and height of the application window. The if
condition determines the length of array args. If the number of elements is not 2, the width
and height are set to 300 and 200 by default. Otherwise, lines 70–71 convert the command-
line arguments from Strings to int values with parseInt and use them as the width

144 case 1:
145 g.drawRect(randomX(), randomY(),
146 randomX(), randomY());
147 break;
148
149 case 2:
150 g.drawOval(randomX(), randomY(),
151 randomX(), randomY());
152 break;
153 }
154
155 } // end method paintComponent
156
157 // specify current shape choice and repaint
158 public void setCurrentChoice(int choice)
159 {
160 currentChoice = choice;
161 repaint();
162 }
163
164 // pick random x coordinate
165 private int randomX()
166 {
167 return (int) (Math.random() * width);
168 }
169
170 // pick random y coordinate
171 private int randomY()
172 {
173 return (int) (Math.random() * height);
174 }
175
176 } // end class DrawPanel

Fig. 13.9Fig. 13.9Fig. 13.9Fig. 13.9 Creating a GUI-based application from an applet (part 4 of 4).

746 Graphical User Interface Components: Part 2 Chapter 13

and height. [Note: This program assumes that the user inputs whole-number values for the
command-line arguments; if not, an exception will occur. In Chapter 14, we discuss how to
make our programs more robust by dealing with improper values when they occur.]

When an applet executes, the window in which it executes is supplied by the applet con-
tainer (i.e., the appletviewer or browser). When a program executes as an application,
the application must create its own window (if one is required). Lines 75–76 create the
JFrame to which the program will attach the applet. As with any JFrame that is used as the
application’s primary window, you should provide a mechanism to terminate the application.
Lines 78–79 specify that the application should terminate when the user closes the window.

Software Engineering Observation 13.3
To execute an applet as an application, the application must provide a window in which the
applet can be displayed. 13.3

When an applet executes in an applet container, the container creates one object of the
applet class to execute the applet’s tasks. In an application, objects are not created unless
the application explicitly contains statements that create objects. Line 82 defines one
instance of applet class DrawShapes. Notice the call to the no-argument constructor. We
did not define a constructor in class DrawShapes (applet classes typically do not define
constructors). Remember that the compiler provides a default constructor for a class that
does not define any constructors. Lines 83–84 call DrawShapes methods setWidth
and setHeight to validate the values for width and height (improper values are set
to 300 and 200, respectively).

Software Engineering Observation 13.4
To execute an applet as an application, the application must create an instance of the applet
class to execute. 13.4

When an applet executes in an applet container, the container guarantees that methods
init, start and paint will be called to begin the applet’s execution. However, these
methods are not special to an application. Method init and start are not invoked auto-
matically or required by an application. (Method paint is part of any window and will be
called when it is necessary to repaint the window.) Lines 87–88 invoke appletObject’s
init method to initialize the applet and set up its GUI, then invoke method start. [Note:
In our example, we did not override method start. It is called here to mimic the start-up
sequence normally followed for an applet.]

Software Engineering Observation 13.5
When executing an applet as an application, the application must call init and start ex-
plicitly to simulate the normal applet start-up sequence of method calls. 13.5

When an applet executes in an applet container, the applet is normally attached to the
applet container’s window. An application must explicitly attach an applet object to the
application window. Line 91 obtains a reference to the applicationWindow’s content
pane and adds the appletObject to the default CENTER of the content pane’s Bor-
derLayout. The appletObject will occupy the entire window.

Software Engineering Observation 13.6
When one is executing an applet as an application, the application must attach the applet ob-
ject to its window. 13.6

Chapter 13 Graphical User Interface Components: Part 2 747

Finally, the application window must be sized and displayed on the screen. Line 94 sets
the application window’s size, and line 98 displays the window. When a Java program dis-
plays any window, all the components attached to the window receive calls to their paint
methods (if they are heavyweight components) or their paintComponent methods (if
they are lightweight components). Thus, displaying the application window results in a call
to the applet’s paint method to complete the normal start-up sequence for the applet.

Try executing this program as an applet and as an application to see that it has the same
functionality when executed.

13.8 Using Menus with Frames
Menus are an integral part of GUIs. Menus allow the user to perform actions without un-
necessarily “cluttering” a graphical user interface with extra GUI components. In Swing
GUIs, menus can be attached only to objects of the classes that provide method setJ-
MenuBar. Two such classes are JFrame and JApplet. The classes used to define
menus are JMenuBar, JMenuItem, JMenu, JCheckBoxMenuItem and class JRa-
dioButtonMenuItem.

Look-and-Feel Observation 13.16
Menus simplify GUIs by reducing the number of components the user views. 13.16

Class JMenuBar (a subclass of JComponent) contains the methods necessary to
manage a menu bar, which is a container for menus.

Class JMenuItem (a subclass of javax.swing.AbstractButton) contains
the methods necessary to manage menu items. A menu item is a GUI component inside a
menu that, when selected, causes an action to be performed. A menu item can be used to
initiate an action or it can be a submenu that provides more menu items from which the user
can select. Submenus are useful for grouping related menu items in a menu.

Class JMenu (a subclass of javax.swing.JMenuItem) contains the methods
necessary for managing menus. Menus contain menu items and are added to menu bars or
to other menus as submenus. When a menu is clicked, the menu expands to show its list of
menu items. Clicking a menu item generates an action event.

Class JCheckBoxMenuItem (a subclass of javax.swing.JMenuItem) contains
the methods necessary to manage menu items that can be toggled on or off. When a
JCheckBoxMenuItem is selected, a check appears to the left of the menu item. When the
JCheckBoxMenuItem is selected again, the check to the left of the menu item is removed.

Class JRadioButtonMenuItem (a subclass of javax.swing.JMenuItem)
contains the methods necessary to manage menu items that can be toggled on or off like
JCheckBoxMenuItems. When multiple JRadioButtonMenuItems are maintained
as part of a ButtonGroup, only one item in the group can be selected at a given time.
When a JRadioButtonMenuItem is selected, a filled circle appears to the left of the
menu item. When another JRadioButtonMenuItem is selected, the filled circle to the
left of the previously selected menu item is removed.

The application of Fig. 13.10 demonstrates various types of menu items. The program
also demonstrates how to specify special characters called mnemonics that can provide
quick access to a menu or menu item from the keyboard. Mnemonics can be used with
objects of all classes that have subclass javax.swing.AbstractButton.

748 Graphical User Interface Components: Part 2 Chapter 13

1 // Fig. 13.10: MenuTest.java
2 // Demonstrating menus
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class MenuTest extends JFrame {
12 private Color colorValues[] =
13 { Color.black, Color.blue, Color.red, Color.green };
14
15 private JRadioButtonMenuItem colorItems[], fonts[];
16 private JCheckBoxMenuItem styleItems[];
17 private JLabel displayLabel;
18 private ButtonGroup fontGroup, colorGroup;
19 private int style;
20
21 // set up GUI
22 public MenuTest()
23 {
24 super("Using JMenus");
25
26 // set up File menu and its menu items
27 JMenu fileMenu = new JMenu("File");
28 fileMenu.setMnemonic('F');
29
30 // set up About... menu item
31 JMenuItem aboutItem = new JMenuItem("About...");
32 aboutItem.setMnemonic('A');
33
34 aboutItem.addActionListener(
35
36 // anonymous inner class to handle menu item event
37 new ActionListener() {
38
39 // display message dialog when user selects About...
40 public void actionPerformed(ActionEvent event)
41 {
42 JOptionPane.showMessageDialog(MenuTest.this,
43 "This is an example\nof using menus",
44 "About", JOptionPane.PLAIN_MESSAGE);
45 }
46
47 } // end anonymous inner class
48
49); // end call to addActionListener
50
51 fileMenu.add(aboutItem);
52

Fig. 13.10Fig. 13.10Fig. 13.10Fig. 13.10 Using JMenus and mnemonics (part 1 of 5).

Chapter 13 Graphical User Interface Components: Part 2 749

53 // set up Exit menu item
54 JMenuItem exitItem = new JMenuItem("Exit");
55 exitItem.setMnemonic('x');
56
57 exitItem.addActionListener(
58
59 // anonymous inner class to handle exitItem event
60 new ActionListener() {
61
62 // terminate application when user clicks exitItem
63 public void actionPerformed(ActionEvent event)
64 {
65 System.exit(0);
66 }
67
68 } // end anonymous inner class
69
70); // end call to addActionListener
71
72 fileMenu.add(exitItem);
73
74 // create menu bar and attach it to MenuTest window
75 JMenuBar bar = new JMenuBar();
76 setJMenuBar(bar);
77 bar.add(fileMenu);
78
79 // create Format menu, its submenus and menu items
80 JMenu formatMenu = new JMenu("Format");
81 formatMenu.setMnemonic('r');
82
83 // create Color submenu
84 String colors[] = { "Black", "Blue", "Red", "Green" };
85
86 JMenu colorMenu = new JMenu("Color");
87 colorMenu.setMnemonic('C');
88
89 colorItems = new JRadioButtonMenuItem[colors.length];
90 colorGroup = new ButtonGroup();
91 ItemHandler itemHandler = new ItemHandler();
92
93 // create color radio button menu items
94 for (int count = 0; count < colors.length; count++) {
95 colorItems[count] =
96 new JRadioButtonMenuItem(colors[count]);
97
98 colorMenu.add(colorItems[count]);
99 colorGroup.add(colorItems[count]);
100
101 colorItems[count].addActionListener(itemHandler);
102 }
103
104 // select first Color menu item
105 colorItems[0].setSelected(true);

Fig. 13.10Fig. 13.10Fig. 13.10Fig. 13.10 Using JMenus and mnemonics (part 2 of 5).

750 Graphical User Interface Components: Part 2 Chapter 13

106
107 // add format menu to menu bar
108 formatMenu.add(colorMenu);
109 formatMenu.addSeparator();
110
111 // create Font submenu
112 String fontNames[] = { "Serif", "Monospaced", "SansSerif" };
113
114 JMenu fontMenu = new JMenu("Font");
115 fontMenu.setMnemonic('n');
116
117 fonts = new JRadioButtonMenuItem[fontNames.length];
118 fontGroup = new ButtonGroup();
119
120 // create Font radio button menu items
121 for (int count = 0; count < fonts.length; count++) {
122 fonts[count] =
123 new JRadioButtonMenuItem(fontNames[count]);
124
125 fontMenu.add(fonts[count]);
126 fontGroup.add(fonts[count]);
127
128 fonts[count].addActionListener(itemHandler);
129 }
130
131 // select first Font menu item
132 fonts[0].setSelected(true);
133
134 fontMenu.addSeparator();
135
136 // set up style menu items
137 String styleNames[] = { "Bold", "Italic" };
138
139 styleItems = new JCheckBoxMenuItem[styleNames.length];
140 StyleHandler styleHandler = new StyleHandler();
141
142 // create style checkbox menu items
143 for (int count = 0; count < styleNames.length; count++) {
144 styleItems[count] =
145 new JCheckBoxMenuItem(styleNames[count]);
146
147 fontMenu.add(styleItems[count]);
148
149 styleItems[count].addItemListener(styleHandler);
150 }
151
152 // put Font menu in Format menu
153 formatMenu.add(fontMenu);
154
155 // add Format menu to menu bar
156 bar.add(formatMenu);
157

Fig. 13.10Fig. 13.10Fig. 13.10Fig. 13.10 Using JMenus and mnemonics (part 3 of 5).

Chapter 13 Graphical User Interface Components: Part 2 751

158 // set up label to display text
159 displayLabel = new JLabel(
160 "Sample Text", SwingConstants.CENTER);
161 displayLabel.setForeground(colorValues[0]);
162 displayLabel.setFont(
163 new Font("TimesRoman", Font.PLAIN, 72));
164
165 getContentPane().setBackground(Color.cyan);
166 getContentPane().add(displayLabel, BorderLayout.CENTER);
167
168 setSize(500, 200);
169 setVisible(true);
170
171 } // end constructor
172
173 // execute application
174 public static void main(String args[])
175 {
176 MenuTest application = new MenuTest();
177
178 application.setDefaultCloseOperation(
179 JFrame.EXIT_ON_CLOSE);
180 }
181
182 // inner class to handle action events from menu items
183 private class ItemHandler implements ActionListener {
184
185 // process color and font selections
186 public void actionPerformed(ActionEvent event)
187 {
188 // process color selection
189 for (int count = 0; count < colorItems.length; count++)
190
191 if (colorItems[count].isSelected()) {
192 displayLabel.setForeground(colorValues[count]);
193 break;
194 }
195
196 // process font selection
197 for (int count = 0; count < fonts.length; count++)
198
199 if (event.getSource() == fonts[count]) {
200 displayLabel.setFont(new Font(
201 fonts[count].getText(), style, 72));
202 break;
203 }
204
205 repaint();
206 }
207
208 } // end class ItemHandler
209

Fig. 13.10Fig. 13.10Fig. 13.10Fig. 13.10 Using JMenus and mnemonics (part 4 of 5).

752 Graphical User Interface Components: Part 2 Chapter 13

Class MenuTest (line 11) is a completely self-contained class—it defines all the GUI
components and event handling for the menu items. Most of the code for this application
appears in the class’s constructor (lines 22–171).

210 // inner class to handle item events from check box menu items
211 private class StyleHandler implements ItemListener {
212
213 // process font style selections
214 public void itemStateChanged(ItemEvent e)
215 {
216 style = 0;
217
218 // check for bold selection
219 if (styleItems[0].isSelected())
220 style += Font.BOLD;
221
222 // check for italic selection
223 if (styleItems[1].isSelected())
224 style += Font.ITALIC;
225
226 displayLabel.setFont(new Font(
227 displayLabel.getFont().getName(), style, 72));
228
229 repaint();
230 }
231
232 } // end class StyleHandler
233
234 } // end class MenuTest

Fig. 13.10Fig. 13.10Fig. 13.10Fig. 13.10 Using JMenus and mnemonics (part 5 of 5).

Menu barMnemonic
characters

Menu

Expanded
submenu

Separator
bar

Menu items

Chapter 13 Graphical User Interface Components: Part 2 753

Lines 27–72 set up the File menu and attach it to the menu bar. The File menu contains
an About… menu item that displays a message dialog when the menu item is selected and
an Exit menu item that can be selected to terminate the application.

Line 27 creates fileMenu and passes to the constructor the string “File” as the
name of the menu. Line 28 uses AbstractButton method setMnemonic (inherited
into class JMenu) to indicate that F is the mnemonic for this menu. Pressing the Alt key
and the letter F opens the menu, just as clicking the menu name with the mouse would. In
the GUI, the mnemonic character in the menu’s name is displayed with an underline (see
the screen captures).

Look-and-Feel Observation 13.17
Mnemonics provide quick access to menu commands and button commands through the key-
board. 13.17

Look-and-Feel Observation 13.18
Different mnemonics should be used for each button or menu item. Normally, the first letter
in the label on the menu item or button is used as the mnemonic. If multiple buttons or menu
items start with the same letter, choose the next most prominent letter in the name (e.g., x is
commonly chosen for a button or menu item called Exit). 13.18

Lines 31–32 define JMenuItem aboutItem with the name “About...” and set
its mnemonic to the letter A. This menu item is added to fileMenu at line 51. To access
the About... item through the keyboard, press the Alt key and letter F to open the File
menu, then press A to select the About... menu item. Lines 34–49 create an ActionLis-
tener to process aboutItem’s action event. Lines 42–44 display a message dialog box.
In most prior uses of showMessageDialog, the first argument has been null. The pur-
pose of the first argument is to specify the parent window for the dialog box. The parent
window helps determine where the dialog box will be displayed. If the parent window is
specified as null, the dialog box appears in the center of the screen. If the parent window
is not null, the dialog box appears centered over the specified parent window. In this
example, the program specifies the parent window with MenuTest.this—the this
reference of class MenuTest. When using the this reference in an inner class, specifying
this by itself refers to the inner-class object. To reference the outer-class object’s this
reference, qualify this with the outer-class name and a dot operator (.).

Dialog boxes can be either modal or modeless. A modal dialog box does not allow any
other window in the application to be accessed until the dialog box is dismissed. A mode-
less dialog box allows other windows to be accessed while the dialog is displayed. By
default, the dialogs displayed with class JOptionPane are modal dialogs. Class JDi-
alog can be used to create your own modeless or modal dialogs.

Lines 54–72 define menu item exitItem, set its mnemonic to x, register an
ActionListener that terminates the application when the user selects exitItem and
add exitItem to the fileMenu.

Lines 75–77 create the JMenuBar, attach it to the application window with JFrame
method setJMenuBar and use JMenuBar method add to attach the fileMenu to the
menu bar.

Common Programming Error 13.5
Forgetting to set the menu bar with JFrame method setJMenuBar results in the menu bar
not being displayed on the JFrame. 13.5

754 Graphical User Interface Components: Part 2 Chapter 13

Look-and-Feel Observation 13.19
Menus normally appear left to right in the order that they are added to a JMenuBar. 13.19

Lines 80–81 create menu formatMenu and set its mnemonic to r (F is not used
because that is the File menu’s mnemonic).

Lines 86–87 create menu colorMenu (this will be a submenu in the Format menu)
and set its mnemonic to C. Line 89 creates JRadioButtonMenuItem array col-
orItems that refers to the menu items in colorMenu. Line 90 creates the Button-
Group colorGroup, which ensures that only one of the menu items in the Color
submenu is selected at a time. Line 91 defines an instance of inner class ItemHandler
(defined at lines 183–208) that responds to selections from the Color submenu and the
Font submenu (discussed shortly). The for structure at lines 94–102 creates each JRa-
dioButtonMenuItem in array colorItems, adds each menu item to colorMenu,
adds each menu item to colorGroup and registers the ActionListener for each
menu item.

Line 105 uses AbstractButton method setSelected to select the first element
in the colorItems array. Line 108 adds the colorMenu as a submenu of the format-
Menu.

Look-and-Feel Observation 13.20
Adding a menu as a menu item in another menu automatically makes the added menu a sub-
menu. When the mouse is positioned over a submenu (or the submenu’s mnemonic is
pressed), the submenu expands to show its menu items. 13.20

Line 109 adds a separator line to the menu. The separator appears as a horizontal line
in the menu.

Look-and-Feel Observation 13.21
Separators can be added to a menu to group menu items logically. 13.21

Look-and-Feel Observation 13.22
Any lightweight GUI component (i.e., a component that subclasses JComponent) can be
added to a JMenu or to a JMenuBar. 13.22

Lines 114–132 create the Font submenu and several JRadioButtonMenuItems
and select the first element of JRadioButtonMenuItem array fonts. Line 139 cre-
ates a JCheckBoxMenuItem array to represent the menu items for specifying bold and
italic styles for the fonts. Line 140 defines an instance of inner class StyleHandler
(defined at lines 211–232) to respond to the JCheckBoxMenuItem events. The for
structure at lines 143–150 creates each JCheckBoxMenuItem, adds each menu item to
fontMenu and registers the ItemListener for each menu item. Line 153 adds font-
Menu as a submenu of formatMenu. Line 156 adds the formatMenu to bar.

Lines 159–163 create a JLabel for which the Format menu items control the font,
font color and font style. The initial foreground color is set to the first element of array
colorValues (Color.black) and the initial font is set to TimesRoman with PLAIN
style and 72-point size. Line 165 sets the background color of the window’s content pane
to Color.cyan, and line 166 attaches the JLabel to the CENTER of the content pane’s
BorderLayout.

Chapter 13 Graphical User Interface Components: Part 2 755

Method actionPerformed of class ItemHandler (lines 186–206) uses two
for structures to determine which font or color menu item generated the event and sets the
font or color of the JLabel display, respectively. The if condition at line 191 uses
AbstractButton method isSelected to determine the selected JRadioButton-
MenuItem. The if condition at line 199 uses EventSource method getSource to
get a reference to the JRadioButtonMenuItem that generated the event. Line 201 uses
AbstractButton method getText to obtain the name of the font from the menu item.

The program calls method itemStateChanged of class StyleHandler (lines
214–230) if the user selects a JCheckBoxMenuItem in the fontMenu. Lines 219 and
223 determine whether either or both of the JCheckBoxMenuItems are selected and use
their combined state to determine the new style of the font.

13.9 Using JPopupMenus
Many of today’s computer applications provide so-called context-sensitive popup menus.
In Swing, such menus are created with class JPopupMenu (a subclass of JComponent).
These menus provide options that are specific to the component for which the popup trigger
event was generated. On most systems, the popup trigger event occurs when the user press-
es and releases the right mouse button.

Look-and-Feel Observation 13.23
The popup trigger event is platform specific. On most platforms that use a mouse with multiple
mouse buttons, the popup trigger event occurs when the user clicks the right mouse button. 13.23

Figure 13.11 creates a JPopupMenu that allows the user to select one of three colors
and change the background color of the window. When the user clicks the right mouse
button on the PopupTest window’s background, a JPopupMenu containing colors
appears. If the user clicks one of the JRadioButtonMenuItems that represents a color,
method actionPerformed of class ItemHandler changes the background color of
the window’s content pane.

1 // Fig. 13.11: PopupTest.java
2 // Demonstrating JPopupMenus
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class PopupTest extends JFrame {
12
13 private JRadioButtonMenuItem items[];
14 private Color colorValues[] =
15 { Color.blue, Color.yellow, Color.red };
16
17 private JPopupMenu popupMenu;
18

Fig. 13.11Fig. 13.11Fig. 13.11Fig. 13.11 Using a PopupMenu object (part 1 of 3).

756 Graphical User Interface Components: Part 2 Chapter 13

19 // set up GUI
20 public PopupTest()
21 {
22 super("Using JPopupMenus");
23
24 ItemHandler handler = new ItemHandler();
25 String colors[] = { "Blue", "Yellow", "Red" };
26
27 // set up popup menu and its items
28 ButtonGroup colorGroup = new ButtonGroup();
29 popupMenu = new JPopupMenu();
30 items = new JRadioButtonMenuItem[3];
31
32 // construct each menu item and add to popup menu; also
33 // enable event handling for each menu item
34 for (int count = 0; count < items.length; count++) {
35 items[count] =
36 new JRadioButtonMenuItem(colors[count]);
37
38 popupMenu.add(items[count]);
39 colorGroup.add(items[count]);
40
41 items[count].addActionListener(handler);
42 }
43
44 getContentPane().setBackground(Color.white);
45
46 // define a MouseListener for the window that displays
47 // a JPopupMenu when the popup trigger event occurs
48 addMouseListener(
49
50 // anonymous inner class to handle mouse events
51 new MouseAdapter() {
52
53 // handle mouse press event
54 public void mousePressed(MouseEvent event)
55 {
56 checkForTriggerEvent(event);
57 }
58
59 // handle mouse release event
60 public void mouseReleased(MouseEvent event)
61 {
62 checkForTriggerEvent(event);
63 }
64
65 // determine whether event should trigger popup menu
66 private void checkForTriggerEvent(MouseEvent event)
67 {
68 if (event.isPopupTrigger())
69 popupMenu.show(event.getComponent(),
70 event.getX(), event.getY());
71 }

Fig. 13.11Fig. 13.11Fig. 13.11Fig. 13.11 Using a PopupMenu object (part 2 of 3).

Chapter 13 Graphical User Interface Components: Part 2 757

The constructor for class PopupTest (lines 20–79) defines the JPopupMenu at line
29. The for structure at lines 34–42 creates JRadioButtonMenuItems to add to the
JPopupMenu, adds them to the JPopupMenu (line 38), adds them to ButtonGroup

72
73 } // end anonymous inner clas
74
75); // end call to addMouseListener
76
77 setSize(300, 200);
78 setVisible(true);
79 }
80
81 // execute application
82 public static void main(String args[])
83 {
84 PopupTest application = new PopupTest();
85
86 application.setDefaultCloseOperation(
87 JFrame.EXIT_ON_CLOSE);
88 }
89
90 // private inner class to handle menu item events
91 private class ItemHandler implements ActionListener {
92
93 // process menu item selections
94 public void actionPerformed(ActionEvent event)
95 {
96 // determine which menu item was selected
97 for (int i = 0; i < items.length; i++)
98 if (event.getSource() == items[i]) {
99 getContentPane().setBackground(
100 colorValues[i]);
101 repaint();
102 return;
103 }
104 }
105
106 } // end private inner class ItemHandler
107
108 } // end class PopupTest

Fig. 13.11Fig. 13.11Fig. 13.11Fig. 13.11 Using a PopupMenu object (part 3 of 3).

758 Graphical User Interface Components: Part 2 Chapter 13

colorGroup (to maintain one selected JRadioButtonMenuItem at a time) and reg-
isters an ActionListener for each menu item.

Lines 48–75 register an instance of an anonymous inner class that extends Mouse-
Adapter to handle the mouse events of the application window. Methods mouse-
Pressed (lines 54–57) and mouseReleased (lines 60–63) check for the popup-trigger
event. Each method calls private utility method checkForTriggerEvent (lines
66–71) to determine whether the popup-trigger event occurred. MouseEvent method
isPopupTrigger returns true if the popup-trigger event occurred. If so, method
show of class JPopupMenu displays the JPopupMenu. The first argument to method
show specifies the origin component, whose position helps determine where the JPopu-
pMenu will appear on the screen. The last two arguments are the x-y coordinate from the
origin component’s upper-left corner at which the JPopupMenu should appear.

Look-and-Feel Observation 13.24
Displaying a JPopupMenu for the popup-trigger event of multiple different GUI compo-
nents requires registering mouse event handlers to check for the popup-trigger event for each
of those GUI components. 13.24

When the user selects a menu item from the popup menu, class ItemHandler’s
(lines 91–106) method actionPerformed (lines 94–104) determines which JRa-
dioButtonMenuItem the user selected, then sets the background color of the window’s
content pane.

13.10 Pluggable Look-and-Feel
A program that uses Java’s Abstract Windowing Toolkit GUI components (package ja-
va.awt) takes on the look-and-feel of the platform on which the program executes. A Java
program running on a Macintosh looks like other programs running on a Macintosh. A Java
program running on Microsoft Windows looks like other programs running on Microsoft
Windows. A Java program running on a UNIX platform looks like other programs running
on that UNIX platform. This could be desirable, because it allows users of the program on
each platform to use the GUI components with which they are already familiar. However,
this also introduces interesting portability issues.

Portability Tip 13.1
Programs that use Java’s Abstract Windowing Toolkit GUI components (package ja-
va.awt) take on the look-and-feel of the platform on which they execute. 13.1

Portability Tip 13.2
GUI components on each platform have different looks that can require different amounts of
space to display. This could change the layout and alignments of GUI components. 13.2

Portability Tip 13.3
GUI components on each platform have different default functionality (e.g., some platforms
allow a button with the focus to be “pressed” with the space bar, and some do not). 13.3

Swing’s lightweight GUI components eliminate many of these issues by providing
uniform functionality across platforms and by defining a uniform cross-platform look-and-
feel (known as the metal look-and-feel). Swing also provides the flexibility to customize

Chapter 13 Graphical User Interface Components: Part 2 759

the look-and-feel to appear as a Microsoft Windows-style look-and-feel or a Motif-style
(UNIX) look-and-feel.

The program of Fig. 13.12 demonstrates how to change the look-and-feel of a Swing
GUI. The program creates several GUI components so you can see the change in the look-
and-feel of several GUI components at the same time. The first output window shows the
standard metal look-and-feel, the second output window shows the Motif look-and-feel,
and the third output window shows the Windows look-and-feel.

1 // Fig. 13.12: LookAndFeelDemo.java
2 // Changing the look and feel.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class LookAndFeelDemo extends JFrame {
12
13 private String strings[] = { "Metal", "Motif", "Windows" };
14 private UIManager.LookAndFeelInfo looks[];
15 private JRadioButton radio[];
16 private ButtonGroup group;
17 private JButton button;
18 private JLabel label;
19 private JComboBox comboBox;
20
21 // set up GUI
22 public LookAndFeelDemo()
23 {
24 super("Look and Feel Demo");
25
26 Container container = getContentPane();
27
28 // set up panel for NORTH of BorderLayout
29 JPanel northPanel = new JPanel();
30 northPanel.setLayout(new GridLayout(3, 1, 0, 5));
31
32 // set up label for NORTH panel
33 label = new JLabel("This is a Metal look-and-feel",
34 SwingConstants.CENTER);
35 northPanel.add(label);
36
37 // set up button for NORTH panel
38 button = new JButton("JButton");
39 northPanel.add(button);
40
41 // set up combo box for NORTH panel
42 comboBox = new JComboBox(strings);
43 northPanel.add(comboBox);

Fig. 13.12Fig. 13.12Fig. 13.12Fig. 13.12 Changing the look-and-feel of a Swing-based GUI (part 1 of 3).

760 Graphical User Interface Components: Part 2 Chapter 13

44
45 // attach NORTH panel to content pane
46 container.add(northPanel, BorderLayout.NORTH);
47
48 // create array for radio buttons
49 radio = new JRadioButton[strings.length];
50
51 // set up panel for SOUTH of BorderLayout
52 JPanel southPanel = new JPanel();
53 southPanel.setLayout(
54 new GridLayout(1, radio.length));
55
56 // set up radio buttons for SOUTH panel
57 group = new ButtonGroup();
58 ItemHandler handler = new ItemHandler();
59
60 for (int count = 0; count < radio.length; count++) {
61 radio[count] = new JRadioButton(strings[count]);
62 radio[count].addItemListener(handler);
63 group.add(radio[count]);
64 southPanel.add(radio[count]);
65 }
66
67 // attach SOUTH panel to content pane
68 container.add(southPanel, BorderLayout.SOUTH);
69
70 // get installed look-and-feel information
71 looks = UIManager.getInstalledLookAndFeels();
72
73 setSize(300, 200);
74 setVisible(true);
75
76 radio[0].setSelected(true);
77 }
78
79 // use UIManager to change look-and-feel of GUI
80 private void changeTheLookAndFeel(int value)
81 {
82 // change look and feel
83 try {
84 UIManager.setLookAndFeel(
85 looks[value].getClassName());
86 SwingUtilities.updateComponentTreeUI(this);
87 }
88
89 // process problems changing look and feel
90 catch (Exception exception) {
91 exception.printStackTrace();
92 }
93 }
94

Fig. 13.12Fig. 13.12Fig. 13.12Fig. 13.12 Changing the look-and-feel of a Swing-based GUI (part 2 of 3).

Chapter 13 Graphical User Interface Components: Part 2 761

All the GUI components and event handling in this example have been covered before,
so we concentrate on the mechanism for changing the look-and-feel in this example.

95 // execute application
96 public static void main(String args[])
97 {
98 LookAndFeelDemo application = new LookAndFeelDemo();
99
100 application.setDefaultCloseOperation(
101 JFrame.EXIT_ON_CLOSE);
102 }
103
104 // private inner class to handle radio button events
105 private class ItemHandler implements ItemListener {
106
107 // process user's look-and-feel selection
108 public void itemStateChanged(ItemEvent event)
109 {
110 for (int count = 0; count < radio.length; count++)
111
112 if (radio[count].isSelected()) {
113 label.setText("This is a " +
114 strings[count] + " look-and-feel");
115 comboBox.setSelectedIndex(count);
116
117 changeTheLookAndFeel(count);
118 }
119 }
120
121 } // end private inner class ItemHandler
122
123 } // end class LookAndFeelDemo

Fig. 13.12Fig. 13.12Fig. 13.12Fig. 13.12 Changing the look-and-feel of a Swing-based GUI (part 3 of 3).

762 Graphical User Interface Components: Part 2 Chapter 13

Class UIManager (package javax.swing) contains public static inner class
LookAndFeelInfo that is used to maintain information about a look-and-feel. Line 14
declares an array of type UIManager.LookAndFeelInfo (notice the syntax used to
access the inner class LookAndFeelInfo). Line 71 uses static method getIn-
stalledLookAndFeels of class UIManager to get the array of UIManager.Loo-
kAndFeelInfo objects that describe the installed look-and-feels.

Performance Tip 13.1
Each look-and-feel is represented by a Java class. UIManager method getInstalled-
LookAndFeels does not load each class. Rather, it provides access to the names of each
look-and-feel, so a choice of look-and-feel can be made (presumably one time at program start-
up). This reduces the overhead of loading additional classes that the program will not use. 13.1

Utility method changeTheLookAndFeel (lines 80–93) is called by the event han-
dler (defined in private inner class ItemHandler at lines 105–121) for the JRa-
dioButtons at the bottom of the user interface. The event handler passes an integer
representing the element in array looks that should be used to change the look-and-feel.
Lines 84–85 use static method setLookAndFeel of class UIManager to change
the look-and-feel. Method getClassName of class UIManager.LookAnd-
FeelInfo determines the name of the look-and-feel class that corresponds to the
UIManager.LookAndFeelInfo. If the look-and-feel class is not already loaded, it
will be loaded as part of the call to setLookAndFeel. Line 86 uses static method
updateComponentTreeUI of class SwingUtilities (package javax.swing)
to change the look-and-feel of every component attached to its argument (this instance of
class LookAndFeelDemo) to the new look-and-feel.

The preceding two statements appear in a special block of code called a try block.
This code is part of the exception-handling mechanism discussed in detail in the next
chapter. This code is required in case lines 84–85 attempt to change the look-and-feel to a
look-and-feel that does not exist. Lines 90–92 complete the exception-handling mechanism
with a catch handler that simply processes this problem (if it occurs) by printing an error
message at the command line.

13.11 Using JDesktopPane and JInternalFrame
Many of today’s applications use a multiple document interface (MDI) [i.e., a main window
(often called the parent window) containing other windows (often called child windows)]
to manage several open documents that are being processed in parallel. For example, many
e-mail programs allow you to have several e-mail windows open at the same time so you
can compose and/or read multiple e-mail messages. Similarly, many word processors allow
the user to open multiple documents in separate windows so the user can switch between
the documents without having to close the current document to open another document.
The program of Fig. 13.13 demonstrates Swing’s JDesktopPane and JInternal-
Frame classes, which provide support for creating multiple document interfaces. The child
windows simply display an image of the cover of this book.

Lines 20–27 define a JMenuBar, a JMenu and a JMenuItem, add the JMenuItem
to the JMenu, add the JMenu to the JMenuBar and set the JMenuBar for the application
window. When the user selects the JMenuItem newFrame, the program creates and dis-
plays a new JInternalFrame.

Chapter 13 Graphical User Interface Components: Part 2 763

1 // Fig. 13.13: DesktopTest.java
2 // Demonstrating JDesktopPane.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class DesktopTest extends JFrame {
12 private JDesktopPane theDesktop;
13
14 // set up GUI
15 public DesktopTest()
16 {
17 super("Using a JDesktopPane");
18
19 // create menu bar, menu and menu item
20 JMenuBar bar = new JMenuBar();
21 JMenu addMenu = new JMenu("Add");
22 JMenuItem newFrame = new JMenuItem("Internal Frame");
23
24 addMenu.add(newFrame);
25 bar.add(addMenu);
26
27 setJMenuBar(bar);
28
29 // set up desktop
30 theDesktop = new JDesktopPane();
31 getContentPane().add(theDesktop);
32
33 // set up listener for newFrame menu item
34 newFrame.addActionListener(
35
36 // anonymous inner class to handle menu item event
37 new ActionListener() {
38
39 // display new internal window
40 public void actionPerformed(ActionEvent event) {
41
42 // create internal frame
43 JInternalFrame frame = new JInternalFrame(
44 "Internal Frame", true, true, true, true);
45
46 // attach panel to internal frame content pane
47 Container container = frame.getContentPane();
48 MyJPanel panel = new MyJPanel();
49 container.add(panel, BorderLayout.CENTER);
50
51 // set size internal frame to size of its contents
52 frame.pack();
53

Fig. 13.13Fig. 13.13Fig. 13.13Fig. 13.13 Creating a multiple document interface (part 1 of 3).

764 Graphical User Interface Components: Part 2 Chapter 13

54 // attach internal frame to desktop and show it
55 theDesktop.add(frame);
56 frame.setVisible(true);
57 }
58
59 } // end anonymous inner class
60
61); // end call to addActionListener
62
63 setSize(600, 440);
64 setVisible(true);
65
66 } // end constructor
67
68 // execute application
69 public static void main(String args[])
70 {
71 DesktopTest application = new DesktopTest();
72
73 application.setDefaultCloseOperation(
74 JFrame.EXIT_ON_CLOSE);
75 }
76
77 } // end class DesktopTest
78
79 // class to display an ImageIcon on a panel
80 class MyJPanel extends JPanel {
81 private ImageIcon imageIcon;
82
83 // load image
84 public MyJPanel()
85 {
86 imageIcon = new ImageIcon("jhtp4.png");
87 }
88
89 // display imageIcon on panel
90 public void paintComponent(Graphics g)
91 {
92 // call superclass paintComponent method
93 super.paintComponent(g);
94
95 // display icon
96 imageIcon.paintIcon(this, g, 0, 0);
97 }
98
99 // return image dimensions
100 public Dimension getPreferredSize()
101 {
102 return new Dimension(imageIcon.getIconWidth(),
103 imageIcon.getIconHeight());
104 }
105
106 } // end class MyJPanel

Fig. 13.13Fig. 13.13Fig. 13.13Fig. 13.13 Creating a multiple document interface (part 2 of 3).

Chapter 13 Graphical User Interface Components: Part 2 765

Fig. 13.13Fig. 13.13Fig. 13.13Fig. 13.13 Creating a multiple document interface (part 3 of 3).

Internal Frames Minimize Maximize Close

Minimized internal frame Position the mouse over any corner of a child
window to resize the window (if resizing is allowed).

Maximized internal frame

766 Graphical User Interface Components: Part 2 Chapter 13

Line 30 creates JDesktopPane (package javax.swing) reference the-
Desktop and assigns it a new JDesktopPane object. The JDesktopPane object
manages the JInternalFrame child windows displayed in the JDesktopPane. Line
31 adds the JDesktopPane to the application window’s content pane.

Lines 34–61 register an instance of an anonymous inner class that implements
ActionListener to handle the event when the user selects the newFrame menu item.
When the event occurs, method actionPerformed (lines 40–57) creates a JInter-
nalFrame object with lines 43–44. The JInternalFrame constructor used here
requires five arguments—a String for the title bar of the internal window, a boolean
indicating whether the internal frame should be resizable by the user, a boolean indi-
cating whether the internal frame should be closable by the user, a boolean indicating
whether the internal frame should be maximizable by the user and a boolean indicating
whether the internal frame should be minimizable by the user. For each of the boolean argu-
ments, a true value indicates that the operation should be allowed.

As with JFrames and JApplets, a JInternalFrame has a content pane to which
GUI components can be attached. Line 47 gets a reference to the JInternalFrame’s
content pane. Line 48 creates an instance of our class MyJPanel (defined at lines 80–106)
that is added to the JInternalFrame’s content pane at line 49.

Line 52 uses JInternalFrame method pack to set the size of the child window.
Method pack uses the preferred sizes of the components on the content pane to determine
the window’s size. Class MyJPanel defines method getPreferredSize to specify
the panel’s preferred size. Line 55 adds the JInternalFrame to the JDesktopPane,
and line 56 displays the JInternalFrame.

Classes JInternalFrame and JDesktopPane provide many methods for man-
aging child windows. See the on-line API documentation for a complete list of these
methods.

13.12 Layout Managers
In the preceding chapter, we introduced three layout managers—FlowLayout, Border-
Layout and GridLayout. This section presents three additional layout managers (sum-
marized in Figure 13.14). We discuss these layout managers in the sections that follow.

Layout Manager Description

BoxLayout A layout manager that allows GUI components to be arranged left-to-right
or top-to-bottom in a container. Class Box defines a container with Box-
Layout as its default layout manager and provides static methods to cre-
ate a Box with a horizontal or vertical BoxLayout.

CardLayout A layout manager that stacks components like a deck of cards. If a compo-
nent in the deck is a container, it can use any layout manager. Only the
component at the “top” of the deck is visible.

GridBagLayout A layout manager similar to GridLayout. Unlike GridLayout, each
component size can vary and components can be added in any order.

Fig. 13.14Fig. 13.14Fig. 13.14Fig. 13.14 Additional layout managers.

Chapter 13 Graphical User Interface Components: Part 2 767

13.13 BoxLayout Layout Manager
The BoxLayout layout manager arranges GUI components horizontally along the x-axis
or vertically along the y-axis of a container. The program of Fig. 13.15 demonstrates Box-
Layout and the container class Box that uses BoxLayout as its default layout manager.

In the constructor for class BoxLayoutDemo, lines 19–20 obtain a reference to the
content pane and set its layout to a BorderLayout with 30 pixels of horizontal and 30
pixels of vertical gap space between components. The space is to help isolate each of the
containers with BoxLayout in this example.

Lines 23–28 define an array of Box container references called boxes and initialize
each element of the array with Box objects. Elements 0 and 2 of the array are initialized
with static method createHorizontalBox of class Box, which returns a Box con-
tainer with a horizontal BoxLayout (GUI components are arranged left-to-right). Ele-
ments 1 and 3 of the array are initialized with static method createVerticalBox
of class Box, which returns a Box container with a vertical BoxLayout (GUI components
are arranged top-to-bottom).

1 // Fig. 13.15: BoxLayoutDemo.java
2 // Demonstrating BoxLayout.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class BoxLayoutDemo extends JFrame {
12
13 // set up GUI
14 public BoxLayoutDemo()
15 {
16 super("Demostrating BoxLayout");
17 final int SIZE = 3;
18
19 Container container = getContentPane();
20 container.setLayout(new BorderLayout(30, 30));
21
22 // create Box containers with BoxLayout
23 Box boxes[] = new Box[4];
24
25 boxes[0] = Box.createHorizontalBox();
26 boxes[1] = Box.createVerticalBox();
27 boxes[2] = Box.createHorizontalBox();
28 boxes[3] = Box.createVerticalBox();
29
30 // add buttons to boxes[0]
31 for (int count = 0; count < SIZE; count++)
32 boxes[0].add(new JButton("boxes[0]: " + count));

Fig. 13.15Fig. 13.15Fig. 13.15Fig. 13.15 Demonstrating the BoxLayout layout manager (part 1 of 3).

768 Graphical User Interface Components: Part 2 Chapter 13

33
34 // create strut and add buttons to boxes[1]
35 for (int count = 0; count < SIZE; count++) {
36 boxes[1].add(Box.createVerticalStrut(25));
37 boxes[1].add(new JButton("boxes[1]: " + count));
38 }
39
40 // create horizontal glue and add buttons to boxes[2]
41 for (int count = 0; count < SIZE; count++) {
42 boxes[2].add(Box.createHorizontalGlue());
43 boxes[2].add(new JButton("boxes[2]: " + count));
44 }
45
46 // create rigid area and add buttons to boxes[3]
47 for (int count = 0; count < SIZE; count++) {
48 boxes[3].add(
49 Box.createRigidArea(new Dimension(12, 8)));
50 boxes[3].add(new JButton("boxes[3]: " + count));
51 }
52
53 // create vertical glue and add buttons to panel
54 JPanel panel = new JPanel();
55 panel.setLayout(
56 new BoxLayout(panel, BoxLayout.Y_AXIS));
57
58 for (int count = 0; count < SIZE; count++) {
59 panel.add(Box.createGlue());
60 panel.add(new JButton("panel: " + count));
61 }
62
63 // place panels on frame
64 container.add(boxes[0], BorderLayout.NORTH);
65 container.add(boxes[1], BorderLayout.EAST);
66 container.add(boxes[2], BorderLayout.SOUTH);
67 container.add(boxes[3], BorderLayout.WEST);
68 container.add(panel, BorderLayout.CENTER);
69
70 setSize(350, 300);
71 setVisible(true);
72
73 } // end constructor
74
75 // execute application
76 public static void main(String args[])
77 {
78 BoxLayoutDemo application = new BoxLayoutDemo();
79
80 application.setDefaultCloseOperation(
81 JFrame.EXIT_ON_CLOSE);
82 }
83
84 } // end class BoxLayoutDemo

Fig. 13.15Fig. 13.15Fig. 13.15Fig. 13.15 Demonstrating the BoxLayout layout manager (part 2 of 3).

Chapter 13 Graphical User Interface Components: Part 2 769

The for structure at lines 31–32 adds three JButtons to boxes[0] (a horizontal
Box). The for structure at lines 35–38 adds three JButtons to boxes[1] (a vertical
Box). Before adding each button, line 36 adds a vertical strut to the container with
static method createVerticalStrut of class Box. A vertical strut is an invisible
GUI component that has a fixed pixel height and is used to guarantee a fixed amount of
space between GUI components. The argument to method createVerticalStrut
determines the height of the strut in pixels. Class Box also defines method createHor-
izontalStrut for horizontal BoxLayouts.

The for structure at lines 41–44 adds three JButtons to boxes[2] (a horizontal
Box). Before adding each button, line 42 adds horizontal glue to the container with
static method createHorizontalGlue of class Box. Horizontal glue is an invis-

Fig. 13.15Fig. 13.15Fig. 13.15Fig. 13.15 Demonstrating the BoxLayout layout manager (part 3 of 3).

770 Graphical User Interface Components: Part 2 Chapter 13

ible GUI component that can be used between fixed-size GUI components to occupy addi-
tional space. Normally, extra space appears to the right of the last horizontal GUI
component or below the last vertical GUI component in a BoxLayout. Glue allows the
extra space to be placed between GUI components. Class Box also defines method cre-
ateVerticalGlue for vertical BoxLayouts.

The for structure at lines 47–51 adds three JButtons to boxes[3] (a vertical
Box). Before adding each button, lines 48–49 add a rigid area to the container with
static method createRigidArea of class Box. A rigid area is an invisible GUI
component that always has a fixed pixel width and height. The argument to method cre-
ateRigidArea is a Dimension object that specifies the width and height of the rigid
area.

Lines 54–56 create a JPanel object and set its layout in the conventional manner,
using Container method setLayout. The BoxLayout constructor receives a refer-
ence to the container for which it controls the layout and a constant indicating whether the
layout is horizontal (BoxLayout.X_AXIS) or vertical (BoxLayout.Y_AXIS).

The for structure at lines 58–61 adds three JButtons to panel.Before adding each
button, line 59 adds a glue component to the container with static method create-
Glue of class Box. This component expands or contracts based on the size of the Box.

The Box containers and the JPanel are attached to the content pane’s Border-
Layout at lines 64–68. Try executing the application. When the window appears, resize
the window to see how the glue components, strut components and rigid area affect the
layout in each container.

13.14 CardLayout Layout Manager
The CardLayout layout manager arranges components into a “deck” of cards
where only the top card is visible. Any card in the deck can be placed at the top of the deck
at any time by using methods of class CardLayout. Each card is usually a container, such
as a panel, and each card can use any layout manager. Class CardLayout inherits from
Object and implements the LayoutManager2 interface.

The program of Fig. 13.16 creates five panels. JPanel deck uses the CardLayout
layout manager to control the card that is displayed. JPanels card1, card2 and card3
are the individual cards in deck. JPanel buttons contains four buttons (with labels
First card, Next card, Previous card and Last card) that enable the user to manipu-
late the deck. When the user clicks the First card button, the first card in deck (i.e.,
card1) is displayed. When the user clicks the Last card button, the last card (i.e.,
card3) in deck is displayed. Each time the user clicks the Previous card button, the
previous card in deck is displayed. Each time the user clicks the Next card button, the
next card in deck is displayed. Clicking the Previous card button or the Next card
button repeatedly allows the user to cycle through the deck of cards. Application class
CardDeck implements ActionListener, so the action events generated by the
JButtons on JPanel buttons are handled by the application in its actionPer-
formed method.

Class CardDeck declares a reference of type CardLayout called cardManager
(line 13). This reference is used to invoke CardLayout methods that manipulate the cards
in the deck.

Chapter 13 Graphical User Interface Components: Part 2 771

1 // Fig. 13.16: CardDeck.java
2 // Demonstrating CardLayout.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class CardDeck extends JFrame implements ActionListener {
12
13 private CardLayout cardManager;
14 private JPanel deck;
15 private JButton controls[];
16 private String names[] = { "First card", "Next card",
17 "Previous card", "Last card" };
18
19 // set up GUI
20 public CardDeck()
21 {
22 super("CardLayout ");
23
24 Container container = getContentPane();
25
26 // create the JPanel with CardLayout
27 deck = new JPanel();
28 cardManager = new CardLayout();
29 deck.setLayout(cardManager);
30
31 // set up card1 and add it to JPanel deck
32 JLabel label1 =
33 new JLabel("card one", SwingConstants.CENTER);
34 JPanel card1 = new JPanel();
35 card1.add(label1);
36 deck.add(card1, label1.getText()); // add card to deck
37
38 // set up card2 and add it to JPanel deck
39 JLabel label2 =
40 new JLabel("card two", SwingConstants.CENTER);
41 JPanel card2 = new JPanel();
42 card2.setBackground(Color.yellow);
43 card2.add(label2);
44 deck.add(card2, label2.getText()); // add card to deck
45
46 // set up card3 and add it to JPanel deck
47 JLabel label3 = new JLabel("card three");
48 JPanel card3 = new JPanel();
49 card3.setLayout(new BorderLayout());
50 card3.add(new JButton("North"), BorderLayout.NORTH);
51 card3.add(new JButton("West"), BorderLayout.WEST);
52 card3.add(new JButton("East"), BorderLayout.EAST);
53 card3.add(new JButton("South"), BorderLayout.SOUTH);

Fig. 13.16Fig. 13.16Fig. 13.16Fig. 13.16 Demonstrating the CardLayout layout manager (part 1 of 3).

772 Graphical User Interface Components: Part 2 Chapter 13

54 card3.add(label3, BorderLayout.CENTER);
55 deck.add(card3, label3.getText()); // add card to deck
56
57 // create and layout buttons that will control deck
58 JPanel buttons = new JPanel();
59 buttons.setLayout(new GridLayout(2, 2));
60 controls = new JButton[names.length];
61
62 for (int count = 0; count < controls.length; count++) {
63 controls[count] = new JButton(names[count]);
64 controls[count].addActionListener(this);
65 buttons.add(controls[count]);
66 }
67
68 // add JPanel deck and JPanel buttons to the applet
69 container.add(buttons, BorderLayout.WEST);
70 container.add(deck, BorderLayout.EAST);
71
72 setSize(450, 200);
73 setVisible(true);
74
75 } // end constructor
76
77 // handle button events by switching cards
78 public void actionPerformed(ActionEvent event)
79 {
80 // show first card
81 if (event.getSource() == controls[0])
82 cardManager.first(deck);
83
84 // show next card
85 else if (event.getSource() == controls[1])
86 cardManager.next(deck);
87
88 // show previous card
89 else if (event.getSource() == controls[2])
90 cardManager.previous(deck);
91
92 // show last card
93 else if (event.getSource() == controls[3])
94 cardManager.last(deck);
95 }
96
97 // execute application
98 public static void main(String args[])
99 {
100 CardDeck cardDeckDemo = new CardDeck();
101
102 cardDeckDemo.setDefaultCloseOperation(
103 JFrame.EXIT_ON_CLOSE);
104 }
105
106 } // end class CardDeck

Fig. 13.16Fig. 13.16Fig. 13.16Fig. 13.16 Demonstrating the CardLayout layout manager (part 2 of 3).

Chapter 13 Graphical User Interface Components: Part 2 773

The constructor method (lines 20–75) builds the GUI. Lines 27–29 create JPanel
deck, create CardLayout object cardManager and set the layout manager for deck to
cardManager. Next, the constructor creates the JPanels card1, card2, and card3
and their GUI components. As we set up each card, we add the card to deck, using Con-
tainer method add with two arguments—a Component and a String. The Compo-
nent is the JPanel object that represents the card. The String argument identifies the
card. For example, line 36 adds JPanel card1 to deck and uses JLabel label1’s label
as the String identifier for the card. JPanels card2 and card3 are added to deck at
lines 44–55. Next, the constructor creates the JPanel buttons and its JButton objects
(lines 58–66). Line 64 registers the ActionListener for each JButton. Finally, but-
tons and deck are added to the content pane’s WEST and EAST regions, respectively.

Method actionPerformed (lines 78–95) determines which JButton generated
the event by using EventObject method getSource. CardLayout methods
first, previous, next and last are used to display the particular card corresponding
to which JButton the user pressed. Method first displays the first card added to the
deck. Method previous displays the previous card in the deck. Method next displays
the next card in the deck. Method last displays the last card in the deck. Note that deck
is passed to each of these methods.

Fig. 13.16Fig. 13.16Fig. 13.16Fig. 13.16 Demonstrating the CardLayout layout manager (part 3 of 3).

774 Graphical User Interface Components: Part 2 Chapter 13

13.15 GridBagLayout Layout Manager
The most complex and most powerful of the predefined layout managers is GridBag-
Layout. This layout is similar to GridLayout because GridBagLayout also arrang-
es components in a grid. However, GridBagLayout is more flexible. The components
can vary in size (i.e., they can occupy multiple rows and columns) and can be added in any
order.

The first step in using GridBagLayout is determining the appearance of the GUI.
This step does not involve any programming; all that is needed is a piece of paper. First,
draw the GUI. Next draw a grid over the GUI dividing the components into rows and col-
umns. The initial row and column numbers should be 0 so the GridBagLayout layout
manager can properly place the components in the grid. The row and column numbers will
be used to place each component in an exact position in the grid. Figure 13.17 demonstrates
drawing the lines for the rows and columns over a GUI.

To use GridBagLayout, a GridBagConstraints object must be constructed.
This object specifies how a component is placed in a GridBagLayout. Several Grid-
BagConstraints instance variables are summarized in Fig. 13.18.

Fig. 13.17Fig. 13.17Fig. 13.17Fig. 13.17 Designing a GUI that will use GridBagLayout.

GridBagConstraints
Instance Variable Description

gridx The column in which the component will be placed.

gridy The row in which the component will be placed.

gridwidth The number of columns the component occupies.

gridheight The number of rows the component occupies.

weightx The portion of extra space to allocate horizontally. The compo-
nents can become wider when extra space is available.

weighty The portion of extra space to allocate vertically. The compo-
nents can become taller when extra space is available.

Fig. 13.18Fig. 13.18Fig. 13.18Fig. 13.18 GridBagConstraints instance variables.

Row

Column
0 1 2

0
1

2
3

Chapter 13 Graphical User Interface Components: Part 2 775

Variables gridx and gridy specify the row and column where the upper-left corner
of the component is placed in the grid. Variable gridx corresponds to the column and the
variable gridy corresponds to the row. In Fig. 13.17, the JComboBox (displaying
“Iron”) has a gridx value of 1 and a gridy value of 2.

Variable gridwidth specifies the number of columns a component occupies. In
Fig. 13.17, the JComboBox button occupies two columns. Variable gridheight spec-
ifies the number of rows a component occupies. In Fig. 13.17, the JTextArea on the left
side of the window occupies three rows.

Variable weightx specifies how to distribute extra horizontal space to components
in a GridBagLayout when the container is resized. A zero value indicates that the com-
ponent does not grow horizontally on its own. However, if the component spans a column
containing a component with nonzero weightx value, the component with zero
weightx value will grow horizontally in the same proportion as the other component(s)
in the same column. This is because each component must be maintained in the same row
and column in which it was originally placed.

Variable weighty specifies how to distribute extra vertical space to components in a
GridBagLayout when the container is resized. A zero value indicates that the compo-
nent does not grow vertically on its own. However, if the component spans a row con-
taining a component with nonzero weighty value, the component with zero weighty
value grows vertically in the same proportion as the other component(s) in the same row.

In Fig. 13.17, the effects of weighty and weightx cannot easily be seen until the
container is resized and additional space becomes available. Components with larger
weight values occupy more of the additional space than components with smaller weight
values. The exercises explore the effects of varying weightx and weighty.

Components should be given nonzero positive weight values—otherwise the compo-
nents will “huddle” together in the middle of the container. Figure 13.19 shows the GUI of
Fig. 13.17—where all weights have been set to zero.

Common Programming Error 13.6
Using a negative value for either weightx or weighty is a logic error. 13.6

GridBagConstraints instance variable fill specifies how much of the compo-
nent’s area (the number of rows and columns the component occupies in the grid) is occu-
pied. The variable fill is assigned one of the following GridBagConstraints
constants: NONE, VERTICAL, HORIZONTAL or BOTH. The default value is NONE, which
indicates that the component will not grow in either direction. VERTICAL indicates that
the component will grow vertically. HORIZONTAL indicates that the component will grow
horizontally. BOTH indicates that the component will grow in both directions.

GridBagConstraints instance variable anchor specifies the location of the
component in the area when the component does not fill the entire area. The variable
anchor is assigned one of the following GridBagConstraints constants: NORTH,
NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST, NORTHWEST or
CENTER. The default value is CENTER.

The program of Fig. 13.20 uses the GridBagLayout layout manager to arrange the
components in the GUI of Fig. 13.17. The program does nothing other than demonstrate
how to use GridBagLayout.

776 Graphical User Interface Components: Part 2 Chapter 13

Fig. 13.19Fig. 13.19Fig. 13.19Fig. 13.19 GridBagLayout with the weights set to zero.

1 // Fig. 13.20: GridBagDemo.java
2 // Demonstrating GridBagLayout.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class GridBagDemo extends JFrame {
12 private Container container;
13 private GridBagLayout layout;
14 private GridBagConstraints constraints;
15
16 // set up GUI
17 public GridBagDemo()
18 {
19 super("GridBagLayout");
20
21 container = getContentPane();
22 layout = new GridBagLayout();
23 container.setLayout(layout);
24
25 // instantiate gridbag constraints
26 constraints = new GridBagConstraints();
27
28 // create GUI components
29 JTextArea textArea1 = new JTextArea("TextArea1", 5, 10);
30 JTextArea textArea2 = new JTextArea("TextArea2", 2, 2);
31
32 String names[] = { "Iron", "Steel", "Brass" };
33 JComboBox comboBox = new JComboBox(names);
34
35 JTextField textField = new JTextField("TextField");
36 JButton button1 = new JButton("Button 1");
37 JButton button2 = new JButton("Button 2");
38 JButton button3 = new JButton("Button 3");

Fig. 13.20Fig. 13.20Fig. 13.20Fig. 13.20 Demonstrating the GridBagLayout layout manager (part 1 of 3).

Chapter 13 Graphical User Interface Components: Part 2 777

39
40 // textArea1
41 // weightx and weighty are both 0: the default
42 // anchor for all components is CENTER: the default
43 constraints.fill = GridBagConstraints.BOTH;
44 addComponent(textArea1, 0, 0, 1, 3);
45
46 // button1
47 // weightx and weighty are both 0: the default
48 constraints.fill = GridBagConstraints.HORIZONTAL;
49 addComponent(button1, 0, 1, 2, 1);
50
51 // comboBox
52 // weightx and weighty are both 0: the default
53 // fill is HORIZONTAL
54 addComponent(comboBox, 2, 1, 2, 1);
55
56 // button2
57 constraints.weightx = 1000; // can grow wider
58 constraints.weighty = 1; // can grow taller
59 constraints.fill = GridBagConstraints.BOTH;
60 addComponent(button2, 1, 1, 1, 1);
61
62 // button3
63 // fill is BOTH
64 constraints.weightx = 0;
65 constraints.weighty = 0;
66 addComponent(button3, 1, 2, 1, 1);
67
68 // textField
69 // weightx and weighty are both 0, fill is BOTH
70 addComponent(textField, 3, 0, 2, 1);
71
72 // textArea2
73 // weightx and weighty are both 0, fill is BOTH
74 addComponent(textArea2, 3, 2, 1, 1);
75
76 setSize(300, 150);
77 setVisible(true);
78 }
79
80 // method to set constraints on
81 private void addComponent(Component component,
82 int row, int column, int width, int height)
83 {
84 // set gridx and gridy
85 constraints.gridx = column;
86 constraints.gridy = row;
87
88 // set gridwidth and gridheight
89 constraints.gridwidth = width;
90 constraints.gridheight = height;
91

Fig. 13.20Fig. 13.20Fig. 13.20Fig. 13.20 Demonstrating the GridBagLayout layout manager (part 2 of 3).

778 Graphical User Interface Components: Part 2 Chapter 13

The GUI consists of three JButtons, two JTextAreas, a JComboBox and a
JTextField. The layout manager for the content pane is GridBagLayout. Lines 22–
23 instantiate the GridBagLayout object and set the layout manager for the content pane
to layout. The GridBagConstraints object used to determine the location and size

92 // set constraints and add component
93 layout.setConstraints(component, constraints);
94 container.add(component);
95 }
96
97 // execute application
98 public static void main(String args[])
99 {
100 GridBagDemo application = new GridBagDemo();
101
102 application.setDefaultCloseOperation(
103 JFrame.EXIT_ON_CLOSE);
104 }
105
106 } // end class GridBagDemo

Fig. 13.20Fig. 13.20Fig. 13.20Fig. 13.20 Demonstrating the GridBagLayout layout manager (part 3 of 3).

Chapter 13 Graphical User Interface Components: Part 2 779

of each component in the grid is instantiated with line 26. Lines 23 through 30 instantiate
each of the GUI components that will be added to the content pane.

JTextArea textArea1 is the first component added to the GridBagLayout
(line 44). The values for weightx and weighty values are not specified in gbCon-
straints, so each has the value zero by default. Thus, the JTextArea will not resize
itself even if space is available. However, the JTextArea spans multiple rows, so the ver-
tical size is subject to the weighty values of JButtons button2 and button3. When
either button2 or button3 is resized vertically based on its weighty value, the
JTextArea is also resized.

Line 43 sets variable fill in constraints to GridBagConstraints.BOTH,
causing the JTextArea to always fill its entire allocated area in the grid. An anchor
value is not specified in constraints, so the default CENTER is used. We do not use
variable anchor in this program, so all components will use the default. Line 36 calls our
utility method addComponent method (defined at lines 81–95). The JTextArea
object, the row, the column, the number of columns to span and the number of rows to span
are passed as arguments.

Method addComponent’s parameters are a Component reference component
and integers row, column, width and height. Lines 85–86 set the GridBagCon-
straints variables gridx and gridy. The gridx variable is assigned the column in
which the Component will be placed, and the gridy value is assigned the row in which
the Component will be placed. Lines 89–90 set the GridBagConstraints variables
gridwidth and gridheight. The gridwidth variable specifies the number of col-
umns the Component will span in the grid and the gridheight variable specifies the
number of rows the Component will span in the grid. Line 93 sets the GridBagCon-
straints for a component in the GridBagLayout. Method setConstraints of
class GridBagLayout takes a Component argument and a GridBagConstraints
argument. Method add (line 94) is used to add the component to the content pane.

JButton object button1 is the next component added (lines 48–49). The values of
weightx and weighty are still zero. The fill variable is set to HORIZONTAL—the
component will always fill its area in the horizontal direction. The vertical direction is not
filled. The weighty value is zero, so the button will become taller only if another compo-
nent in the same row has a nonzero weighty value. JButton b1 is located at row 0,
column 1. One row and two columns are occupied.

JComboBox comboBox is the next component added (line 54). The weightx and
weighty values are zero, and the fill variable is set to HORIZONTAL. The JCom-
boBox button will grow only in the horizontal direction. Note that the weightx,
weighty and fill variables remain set in gbConstraints until they are changed. The
JComboBox button is placed at row 2, column 1. One row and two columns are occupied.

JButton object button2 is the next component added (lines 57–60). JButton
button2 is given a weightx value of 1000 and a weighty value of 1. The area occu-
pied by the button is capable of growing in the vertical and horizontal directions. The fill
variable is set to BOTH, which specifies that the button will always fill the entire area. When
the window is resized, b2 will grow. The button is placed at row 1, column 1. One row and
one column are occupied.

JButton button3 is added next (lines 64–66). Both the weightx value and
weighty value are set to zero, and the value of fill is BOTH. JButton button3 will

780 Graphical User Interface Components: Part 2 Chapter 13

grow if the window is resized; it is affected by the weight values of button2. Note that
the weightx value for button2 is much larger than button3. When resizing occurs,
button2 will occupy a larger percentage of the new space. The button is placed at row 1,
column 2. One row and one column are occupied.

Both the JTextField (line 70) and JTextArea textArea2 (line 74) have a
weightx value 0 and a weighty value 0. The value of fill is BOTH. The JText-
Field is placed at row 3, column 0, and the JTextArea is placed at row 3, column 2.
The JTextField occupies one row and two columns. The JTextArea occupies one
row and one column.

When you execute this application, try resizing the window to see how the constraints
for each GUI component affect its position and size in the window.

13.16 GridBagConstraints Constants RELATIVE and
REMAINDER
A variation of GridBagLayout does not use gridx and gridy. Rather, Gridbag-
Constraints constants RELATIVE and REMAINDER are used in their place. RELA-
TIVE specifies that the next-to-last component in a particular row should be placed to the
right of the previous component in that row. REMAINDER specifies that a component is the
last component in a row. Any component that is not the second-to-last or last component
on a row must specify values for GridbagConstraints variables gridwidth and
gridheight. Class GridBagDemo2 in Fig. 13.21 arranges components in GridBag-
Layout, using these constants.

1 // Fig. 13.21: GridBagDemo2.java
2 // Demonstrating GridBagLayout constants.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class GridBagDemo2 extends JFrame {
12 private GridBagLayout layout;
13 private GridBagConstraints constraints;
14 private Container container;
15
16 // set up GUI
17 public GridBagDemo2()
18 {
19 super("GridBagLayout");
20
21 container = getContentPane();
22 layout = new GridBagLayout();
23 container.setLayout(layout);
24

Fig. 13.21Fig. 13.21Fig. 13.21Fig. 13.21 Demonstrating the GridBagConstraints constants RELATIVE and
REMAINDER (part 1 of 3).

Chapter 13 Graphical User Interface Components: Part 2 781

25 // instantiate gridbag constraints
26 constraints = new GridBagConstraints();
27
28 // create GUI components
29 String metals[] = { "Copper", "Aluminum", "Silver" };
30 JComboBox comboBox = new JComboBox(metals);
31
32 JTextField textField = new JTextField("TextField");
33
34 String fonts[] = { "Serif", "Monospaced" };
35 JList list = new JList(fonts);
36
37 String names[] =
38 { "zero", "one", "two", "three", "four" };
39 JButton buttons[] = new JButton[names.length];
40
41 for (int count = 0; count < buttons.length; count++)
42 buttons[count] = new JButton(names[count]);
43
44 // define GUI component constraints
45 // textField
46 constraints.weightx = 1;
47 constraints.weighty = 1;
48 constraints.fill = GridBagConstraints.BOTH;
49 constraints.gridwidth = GridBagConstraints.REMAINDER;
50 addComponent(textField);
51
52 // buttons[0] -- weightx and weighty are 1: fill is BOTH
53 constraints.gridwidth = 1;
54 addComponent(buttons[0]);
55
56 // buttons[1] -- weightx and weighty are 1: fill is BOTH
57 constraints.gridwidth = GridBagConstraints.RELATIVE;
58 addComponent(buttons[1]);
59
60 // buttons[2] -- weightx and weighty are 1: fill is BOTH
61 constraints.gridwidth = GridBagConstraints.REMAINDER;
62 addComponent(buttons[2]);
63
64 // comboBox -- weightx is 1: fill is BOTH
65 constraints.weighty = 0;
66 constraints.gridwidth = GridBagConstraints.REMAINDER;
67 addComponent(comboBox);
68
69 // buttons[3] -- weightx is 1: fill is BOTH
70 constraints.weighty = 1;
71 constraints.gridwidth = GridBagConstraints.REMAINDER;
72 addComponent(buttons[3]);
73
74 // buttons[4] -- weightx and weighty are 1: fill is BOTH
75 constraints.gridwidth = GridBagConstraints.RELATIVE;
76 addComponent(buttons[4]);

Fig. 13.21Fig. 13.21Fig. 13.21Fig. 13.21 Demonstrating the GridBagConstraints constants RELATIVE and
REMAINDER (part 2 of 3).

782 Graphical User Interface Components: Part 2 Chapter 13

Lines 22–23 construct a GridBagLayout and set the content pane’s layout manager
to GridBagLayout. The components that are placed in GridBagLayout are each con-
structed (lines 29–42). The components are five JButtons, one JTextField, one
JList and one JComboBox.

The JTextField is added first (lines 46–50). The weightx and weighty values
are set to 1. The fill variable is set to BOTH. Line 49 specifies that the JTextField is
the last component on the line. The JTextField is added to the content pane with a call
to our utility method addComponent (defined at lines 88–92). Method addComponent
takes a Component argument and uses GridBagLayout method setConstraints
to set the constraints for the Component. Method add attaches the component to the con-
tent pane.

77
78 // list -- weightx and weighty are 1: fill is BOTH
79 constraints.gridwidth = GridBagConstraints.REMAINDER;
80 addComponent(list);
81
82 setSize(300, 200);
83 setVisible(true);
84
85 } // end constructor
86
87 // addComponent is programmer-defined
88 private void addComponent(Component component)
89 {
90 layout.setConstraints(component, constraints);
91 container.add(component); // add component
92 }
93
94 // execute application
95 public static void main(String args[])
96 {
97 GridBagDemo2 application = new GridBagDemo2();
98
99 application.setDefaultCloseOperation(
100 JFrame.EXIT_ON_CLOSE);
101 }
102
103 } // end class GridBagDemo2

Fig. 13.21Fig. 13.21Fig. 13.21Fig. 13.21 Demonstrating the GridBagConstraints constants RELATIVE and
REMAINDER (part 3 of 3).

Chapter 13 Graphical User Interface Components: Part 2 783

JButton buttons[0] (lines 53–54) has weightx and weighty values of 1.
The fill variable is BOTH. Because buttons[0] is not one of the last two compo-
nents on the row, it is given a gridwidth of 1 so it will occupy one column. The
JButton is added to the content pane with a call to utility method addComponent.

JButton buttons[1] (lines 57–58) has weightx and weighty values of 1. The
fill variable is BOTH. Line 57 specifies that the JButton is to be placed relative to the
previous component. The Button is added to the JFrame with a call to addComponent.

JButton buttons[2] (lines 61–62) has weightx and weighty values of 1.
The fill variable is BOTH. This JButton is the last component on the line, so
REMAINDER is used. The JButton is added to the content pane with a call to utility
method addComponent.

The JComboBox button (lines 65–67) has a weightx 1 and a weighty 0. The
JComboBox will not grow in the vertical direction. The JComboBox is the only compo-
nent on the line, so REMAINDER is used. The JComboBox is added to the content pane
with a call to utility method addComponent.

JButton buttons[3] (lines 70–72) has weightx and weighty values of 1.
The fill variable is BOTH. This JButton is the only component on the line, so
REMAINDER is used. The JButton is added to the content pane with a call to utility
method addComponent.

JButton buttons[4] (lines 75–76) has weightx and weighty values of 1.
The fill variable is BOTH. This JButton is the next-to-last component on the line, so
RELATIVE is used. The JButton is added to the content pane with a call to utility
method addComponent.

The JList component (lines 79–80) has weightx and weighty values of 1. The
fill variable is BOTH. The JList is added to the content pane with a call to utility
method addComponent.

13.17 (Optional Case Study) Thinking About Objects: Model-
View-Controller
Design patterns describe proven strategies for building reliable object-oriented software
systems. Our case study adheres to the Model-View-Controller (MVC) architecture, which
uses several design patterns.1 MVC divides system responsibilities into three parts:

1. the model, which contains all program data and logic;

2. the view, which provides a visual presentation of the model and

3. the controller, which defines the system behavior by sending user input to the
model.

Using the controller, the user changes the data in the model. The model then informs
the view of the change in data. The view changes its visual presentation to reflect the
changes in the model.

For example, in our simulation, the user adds a Person to the model by pressing
either the First Floor or Second Floor JButton in the controller (see Fig. 2.22–

1. For those readers who seek further study in design patterns and MVC architecture, we encourage
you to read our “Discovering Design Patterns” material in Sections 1.16, 9.24, 13.18, 15.13, 17.11
and 21.12

784 Graphical User Interface Components: Part 2 Chapter 13

Fig. 2.24). The model then notifies the view of the Person’s creation. The view, in
response to this notification, displays a Person on a Floor. The model is unaware of
how the view displays the Person, and the view is unaware of how or why the model cre-
ated the Person.

The MVC architecture helps construct reliable and easily modifiable systems. If we
desire text-based output rather than graphical output for the elevator simulation, we may
create an alternate view to produce text-based output, without altering the model or the con-
troller. We could also provide a three-dimensional view that uses a first-person perspective
to allow the user to “take part” in the simulation; such views are commonly employed in
virtual-reality-based systems.

Elevator-Simulation MVC
We now apply the MVC architecture to our elevator simulation. Every UML diagram we
have provided to this point (with the exception of the use-case diagram) relates to the model
of our elevator system. We provide a “higher-level” class diagram of the simulation in
Fig. 13.19. Class ElevatorSimulation—a JFrame subclass—aggregates one in-
stance each of classes ElevatorModel, ElevatorView and ElevatorControl-
ler to create the ElevatorSimulation application. As mentioned in “Thinking
About Objects” Section 10.22, the rectangle with the upper-right corner “folded over” rep-
resents a note in the UML. In this case, each note points to a specific class (through a dotted
line) to describe that class’ role in the system. Classes ElevatorModel, Elevator-
View and ElevatorController encapsulate all objects comprising the model, view
and controller portions of our simulation, respectively.

Fig. 13.19Fig. 13.19Fig. 13.19Fig. 13.19 Class diagram of the elevator simulation.

ElevatorSimulation

1

1 1
1

application

ElevatorModel ElevatorView

controllerviewmodel

javax.swing.JFrame

ElevatorController

1 1

ElevatorModelListener

Chapter 13 Graphical User Interface Components: Part 2 785

We showed in Fig. 9.38 that class ElevatorModel is an aggregation of several
classes. To save space, we do not repeat this aggregation in Fig. 13.19. Class Elevator-
View is also an aggregation of several classes—we expand the class diagram of Eleva-
torView in “Thinking About Objects” Section 22.9 to show these additional classes.
Class ElevatorController, as described in Section 12.16, represents the simulation
controller. Note that class ElevatorView implements interface ElevatorModel-
Listener, which implements all interfaces used in our simulation, so the Elevator-
View can receive all events from the model.

Software Engineering Observation 13.7
When appropriate, partition the system class diagram into several smaller class diagrams,
so each diagram represents a unique subsystem. 13.7

Class ElevatorSimulation contains no attributes other than its references to an
ElevatorModel object, an ElevatorView object and an ElevatorController
object. The only behavior for class ElevatorSimulation is to start the program—
therefore, in Java, class ElevatorSimulation contains a static main method that
calls the constructor, which instantiates the ElevatorModel, ElevatorView and
ElevatorController objects. We implement class ElevatorSimulation in
Java later in this section.

Component Diagrams
Figure 13.19 helps us construct another diagram of the UML that we use to design our sys-
tem—the component diagram. The component diagram models the “pieces”—called com-
ponents—that the system needs to perform its tasks. These pieces include binary
executables, compiled .class files, .java files, images, packages, resources, etc. We
present the component diagram for our simulation in Fig. 13.20.

In Fig. 13.20, each box that contains the two small white boxes overlapping its left side
is a component. A component in the UML is drawn similar to a plug (the two overlapping
boxes represent the plug’s prongs)—a component may be “plugged-in” to other systems
without having to change the component. Our system contains five components: Eleva-
torSimulation.class, ElevatorSimulation.java, Elevator-
Model.java, ElevatorView.java and ElevatorController.java.

In Fig. 13.20, the graphics that resemble folders (boxes with tabs in their upper-left
corners) represent packages in the UML. We can group classes, objects, components, use
cases, etc., in a package. In this diagram (and in the remainder of our case study), the UML
packages refer to Java packages (introduced in Section 8.5). In our discussion, we use
lower-case bold-face Courier type for package names. The packages in our system are
model, view and controller. Component ElevatorSimulation.java con-
tains one instance each of all components in these packages. Currently, each package con-
tains only one component—a .java file. The model package contains
ElevatorModel.java, the view package contains ElevatorView.java and the
controller package contains ElevatorController.java. We add components
to each package in the appendices, when we implement each class from our class diagrams
into a component (.java file).

The dotted arrows in Fig. 13.20 indicate a dependency between two components—the
direction of the arrow indicates the “depends on” relationship. A dependency describes the

786 Graphical User Interface Components: Part 2 Chapter 13

relationship between components in which changes in one component affect another compo-
nent. For example, component ElevatorSimulation.class depends on component
ElevatorSimulation.java, because a change in ElevatorSimulation.java
affects ElevatorSimulation.class when ElevatorSimulation.java is com-
piled. Section 12.16 mentioned that the ElevatorController object contains a refer-
ence to the ElevatorModel object (to place Persons on Floors). Therefore,
ElevatorController.java depends on ElevatorModel.java.

Software Engineering Observation 13.8
A component diagram’s dependencies help designers group components for reuse in future sys-
tems. For example, in our simulation, designers can reuse ElevatorModel.java in other
systems without having to reuse ElevatorView.java (and vice versa), because these com-
ponents do not depend on each other. However, if a designer wanted to reuse Elevator-
Controller.java, the designer would have to reuse ElevatorModel.java. 13.8

Fig. 13.20Fig. 13.20Fig. 13.20Fig. 13.20 Component diagram for elevator simulation.

ElevatorSimulation.class

view

controller

model

ElevatorSimulation.java

«compilation»

1

1

1

1

1

«executable»

«file»

ElevatorModel.java

«file»

ElevatorView.java

«file»

ElevatorController.java

«file»

ElevatorModel-
Listener

1

Chapter 13 Graphical User Interface Components: Part 2 787

According to Fig. 13.20, ElevatorModel.java and ElevatorView.java do
not depend on each other—they communicate through interface ElevatorModelLis-
tener, which implements all interfaces in the simulation. ElevatorView.java real-
izes interface ElevatorModelListener, and ElevatorModel.java depends on
interface ElevatorModelListener.

Figure 13.20 contains several stereotypes—words placed in guillemets (« ») indi-
cating an element’s role. We mentioned the «interface» stereotype in “Thinking About
Objects” Section 11.10. The «compilation» stereotype describes the dependency between
ElevatorSimulation.class and ElevatorSimulation.java—Eleva-
torSimulation.java compiles to ElevatorSimulation.class. The «execut-
able» stereotype specifies that a component is an application, and the «file» stereotype
specifies that a component is a file containing source code for the executable.

Implementation: ElevatorSimulation.java
We use the component diagram of Fig. 13.20, the class diagram of Fig. 13.19 and the use-
case diagram of Fig. 12.28 to implement ElevatorSimulation.java (Fig. 13.21).
Lines 12–14 import packages model, view and controller as specified in Fig. 13.20.

1 // ElevatorSimulation.java
2 // Application with Elevator Model, View, and Controller (MVC)
3 package com.deitel.jhtp4.elevator;
4
5 // Java core packages
6 import java.awt.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 // Deitel packages
12 import com.deitel.jhtp4.elevator.model.*;
13 import com.deitel.jhtp4.elevator.view.*;
14 import com.deitel.jhtp4.elevator.controller.*;
15
16 public class ElevatorSimulation extends JFrame {
17
18 // model, view and controller
19 private ElevatorModel model;
20 private ElevatorView view;
21 private ElevatorController controller;
22
23 // constructor instantiates model, view, and controller
24 public ElevatorSimulation()
25 {
26 super("Deitel Elevator Simulation");
27
28 // instantiate model, view and controller
29 model = new ElevatorModel();
30 view = new ElevatorView();
31 controller = new ElevatorController(model);

Fig. 13.21Fig. 13.21Fig. 13.21Fig. 13.21 Class ElevatorSimulation is the application for the elevator
simulation (part 1 of 2).

788 Graphical User Interface Components: Part 2 Chapter 13

The class diagram of Fig. 13.19 specifies that class ElevatorSimulation is a
subclass of javax.swing.JFrame—line 16 declares class ElevatorSimulation
as a public class extending class JFrame. Lines 19–21 implement class Elevator-
Simulation’s aggregation of class ElevatorModel, the ElevatorView and the
ElevatorController (shown in Fig. 13.19) by declaring one object from each class.
Lines 29–31 of the ElevatorSimulation constructor initialize these objects.

Figure 13.19 and Fig. 13.20 specify that the ElevatorView is an ElevatorMod-
elListener for the ElevatorModel. Line 34 registers the ElevatorView as a lis-
tener for ElevatorModelEvents, so the ElevatorView can receive events from the
ElevatorModel and properly represent the state of the model. Lines 37–38 add the
ElevatorView and the ElevatorController to the ElevatorSimulation.
According to the stereotypes in Fig. 13.20, ElevatorSimulation.java compiles to
ElevatorSimulation.class, which is executable—lines 43–50 provide method
main that runs the application.

We have completed the design of the components of our system. “Thinking About
Objects” Section 15.12 concludes the design of the model by solving the interaction prob-
lems encountered in Fig. 10.26. Finally, Section 22.9 completes the design of the view and
describes in greater detail how the ElevatorView receives events from the Eleva-
torModel. These last two sections will prepare you for the walkthrough of our elevator-
simulation implementation in Appendices G, H and I.

13.18 (Optional) Discovering Design Patterns: Design Patterns
Used in Packages java.awt and javax.swing
We continue our discussion from Section 9.24 on design patterns. This section introduces
those design patterns associated with Java GUI components. After reading this section, you

32
33 // register View for Model events
34 model.setElevatorModelListener(view);
35
36 // add view and controller to ElevatorSimulation
37 getContentPane().add(view, BorderLayout.CENTER);
38 getContentPane().add(controller, BorderLayout.SOUTH);
39
40 } // end ElevatorSimulation constructor
41
42 // main method starts program
43 public static void main(String args[])
44 {
45 // instantiate ElevatorSimulation
46 ElevatorSimulation simulation = new ElevatorSimulation();
47 simulation.setDefaultCloseOperation(EXIT_ON_CLOSE);
48 simulation.pack();
49 simulation.setVisible(true);
50 }
51 }

Fig. 13.21Fig. 13.21Fig. 13.21Fig. 13.21 Class ElevatorSimulation is the application for the elevator
simulation (part 2 of 2).

Chapter 13 Graphical User Interface Components: Part 2 789

should understand better how these components take advantage of design patterns and how
developers integrate design patterns with Java GUI applications.

13.18.1 Creational Design Patterns

Now, we continue our treatment of creational design patterns, which provide ways to in-
stantiate objects in a system.

Factory Method
Suppose we are designing a system that opens an image from a specified file. Several dif-
ferent image formats exist, such as GIF and JPEG. We can use method createImage of
class java.awt.Component to create an Image object. For example, to create a JPEG
and GIF image in an object of a Component subclass—such as a JPanel object, we pass
the name of the image file to method createImage, which returns an Image object that
stores the image data. We can create two Image objects, each which contains data for two
images having entirely different structures. For example, a JPEG image can hold up to 16.7
million colors, whereas a GIF image can hold up to only 256. Also, a GIF image can contain
transparent pixels that are not rendered on screen, whereas a JPEG image cannot contain
transparent pixels.

Class Image is an abstract class that represents an image we can display on screen.
Using the parameter passed by the programmer, method createImage determines the
specific Image subclass from which to instantiate the Image object. We can design sys-
tems to allow the user to specify which image to create, and method createImage will
determine the subclass from which to instantiate the Image. If the parameter passed to
method createImage references a JPEG file, method createImage instantiates and
returns an object of an Image subclass suitable for JPEG images. If the parameter refer-
ences a GIF file, createImage instantiates and returns an object of an Image subclass
suitable for GIF images.

Method createImage is an example of the Factory Method design pattern. The sole
purpose of this factory method is to create objects by allowing the system to determine
which class to instantiate at run time. We can design a system that allows a user to specify
what type of image to create at run time. Class Component might not be able to determine
which Image subclass to instantiate until the user specifies the image to load. For more
information on method createImage, visit

www.java.sun.com/j2se/1.3/docs/api/java/awt/Compo-
nent.html#createImage(java.awt.image.ImageProducer)

13.18.2 Structural Design Patterns
We now discuss three more structural design patterns. The Adapter design pattern helps ob-
jects with incompatible interfaces collaborate with one another. The Bridge design pattern
helps designers enhance platform independence in their systems. The Composite design
pattern provides a way for designers to organize and manipulate objects.

Adapter
The Adapter design pattern provides an object with a new interface that adapts to another
object’s interface, allowing both objects to collaborate with one another. The adapter in this

790 Graphical User Interface Components: Part 2 Chapter 13

pattern is similar to an adapter for a plug on an electrical device—electrical sockets in Eu-
rope are different from those in the United States, so an adapter is needed to plug an Amer-
ican device into a European electrical socket and vice versa.

Java provides several classes that use the Adapter design pattern. Objects of these
classes act as adapters between objects that generate certain events and those objects that
handle these events. For example, a MouseAdapter, which we explained in
Section 12.12, adapts an object that generates MouseEvents to an object that handles
MouseEvents.

Bridge
Suppose we are designing class Button for both the Windows and Macintosh operating sys-
tems. Class Button contains specific button information such as an ActionListener
and a String label. We design classes Win32Button and MacButton to extend class
Button. Class Win32Button contains “look-and-feel” information on how to display a
Button on the Windows operating system and class MacButton contains “look-and-feel”
information on how to display a Button on the Macintosh operating system.

Two problems arise from this approach. First, if we create new Button subclasses,
we must create corresponding Win32Button and MacButton subclasses. For example,
if we create class ImageButton (a Button with an overlapping Image) that extends
class Button, we must create additional subclasses Win32ImageButton and MacI-
mageButton. In fact, we must create Button subclasses for every operating system we
wish to support, which increases development time. The second problem is that when a new
operating system enters the market, we must create additional Button subclasses specific
to that operating system.

The Bridge design pattern avoids these problems by separating an abstraction (e.g., a
Button) and its implementations (e.g., Win32Button, MacButton, etc.) into different
class hierarchies. For example, the Java AWT classes use the Bridge design pattern to
enable designers to create AWT Button subclasses without needing to create corre-
sponding subclasses for each operating system. Each AWT Button maintains a reference
to a ButtonPeer, which is the superclass for platform-specific implementations, such as
Win32ButtonPeer, MacButtonPeer, etc. When a programmer creates a Button
object, class Button calls factory method createButton of class Toolkit to create
the platform-specific ButtonPeer object. The Button object stores a reference to its
ButtonPeer—this reference is the “bridge” in the Bridge design pattern. When the pro-
grammer invokes methods on the Button object, the Button object invokes the appro-
priate method on its ButtonPeer to fulfill the request. If a designer creates a Button
subclass called ImageButton, the designer does not need to create a corresponding
Win32ImageButton or MacImageButton with platform-specific image-drawing
capabilities. An ImageButton “is a” Button. Therefore, when an ImageButton
needs to display its image, the ImageButton uses its ButtonPeer’s Graphics
object to render the image on each platform. This design pattern enables designers to create
new cross-platform GUI components using a “bridge” to hide platform-specific details.

Portability Tip 13.2
Designers often use the Bridge design pattern to enhance the platform independence of their
systems. This design pattern enables designers to create new cross-platform components us-
ing a “bridge” to hide platform-specific details. 13.2

Chapter 13 Graphical User Interface Components: Part 2 791

Composite
Designers often organize components into hierarchical structures (e.g., a hierarchy of di-
rectories and files on a hard drive)—each node in the structure represents a component
(e.g., a file or directory). Each node can contain references to other nodes. A node is called
a branch if it contains a reference to one or more nodes (e.g., a directory containing files).
A node is called a leaf if it does not contain a reference to another node (e.g., a file). Occa-
sionally, a structure contains objects from several different classes (e.g., a directory can
contain files and directories). When an object—called a client—wants to traverse the struc-
ture, the client must determine the particular class for each node. Making this determination
can be time consuming, and the structure can become hard to maintain.

In the Composite design pattern, each component in a hierarchical structure imple-
ments the same interface or extends a common superclass. This polymorphism (introduced
in Section 9.10) ensures that clients can traverse all elements—branch or leaf—uniformly
in the structure. Using this pattern, a client traversing the structure does not have to deter-
mine each component type, because all components implement the same interface or
extend the same superclass.

Java GUI components use the Composite design pattern. Consider the Swing compo-
nent class JPanel, which extends class JComponent. Class JComponent extends
class java.awt.Container, which extends class java.awt.Component
(Fig. 13.22). Class Container provides method add, which appends a Component
object (or Component subclass object) to that Container object. Therefore, a JPanel
object may be added to any object of a Component subclass, and any object from a Com-
ponent subclass may be added to that JPanel object. A JPanel object can contain any
GUI component while remaining unaware of that component’s specific type.

A client, such as a JPanel object, can traverse all components uniformly in the hier-
archy. For example, if the JPanel object calls method repaint of superclass Con-
tainer, method repaint displays the JPanel object and all components added to the
JPanel object. Method repaint does not have to determine each component’s type,
because all components inherit from superclass Container, which contains method
repaint.

Fig. 13.22Fig. 13.22Fig. 13.22Fig. 13.22 Inheritance hierarchy for class JPanel.

javax.swing.JComponent

javax.swing.JPanel

java.awt.Container

java.awt.Component

792 Graphical User Interface Components: Part 2 Chapter 13

13.18.3 Behavioral Design Patterns
In this section, we continue our discussion on behavioral design patterns. We discuss the
Chain-of-Responsibility, Command, Observer, Strategy and Template Method design
patterns.

Chain-of-Responsibility
In object-oriented systems, objects interact by sending messages to one another. Often, a
system needs to determine at run time the object that will handle a particular message. For
example, consider the design of a three-line office phone system. When a person calls the
office, the first line handles the call—if the first line is busy, the second line handles the
call, and if the second line is busy, the third line handles the call. If all lines in the system
are busy, an automated speaker instructs that person to wait for the next available line—
when a line becomes available, that line handles the call.

The Chain-of-Responsibility design pattern enables a system to determine at run time
the object that will handle a message. This pattern allows an object to send a message to
several objects in a chain of objects. Each object in the chain either may handle the message
or pass the message to the next object in the chain. For instance, the first line in the phone
system is the first object in the chain of responsibility, the second line is the second object,
the third line is the third object, and the automated speaker is the fourth object. Note that
this mechanism is not the final object in the chain—the next available line handles the mes-
sage, and that line is the final object in the chain. The chain is created dynamically in
response to the presence or absence of specific message handlers.

Several Java AWT GUI components use the Chain-of-Responsibility design pattern to
handle certain events. For example, class java.awt.Button overrides method pro-
cessEvent of class java.awt.Component to process AWTEvent objects. Method
processEvent attempts to handle the AWTEvent upon receiving this event as an argu-
ment. If method processEvent determines that the AWTEvent is an ActionEvent
(i.e., the Button has been pressed), the method handles the event by invoking method
processActionEvent, which informs any ActionListener registered with the
Button that the Button has been pressed. If method processEvent determines that
the AWTEvent is not an ActionEvent, the method is unable to handle the event and
passes the AWTEvent to method processEvent of superclass Component (the next
object in the chain).

Command
Applications often provide users with several ways to perform a given task. For example,
in a word processor there might be an Edit menu with menu items for cutting, copying and
pasting text. There could also be a toolbar and/or a popup menu offering the same items.
The functionality the application provides is the same in each case—the different interface
components for invoking the functionality are provided for the user's convenience. How-
ever, the same GUI component instance (e.g., JButton) cannot be used for menus and
toolbars and popup menus, so the developer must code the same functionality three times.
If there were many such interface items, repeating this functionality would become tedious
and error-prone.

The Command design pattern solves this problem by enabling developers to specify
the desired functionality (e.g., copying text) once in a reusable object; that functionality can

Chapter 13 Graphical User Interface Components: Part 2 793

then be added to a menu, toolbar, popup menu or other mechanisms. This design pattern is
called Command because it defines a user command, or instruction. This pattern allows a
designer to encapsulate a command, so that the command may be used among several
objects.

Observer
Suppose we want to design a program for viewing bank account information. This system
includes class BankStatementData to store data pertaining to bank statements, and
classes TextDisplay, BarGraphDisplay and PieChartDisplay to display the
data.2 Figure 13.23 shows the design for our system. Class TextDisplay displays the
data in text format, class BarGraphDisplay displays the data in bar-graph format and
class PieChartDisplay displays the data as a pie chart. We want to design the system
so that the BankStatementData object notifies the objects displaying the data of a
change in the data. We also want to design the system to loosen coupling—the degree to
which classes depend on each other in a system.

Software Engineering Observation 13.9
Loosely-coupled classes are easier to reuse and modify than are tightly-coupled classes,
which depend heavily on each other. A modification in a class in a tightly-coupled system
usually results in modifying other classes in that system. A modification to one of a group of
loosely-coupled classes would require little or no modification to the other classes in the
group. 13.9

 The Observer design pattern is appropriate for systems like that of Fig. 13.23. This
pattern promotes loose coupling between a subject object and observer objects—a subject
notifies the observers when the subject changes state. When notified by the subject, the
observers change in response to the change in the subject. In our example, the Bank-
StatementData object is the subject, and the objects displaying the data are the
observers. A subject can notify several observers; therefore, the subject contains a one-to-
many relationship with the observers.

2. This approach is the basis for the Model-View-Controller architecture pattern, discussed in Sec-
tions 13.17 and 17.11.

Fig. 13.23Fig. 13.23Fig. 13.23Fig. 13.23 Basis for the Observer design pattern.

notifies

notifie
s

notifies

BankStatementData

TextDisplay

BarGraphDisplay

PieChartDisplay

794 Graphical User Interface Components: Part 2 Chapter 13

The Java API contains classes that use the Observer design pattern. Class
java.util.Observable represents a subject. Class Observable provides method
addObserver, which takes a java.util.Observer argument. Interface Observer
allows the Observable object to notify the Observer when the Observable objects
changes state. The Observer can be an instance of any class that implements interface
Observer; because the Observable object invokes methods defined in interface
Observer, the objects remain loosely coupled. If a developer changes the way in which a
particular Observer responds to changes in the Observable object, the developer does
not need to change the Observable object. The Observable object interacts with its
Observers only through interface Observer, which enables the loose coupling.

The optional elevator simulation case study in the “Thinking About Objects” sections
uses the Observer design pattern to allow the ElevatorModel object (the subject) to
notify the ElevatorView object (the observer) of changes in the ElevatorModel.
The simulation does not use class Observable and interface Observer from the Java
library—rather, it uses a custom interface ElevatorModelListener that provides
functionality similar to that of interface Observable.

The Swing GUI components use the Observer design pattern. GUI components collab-
orate with their listeners to respond to user interactions. For example, an ActionLis-
tener observes state changes in a JButton (the subject) by registering to handle that
JButton’s events. When pressed by the user, the JButton notifies its ActionLis-
tener objects (the observers) that the JButton’s state has changed (i.e., the JButton
has been pressed).

Strategy
The Strategy design pattern is similar to the State design pattern (discussed in
Section 9.24.3). We mentioned that the State design pattern contains a state object, which
encapsulates the state of a context object. The Strategy design pattern contains a strategy
object, which is analogous to the State design pattern’s state object. The key difference be-
tween a state object and a strategy object is that the strategy object encapsulates an algo-
rithm rather than state information.

For example, java.awt.Container components implement the Strategy design
pattern using LayoutManagers (discussed in Section 12.14) as strategy objects. In
package java.awt, classes FlowLayout, BorderLayout and GridLayout imple-
ment interface LayoutManager. Each class uses method addLayoutComponent to
add GUI components to a Container object—however, each method uses a different
algorithm to display these GUI components: a FlowLayout displays components in a
left-to-right sequence; a BorderLayout displays components in five regions; and a
GridLayout displays components in row-column format.

Class Container contains a reference to a LayoutManager object (the strategy
object). Because an interface reference (i.e., the reference to the LayoutManager object)
can hold references to objects of classes that implement that interface (i.e., the Flow-
Layout, BorderLayout or GridLayout objects), the LayoutManager object can
reference a FlowLayout, BorderLayout or GridLayout at any one time. Class
Container can change this reference through method setLayout to select different
layouts at run time.

Class FlowLayoutDemo (Fig. 12.24) demonstrates the application of the Strategy
pattern—line 16 declares a new FlowLayout object and line 19 invokes the Con-

Chapter 13 Graphical User Interface Components: Part 2 795

tainer object’s method setLayout to assign the FlowLayout object to the Con-
tainer object. In this example, the FlowLayout provides the strategy for laying out the
components.

Template Method
The Template Method design pattern also deals with algorithms. The Strategy design pat-
tern allows several objects to contain distinct algorithms. However, the Template Method
design pattern requires all objects to share a single algorithm defined by a superclass.

For example, consider the design of Fig. 13.23, which we mentioned in the Observer
design pattern discussion. Objects of classes TextDisplay, BarGraphDisplay and
PieChartDisplay use the same basic algorithm for acquiring and displaying the
data—get all statements from the BankStatementData object, parse the statements
then display the statements. The Template Method design pattern allows us to create an
abstract superclass called BankStatementDisplay that provides the central algorithm
for displaying the data. In this example, the algorithm comprises abstract methods get-
Data, parseData and displayData comprise the algorithm. Classes TextDis-
play, BarGraphDisplay and PieChartDisplay extend class
BankStatementDisplay to inherit the algorithm, so each object can use the same
algorithm. Each BankStatementDisplay subclass then overrides each method in a
way specific to that subclass, because each class implements the algorithm differently from
one another. For example, classes TextDisplay, BarGraphDisplay and Pie-
ChartDisplay might get and parse the data identically, but each class displays that data
differently.

The Template Method design pattern allows us to extend the algorithm to other Bank-
StatementDisplay subclasses—e.g., we could create classes, such as LineGraph-
Display or class 3DimensionalDisplay, that use the same algorithm inherited from
class BankStatementDisplay.

13.18.4 Conclusion

In this “Discovering Design Patterns” section, we discussed how Swing components take
advantage of design patterns and how developers can integrate design patterns with GUI
applications in Java. In “Discovering Design Patterns” Section 15.13, we discuss concur-
rency design patterns, which are particularly useful for developing multithreaded systems.

SUMMARY
• JTextAreas provide an area for manipulating multiple lines of text. Like class JTextField,

class JTextArea inherits from JTextComponent.

• An external event (i.e., an event generated by a different GUI component) normally indicates when
the text in a JTextArea should be processed.

• Scrollbars are provided for a JTextArea by attaching it to a JScrollPane object.

• Method getSelectedText returns the selected text from a JTextArea. Text is selected by
dragging the mouse over the desired text to highlight it.

• Method setText sets the text in a JTextArea.

• To provide automatic word wrap in a JTextArea, attach it to a JScrollPane with horizontal
scrollbar policy JScrollPane.HORIZONTAL_SCROLLBAR_NEVER.

796 Graphical User Interface Components: Part 2 Chapter 13

• The horizontal and vertical scrollbar policies for a JScrollPane are set when a JScroll-
Pane is constructed or with methods setHorizontalScrollBarPolicy and setVerti-
calScrollBarPolicy of class JScrollPane.

• A JPanel can be used as a dedicated drawing area that can receive mouse events and is often
extended to create new GUI components.

• Swing components that inherit from class JComponent contain method paintComponent,
which helps them draw properly in the context of a Swing GUI. JComponent method paint-
Component should be overridden to call to the superclass version of paintComponent as the
first statement in its body.

• Classes JFrame and JApplet are not subclasses of JComponent; therefore, they do not con-
tain method paintComponent (they have method paint).

• Calling repaint for a Swing GUI component indicates that the component should be painted as
soon as possible. The background of the GUI component is cleared only if the component is
opaque. Most Swing components are transparent by default. JComponent method setOpaque
can be passed a boolean argument indicating whether the component is opaque (true) or trans-
parent (false). The GUI components of package java.awt are different from Swing compo-
nents in that repaint results in a call to Component method update (which clears the
component’s background) and update calls method paint (rather than paintComponent).

• Method setTitle displays a String in a window’s title bar.

• Drawing on any GUI component is performed with coordinates that are measured from the upper-
left corner (0, 0) of that GUI component.

• Layout managers often use a GUI component’s getPreferredSize method to determine the
preferred width and height of a component when laying out that component as part of a GUI. If a
new component has a preferred width and height, it should override method getPreferred-
Size to return that width and height as an object of class Dimension (package java.awt).

• The default size of a JPanel object is 0 pixels wide and 0 pixels tall.

• A mouse drag operation begins with a mouse-pressed event. All subsequent mouse drag events
(for which mouseDragged will be called) are sent to the GUI component that received the orig-
inal mouse-pressed event.

• JSliders enable the user to select from a range of integer values. JSliders can display major
tick marks, minor tick marks and labels for the tick marks. They also support snap-to ticks, where
positioning the thumb between two tick marks causes the thumb to snap to the closest tick mark.

• Most Swing GUI components support user interactions through both the mouse and the keyboard.

• If a JSlider has the focus, the left arrow key and right arrow key cause the thumb of the
JSlider to decrease or increase by 1. The down arrow key and up arrow key also cause the
thumb of the JSlider to decrease or increase by 1, respectively. The PgDn key (page down) and
PgUp key (page up) cause the thumb of the JSlider to decrease or increase by block increments
of one-tenth of the range of values, respectively. The Home key moves the thumb to the minimum
value of the JSlider and the End key moves the thumb to the maximum value of the JSlider.

• JSliders have either a horizontal orientation or a vertical orientation. For a horizontal JSlid-
er, the minimum value is at the extreme left and the maximum value is at the extreme right of the
JSlider. For a vertical JSlider, the minimum value is at the extreme bottom and the maxi-
mum value is at the extreme top of the JSlider. The relative position of the thumb indicates the
current value of the JSlider.

• Method setMajorTickSpacing of class JSlider sets the spacing for tick marks on a JS-
lider. Method setPaintTicks with a true argument indicates that the tick marks should
be displayed.

Chapter 13 Graphical User Interface Components: Part 2 797

• JSliders generate ChangeEvents (package javax.swing.event) when the user inter-
acts with a JSlider. A ChangeListener (package javax.swing.event) defines meth-
od stateChanged that can respond to ChangeEvents.

• Method getValue of class JSlider returns the current thumb position.

• A JFrame is a window with a title bar and a border. Class JFrame is a subclass of ja-
va.awt.Frame (which is a subclass of java.awt.Window).

• Class JFrame supports three operations when the user closes the window. By default, a JFrame
is hidden when the user closes a window. This can be controlled with JFrame method setDe-
faultCloseOperation. Interface WindowConstants (package javax.swing) defines
three constants for use with this method—DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE
and HIDE_ON_CLOSE (the default).

• By default, a window is not displayed on the screen until its setVisible method is called with
true as an argument. A window can also be displayed by calling its show method.

• A window’s size should be set with a call to method setSize. The position of a window when
it appears on the screen is specified with method setLocation.

• All windows generate window events when the user manipulates the window. Event listeners are
registered for window events with method addWindowListener of class Window. The Win-
dowListener interface provides seven methods for handling window events—windowActi-
vated (called when the window is made active by clicking the window), windowClosed
(called after the window is closed), windowClosing (called when the user initiates closing of
the window), windowDeactivated (called when another window is made active), window-
Iconified (called when the user minimizes a window), windowDeiconified (called when
a window is restored from being minimized) and windowOpened (called when a window is first
displayed on the screen).

• The command-line arguments are automatically passed to main as the array of Strings called
args. The first argument after the application class name is the first String in the array args,
and the length of the array is the total number of command-line arguments.

• Menus are an integral part of GUIs. Menus allow the user to perform actions without unnecessarily
“cluttering” a graphical user interface with extra GUI components.

• In Swing GUIs, menus can be attached only to objects of the classes that provide method set-
JMenuBar. Two such classes are JFrame and JApplet.

• The classes used to define menus are JMenuBar, JMenuItem, JMenu, JCheckBoxMenu-
Item and class JRadioButtonMenuItem.

• A JMenuBar is a container for menus.

• A JMenuItem is a GUI component inside a menu that, when selected, causes an action to be per-
formed. A JMenuItem can be used to initiate an action or it can be a submenu that provides more
menu items from which the user can select.

• A JMenu contains menu items and can be added to a JMenuBar or to other JMenus as sub-
menus. When a menu is clicked, the menu expands to show its list of menu items.

• When a JCheckBoxMenuItem is selected, a check appears to the left of the menu item. When
the JCheckBoxMenuItem is selected again, the check to the left of the menu item is removed.

• When multiple JRadioButtonMenuItems are maintained as part of a ButtonGroup, only
one item in the group can be selected at a given time. When a JRadioButtonMenuItem is se-
lected, a filled circle appears to the left of the menu item. When another JRadioButtonMenu-
Item is selected, the filled circle to the left of the previously selected menu item is removed.

• JFrame method setJMenuBar attaches a menu bar to a JFrame.

798 Graphical User Interface Components: Part 2 Chapter 13

• AbstractButton method setMnemonic (inherited into class JMenu) specifies the mne-
monic for an AbstractButton object. Pressing the Alt key and the mnemonic performs the
AbstractButton’s action (in the case of a menu, it opens the menu).

• Mnemonic characters are normally displayed with an underline.

• Dialog boxes can be either modal or modeless. A modal dialog box does not allow any other win-
dow in the application to be accessed until the dialog box is dismissed. A modeless dialog box al-
lows other windows to be accessed while the dialog is displayed. By default, the dialogs displayed
with class JOptionPane are modal dialogs. Class JDialog can be used to create your own
modeless or modal dialogs.

• JMenu method addSeparator adds a separator line to a menu.

• Context-sensitive popup menus are created with class JPopupMenu. These menus provide op-
tions that are specific to the component for which the popup-trigger event was generated. On most
systems, the popup-trigger event occurs when the user presses and releases the right mouse button.

• MouseEvent method isPopupTrigger returns true if the popup-trigger event occurred.

• Method show of class JPopupMenu displays a JPopupMenu. The first argument to method
show specifies the origin component, whose position helps determine where the JPopupMenu
will appear on the screen. The last two arguments are the x and y coordinates from the origin com-
ponent’s upper-left corner at which the JPopupMenu should appear.

• Class UIManager contains a public static inner class called LookAndFeelInfo that is
used to maintain information about a look-and-feel.

• UIManager static method getInstalledLookAndFeels gets an array of UIMan-
ager.LookAndFeelInfo objects that describe the installed look-and-feels.

• UIManager static method setLookAndFeel changes the look-and-feel.

• SwingUtilities static method updateComponentTreeUI changes the look-and-feel
of every component attached to its Component argument to the new look-and-feel.

• Many of today’s applications use a multiple document interface (MDI) [i.e., a main window (often
called the parent window) containing other windows (often called child windows)] to manage sev-
eral open documents that are being processed in parallel.

• Swing’s JDesktopPane and JInternalFrame classes provide support for creating multiple
document interfaces.

• BoxLayout is a layout manager that allows GUI components to be arranged left-to-right or top-
to-bottom in a container. Class Box defines a container with BoxLayout as its default layout
manager and provides static methods to create a Box with a horizontal or vertical BoxLayout.

• CardLayout is a layout manager that stacks components like a deck of cards. Each container in
the stack can use any layout manager. Only the container at the “top” of the deck is visible.

• GridBagLayout is a layout manager similar to GridLayout. Unlike with GridLayout,
each component size can vary, and components can be added in any order.

• Box static method createHorizontalBox returns a Box container with a horizontal
BoxLayout. Box static method createVerticalBox of class Box returns a Box con-
tainer with a vertical BoxLayout.

• Box static method createVerticalStrut adds a vertical strut to a container. A vertical
strut is an invisible GUI component that has a fixed pixel height and is used to guarantee a fixed
amount of space between GUI components. Class Box also defines method createHorizon-
talStrut for horizontal BoxLayouts.

• Box static method createHorizontalGlue adds horizontal glue to a container. Horizon-
tal glue is an invisible GUI component that can be used between fixed-size GUI components to

Chapter 13 Graphical User Interface Components: Part 2 799

occupy additional space. Class Box also defines method createVerticalGlue for vertical
BoxLayouts.

• Box static method createRigidArea adds a rigid area to a container. A rigid area is an
invisible GUI component that always has a fixed pixel width and height.

• The BoxLayout constructor receives a reference to the container for which it controls the layout
and a constant indicating whether the layout is horizontal (BoxLayout.X_AXIS) or vertical
(BoxLayout.Y_AXIS).

• CardLayout methods first, previous, next and last are used to display a particular
card. Method first displays the first card. Method previous displays the previous card.
Method next displays the next card. Method last displays the last card.

• To use GridBagLayout, a GridBagConstraints object must be used to specify how a
component is placed in a GridBagLayout.

• Method setConstraints of class GridBagLayout takes a Component argument and a
GridBagConstraints argument and sets the constraints of the Component.

TERMINOLOGY
addSeparator method of class JMenu GridBagConstraints class
addWindowListener method of Window GridBagConstraints.BOTH
anchor variable of GridBagConstraints GridBagConstraints.CENTER
automatic word wrap GridBagConstraints.EAST
Box class GridBagConstraints.HORIZONTAL
BoxLayout layout manager GridBagConstraints.NONE
BoxLayout.X_AXIS GridBagConstraints.NORTH
BoxLayout.Y_AXIS GridBagConstraints.NORTHEAST
CardLayout layout manager GridBagConstraints.NORTHWEST
ChangeEvent class GridBagConstraints.RELATIVE
ChangeListener interface GridBagConstraints.REMAINDER
child window GridBagConstraints.SOUTH
command-line arguments GridBagConstraints.SOUTHEAST
context-sensitive popup menu GridBagConstraints.SOUTHWEST
createHorizontalBox method of Box GridBagConstraints.VERTICAL
createHorizontalGlue method of Box GridBagConstraints.WEST
createHorizontalStrut method of Box GridBagLayout layout manager
createRigidArea method of Box gridheight variable
createVerticalBox method of Box gridwidth variable
createVerticalGlue method of Box gridx variable of GridBagConstraints
createVerticalStrut method of Box gridy variable of GridBagConstraints
dedicated drawing area isPopupTrigger method of MouseEvent
Dimension class JCheckBoxMenuItem class
dispose method of class Window JDesktopPane class
external event JInternalFrame class
fill variable of GridBagConstraints JMenu class
first method of CardLayout JMenuBar class
getClassName method JMenuItem class
getInstalledLookAndFeels method JPopupMenu class
getMinimumSize method of Component JRadioButtonMenuItem class
getPreferredSize method of Component JSlider class
getSelectedText method JTextArea class
getValue method of class JSlider JTextComponent class

800 Graphical User Interface Components: Part 2 Chapter 13

SELF-REVIEW EXERCISES
13.1 Fill in the blanks in each of the following statements:

a) The class is used to create a menu object.
b) The method places a separator bar in a menu.
c) Passing false to a TextArea’s method prevents its text from being mod-

ified by the user.
d) JSlider events are handled by the method of interface .
e) The GridBagConstraints instance variable is set to CENTER by default.

13.2 State whether each of the following is true or false. If false, explain why.
a) When the programmer creates a JFrame, a minimum of one menu must be created and

added to the JFrame.
b) The variable fill belongs to the GridBagLayout class.
c) JFrames and applets cannot be used together in the same program.
d) The top-left corner of a JFrame or applet has a coordinate of (0, 0).
e) A JTextArea’s text is always read-only.
f) Class JTextArea is a direct subclass of class Component.
g) The default layout for a Box is BoxLayout.

13.3 Find the error(s) in each of the following and explain how to correct the error(s).
a) JMenubar b;
b) mySlider = JSlider(1000, 222, 100, 450);

labels for tick marks setSelected method of AbstractButton
last method of class CardLayout setTitle method of class Frame
major tick mark setVerticalScrollBarPolicy method
menu show method of class JPopupMenu
menu bar snap-to ticks
menu item submenu
metal look-and-feel super.paintComponent(g);
method setMnemonic of AbstractButton SwingConstants.HORIZONTAL
minor tick mark SwingConstants.VERTICAL
mnemonic thumb of a JSlider
modal dialog tick mark
modeless dialog UIManager class
Motif look-and-feel UIManager.LookAndFeelInfo class
multiple document interface (MDI) updateComponentTreeUI method
next method of class CardLayout vertical strut
paintComponent method of JComponent weightx variable of GridBagConstraints
parent window weighty variable of GridBagConstraints
pluggable look-and-feel (PLAF) windowActivated method
previous method of class CardLayout windowClosed method
scrollbar policies for a JScrollPane windowClosing method
setConstraints method WindowConstants.DISPOSE_ON_CLOSE
setDefaultCloseOperation method windowDeactivated method
setHorizontalScrollBarPolicy methodwindowDeiconified method
setJMenuBar method windowIconified method
setLookAndFeel method WindowListener interface
setMajorTickSpacing method windowOpened method
setOpaque method of class JComponent Windows look-and-feel
setPaintTicks method of class JSlider

Chapter 13 Graphical User Interface Components: Part 2 801

c) gbc.fill = GridBagConstraints.NORTHWEST; // set fill
d) // override to paint on a customized Swing component

public void paintcomponent(Graphics g)
{
 g.drawString("HELLO", 50, 50);
}

e) // create a JFrame and display it
JFrame f = new JFrame("A Window");
f.setVisible(true);

ANSWERS TO SELF-REVIEW EXERCISES
13.1 a) JMenu. b) addSeparator. c) setEditable. d) stateChanged, ChangeLis-
tener. e) anchor.

13.2 a) False. A JFrame does not require any menus.
b) False. The variable fill belongs to the GridBagConstraints class.
c) False. They can be used together.
d) True.
e) False. JTextAreas are editable by default.
f) False. JTextArea derives from class JTextComponent.
g) True.

13.3 a) JMenubar should be JMenuBar.
b) The first argument to the constructor should be either SwingConstants.HORIZON-

TAL or SwingConstants.VERTICAL, and the new operator must be used after the
= operator.

c) The constant should be either BOTH, HORIZONTAL, VERTICAL or NONE.
d) paintcomponent should be paintComponent and the method should call su-

per.paintComponent(g) as its first statement.
e) The JFrame’ssetSize method must also be called to determine the size of the window.

EXERCISES
13.4 Fill in the blanks in each of the following statements:

a) A dedicated drawing area can be defined as a subclass of .
b) A JMenuItem that is a JMenu is called a
c) Both JTextFields and JTextAreas inherit directly from class .
d) The method attaches a JMenuBar to a JFrame.
e) Container class has a default BoxLayout.
f) A manages a set of child windows defined with class JInternalFrame.

13.5 State whether each of the following is true or false. If false, explain why.
a) Menus require a JMenuBar object so they can be attached to a JFrame.
b) A JPanel object is capable of receiving mouse events.
c) CardLayout is the default layout manager for a JFrame.
d) Method setEditable is a JTextComponent method.
e) The GridBagLayout layout manager implements LayoutManager.
f) JPanel objects are containers to which other GUI components can be attached.
g) Class JFrame inherits directly from class Container.
h) JApplets can contain menus.

13.6 Find the error(s) in each of the following. Explain how to correct the error(s).
a) x.add(new JMenuItem("Submenu Color")); // create submenu

802 Graphical User Interface Components: Part 2 Chapter 13

b) container.setLayout(m = new GridbagLayout());
c) String s = JTextArea.getText();

13.7 Write a program that displays a circle of random size and calculates and displays the area,
radius, diameter and circumference. Use the following equations: diameter = 2 × radius, area = π ×

radius2, circumference = 2 × π × radius. Use the constant Math.PI for pi (π). All drawing should
be done on a subclass of JPanel, and the results of the calculations should be displayed in a read-
only JTextArea.

13.8 Enhance the program of Exercise 13.7 by allowing the user to alter the radius with a JSlid-
er. The program should work for all radii in the range from 100 to 200. As the radius changes, the
diameter, area and circumference should be updated and displayed. The initial radius should be 150.
Use the equations of Exercise 13.7. All drawing should be done on a subclass of JPanel, and the
results of the calculations should be displayed in a read-only JTextArea.

13.9 Explore the effects of varying the weightx and weighty values of the program of
Fig. 13.20. What happens when a component has a nonzero weight, but is not allowed to fill the whole
area (i.e., the fill value is not BOTH)?

13.10 Write a program that uses the paintComponent method to draw the current value of a
JSlider on a subclass of JPanel. In addition, provide a JTextField where a specific value can
be entered. The JTextField should display the current value of the JSlider at all times. A JLa-
bel should be used to identify the JTextField. The JSlider methods setValue and
getValue should be used. [Note: The setValue method is a public method that does not return
a value and takes one integer argument—the JSlider value, which determines the position of the
thumb.]

13.11 Modify the program of Fig. 13.16 to use a single JComboBox instead of the four separate
JButtons. Each “card” should not be modified.

13.12 Modify the program of Fig. 13.16 by adding a minimum of two new “cards” to the deck.

13.13 Define a subclass of JPanel called MyColorChooser that provides three JSlider ob-
jects and three JTextField objects. Each JSlider represents the values from 0 to 255 for the
red, green and blue parts of a color. Use the red, green and blue values as the arguments to the Color
constructor to create a new Color object. Display the current value of each JSlider in the corre-
sponding JTextField. When the user changes the value of the JSlider, the JTextField
should be changed accordingly. Define class MyColorChooser so it can be reused in other appli-
cations or applets. Use your new GUI component as part of an applet that displays the current Color
value by drawing a filled rectangle.

13.14 Modify the MyColorChooser class of Exercise 13.13 to allow the user to type an integer
value into a JTextField to set the red, green or blue value. When the user presses Enter in the
JTextField, the corresponding JSlider should be set to the appropriate value.

13.15 Modify the applet of Exercise 13.14 to draw the current color as a rectangle on an instance
of a subclass of JPanel called DrawPanel. Class DrawPanel should provide its own paint-
Component method to draw the rectangle and should provide set methods to set the red, green and
blue values for the current color. When any set method is invoked for the class DrawPanel, the ob-
ject should automatically repaint itself.

13.16 Modify the applet of Exercise 13.15 to allow the user to drag the mouse across the Draw-
Panel to draw a shape in the current color. Enable the user to choose what shape to draw.

13.17 Modify the program of Exercise 13.16 to enable the program to run as an application. The
existing applet’s code should be modified only by adding a main method to launch the application
in its own JFrame. Provide the user with the ability to terminate the application by clicking the close

Chapter 13 Graphical User Interface Components: Part 2 803

box on the window that is displayed and by selecting Exit from a File menu. Use the techniques
shown in Fig. 13.9.

13.18 (Complete Drawing Application) Using the techniques developed in Exercise 12.27–
Exercise 12.33 and Exercise 13.13–Exercise 13.17, create a complete drawing program that can ex-
ecute as both an applet and an application. The program should use the GUI components of
Chapter 12 and Chapter 13 to enable the user to select the shape, color and fill characteristics. Each
shape should be stored in an array of MyShape objects, where MyShape is the superclass in your
hierarchy of shape classes (see Exercise 9.28 and Exercise 9.29). Use a JDesktopPane and JIn-
ternalFrames to allow the user to create multiple separate drawings in separate child windows.
Create the user interface as a separate child window containing all the GUI components that allow the
user to determine the characteristics of the shape to be drawn. The user can then click in any JIn-
ternalFrame to draw the shape.

13.19 A company pays its employees as managers (who receive a fixed weekly salary), hourly
workers (who receive a fixed hourly wage for up to the first 40 hours they work and “time-and-a-
half,” i.e., 1.5 times their hourly wage, for overtime hours worked), commission workers (who re-
ceive $250 plus 5.7% of their gross weekly sales) or pieceworkers (who receive a fixed amount of
money per item for each of the items they produce—each pieceworker in this company works on only
one type of item). Write an application to compute the weekly pay for each employee. Each type of
employee has its own pay code: Managers have paycode 1, hourly workers have code 2, commission
workers have code 3 and pieceworkers have code 4. Use a switch to compute each employee’s pay
based on that employee’s paycode. Use a CardLayout to display the appropriate GUI components
that allow the user to enter the facts your program needs to calculate each employee’s pay based on
that employee’s paycode.

14
Exception Handling

Objectives
• To understand exception and error handling.
• To be able to use try blocks to delineate code in

which an exception may occur.
• To be able to throw exceptions.
• To use catch blocks to specify exception handlers.
• To use the finally block to release resources.
• To understand the Java exception hierarchy.
• To create programmer-defined exceptions.
It is common sense to take a method and try it. If it fails,
admit it frankly and try another. But above all, try something.
Franklin Delano Roosevelt

O! throw away the worser part of it,
And live the purer with the other half.
William Shakespeare

If they’re running and they don’t look where they’re going
I have to come out from somewhere and catch them.
Jerome David Salinger

And oftentimes excusing of a fault
Doth make the fault the worse by the excuse.
William Shakespeare

I never forget a face, but in your case I’ll make an exception.
Groucho (Julius Henry) Marx

Chapter 14 Exception Handling 805

14.1 Introduction
In this chapter, we introduce exception handling. An exception is an indication that a prob-
lem occurred during the program’s execution. The extensibility of Java can increase the
number and types of errors that can occur. Every new class can add its own error possibil-
ities. The features presented here enable programmers to write clearer, more robust, more
fault-tolerant programs. We also consider when exception handling should not be used.

The style and details of exception handling in Java as presented in this chapter are
based in part on the work of Andrew Koenig and Bjarne Stroustrup as presented in their
paper, “Exception Handling for C++ (revised),” published in the Proceedings of the
USENIX C++ Conference held in San Francisco in April 1990. Their work forms the basis
of C++ exception handling. Java’s designers chose to implement an exception handling
mechanism similar to that used in C++.

Error-handling code varies in nature and quantity among software systems depending
on the application and whether the software is a product for release. Products tend to con-
tain far more error-handling code than does “casual” software.

There are many popular means for dealing with errors. Most commonly, error-han-
dling code is interspersed throughout a system’s code. Errors are dealt with at the places in
the code where the errors can occur. The advantage to this approach is that a programmer
reading code can see the error processing in the immediate vicinity of the code and deter-
mine if the proper error checking has been implemented.

The problem with this scheme is that the code can become “polluted” with the error
processing. It becomes more difficult for a programmer concerned with the application
itself to read the code and determine if it is functioning correctly. This can make under-
standing and maintaining the application difficult.

Outline

14.1 Introduction
14.2 When Exception Handling Should Be Used
14.3 Other Error-Handling Techniques
14.4 Basics of Java Exception Handling
14.5 try Blocks
14.6 Throwing an Exception
14.7 Catching an Exception
14.8 Exception-Handling Example: Divide by Zero
14.9 Rethrowing an Exception
14.10 throws Clause
14.11 Constructors, Finalizers and Exception Handling
14.12 Exceptions and Inheritance
14.13 finally Block
14.14 Using printStackTrace and getMessage

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

806 Exception Handling Chapter 14

Some common examples of exceptions are an out-of-bounds array subscript, arith-
metic overflow (i.e., a value outside the representable range of values), division by zero,
invalid method parameters and memory exhaustion.

Good Programming Practice 14.1
Using Java exception handling enables the programmer to remove the error-handling code
from the “main line” of the program’s execution. This improves program clarity and enhanc-
es modifiability. 14.1

Exception handling is provided to enable programs to catch and handle errors rather
than letting them occur and suffering the consequences. Exception handling is designed for
dealing with synchronous errors such as an attempt to divide by zero (that occurs as the
program executes the divide instruction). Exception handling is not designed to deal with
asynchronous events such as disk I/O completions, network message arrivals, mouse
clicks, keystrokes and the like; these are best handled through other means, such as Java
event listeners.

Java exception handling enables a program to catch all exceptions, all exceptions of a
certain type or all exceptions of related types. This flexibility makes programs more robust by
reducing the likelihood that programs will not process problems during program execution.

Exception handling is used in situations in which the system can recover from the mal-
function that caused the exception. The recovery procedure is called an exception handler.
The exception handler can be defined in the method that may cause an exception or in a
calling method.

Software Engineering Observation 14.1
Use exceptions for malfunctions that must be processed in a different method from where
they are detected. Use conventional error-handling techniques for local error processing in
which a method is able to deal with its own exceptions. 14.1

Exception handling is designed to process exceptional conditions—problems that do
not happen frequently, but can happen. It is possible that the exception-handling code may
not be optimized to the same performance levels as other language elements.

Performance Tip 14.1
When an exception does not occur, little or no overhead is imposed by the presence of excep-
tion handling code. When exceptions happen, they do incur execution-time overhead. 14.1

Testing and Debugging Tip 14.1
Exception handling helps improve a program’s fault tolerance. 14.1

Good Programming Practice 14.2
Using Java’s standardized exception handling rather than having programmers use a diver-
sity of “home-grown” techniques improves program clarity on large projects. 14.2

We will see that exceptions are objects of classes derived from superclass Excep-
tion. We will show how to deal with “uncaught” exceptions. We will consider how unex-
pected exceptions are handled by Java. We will show how related exception types can be
represented by exception subclasses that are derived from a common exception superclass.

Exception handling can be viewed as another means of returning control from a
method or exiting a block of code. Normally, when an exception occurs, the exception is

Chapter 14 Exception Handling 807

handled by a caller of the method generating the exception, by a caller of that caller, or how-
ever far back in the call stack it becomes necessary to go to find a handler for that exception.

Software Engineering Observation 14.2
Exception handling is particularly well-suited to systems of separately developed compo-
nents. Such systems are typical of real-world software. Exception handling makes it easier
to combine the components and have them work together effectively. 14.2

Software Engineering Observation 14.3
With other programming languages that do not support exception handling, programmers
often delay writing error-processing code, and sometimes programmers simply forget to in-
clude it. This results in less-robust, and thus inferior, software products. Java forces the pro-
grammer to deal with exception handling from the inception of a project. Still, the
programmer must put considerable effort into incorporating an exception-handling strategy
into software projects. 14.3

Software Engineering Observation 14.4
It is best to incorporate your exception-handling strategy into a system from the inception of
the design process. It is difficult to add effective exception handling after a system has been
implemented. 14.4

14.2 When Exception Handling Should Be Used
Exception handling should be used

• to process exceptional situations where a method is unable to complete its task for
reasons it cannot control,

• to process exceptions from program components that are not geared to handling
those exceptions directly, or

• on large projects to handle exceptions in a uniform manner project wide.

Software Engineering Observation 14.5
The client of a library class will likely have unique error processing in mind for an exception
generated in the library class. It is unlikely that a library class will perform error processing
that would meet the unique needs of all clients. Exceptions are an appropriate means for
dealing with errors produced by library classes. 14.5

14.3 Other Error-Handling Techniques
We have presented various ways of dealing with exceptional situations prior to this chapter.
A program can ignore some exception types. This can be devastating for software products
released to the general public, or for special-purpose software needed for mission-critical
situations. But for software developed for your own purposes, it is common to ignore many
kinds of errors. A program could be directed to abort upon encountering an exceptional sit-
uation. This prevents a program from running to completion and producing incorrect re-
sults. For many types of errors this is a good strategy. Such a strategy is inappropriate for
mission-critical applications. Resource issues also are important here. If a program obtains
a resource, the program should return that resource before program termination.

808 Exception Handling Chapter 14

Common Programming Error 14.1
Aborting a program could leave a resource in a state in which other programs would not be
able to acquire the resource; hence, we would have a so-called “resource leak.” 14.1

Good Programming Practice 14.3
If your method is capable of handling a given type of exception, then handle it rather than
passing the exception on to other regions of your program. This makes programs clearer. 14.3

Performance Tip 14.2
If an error can be processed locally instead of throwing an exception, do so. This will im-
prove program execution speed. Exception handling is slow compared to local processing. 14.2

14.4 Basics of Java Exception Handling
In this section, we overview the Java exception-handling process. Throughout the chapter,
we present detailed discussions of the steps discussed here.

Java exception handling is geared to situations in which the method that detects an
error is unable to deal with it. Such a method will throw an exception. There is no guarantee
that there will be “anything out there” (i.e., an exception handler—code that executes when
the program detects an exception) to process that kind of exception. If there is, the excep-
tion will be caught and handled. The following Testing and Debugging Tip describes what
happens if no appropriate exception handler can be found.

Testing and Debugging Tip 14.2
All Java applets and certain Java applications are GUI-based. Some Java applications are
not GUI-based; these are often called command-line applications (or console applications).
When an exception is not caught in a command-line application, the program terminates
(i.e., Java exits) after the default exception handler runs. When an exception is not caught in
an applet or a GUI-based application, the GUI remains displayed and the user can continue
using the applet or application even after the default exception handler runs. However, the
program may be in an inconsistent state and may produce incorrect results. 14.2

The programmer encloses in a try block the code that may generate an exception and
any code that should not execute if an exception occurs. The try block is followed by zero
or more catch blocks. Each catch block specifies the type of exception it can catch and
contains an exception handler. After the last catch block, an optional finally block pro-
vides code that always executes, regardless of whether an exception occurs. As we will see,
the finally block is an ideal location for code that releases resources to prevent “resource
leaks.” The try block must be followed by a catch block or a finally block.

When a method throws an exception, program control leaves the try block and con-
tinues execution at the first catch block. The program searches the catch blocks in order
looking for an appropriate handler. (We will soon discuss what makes a handler “appro-
priate”.) If the type of the thrown exception matches the parameter type in one of the catch
blocks, the code for that catch block executes. If a try block completes successfully
without throwing any exceptions, the program skips the exception handlers for that block and
resumes execution after the last catch block. If a finally block appears after the last
catch block, the finally block executes regardless of whether an exception occurs.

In a method definition, a throws clause specifies the exceptions the method throws.
This clause appears after the parameter list and before the method body. The clause con-

Chapter 14 Exception Handling 809

tains a comma-separated list of potential exceptions the method will throw if a problem
occurs while the method executes. Such exceptions may by thrown be statements in the
method’s body, or they may be thrown by methods called in the body. The point at which
the throw occurs is called the throw point.

When an exception occurs, the block in which the exception occurred expires (termi-
nates)—program control cannot return directly to the throw point. Java uses the termination
model of exception handling rather than the resumption model of exception handling. In the
resumption model, control would return to the point at which the exception occurred and
resume execution.

When an exception occurs, it is possible to communicate information to the exception
handler from the vicinity in which the exception occurred. That information is the type of
thrown exception object or information harvested from the vicinity in which the exception
occurred and placed into the thrown object.

14.5 try Blocks
An exception that occurs in a try block normally is caught by an exception handler spec-
ified by a catch block immediately following that try block as in

try {
statements that may throw an exception

}
catch(ExceptionType exceptionReference) {

statements to process an exception
}

A try block can be followed by zero or more catch blocks. If a try block executes
and no exceptions are thrown, all the exception handlers are skipped and control resumes
with the first statement after the last exception handler. If a finally block (presented in
Section 14.13) follows the last catch block, the code in the finally block executes
regardless of whether an exception is thrown. Note that an exception handler cannot access
objects defined in the corresponding try block, because the try block expires before the
handler begins executing.

Common Programming Error 14.2
It is a syntax error to separate with other code the catch handlers that correspond to a par-
ticular try block. 14.2

14.6 Throwing an Exception
The throw statement is executed to indicate that an exception has occurred (i.e., a method
could not complete successfully). This is called throwing an exception. A throw statement
specifies an object to be thrown. The operand of a throw can be of any class derived from
class Throwable (package java.lang) The two immediate subclasses of class
Throwable are Exception and Error. Errors are particularly serious system prob-
lems that generally should not be caught. Exceptions are caused by problems that should
be caught and processed during program execution to make a program more robust. If the
operand of the throw is an object of class Exception, it is called an exception object.

810 Exception Handling Chapter 14

Testing and Debugging Tip 14.3
When toString is invoked on any Throwable object, its resulting String includes the
descriptive String that was supplied to the constructor, or simply the class name if no
String was supplied. 14.3

Testing and Debugging Tip 14.4
An object can be thrown without containing information about the problem that occurred. In
this case, simple knowledge that an exception of a particular type occurred may provide
sufficient information for the handler to process the problem correctly. 14.4

When an exception is thrown, control exits the current try block and proceeds to an
appropriate catch handler (if one exists) after that try block. It is possible that the
throw point could be in a deeply nested scope within a try block; control will still pro-
ceed to the catch handler. It is also possible that the throw point could be in a deeply
nested method call; still, control will proceed to the catch handler.

A try block may appear to contain no error checking and include no throw statements,
but methods called from the try block may throw exceptions. Also, statements in a try
block that do not invoke methods may cause exceptions. For example, a statement that per-
forms array subscripting on an array object throws an ArrayIndexOutOfBoundsEx-
ception if the statement specifies an invalid array subscript. Any method call can invoke
code that might throw an exception or call another method that throws an exception.

14.7 Catching an Exception
Exception handlers are contained in catch blocks. Each catch block starts with the key-
word catch followed by parentheses containing a class name (specifying the type of ex-
ception to be caught) and a parameter name. The handler can reference the thrown object
through this parameter. This is followed by a block delineating the exception-handling
code. When a handler catches an exception, the code in the catch block executes.

Common Programming Error 14.3
Logic errors can occur if you assume that after an exception is processed, control will return
to the first statement after the throw. Program control continues with the first statement af-
ter the catch handlers. 14.3

Common Programming Error 14.4
Specifying a comma-separated list of catch parameters is a syntax error. A catch can
have only a single parameter. 14.4

Common Programming Error 14.5
It is a syntax error to catch the same type in two different catch blocks associated with a
particular try block. 14.5

A catch that catches a Throwable object

catch(Throwable throwable)

catches all exceptions and errors. Similarly, a catch that catches an Exception object

catch(Exception exception)

Chapter 14 Exception Handling 811

catches all exceptions. In general, programs do not define exception handlers for type
Throwable, because Errors normally should not be caught in a program.

Common Programming Error 14.6
Placing catch(Exception exception) before other catch blocks that catch specif-
ic types of exceptions would prevent those blocks from executing; an exception handler that
catches type Exception must be placed last in the list of exception handlers following a
try block, or a syntax error occurs. 14.6

It is possible that a try block will not have a corresponding catch handler that
matches a particular thrown object. This causes the search for a matching catch handler
to continue in the next enclosing try block. As this process continues, eventually the pro-
gram may determine that there is no handler on the execution stack that matches the type
of the thrown object. In this case, a non-GUI-based application terminates—applets and
GUI-based applications return to their regular event processing. Although applets and GUI-
based applications continue to execute, they may execute incorrectly.

Software Engineering Observation 14.6
If you know that a method may throw an exception, include appropriate exception-handling
code in your program. This will make your program more robust. 14.6

Good Programming Practice 14.4
Read the online API documentation for a method before using that method in a program. The
documentation specifies the exceptions thrown by the method (if any) and indicates reasons
why such exceptions may occur. 14.4

Good Programming Practice 14.5
Read the online API documentation for an exception class before writing exception-handling
code for that type of exception. The documentation for an exception class typically contains
potential reasons that such exceptions may occur during program execution. 14.5

It is possible that several exception handlers will provide an acceptable match to the
type of the exception. This can happen for several reasons: There can be a “catch-all” han-
dler catch(Exception exception) that will catch any exception. Also, inheritance
relationships enable a subclass object to be caught either by a handler specifying the sub-
class type, or by handlers specifying the types of any of that class’s superclasses. The first
exception handler that matches the exception type executes—all other exception handlers
for the corresponding try block are ignored.

Software Engineering Observation 14.7
If several handlers match the type of an exception, and if each of these handles the exception
differently, then the order of the handlers will affect the manner in which the exception is
handled. 14.7

Common Programming Error 14.7
It is a syntax error if a catch that catches a superclass object is placed before a catch for
that class’s subclass types. 14.7

Sometimes a program may process many closely related types of exceptions. Instead
of providing separate catch handlers for each, a programmer can provide a single catch
handler for a group of exceptions.

812 Exception Handling Chapter 14

What happens when an exception occurs in an exception handler? The try block that
noticed the exception expires before the exception handler begins running, so exceptions
occurring in an exception handler are processed by catch handlers for an enclosing try
block. The enclosing try block watches for errors occurring in the original try block’s
catch handlers. An enclosing try block is either a try block that contains a complete
try/catch sequence or a try block in a calling method.

Exception handlers can be written a variety of ways. They can rethrow an exception
(as we will see in Section 14.9). They can convert one type of exception into another by
throwing a different type of exception. They can perform any necessary recovery and
resume execution after the last exception handler. They can look at the situation causing the
error, remove the cause of the error and retry by calling the original method that caused an
exception. They can return a status value to their environment, etc.

It is not possible to return to the throw point by issuing a return statement in a
catch handler. Such a return simply returns control to the method that called the
method containing the catch block. Again, the throw point is in a block that has expired,
so returning to that point via a return statement would not make sense.

Software Engineering Observation 14.8
Another reason not to use exceptions for conventional flow of control is that these “addition-
al” exceptions can “get in the way” of genuine error-type exceptions. It becomes more dif-
ficult for the programmer to keep track of the larger number of exception cases. Exceptional
situations should be rare, not commonplace. 14.8

Common Programming Error 14.8
Assuming that an exception thrown from a catch handler will be processed by that handler
or any other handler associated with the same try block can lead to logic errors. 14.8

14.8 Exception-Handling Example: Divide by Zero
Now let us consider a simple example of exception handling. The application of Fig. 14.1
and Fig. 14.2 uses try, throw and catch to detect, indicate and handle exceptions. The
application displays two JTextFields in which the user can type integers. When the user
presses the Enter key in the second JTextField, the program calls method action-
Performed to read the two integers from the JTextFields and pass the integers to
method quotient, which calculates the quotient of the two values and returns a double
result. If the user types 0 in the second JTextField, the program uses an exception to
indicate that the user is attempting to divide by zero. Also, if the user types a noninteger
value in either JTextField, a NumberFormatException occurs. In prior examples
that read numeric values from the user, we simply assumed that the user would input a
proper integer value. However, users sometimes make mistakes. This program demon-
strates how to catch the NumberFormatException that occurs when a program at-
tempts to convert a String that does not represent an integer value to an int value with
Integer method parseInt.

Before we discuss the program, consider the sample executions shown in the five
output windows of Fig. 14.2. The first window shows a successful execution. The user
typed the values 100 and 7. The third JTextField shows the result of the division per-
formed by method quotient. In the second output window, the user entered the string
“hello” in the second JTextField. When the user presses Enter in the second JText-

Chapter 14 Exception Handling 813

Field, an error-message dialog is displayed indicating that an integer must be entered. In
the last two windows, a zero denominator is entered and the program detects the problem,
throws an exception and issues an appropriate diagnostic message.

Now let’s discuss the program beginning with class DivideByZeroException of
Fig. 14.1. Java can test for division by zero when the values in the division are both inte-
gers. If Java discovers an attempt to divide by zero in integer arithmetic, Java throws an
ArithmeticException. However, our program performs a floating-point division of
two integers by casting the first integer to a double before performing the calculation.
Java allows floating-point division by zero. The result is positive or negative infinity.
(Classes Float and Double of package java.lang each provide constants that repre-
sent these values.) Even though Java allows floating-point division by zero, we would like
to use exception handling in this example to indicate to the user of our program that they
are attempting to divide by zero.

As we will see, method quotient throws an exception when it receives zero as its
second argument. A method can throw an exception of any existing type in the Java API or
of a type specific to the program. In this example, we demonstrate defining a new exception
type. Actually, we could use class ArithmeticException (package java.lang)
with a customized error message in this program.

Good Programming Practice 14.6
Associating each type of serious execution-time malfunction with an appropriately named
Exception class improves program clarity. 14.6

Software Engineering Observation 14.9
If possible, use an existing exception type, rather than creating a new class. The Java API
contains many exception types that may be suitable for your program. 14.9

1 // Fig. 14.1: DivideByZeroException.java
2 // Definition of class DivideByZeroException.
3 // Used to throw an exception when a
4 // divide-by-zero is attempted.
5 public class DivideByZeroException extends ArithmeticException {
6
7 // no-argument constructor specifies default error message
8 public DivideByZeroException()
9 {

10 super("Attempted to divide by zero");
11 }
12
13 // constructor to allow customized error message
14 public DivideByZeroException(String message)
15 {
16 super(message);
17 }
18
19 } // end class DivideByZeroException

Fig. 14.1Fig. 14.1Fig. 14.1Fig. 14.1 Exception class DivideByZeroException.

814 Exception Handling Chapter 14

Class DivideByZeroException extends class ArithmeticException. We
chose to extend class ArithmeticException because dividing by zero occurs during
arithmetic. Like any other class, an exception class can contain instance variables and
methods. A typical exception class contains only two constructors—one that takes no argu-
ments and specifies a default exception message and one that receives a customized excep-
tion message as a String. The default constructor (lines 8–11) specifies the string
"Attempted to divide by zero" as the exception message that indicates what went
wrong. This string is passed to the superclass constructor to initialize the error message
associated with the exception object. The other constructor (lines 14–17) passes its argu-
ment—a customized error-message string—to the superclass constructor.

Software Engineering Observation 14.10
When defining your own exception type, subclass an existing related exception type in the
Java API. This requires you to investigate the existing exceptions in the Java API. If the ex-
isting types are not appropriate for subclassing, the new exception class should extend Ex-
ception if the client of your code should be required to handle the exception, or should
extend RuntimeException if the client of your code should have the option of ignoring
the exception. 14.10

Now consider the DivideByZeroTest application (Fig. 14.2). The application’s
constructor (lines 21–51) builds a graphical user interface with three JLabels (all right
aligned) and three JTextFields and registers the DivideByZeroTest object as the
ActionListener for JTextField inputField2.

1 // Fig. 14.2: DivideByZeroTest.java
2 // A simple exception handling example.
3 // Checking for a divide-by-zero-error.
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8 import java.text.DecimalFormat;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class DivideByZeroTest extends JFrame
14 implements ActionListener {
15
16 private JTextField inputField1, inputField2, outputField;
17 private int number1, number2;
18 private double result;
19
20 // set up GUI
21 public DivideByZeroTest()
22 {
23 super("Demonstrating Exceptions");
24

Fig. 14.2Fig. 14.2Fig. 14.2Fig. 14.2 A simple exception-handling example with divide by zero (part 1 of 3).

Chapter 14 Exception Handling 815

25 // get content pane and set its layout
26 Container container = getContentPane();
27 container.setLayout(new GridLayout(3, 2));
28
29 // set up label and inputField1
30 container.add(
31 new JLabel("Enter numerator ", SwingConstants.RIGHT));
32 inputField1 = new JTextField(10);
33 container.add(inputField1);
34
35 // set up label and inputField2; register listener
36 container.add(
37 new JLabel("Enter denominator and press Enter ",
38 SwingConstants.RIGHT));
39 inputField2 = new JTextField(10);
40 container.add(inputField2);
41 inputField2.addActionListener(this);
42
43 // set up label and outputField
44 container.add(
45 new JLabel("RESULT ", SwingConstants.RIGHT));
46 outputField = new JTextField();
47 container.add(outputField);
48
49 setSize(425, 100);
50 setVisible(true);
51 }
52
53 // process GUI events
54 public void actionPerformed(ActionEvent event)
55 {
56 DecimalFormat precision3 = new DecimalFormat("0.000");
57
58 outputField.setText(""); // clear outputField
59
60 // read two numbers and calculate quotient
61 try {
62 number1 = Integer.parseInt(inputField1.getText());
63 number2 = Integer.parseInt(inputField2.getText());
64
65 result = quotient(number1, number2);
66 outputField.setText(precision3.format(result));
67 }
68
69 // process improperly formatted input
70 catch (NumberFormatException numberFormatException) {
71 JOptionPane.showMessageDialog(this,
72 "You must enter two integers",
73 "Invalid Number Format",
74 JOptionPane.ERROR_MESSAGE);
75 }
76

Fig. 14.2Fig. 14.2Fig. 14.2Fig. 14.2 A simple exception-handling example with divide by zero (part 2 of 3).

816 Exception Handling Chapter 14

77 // process attempts to divide by zero
78 catch (ArithmeticException arithmeticException) {
79 JOptionPane.showMessageDialog(this,
80 arithmeticException.toString(),
81 "Arithmetic Exception",
82 JOptionPane.ERROR_MESSAGE);
83 }
84 }
85
86 // method quotient demonstrated throwing an exception
87 // when a divide-by-zero error occurs
88 public double quotient(int numerator, int denominator)
89 throws DivideByZeroException
90 {
91 if (denominator == 0)
92 throw new DivideByZeroException();
93
94 return (double) numerator / denominator;
95 }
96
97 // execute application
98 public static void main(String args[])
99 {
100 DivideByZeroTest application = new DivideByZeroTest();
101
102 application.setDefaultCloseOperation(
103 JFrame.EXIT_ON_CLOSE);
104 }
105
106 } // end class DivideByZeroTest

Fig. 14.2Fig. 14.2Fig. 14.2Fig. 14.2 A simple exception-handling example with divide by zero (part 3 of 3).

Chapter 14 Exception Handling 817

When the user inputs the denominator and presses the Enter key, the program calls
method actionPerformed (lines 54–84). Next, method actionPerformed pro-
ceeds with a try block (lines 61–67), which encloses the code that may throw an excep-
tion and any code that should not be executed if an exception occurs. The statements that
read the integers from the JTextFields (lines 62–63) each use method
Integer.parseInt to convert Strings to int values. Method parseInt throws a
NumberFormatException if its String argument is not a valid integer. The division
that can cause the divide-by-zero error is not performed explicitly in the try block. Rather,
the call to method quotient (line 65) invokes the code that attempts the division. Method
quotient (lines 89–96) throws the DivideByZeroException object, as we will
see momentarily. In general, errors may surface through explicitly mentioned code in a
try block, through calls to a method or even through deeply nested method calls initiated
by code in a try block.

The try block in this example is followed by two catch blocks—lines 70–75 con-
tain the exception handler for the NumberFormatException and lines 78–83 contain
the exception handler for the DivideByZeroException. In general, when the pro-
gram detects an exception while executing a try block, the program catches the exception
in a catch block that specifies an appropriate exception type (i.e., the type in the catch
matches the thrown exception type exactly or is a superclass of the thrown exception type).
In Fig. 14.2, the first catch block specifies that it will catch exception objects of type
NumberFormatException (this type matches the exception object type thrown in
method Integer.parseInt) and the second catch block specifies that it will catch
exception objects of type ArithmeticException (this type is a superclass of the
exception object type thrown in method quotient). Only the matching catch handler
executes when an exception occurs. Both our exception handlers simply display an error-
message dialog, but exception handlers can be more elaborate than this. After executing an
exception handler, program control proceeds to the first statement after the last catch
block (or in the finally block, if one is present).

If the code in the try block does not throw an exception, then the catch handlers are
skipped and execution resumes with the first line of code after the catch handlers (or in the
finally block, if one is present). In Fig. 14.2, method actionPerformed simply
returns, but the program could continue executing more statements after the catch blocks.

Testing and Debugging Tip 14.5
With exception handling, a program can continue executing after dealing with a problem.
This helps ensure robust applications that contribute to what is called mission-critical com-
puting or business-critical computing. 14.5

Now let us examine method quotient (lines 89–96). When the if structure deter-
mines that denominator is zero, the body of the if executes a throw statement that
creates and throws a new DivideByZeroException object. This object will be
caught by the catch block (lines 78–83) specifying type ArithmeticException
after the try block. The catch block specifies parameter name arithmeticExcep-
tion to receive the thrown exception object. The ArithmeticException handler
converts the exception to a String via toString and passes this String as the mes-
sage to display in an error-message dialog.

If denominator is not zero, quotient does not throw an exception. Rather, quo-
tient performs the division and returns the result of the division to the point of invocation

818 Exception Handling Chapter 14

of method quotient in the try block (line 65). Line 66 displays the result of the calcu-
lation in the third JTextField. In this case, the try block completes successfully, so the
program skips the catch blocks and the actionPerformed method completes execu-
tion normally.

Note that when quotient throws the DivideByZeroException, quotient’s
block expires (i.e., the method terminates). This would cause any of its local variables to
be destroyed—objects that were referenced by local variables in the block would have their
reference counts decremented accordingly (and are possibly marked for garbage collec-
tion). Also, the try block from which the method was called expires before line 66 can
execute. Here, too, if there were local variables created in the try block prior to the excep-
tion being thrown, these variables would be destroyed.

If a NumberFormatException is generated by lines 62–63, the try block expires
and execution continues with the exception handler at line 70, which displays an error mes-
sage to tell the user to input integers. Then the actionPerformed method continues with
the next valid statement after the catch blocks (i.e., the method terminates in this example).

14.9 Rethrowing an Exception
It is possible that the catch handler that catches an exception may decide it cannot process
the exception, or it may want to let some other catch handler handle the exception. In this
case, the handler that received the exception can rethrow the exception with the statement

throw exceptionReference;

where exceptionReference is the parameter name for the exception in the catch handler.
Such a throw rethrows the exception to the next enclosing try block.

Even if a handler can process an exception, and regardless of whether it does any pro-
cessing on that exception, the handler still can rethrow the exception for further processing
outside the handler. A rethrown exception is detected by the next enclosing try block and
is handled by an exception handler listed after that enclosing try block.

14.10 throws Clause
A throws clause lists the exceptions that can be thrown by a method as in

int functionName(parameterList)
 throws ExceptionType1, ExceptionType2, ExceptionType3, …
{

// method body
}

The types of exceptions that are thrown by a method are specified in the method defi-
nition with a comma-separated list in the throws clause. A method can throw objects of
the indicated classes, or it can throw objects of their subclasses.

Some exceptions can occur at any point during the execution of the program. Many of
these exceptions can be avoided by coding properly. These are run-time exceptions, and
they derive from class RuntimeException. For example, if your program attempts to
access an out-of-range array subscript, an exception of type ArrayIndexOutOf-
BoundsException (derived from RuntimeException) occurs. Your program
clearly can avoid such a problem; hence, it is a run-time exception.

Chapter 14 Exception Handling 819

Another run-time exception occurs when your program creates an object reference, but
has not yet created an object and assigned it to the reference. Attempting to use such a
null reference causes a NullPointerException to be thrown. Clearly, your pro-
gram can avoid this circumstance; hence, it is a run-time exception. Another run-time
exception is an invalid cast, which throws a ClassCastException.

There are a variety of exceptions that are not RuntimeExceptions. Two of the
most common are InterruptedExceptions (see Chapter 15, “Multithreading”) and
IOExceptions (see Chapter 16, “Files and Streams”).

Not all errors and exceptions that can be thrown from a method are required to be listed
in the throws clause. Errors do not need to be listed, nor do RuntimeExceptions
(avoidable exceptions). Errors are serious system problems that can occur almost any-
where, and most programs will not be able to recover from them. Methods should process
RuntimeExceptions caught in their bodies directly rather than passing them on to
other program components. If a method throws any non-RuntimeExceptions, it must
specify those exception types in its throws clause.
5 Software Engineering Observation 14.11

If a non-RuntimeException is thrown by a method, or if that method calls methods that
throw non-RuntimeExceptions, each of those exceptions must be declared in the
throws clause of that method or caught in a try/catch in that method. 14.11

Java distinguishes checked Exceptions versus unchecked RuntimeExceptions
and Errors. A method’s checked exceptions need to be listed in that method’s throws
clause. Errors and RuntimeExceptions can be thrown from almost any method, so it
would be cumbersome for programmers to be required to list them for every method defini-
tion. Such exceptions and errors are not required to be listed in a method’s throws clause
and, hence, are said to be “unchecked” by the compiler. All non-RuntimeExceptions a
method can throw must be listed in that method’s throws clause and, hence, are said to be
“checked” by the compiler. If a non-RuntimeException is not listed in the throws clause,
the compiler will issue an error message indicating that the exception must be caught (with a
try/catch in the body of the method) or declared (with a throws clause).

Common Programming Error 14.9
It is a syntax error if a method throws a checked exception not in that method’s throws
clause. 14.9

Common Programming Error 14.10
Attempting to throw a checked exception from a method that has no throws clause is a syn-
tax error. 14.10

Software Engineering Observation 14.12
If your method calls other methods that explicitly throw checked exceptions, those excep-
tions must be listed in the throws clause of your method, unless your method catches those
exceptions. This is Java’s “catch-or-declare” requirement. 14.12

Common Programming Error 14.11
If a subclass method overrides a superclass method, it is an error for the subclass method to
list more exceptions in its throws list than the overridden superclass method does. A sub-
class’s throws list can contain a subset of a superclass’s throws list. 14.11

820 Exception Handling Chapter 14

Java’s catch-or-declare requirement demands that the programmer either catch each
checked exception or place it in the throws clause of a method. Of course, placing a checked
exception in the throws clause would force other methods to process the checked exception
as well. If a programmer feels a particular checked exception is unlikely to occur, the pro-
grammer might elect to catch that checked exception and do nothing with it to avoid being
forced to deal with it later. This can of course come back to haunt you, because as a program
evolves, it may become important to deal with this checked exception.

Testing and Debugging Tip 14.6
Do not try to circumvent Java’s catch-or-declare requirement by simply catching excep-
tions and doing nothing with them. Exceptions are generally of a serious enough nature that
they need to be processed rather than suppressed. 14.6

Testing and Debugging Tip 14.7
The Java compiler, through the throws clause used with exception handling, forces pro-
grammers to process the exceptions that can be thrown from each method a program calls.
This helps avoid bugs that arise in programs when programmers ignore the fact that prob-
lems occur and make no provisions for these problems. 14.7

Software Engineering Observation 14.13
Subclass methods that do not override their corresponding superclass methods exhibit the
same exception-handling behavior of the inherited superclass methods. The throws clause
of a subclass method that overrides a superclass method may contain the same list of excep-
tions as the overridden superclass method or a subset of that list. 14.13

Common Programming Error 14.12
The Java compiler requires that a method either catch any checked exceptions thrown in the
method (either directly from the method’s body or indirectly through called methods) or de-
clare checked Exceptions the method can throw to other methods; otherwise, the Java
compiler issues a syntax error. 14.12

Testing and Debugging Tip 14.8
Suppose a method throws all subclasses of a particular exception superclass. You may be
tempted to list only the superclass in the throws clause. Instead, explicitly list all the sub-
classes. This focuses the programmer’s attention on the specific Exceptions that may oc-
cur and will often help avoid bugs caused by performing general processing for a category
of exception types. 14.8

Figure 14.3–Fig. 14.8 list many of Java’s Errors and Exceptions hierarchically
for the packages java.lang, java.util, java.io, java.awt and java.net. In
these tables, a class indented under another class is a subclass. The exception and error
classes for the other packages of the Java API can be found in the Java online documenta-
tion. The online documentation for each method in the API specifies whether that method
throws exceptions and what the exceptions are that can be thrown. We show a portion of
Java’s Error hierarchy in Fig. 14.3. Most Java programmers ignore Errors. They are
serious but rare events.

Figure 14.4 is particularly important because it lists many of Java’s Runtime-
Exceptions. Although Java programmers are not required to declare these exceptions in
throws clauses, these are the exceptions that commonly will be caught and handled in
Java applications.

Chapter 14 Exception Handling 821

The java.lang package errors

Error (all in java.lang except for AWTError, which is in java.awt)

 LinkageError

 ClassCircularityError

 ClassFormatError

 ExceptionInInitializerError

 IncompatibleClassChangeError

 AbstractMethodError

 IllegalAccessError

 InstantiationError

 NoSuchFieldError

 NoSuchMethodError

 NoClassDefFoundError

 UnsatisfiedLinkError

 VerifyError

 ThreadDeath

 VirtualMachineError (Abstract class)

 InternalError

 OutOfMemoryError

 StackOverflowError

 UnknownError

 AWTError (package java.awt)

Fig. 14.3Fig. 14.3Fig. 14.3Fig. 14.3 The java.lang package errors .

The java.lang package exceptions

Exception

 ClassNotFoundException

 CloneNotSupportedException

 IllegalAccessException

 InstantiationException

 InterruptedException

 NoSuchFieldException

 NoSuchMethodException

Fig. 14.4Fig. 14.4Fig. 14.4Fig. 14.4 The java.lang package exceptions (part 1 of 2).

822 Exception Handling Chapter 14

Figure 14.5 lists Java’s other three RuntimeExceptions data types. We will
encounter these exceptions in Chapter 20 when we study the Vector class. A Vector is
a dynamic array that can grow and shrink to accommodate a program’s varying storage
requirements.

Figure 14.6 lists Java’s IOExceptions. These are all checked exceptions that can
occur during input/output and file processing.

Figure 14.7 lists the java.awt package’s only checked Exception, the AWTEx-
ception. This is a checked exception that is thrown by various abstract windowing
toolkit methods.

 RuntimeException

 ArithmeticException

 ArrayStoreException

 ClassCastException

 IllegalArgumentException

 IllegalThreadStateException

 NumberFormatException

 IllegalMonitorStateException

 IllegalStateException

 IndexOutOfBoundsException

 ArrayIndexOutOfBoundsException

 StringIndexOutOfBoundsException

 NegativeArraySizeException

 NullPointerException

 SecurityException

The java.util package exceptions

Exception

 RuntimeException

 EmptyStackException

 MissingResourceException

 NoSuchElementException

 TooManyListenersException

Fig. 14.5Fig. 14.5Fig. 14.5Fig. 14.5 The java.util package exceptions.

The java.lang package exceptions

Fig. 14.4Fig. 14.4Fig. 14.4Fig. 14.4 The java.lang package exceptions (part 2 of 2).

Chapter 14 Exception Handling 823

Figure 14.8 lists the IOExceptions of the java.net package. These are all
checked Exceptions that indicate various networking problems.

Most packages in the Java API define Exceptions and Errors specific to the
package. For a complete list of these types, see the online API documentation for the
package.

The java.io package exceptions

Exception

 IOException

 CharConversionException

 EOFException

 FileNotFoundException

 InterruptedIOException

 ObjectStreamException

 InvalidClassException

 InvalidObjectException

 NotActiveException

 NotSerializableException

 OptionalDataException

 StreamCorruptedException

 WriteAbortedException

 SyncFailedException

 UnsupportedCodingException

 UTFDataFormatException

Fig. 14.6Fig. 14.6Fig. 14.6Fig. 14.6 The java.io package exceptions .

The The The The java.awt package exceptions package exceptions package exceptions package exceptions

Exception

 AWTException

 RuntimeException

 IllegalStateException

 IllegalComponentStateException

Fig. 14.7Fig. 14.7Fig. 14.7Fig. 14.7 The java.awt package exceptions .

824 Exception Handling Chapter 14

14.11 Constructors, Finalizers and Exception Handling
First, let us deal with an issue we have mentioned, but that has yet to be resolved satisfac-
torily. What happens when an error is detected in a constructor? The problem is that a con-
structor cannot return a value, so how do we let the program know that an object has not
been constructed properly? One scheme is to return the improperly constructed object and
hope that anyone using the object would perform appropriate tests to determine that the ob-
ject is in fact bad. However, this directly contradicts discussions in Chapter 8 in which we
indicated that you should maintain an object in a consistent state at all times. Another
scheme is to set some instance variable with an error indicator outside the constructor, but
this is a poor programming practice. In Java, the typical (and proper) mechanism is to throw
an exception from the constructor to the code creating the object. The thrown object con-
tains the information about the failed constructor call and the caller is responsible for han-
dling the failure.

When an exception occurs in a constructor, other objects created by that constructor
are marked for eventual garbage collection. Before each object is garbage collected, its
finalize method will be called.

14.12 Exceptions and Inheritance
Various exception classes can be derived from a common superclass. If a catch is written
to catch exception objects of a superclass type, it can also catch all objects of subclasses of
that superclass. This can allow for polymorphic processing of related exceptions.

Using inheritance with exceptions enables an exception handler to catch related
errors with a concise notation. One could certainly catch each subclass exception object
individually if those exceptions require different processing, but it is more concise to
catch the superclass exception object. Of course, this makes sense only if the handling
behavior would be the same for all subclasses. Otherwise, catch each subclass exception
individually.

The The The The java.net package exceptions package exceptions package exceptions package exceptions

Exception

 IOException

 BindException

 MalformedURLException

 ProtocolException

 SocketException

 ConnectException

 NoRouteToHostException

 UnknownHostException

 UnknownServiceException

Fig. 14.8Fig. 14.8Fig. 14.8Fig. 14.8 The java.net package exceptions.

Chapter 14 Exception Handling 825

Testing and Debugging Tip 14.9
Catching subclass exception objects individually is subject to error if the programmer for-
gets to test for one or more of the subclass types explicitly; catching the superclass guaran-
tees that objects of all subclasses will be caught. Often, a catch of the superclass type follows
all other subclass exception handlers to ensure that all exceptions are processed properly. 14.9

14.13 finally Block
Programs that obtain certain types of resources must return those resources to the system
explicitly to avoid so-called resource leaks. In programming languages like C and C++, the
most common kind of resource leak is a memory leak. Java performs automatic garbage
collection of memory no longer used by programs, thus avoiding most memory leaks. How-
ever, other types of resource leaks can occur in Java.

Software Engineering Observation 14.14
A finally block typically contains code to release resources acquired in its corresponding
try block; this is an effective way to eliminate resource leaks. For example, the finally
block should close any files opened in the try block. 14.14

Testing and Debugging Tip 14.10
Actually, Java does not eliminate memory leaks completely. There is a subtle issue here. Java
will not garbage collect an object until there are no more references to the object. Thus,
memory leaks can occur, but only if programmers erroneously keep references to unwanted
objects. Most memory leak problems are solved by Java’s garbage collection. 14.10

The finally block is optional. If it is present, it is placed after the last of a try
block’s catch blocks, as follows:

try {
statements
resource-acquisition statements

}
catch (AKindOfException exception1) {

exception-handling statements
}
catch (AnotherKindOfException exception2) {

exception-handling statements
}
finally {

statements
resource-release statements

}

Java guarantees that a finally block (if one is present) will execute regardless of
whether any exception is thrown in the corresponding try block or any of its corre-
sponding catch blocks. Java also guarantees that a finally block (if one is present) will
execute if a try block exits via a return, break or continue statement.

Resource-release code is placed in a finally block. Suppose a resource is allocated
in a try block. If no exception occurs, the catch handlers are skipped and control pro-
ceeds to the finally block, which frees the resource. Control then proceeds to the first
statement after the finally block.

826 Exception Handling Chapter 14

If an exception occurs, the program skips the rest of the try block. If the program
catches the exception in one of the catch handlers, the program processes the exception.
Then the finally block releases the resource, and control then proceeds to the first state-
ment after the finally block.

If an exception that occurs in the try block cannot be caught by one of the catch
handlers, the program skips the rest of the try block and control proceeds to the finally
block, which releases the resource. Then the program passes the exception up the call chain
until some calling method chooses to catch it. If no method chooses to deal with it, a non-
GUI-based application terminates.

If a catch handler throws an exception, the finally block still executes. Then the
exception is passed up the call chain for a calling method to catch and handle.

The Java application of Fig. 14.9 demonstrates that the finally block (if one is
present) executes even if an exception is not thrown in the corresponding try block. The
program contains methods main (lines 7–21), throwException (lines 24–50) and
doesNotThrowException (lines 53–75). Methods throwException and does-
NotThrowException are declared static so main (another static method) can
call them directly.

Method main begins executing, enters its try block and immediately calls
throwException (line 11). Method throwException throws an Exception (line
29), catches it (line 33) and rethrows it (line 37). The rethrown exception will be handled
in main, but first the finally block (lines 44–47) executes. Method main detects the
rethrown exception in the try block in main (lines 10–12) and handles it by the catch
block (lines 15–18). Next, main calls method doesNotThrowException (line 20).
No exception is thrown in doesNotThrowException’s try block, so the program
skips the catch block (lines 61–64), but the finally block (lines 68–61) nevertheless
executes. Control proceeds to the statement after the finally block. Then control returns
to main and the program terminates.

1 // Fig. 14.9: UsingExceptions.java
2 // Demonstration of the try-catch-finally
3 // exception handling mechanism.
4 public class UsingExceptions {
5
6 // execute application
7 public static void main(String args[])
8 {
9 // call method throwException

10 try {
11 throwException();
12 }
13
14 // catch Exceptions thrown by method throwException
15 catch (Exception exception)
16 {
17 System.err.println("Exception handled in main");
18 }
19

Fig. 14.9Fig. 14.9Fig. 14.9Fig. 14.9 Demonstration of the try-catch-finally exception-handling
mechanism (part 1 of 3).

Chapter 14 Exception Handling 827

20 doesNotThrowException();
21 }
22
23 // demonstrate try/catch/finally
24 public static void throwException() throws Exception
25 {
26 // throw an exception and immediately catch it
27 try {
28 System.out.println("Method throwException");
29 throw new Exception(); // generate exception
30 }
31
32 // catch exception thrown in try block
33 catch (Exception exception)
34 {
35 System.err.println(
36 "Exception handled in method throwException");
37 throw exception; // rethrow for further processing
38
39 // any code here would not be reached
40 }
41
42 // this block executes regardless of what occurs in
43 // try/catch
44 finally {
45 System.err.println(
46 "Finally executed in throwException");
47 }
48
49 // any code here would not be reached
50 }
51
52 // demonstrate finally when no exception occurs
53 public static void doesNotThrowException()
54 {
55 // try block does not throw an exception
56 try {
57 System.out.println("Method doesNotThrowException");
58 }
59
60 // catch does not execute, because no exception thrown
61 catch(Exception exception)
62 {
63 System.err.println(exception.toString());
64 }
65
66 // this block executes regardless of what occurs in
67 // try/catch
68 finally {
69 System.err.println(
70 "Finally executed in doesNotThrowException");
71 }

Fig. 14.9Fig. 14.9Fig. 14.9Fig. 14.9 Demonstration of the try-catch-finally exception-handling
mechanism (part 2 of 3).

828 Exception Handling Chapter 14

The Java application in Fig. 14.10 demonstrates that when an exception thrown in a
try block is not caught in a corresponding catch block, the exception will be detected in
the next outer try block and handled by an appropriate catch block (if one is present)
associated with that outer try block.

72
73 System.out.println(
74 "End of method doesNotThrowException");
75 }
76
77 } // end class UsingExceptions

Method throwException
Exception handled in method throwException
Finally executed in throwException
Exception handled in main
Method doesNotThrowException
Finally executed in doesNotThrowException
End of method doesNotThrowException

1 // Fig. 14.10: UsingExceptions.java
2 // Demonstration of stack unwinding.
3 public class UsingExceptions {
4
5 // execute application
6 public static void main(String args[])
7 {
8 // call throwException to demonstrate stack unwinding
9 try {

10 throwException();
11 }
12
13 // catch exception thrown in throwException
14 catch (Exception exception) {
15 System.err.println("Exception handled in main");
16 }
17 }
18
19 // throwException throws an exception that is not caught in
20 // the body of this method
21 public static void throwException() throws Exception
22 {
23 // throw an exception and catch it in main
24 try {
25 System.out.println("Method throwException");
26 throw new Exception(); // generate exception
27 }

Fig. 14.10Fig. 14.10Fig. 14.10Fig. 14.10 Demonstration of stack unwinding (part 1 of 2).

Fig. 14.9Fig. 14.9Fig. 14.9Fig. 14.9 Demonstration of the try-catch-finally exception-handling
mechanism (part 3 of 3).

Chapter 14 Exception Handling 829

When method main executes, line 10 in the try block calls throwException
(lines 21–39). In the try block of method throwException, line 26 throws an
Exception. This terminates the try block immediately and control proceeds to the
catch handler at line 30. The type being caught (RuntimeException) is not an exact
match with the thrown type (Exception) and is not a superclass of the thrown type, so
the exception is not caught in method throwException. The exception must be handled
before normal program execution can continue. Therefore, method throwException
terminates (but not until its finally block executes) and returns control to the point from
which it was called in the program (line 10). Line 10 is in the enclosing try block. If the
exception has not yet been handled, the try block terminates and an attempt is made to
catch the exception at line 14. The type being caught (Exception) matches the thrown
type. Therefore, the catch handler processes the exception and the program terminates at
the end of main.

As we have seen, a finally block executes for a variety of reasons, such as a try
completing successfully, handling of an exception in a local catch, an exception being
thrown for which no local catch is available or execution of a program control statement
like a return, break or continue. Normally, the finally block executes, then
behaves appropriately (we will call this finally’s “continuation action”) depending on
the reason program control entered the block. For example, if an exception is thrown in the
finally block, the continuation action will be for that exception to be processed in the
next enclosing try block. Unfortunately, if there was an exception that had not yet been
caught, that exception is lost and the more recent exception is processed. This is dangerous.

Common Programming Error 14.13
If an exception is thrown for which no local catch is available, when control enters the lo-
cal finally block, the finally block could also throw an exception. If this happens,
the first exception will be lost. 14.13

28
29 // catch is incorrect type, so Exception not caught
30 catch(RuntimeException runtimeException) {
31 System.err.println(
32 "Exception handled in method throwException");
33 }
34
35 // finally block always executes
36 finally {
37 System.err.println("Finally is always executed");
38 }
39 }
40
41 } // end class UsingExceptions

Method throwException
Finally is always executed
Exception handled in main

Fig. 14.10Fig. 14.10Fig. 14.10Fig. 14.10 Demonstration of stack unwinding (part 2 of 2).

830 Exception Handling Chapter 14

Testing and Debugging Tip 14.11
Avoid placing code that can throw an exception in a finally block. If such code is re-
quired, enclose the code in a try/catch within the finally block. 14.11

Good Programming Practice 14.7
Java’s exception-handling mechanism is intended to remove error-processing code from the
main line of a program’s code to improve program clarity. Do not place try/catch/fi-
nally around every statement that may throw an exception. This makes programs difficult
to read. Rather, place one try block around a significant portion of your code, follow that
try block with catch blocks that handle each possible exception and follow the catch
blocks with a single finally block (if one is required). 14.7

Performance Tip 14.3
As a rule, resources should be released as soon as it is apparent that they are no longer need-
ed. This makes these resources immediately available for reuse and can improve program
performance. 14.3

Software Engineering Observation 14.15
If a try block has a corresponding finally block, the finally block will execute even
if the try block exits with return, break or continue; then the effect of the return,
break or continue will occur. 14.15

14.14 Using printStackTrace and getMessage
Exceptions derive from class Throwable. Class Throwable offers a printStack-
Trace method that prints the method call stack. By calling this method for a Throwable
object that has been caught, a program can print the method call stack. Often, this is helpful
in testing and debugging. Two other overloaded versions of printStackTrace enable
the program to direct the stack trace to a PrintStream or PrintWriter stream. In this
section, we consider an example that exercises the printStackTrace method and an-
other useful method, getMessage.

Testing and Debugging Tip 14.12
All Throwable objects contain a printStackTrace method that prints a stack
trace for the object. 14.12

Testing and Debugging Tip 14.13
An exception that is not caught eventually causes Java’s default exception handler to run.
This displays the name of the exception, the optional character string that was supplied when
the exception was constructed and a complete execution stack trace. The stack trace shows
the complete method call stack. This lets the programmer see the path of execution that led
to the exception file-by-file (and thus class-by-class) and method-by-method. This informa-
tion is helpful in debugging a program. 14.13

There are two constructors for class Throwable. The first constructor

public Throwable()

takes no arguments. The second constructor

public Throwable(String informationString)

Chapter 14 Exception Handling 831

takes the argument informationString, which is descriptive information about the
Throwable object. The informationString stored in the Throwable object may
be obtained with method getMessage.

Testing and Debugging Tip 14.14
Throwable classes have a constructor that accepts a String argument. Using this form of
the constructor is helpful in determining the source of the exception via method getMessage. 14.14

Figure 14.11 demonstrates getMessage and printStackTrace. Method get-
Message returns the descriptive String stored in an exception. Method print-
StackTrace outputs to the standard error stream (normally, the command line or
console) an error message with the class name of the exception, the descriptive String
stored in the exception and a list of the methods that had not completed execution when the
exception was thrown (i.e., all methods currently residing on the method call stack).

In the program, main invokes method1, method1 invokes method2 and
method2 invokes method3. At this point, the method call stack for the program is

method3
method2
method1
main

with the last method called (method3) at the top and the first method called (main) at the
bottom. When method3 throws an Exception (line 36), a stack-trace message is gen-
erated and stored in the Exception object. The stack trace reflects the throw point in the
code (i.e., line 36). Then, the stack unwinds to the first method in the method call stack in
which the exception can be caught (i.e., main because it contains a catch handler for
Exception). The catch handler then uses getMessage and printStackTrace
on the Exception object exception to produce the output. Notice that the line num-
bers in the output window correspond to the line numbers in the program.

1 // Fig. 14.11: UsingExceptions.java
2 // Demonstrating the getMessage and printStackTrace
3 // methods inherited into all exception classes.
4 public class UsingExceptions {
5
6 // execute application
7 public static void main(String args[])
8 {
9 // call method1

10 try {
11 method1();
12 }
13
14 // catch Exceptions thrown from method1
15 catch (Exception exception) {
16 System.err.println(exception.getMessage() + "\n");
17 exception.printStackTrace();
18 }
19 }

Fig. 14.11Fig. 14.11Fig. 14.11Fig. 14.11 Using getMessage and printStackTrace (part 1 of 2).

832 Exception Handling Chapter 14

SUMMARY
• Some common examples of exceptions are memory exhaustion, an out-of-bounds array subscript,

arithmetic overflow, division by zero and invalid method parameters.

• Exception handling is designed for dealing with synchronous malfunctions (i.e., those that occur
as the result of a program’s execution).

• Exception handling is used in situations in which a malfunction will be dealt with in a different
scope from that which detected the malfunction.

• Exception handling should be used to process exceptions from software components such as meth-
ods, libraries and classes that are likely to be widely used and where it does not make sense for
those components to handle their own exceptions.

• Exception handling should be used on large projects to handle error processing in a standardized
manner for the entire project.

• Java exception handling is geared to situations in which the method that detects an error is unable
to deal with it. Such a method will throw an exception. If the exception matches the type of the
parameter in one of the catch blocks, the code for that catch block executes.

• The programmer encloses in a try block the code that may generate an exception. The try block
is followed by one or more catch blocks. Each catch block specifies the type of exception it
can catch and handle. Each catch block is an exception handler.

20
21 // call method2; throw exceptions back to main
22 public static void method1() throws Exception
23 {
24 method2();
25 }
26
27 // call method3; throw exceptions back to method1
28 public static void method2() throws Exception
29 {
30 method3();
31 }
32

33 // throw Exception back to method2
34 public static void method3() throws Exception
35 {
36 throw new Exception("Exception thrown in method3");
37 }
38
39 } // end class Using Exceptions

Exception thrown in method3

java.lang.Exception: Exception thrown in method3
 at UsingExceptions.method3(UsingExceptions.java:36)
 at UsingExceptions.method2(UsingExceptions.java:30)
 at UsingExceptions.method1(UsingExceptions.java:24)
 at UsingExceptions.main(UsingExceptions.java:11))

Fig. 14.11Fig. 14.11Fig. 14.11Fig. 14.11 Using getMessage and printStackTrace (part 2 of 2).

Chapter 14 Exception Handling 833

• If no exceptions are thrown in the try block, the exception handlers for that block are skipped.
Then the program resumes execution after the last catch block, after executing a finally
block if one is provided.

• Exceptions are thrown in a try block in a method or from a method called directly or indirectly
from the try block.

• The operand of a throw can be of any class derived from Throwable. The immediate subclass-
es of Throwable are Error and Exception.

• RuntimeExceptions and Errors are said to be “unchecked.” Non-RuntimeExceptions
are said to be “checked.” The checked exceptions thrown by a particular method must be specified
in that method’s throws clause.

• Exceptions are caught by the closest exception handler (for the try block from which the excep-
tion was thrown) specifying an appropriate type.

• An exception terminates the block in which the exception occurred.

• A handler may rethrow the object to an outer try block.

• catch(Exception exception) catches all Exceptions.

• catch(Throwable throwable) catches all Exceptions and Errors.

• If no handler matches a particular thrown object, the search for a match continues in an enclosing
try block.

• Exception handlers are searched in order for an appropriate match based on type. The first handler
that matches is executed. When that handler finishes executing, control resumes with the first
statement after the last catch block.

• The order of the exception handlers affects how an exception is handled.

• A subclass object can be caught either by a handler specifying that subclass type or by handlers
specifying the types of any direct or indirect superclasses of that subclass.

• If no handler is found for an exception, a non-GUI-based application terminates; an applet or a
GUI-based application will return to its regular event handling.

• An exception handler cannot access variables in the scope of its try block because by the time
the exception handler begins executing, the try block has expired. Information the handler needs
is normally passed in the thrown object.

• Exception handlers can rethrow an exception. They can convert one type of exception into another
by throwing a different exception. They can perform any necessary recovery and resume execution
after the last exception handler. They can look at the situation causing the error, remove the cause
of the error and retry by calling the original method that caused an exception. They can simply
return some status value to their environment.

• A handler that catches a subclass object should be placed before a handler that catches a superclass
object. If the superclass handler were first, it would catch superclass objects and the objects of sub-
classes of that superclass.

• When an exception is caught, it is possible that resources may have been allocated, but not yet re-
leased in the try block. A finally block should release these resources.

• It is possible that the handler that catches an exception may decide it cannot process the exception.
In this case, the handler can simply rethrow the exception. A throw followed by the exception
object name rethrows the exception.

• Even if a handler can process an exception, and regardless of whether it does any processing on that
exception, the handler can rethrow the exception for further processing outside the handler. A re-
thrown exception is detected by the next enclosing try block (normally in a calling method) and is

834 Exception Handling Chapter 14

handled by an appropriate exception handler (if there is one) listed after that enclosing try block.

• A throws clause lists the checked exceptions that may be thrown from a method. A method may
throw the indicated exceptions, or it may throw subclass types. If a checked exception not listed
in the throws clause is thrown, a syntax error occurs.

• A powerful reason for using inheritance with exceptions is to catch a variety of related errors
easily with concise notation. One could certainly catch each type of subclass exception object
individually, but it is more concise to simply catch the superclass exception object.

TERMINOLOGY

SELF-REVIEW EXERCISES
14.1 List five common examples of exceptions.

14.2 Why should exception-handling techniques not be used for conventional program control?

14.3 Why are exceptions particularly appropriate for dealing with errors produced by library
classes and methods?

14.4 What is a “resource leak?”

ArithmeticException instanceof operator
array exceptions InstantiationException
ArrayIndexOutOfBoundsException InternalException
business-critical computing InterruptedException
catch a group of exceptions IOException
catch all exceptions library exception classes
catch an exception memory exhaustion
catch block mission-critical computing
catch(Exception e) NegativeArraySizeException
catch-or-declare requirement NoClassDefFoundException
checked Exceptions non-run-time exception
ClassCastException null reference
declare exceptions that can be thrown NullPointerException
default exception handler OutOfMemoryError
EmptyStackException printStackTrace method (Throwable)
Error class resource leak
Error class hierarchy resumption model of exception handling
error handling rethrow an exception
exception RuntimeException
Exception class stack unwinding
Exception class hierarchy synchronous error
exception handler termination model of exception handling
exception handling throw an exception
exception object throw point
fault tolerance throw statement
FileNotFoundException Throwable class
finally block throws clause
getMessage method of Throwable class try block
handle an exception unchecked Exceptions
IllegalAccessException UnsatisfiedLinkException
IncompatibleClassChangeException

Chapter 14 Exception Handling 835

14.5 If no exceptions are thrown in a try block, where does control proceed to when the try
block completes execution?

14.6 What happens if an exception occurs and an appropriate exception handler cannot be found?

14.7 Give a key advantage of using catch(Exception e).

14.8 Should a conventional applet or application catch Error objects?

14.9 What happens if several handlers match the type of the thrown object?

14.10 Why would a programmer specify a superclass type as the type of a catch handler, then
throw objects of subclass types?

14.11 How might a catch handler be written to process related types of errors without using in-
heritance among exception classes?

14.12 What is the key reason for using finally blocks?

14.13 Does throwing an Exception have to cause program termination?

14.14 What happens when a catch handler throws an Exception?

14.15 What happens to a local reference in a try block when that block throws an Exception?

ANSWERS TO SELF-REVIEW EXERCISES
14.1 Memory exhaustion, array subscript out of bounds, arithmetic overflow, division by zero, in-
valid method parameters.

14.2 (a) Exception handling is designed to handle infrequently occurring situations that often
result in program termination, so compiler writers are not required to implement exception handling
to perform optimally. (b) Flow of control with conventional control structures is generally clearer and
more efficient than with exceptions. (c) Problems can occur because the stack is unwound when an
exception occurs and resources allocated prior to the exception may not be freed. (d) The “additional”
exceptions can get in the way of genuine error-type exceptions. It becomes more difficult for the pro-
grammer to keep track of the larger number of exception cases.

14.3 It is unlikely that library classes and methods could perform error processing that would meet
the unique needs of all users.

14.4 A resource leak occurs when an executing program does not properly release a resource when
the resource is no longer needed. If the program attempts to use the resource again in the future, the
program may not be able to access the resource.

14.5 The exception handlers (in the catch blocks) for that try block are skipped, and the pro-
gram resumes execution after the last catch block. If there is a finally block, it is executed and
the program resumes execution after the finally block.

14.6 A non-GUI-based application terminates; an applet or a GUI-based application resumes reg-
ular event processing.

14.7 The form catch(Exception e) catches any type of exception thrown in a try block.
An advantage is that no thrown Exception can slip by.

14.8 Errors are usually serious problems with the underlying Java system; most programs will
not want to catch Errors.

14.9 The first matching Exception handler after the try block is executed.

14.10 This is a nice way to catch related types of exceptions, but it should be used carefully.

836 Exception Handling Chapter 14

14.11 Provide a single Exception subclass and catch handler for a group of exceptions. As
each exception occurs, the exception object can be created with different instance data. The catch
handler can examine this data to distinguish the type of the Exception.

14.12 The finally block is the preferred means for preventing resource leaks.

14.13 No, but it does terminate the block in which the Exception is thrown.

14.14 The exception will be processed by a catch handler (if one exists) associated with the try
block (if one exists) enclosing the catch handler that caused the exception.

14.15 The reference is removed from memory, and the reference count for the referenced object is
decremented. If the reference count is zero, the object is marked for garbage collection.

EXERCISES
14.16 Under what circumstances would you use the following catch handler?

catch (Exception exception) {
 throw exception;
}

14.17 List the benefits of exception handling over conventional means of error processing.

14.18 Describe an object-oriented technique for handling related exceptions.

14.19 Until this chapter, we have found that dealing with errors detected by constructors is a bit
awkward. Explain why exception handling is an effective means for dealing with constructor failure.

14.20 Suppose a program throws an exception and the appropriate exception handler begins exe-
cuting. Now suppose that the exception handler itself throws the same exception. Does this create an
infinite recursion? Explain your answer.

14.21 Use inheritance to create an exception superclass and various exception subclasses. Write a
program to demonstrate that the catch specifying the superclass catches subclass exceptions.

14.22 Write a Java program that shows that not all finalizers for objects constructed in a block are
necessarily called after an exception is thrown from that block.

14.23 Write a Java program that demonstrates how various exceptions are caught with

catch (Exception exception)

14.24 Write a Java program that shows that the order of exception handlers is important. If you try
to catch a superclass exception type before a subclass type, the compiler should generate errors. Ex-
plain why these errors occur.

14.25 Write a Java program that shows a constructor passing information about constructor failure
to an exception handler after a try block.

14.26 Write a Java program that illustrates rethrowing an exception.

14.27 Write a Java program that shows that a method with its own try block does not have to catch
every possible error generated within the try. Some exceptions can slip through to, and be handled
in, other scopes.

15
Multithreading

Objectives
• To understand the notion of multithreading.
• To appreciate how multithreading can improve

performance.
• To understand how to create, manage and destroy

threads.
• To understand the life cycle of a thread.
• To study several examples of thread synchronization.
• To understand thread priorities and scheduling.
• To understand daemon threads and thread groups.
The spider’s touch, how exquisitely fine!
Feels at each thread, and lives along the line.
Alexander Pope

A person with one watch knows what time it is; a person with
two watches is never sure.
Proverb

Conversation is but carving!
Give no more to every guest,
Than he’s able to digest.
Jonathan Swift

Learn to labor and to wait.
Henry Wadsworth Longfellow

The most general definition of beauty…Multeity in Unity.
Samuel Taylor Coleridge

838 Multithreading Chapter 15

15.1 Introduction
It would be nice if we could “do one thing at a time” and “do it well,” but that is simply not
how the world works. The human body performs a great variety of operations in parallel,
or as we will say throughout this chapter, concurrently. Respiration, blood circulation and
digestion, for example, can occur concurrently. All of the senses—seeing, touching, smell-
ing, tasting and hearing—can all occur concurrently. An automobile can be accelerating,
turning, air conditioning and playing music concurrently. Computers, too, perform opera-
tions concurrently. It is common today for desktop personal computers to be compiling a
program, printing a file and receiving e-mail messages over a network concurrently.

Concurrency is important in our lives. Ironically, though, most programming languages
do not enable programmers to specify concurrent activities. Rather, programming languages
generally provide only a simple set of control structures that enable programmers to perform
one action at a time then proceed to the next action after the previous one is finished. The kind
of concurrency that computers perform today normally is implemented as operating systems
“primitives” available only to highly experienced “systems programmers.”

The Ada programming language developed by the United States Department of
Defense made concurrency primitives widely available to defense contractors building
command and control systems. But Ada has not been widely used in universities and com-
mercial industry.

Java is unique among popular general-purpose programming languages in that it
makes concurrency primitives available to the applications programmer. The programmer
specifies that applications contain threads of execution, each thread designating a portion
of a program that may execute concurrently with other threads. This capability, called mul-
tithreading, gives the Java programmer powerful capabilities not available in C and C++,
the languages on which Java is based. C and C++ are called single-threaded languages.

Outline

15.1 Introduction
15.2 Class Thread: An Overview of the Thread Methods
15.3 Thread States: Life Cycle of a Thread
15.4 Thread Priorities and Thread Scheduling
15.5 Thread Synchronization
15.6 Producer/Consumer Relationship without Thread Synchronization
15.7 Producer/Consumer Relationship with Thread Synchronization
15.8 Producer/Consumer Relationship: The Circular Buffer
15.9 Daemon Threads
15.10 Runnable Interface
15.11 Thread Groups
15.12 (Optional Case Study) Thinking About Objects: Multithreading
15.13 (Optional) Discovering Design Patterns: Concurrent Design Patterns

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 15 Multithreading 839

[Note: On many computer platforms, C and C++ programs can perform multithreading by
using system specific code libraries.]

Software Engineering Observation 15.1
Unlike many languages that do not have built-in multithreading (such as C and C++) and must
therefore make calls to operating system multithreading primitives, Java includes multithread-
ing primitives as part of the language itself (actually in classes Thread, ThreadGroup,
ThreadLocal and ThreadDeath of the java.lang package). This encourages the use
of multithreading among a larger part of the applications-programming community. 15.1

We will discuss many applications of concurrent programming. When programs
download large files such as audio clips or video clips from the World Wide Web, we do
not want to wait until an entire clip is downloaded before starting the playback. So we can
put multiple threads to work: One that downloads a clip and another that plays the clip so
that these activities, or tasks, may proceed concurrently. To avoid choppy playback, we will
coordinate the threads so that the player thread does not begin until there is a sufficient
amount of the clip in memory to keep the player thread busy.

Another example of multithreading is Java’s automatic garbage collection. In C and
C++, the programmer is responsible for reclaiming dynamically allocated memory. Java
provides a garbage collector thread that reclaims dynamically allocated memory that the
program no longer needs.

Testing and Debugging Tip 15.1
In C and C++, programmers must provide explicit statements that reclaim dynamically al-
located memory. When memory is not reclaimed (because a programmer forgets to do so,
because of a logic error or because an exception diverts program control), this results in an
all-too-common error called a memory leak that can eventually exhaust the supply of free
memory and may cause premature program termination. Java’s automatic garbage collec-
tion eliminates the vast majority of memory leaks, that is, those that are due to orphaned (un-
referenced) objects. 15.1

Java’s garbage collector runs as a low-priority thread. When Java determines that there
are no longer any references to an object, it marks the object for eventual garbage collec-
tion. The garbage-collector thread runs when processor time is available and when there are
no higher priority runnable threads. However, the garbage collector will run immediately
when the system is out of memory.

Performance Tip 15.1
Setting an object reference to null marks that object for eventual garbage collection (if
there are no other references to the object). This can help conserve memory in a system in
which a local variable that refers to an object does not go out of scope because the method
in which it appears executes for a lengthy period. 15.1

Writing multithreaded programs can be tricky. Although the human mind can perform
many functions concurrently, humans find it difficult to jump between parallel “trains of
thought.” To see why multithreading can be difficult to program and understand, try the fol-
lowing experiment: open three books to page 1. Now try reading the books concurrently.
Read a few words from the first book, then read a few words from the second book, then
read a few words from the third book, then loop back and read the next few words from the
first book, and so on. After a brief time, you will appreciate the challenges of multi-
threading: switching between books, reading briefly, remembering your place in each

840 Multithreading Chapter 15

book, moving the book you are reading closer so you can see it, pushing books you are not
reading aside, and amidst all this chaos, trying to comprehend the content of the books!

Performance Tip 15.2
A problem with single-threaded applications is that lengthy activities must complete before
other activities can begin. In a multithreaded application, threads can share a processor (or
set of processors), so that multiple tasks are performed in parallel. 15.2

Although Java is perhaps the world’s most portable programming language, certain
portions of the language are nevertheless platform dependent. In particular, there are dif-
ferences among the first three Java platforms implemented, namely the Solaris implemen-
tation and the Win32 implementations (i.e., Windows-based implementations for Windows
95 and Windows NT).

The Solaris Java platform runs a thread of a given priority to completion or until a
higher priority thread becomes ready. At that point preemption occurs (i.e., the processor
is given to the higher priority thread while the previously running thread must wait).

In the 32-bit Java implementations for Windows 95 and Windows NT, threads are
timesliced. This means that each thread is given a limited amount of time (called a time
quantum) to execute on a processor, and when that time expires the thread is made to wait
while all other threads of equal priority get their chances to use their quantum in round-
robin fashion. Then the original thread resumes execution. Thus, on Windows 95 and Win-
dows NT, a running thread can be preempted by a thread of equal priority; whereas, on the
Solaris implementation, a running Java thread can only be preempted by a higher priority
thread. Future Solaris Java systems are expected to perform timeslicing as well.

Portability Tip 15.1
Java multithreading is platform dependent. Thus, a multithreaded application could behave
differently on different Java implementations. 15.1

15.2 Class Thread: An Overview of the Thread Methods
In this section, we overview the various thread-related methods in the Java API. We use
many of these methods in live-code examples throughout the chapter. The reader should
refer to the Java API directly for more details on using each method, especially the excep-
tions thrown by each method.

Class Thread (package java.lang) has several constructors. The constructor

public Thread(String threadName)

constructs a Thread object whose name is threadName. The constructor

public Thread()

constructs a Thread whose name is "Thread-" concatenated with a number, like
Thread-1, Thread-2, and so on.

The code that “does the real work” of a thread is placed in its run method. The run
method can be overridden in a subclass of Thread or it may be implemented in a Run-
nable object; Runnable is an important Java interface that we study in Section 15.10.

A program launches a thread’s execution by calling the thread’s start method,
which, in turn, calls method run. After start launches the thread, start returns to its

Chapter 15 Multithreading 841

caller immediately. The caller then executes concurrently with the launched thread. The
start method throws an IllegalThreadStateException if the thread it is trying
to start has already been started.

The static method sleep is called with an argument specifying how long the cur-
rently executing thread should sleep (in milliseconds); while a thread sleeps, it does not
contend for the processor, so other threads can execute. This can give lower priority threads
a chance to run.

The interrupt method is called to interrupt a thread. The static method
interrupted returns true if the current thread has been interrupted and false other-
wise. A program can invoke a specific thread’s isInterrupted method to determine
whether that thread has been interrupted.

Method isAlive returns true if start has been called for a given thread and the
thread is not dead (i.e., its controlling run method has not completed execution).

Method setName sets a Thread’s name. Method getName returns the name of the
Thread. Method toString returns a String consisting of the name of the thread, the
priority of the thread and the thread’s ThreadGroup (discussed in Section 15.11).

The static method currentThread returns a reference to the currently exe-
cuting Thread.

Method join waits for the Thread to which the message is sent to die before the
calling Thread can proceed; no argument or an argument of 0 milliseconds to method
join indicates that the current Thread will wait forever for the target Thread to die
before the calling Thread proceeds. Such waiting can be dangerous; it can lead to two par-
ticularly serious problems called deadlock and indefinite postponement. We will discuss
these momentarily.

Testing and Debugging Tip 15.2
Method dumpStack is useful for debugging multithreaded applications. A program calls
static method dumpStack to print a method-call stack trace for the current Thread. 15.2

15.3 Thread States: Life Cycle of a Thread
At any time, a thread is said to be in one of several thread states (illustrated in Fig. 15.1).
Let us say that a thread that was just created is in the born state. The thread remains in this
state until the program calls the thread’s start method, which causes the thread to enter
the ready state (also known as the runnable state). The highest priority ready thread enters
the running state (i.e., the thread begins executing), when the system assigns a processor to
the thread. A thread enters the dead state when its run method completes or terminates for
any reason—a dead thread eventually will be disposed of by the system.

One common way for a running thread to enter the blocked state is when the thread
issues an input/output request. In this case, a blocked thread becomes ready when the I/O
for which it is waiting completes. A blocked thread cannot use a processor even if one is
available.

When the program calls method sleep in a running thread, that thread enters the
sleeping state. A sleeping thread becomes ready after the designated sleep time expires. A
sleeping thread cannot use a processor even if one is available. If the program calls method
interrupt on a sleeping thread, that thread exits the sleeping state and becomes ready
to execute.

842 Multithreading Chapter 15

When a running thread calls wait, the thread enters a waiting state for the particular
object on which wait was called. One thread in the waiting state for a particular object
becomes ready on a call to notify issued by another thread associated with that object.
Every thread in the waiting state for a given object becomes ready on a call to notifyAll
by another thread associated with that object. The wait, notify and notifyAll
methods will be discussed in more depth shortly, when we consider monitors.

A thread enters the dead state when its run method either completes or throws an
uncaught exception.

15.4 Thread Priorities and Thread Scheduling
Every Java applet or application is multithreaded. Every Java thread has a priority in the
range Thread.MIN_PRIORITY (a constant of 1) and Thread.MAX_PRIORITY (a
constant of 10). By default, each thread is given priority Thread.NORM_PRIORITY (a
constant of 5). Each new thread inherits the priority of the thread that creates it.

Some Java platforms support a concept called timeslicing and some do not. Without
timeslicing, each thread in a set of equal-priority threads runs to completion (unless the
thread leaves the running state and enters the waiting, sleeping or blocked state, or the

Fig. 15.1Fig. 15.1Fig. 15.1Fig. 15.1 State diagram showing the Life cycle of a thread.

ready

running

waiting sleeping dead blocked

born

start

dispatch
(assign a
processor)

quantum
expiration

issue I/O request

sl
ee
pwai

t

sleep interval
expires

I/O
com

pletionn
o
t
i
f
y

com
plete

o
r n
o
t
i
f
y
A
l
l yield

interrupt

Chapter 15 Multithreading 843

thread gets interrupted by a higher priority thread) before that thread’s peers get a chance
to execute. With timeslicing, each thread receives a brief burst of processor time called a
quantum during which that thread can execute. At the completion of the quantum, even if
that thread has not finished executing, the operating system takes the processor away from
that thread and gives it to the next thread of equal priority (if one is available).

The job of the Java scheduler is to keep the highest priority thread running at all times,
and if timeslicing is available, to ensure that several equally high-priority threads each exe-
cute for a quantum in round-robin fashion (i.e., these threads can be timesliced).
Figure 15.2 illustrates Java’s multilevel priority queue for threads. In the figure, threads A
and B each execute for a quantum in round-robin fashion until both threads complete exe-
cution. Next, thread C runs to completion. Then, threads D, E and F each execute for a
quantum in round-robin fashion until they all complete execution. This process continues
until all threads run to completion. Note that new higher-priority threads could postpone—
possibly indefinitely—the execution of lower priority threads. Such indefinite postpone-
ment often is referred to more colorfully as starvation.

A thread’s priority can be adjusted with method setPriority, which takes an int
argument. If the argument is not in the range 1 through 10, setPriority throws an
IllegalArgumentException. Method getPriority returns the thread’s priority.

A thread can call the yield method to give other threads a chance to execute. Actu-
ally, whenever a higher priority thread becomes ready, the operating system preempts the
current thread. So, a thread cannot yield to a higher priority thread, because the first
thread would have been preempted when the higher priority thread became ready. Simi-
larly, yield always allows the highest priority-ready thread to run, so if only lower pri-
ority threads are ready at the time of a yield call, the current thread will be the highest
priority thread and will continue executing. Therefore, a thread yields to give threads of
an equal priority a chance to run. On a timesliced system this is unnecessary, because
threads of equal priority will each execute for their quantum (or until they lose the pro-
cessor for some other reason), and other threads of equal priority will execute in round-
robin fashion. Thus yield is appropriate for nontimesliced systems in which a thread
would ordinarily run to completion before another thread of equal priority would have an
opportunity to run.

Performance Tip 15.3
On nontimesliced systems, cooperating threads of equal priority should periodically call
yield to enable their peers to proceed smoothly. 15.3

Portability Tip 15.2
Java applets and applications should be programmed to work on all Java platforms to realize
Java’s goal of true portability. When designing applets and applications that use threads,
you must consider the threading capabilities of all the platforms on which the applets and
applications will execute. 15.2

A thread executes unless it dies, it becomes blocked by the operating system for input/
output (or some other reason), it calls sleep, it calls wait, it calls yield, it is preempted
by a thread of higher priority or its quantum expires. A thread with a higher priority than
the running thread can become ready (and hence preempt the running thread) if a sleeping
thread finishes sleeping, if I/O completes for a thread waiting for that I/O or if either
notify or notifyAll is called on a thread that has called wait.

844 Multithreading Chapter 15

The application of Fig. 15.3 demonstrates basic threading techniques, including cre-
ation of a class derived from Thread, construction of a Thread and using the Thread
class sleep method. Each thread of execution we create in the program displays its name
after sleeping for a random amount of time between 0 and 5 seconds. You will see that the
main method (i.e., the main thread of execution) terminates before the application termi-
nates. The program consists of two classes—ThreadTester (lines 4–28) and Print-
Thread (lines 33–71).

Class PrintThread inherits from Thread, so that each object of the class can exe-
cute in parallel. The class consists of instance variable sleepTime, a constructor and a

Fig. 15.2Fig. 15.2Fig. 15.2Fig. 15.2 Java thread priority scheduling.

Priority 9

Priority 8

Priority 7

Priority 10

Priority 6

Priority 5

Priority 4

Priority 3

Priority 2

Priority 1

A B

D

C

E F

G

H I

J K

Ready threads

Chapter 15 Multithreading 845

run method. Variable sleepTime stores a random integer value chosen when the pro-
gram creates a PrintThread object. Each PrintThread object sleeps for the amount
of time specified by its sleepTime, then outputs its name.

The PrintThread constructor (lines 38–48) initializes sleepTime to a random
integer between 0 and 4999 (0 to 4.999 seconds). Then, the constructor outputs the name
of the thread and the value of sleepTime to show the values for the particular Print-
Thread being constructed. The name of each thread is specified as a String argument
to the PrintThread constructor and is passed to the superclass constructor at line 40.
[Note: It is possible to allow class Thread to choose a name for your thread by using the
Thread class’s default constructor.

1 // Fig. 15.3: ThreadTester.java
2 // Show multiple threads printing at different intervals.
3
4 public class ThreadTester {
5
6 // create and start threads
7 public static void main(String args[])
8 {
9 PrintThread thread1, thread2, thread3, thread4;

10
11 // create four PrintThread objects
12 thread1 = new PrintThread("thread1");
13 thread2 = new PrintThread("thread2");
14 thread3 = new PrintThread("thread3");
15 thread4 = new PrintThread("thread4");
16
17 System.err.println("\nStarting threads");
18
19 // start executing PrintThreads
20 thread1.start();
21 thread2.start();
22 thread3.start();
23 thread4.start();
24
25 System.err.println("Threads started\n");
26 }
27
28 } // end class ThreadTester
29
30 // Each object of this class picks a random sleep interval.
31 // When a PrintThread executes, it prints its name, sleeps,
32 // prints its name again and terminates.
33 class PrintThread extends Thread {
34 private int sleepTime;
35
36 // PrintThread constructor assigns name to thread
37 // by calling superclass Thread constructor

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 Multiple threads printing at random intervals (part 1 of 3).

846 Multithreading Chapter 15

38 public PrintThread(String name)
39 {
40 super(name);
41
42 // sleep between 0 and 5 seconds
43 sleepTime = (int) (Math.random() * 5000);
44
45 // display name and sleepTime
46 System.err.println(
47 "Name: " + getName() + "; sleep: " + sleepTime);
48 }
49
50 // control thread's execution
51 public void run()
52 {
53 // put thread to sleep for a random interval
54 try {
55 System.err.println(getName() + " going to sleep");
56
57 // put thread to sleep
58 Thread.sleep(sleepTime);
59 }
60
61 // if thread interrupted during sleep, catch exception
62 // and display error message
63 catch (InterruptedException interruptedException) {
64 System.err.println(interruptedException.toString());
65 }
66
67 // print thread name
68 System.err.println(getName() + " done sleeping");
69 }
70
71 } // end class PrintThread

Name: thread1; sleep: 3593
Name: thread2; sleep: 2653
Name: thread3; sleep: 4465
Name: thread4; sleep: 1318

Starting threads
Threads started

thread1 going to sleep
thread2 going to sleep
thread3 going to sleep
thread4 going to sleep
thread4 done sleeping
thread2 done sleeping
thread1 done sleeping
thread3 done sleeping

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 Multiple threads printing at random intervals (part 2 of 3).

Chapter 15 Multithreading 847

When the program invokes a PrintThread’s start method (inherited from
Thread), the PrintThread object enters the ready state. When the system assigns a
processor to the PrintThread object, it enters the running state and its run method
begins execution. Method run (lines 51–69) prints a String in the command window
indicating that the thread is going to sleep (line 55), then invokes the sleep method (line
58) to place the thread into a sleeping state. At this point, the thread loses the processor,
and the system allows another thread to execute. When the thread awakens, it is placed
in a ready state again until the system assigns to the thread. When the PrintThread
object enters the running state again, line 68 outputs the thread’s name (indicating that
the thread is done sleeping), the run method terminates and the thread object enters the
dead state. Note that method sleep can throw a checked InterruptedException
(if another thread invokes the sleeping thread’s interrupt method); therefore, sleep
must be called in a try block (in this example, we simply output the String represen-
tation of the exception if one occurs). Note that this example uses System.err rather
than System.out to output lines of text. System.err represents the standard error
object, which outputs error messages (normally to the command window).
System.out performs buffered output—it is possible that a message output with
System.out will not be output immediately. On the other hand, System.err uses
unbuffered output—messages appear immediately when they are output. Using
System.err in a multithreaded program helps ensure that the messages from our pro-
gram are output in the correct order.

Class ThreadTester’s main method (lines 7–26) creates four objects of class
PrintThread (lines 12–15) and invokes the Thread class start method on each
one (lines 20–23) to place all four PrintThread objects in a ready state. Note that the
program terminates execution when the last PrintThread awakens and prints its
name. Also, note that the main method (i.e., the main thread of execution) terminates
after starting the four PrintThreads, but the application does not terminate until the
last thread dies.

Name: thread1; sleep: 2753
Name: thread2; sleep: 3199
Name: thread3; sleep: 2797
Name: thread4; sleep: 4639

Starting threads
Threads started

thread1 going to sleep
thread2 going to sleep
thread3 going to sleep
thread4 going to sleep
thread1 done sleeping
thread3 done sleeping
thread2 done sleeping
thread4 done sleeping

Fig. 15.3Fig. 15.3Fig. 15.3Fig. 15.3 Multiple threads printing at random intervals (part 3 of 3).

848 Multithreading Chapter 15

15.5 Thread Synchronization
Java uses monitors (as discussed by C.A.R. Hoare in his 1974 paper cited in Exercise 15.24)
to perform synchronization. Every object with synchronized methods has a monitor. The
monitor allows one thread at a time to execute a synchronized method on the object. This
is accomplished by locking the object when the program invokes the synchronized meth-
od—also known as obtaining the lock. If there are several synchronized methods, only
one synchronized method may be active on an object at once; all other threads attempting
to invoke synchronized methods must wait. When a synchronized method finishes
executing, the lock on the object is released and the monitor lets the highest priority-ready
thread attempting to invoke a synchronized method proceed. [Note: Java also has syn-
chronized blocks of code, which are discussed in the example of Section 15.10].

A thread executing in a synchronized method may determine that it cannot pro-
ceed, so the thread voluntarily calls wait. This removes the thread from contention for the
processor and from contention for the monitor object. The thread now waits in the waiting
state while other threads try to enter the monitor object. When a thread executing a syn-
chronized method completes or satisfies the condition on which another thread may be
waiting, the thread can notify a waiting thread to become ready again. At this point, the
original thread can attempt to reacquire the lock on the monitor object and execute. The
notify acts as a signal to the waiting thread that the condition for which the waiting
thread has been waiting is now satisfied, so the waiting thread can reenter the monitor. If a
thread calls notifyAll, then all threads waiting for the monitor become eligible to
reenter the monitor (that is, they are all placed in a ready state). Remember that only one
of those threads can obtain the lock on the object at a time—other threads that attempt to
acquire the same lock will be blocked by the operating system until the lock becomes avail-
able again. Methods wait, notify and notifyAll are inherited by all classes from
class Object. So any object may have a monitor.

Common Programming Error 15.1
Threads in the waiting state for a monitor object must be awakened explicitly with a notify
(or interrupt) or the thread will wait forever. This may cause deadlock. [Note: There are
versions of method wait that receive arguments indicating the maximum wait time. If the
thread is not notified in the specified amount of time, the thread becomes ready to execute.] 15.1

Testing and Debugging Tip 15.3
Be sure that every call to wait has a corresponding call to notify that eventually will end
the waiting or call notifyAll as a safeguard. 15.3

Performance Tip 15.4
Synchronization to achieve correct multithreaded behavior can make programs run more
slowly due to the monitor overhead and frequently moving threads between the running,
waiting and ready states. However, there is not much to say for highly efficient, incorrect
multithreaded programs! 15.4

Testing and Debugging Tip 15.4
The locking that occurs with the execution of synchronized methods could lead to dead-
lock if the locks are never released. When exceptions occur, Java’s exception mechanism co-
ordinates with Java’s synchronization mechanism to release appropriate synchronization
locks to avoid these kinds of deadlocks. 15.4

Chapter 15 Multithreading 849

Monitor objects maintain a list of all threads waiting to enter the monitor object to exe-
cute synchronized methods. A thread is inserted in the list and waits for the object if
that thread calls a synchronized method of the object while another thread is already
executing in a synchronized method of that object. A thread also is inserted in the list
if the thread calls wait while operating inside the object. However, it is important to dis-
tinguish between waiting threads that blocked because the monitor was busy and threads
that explicitly called wait inside the monitor. Upon completion of a synchronized
method, outside threads that blocked because the monitor was busy can proceed to enter the
object. Threads that explicitly invoked wait can proceed only when notified via a call by
another thread to notify or notifyAll. When it is acceptable for a waiting thread to
proceed, the scheduler selects the thread with the highest priority.

Common Programming Error 15.2
It is an error if a thread issues a wait, a notify or a notifyAll on an object without
having acquired a lock for the object. This causes an IllegalMonitorState-
Exception. 15.2

15.6 Producer/Consumer Relationship without Thread
Synchronization
In a producer/consumer relationship, a producer thread calling a produce method may
see that the consumer thread has not read the last message from a shared region of mem-
ory called a buffer, so the producer thread will call wait. When a consumer thread reads
the message, it will call notify to allow a waiting producer to proceed. When a con-
sumer thread enters the monitor and finds the buffer empty, it calls wait. A producer
finding the buffer empty writes to the buffer, then calls notify so a waiting consumer
can proceed.

Shared data can get corrupted if we do not synchronize access among multiple threads.
Consider a producer/consumer relationship in which a producer thread deposits a sequence
of numbers (we use 1, 2, 3, …) into a slot of shared memory. The consumer thread reads
this data from the shared memory and prints it. We print what the producer produces as it
produces it and what the consumer consumes as it consumes it. The program of Fig. 15.4–
Fig. 15.7 demonstrates a producer and a consumer accessing a single shared cell of memory
(int variable sharedInt in Fig. 15.6) without any synchronization. The threads are not
synchronized, so data can be lost if the producer places new data into the slot before the
consumer consumes the previous data. Also, data can be “doubled” if the consumer con-
sumes data again before the producer produces the next item. To show these possibilities,
the consumer thread in this example keeps a total of all the values it reads. The producer
thread produces values from 1 to 10. If the consumer reads each value produced only once,
the total would be 55. However, if you execute this program several times, you will see that
the total is rarely, if ever, 55.

The program consists of four classes—ProduceInteger (Fig. 15.4), Con-
sumeInteger (Fig. 15.5), HoldIntegerUnsynchronized (Fig. 15.6) and
SharedCell (Fig. 15.7).

Class ProduceInteger (Fig. 15.4)—a subclass of Thread—consists of instance
variable sharedObject (line 4), a constructor (lines 7–11) and a run method (lines 15–
37). The constructor initializes instance variable sharedObject (line 10) to refer to the

850 Multithreading Chapter 15

HoldIntegerUnsynchronized object shared, which was passed as an argument.
Class ProduceInteger’s run method (lines 15–37) consists of a for structure that
loops 10 times. Each iteration of the loop first invokes method sleep to put the Produ-
ceInteger object into the sleeping state for a random time interval between 0 and 3 sec-
onds. When the thread awakens, line 31 calls class HoldIntegerUnsynchronized’s
setSharedInt method and passes the value of control variable count to set the shared
object’s instance variable sharedInt. When the loop completes, lines 34–36 display a
line of text in the command window indicating that the thread finished producing data and
that the thread is terminating, then the thread terminates (i.e., the thread dies).

1 // Fig. 15.4: ProduceInteger.java
2 // Definition of threaded class ProduceInteger
3 public class ProduceInteger extends Thread {
4 private HoldIntegerUnsynchronized sharedObject;
5
6 // initialize ProduceInteger thread object
7 public ProduceInteger(HoldIntegerUnsynchronized shared)
8 {
9 super("ProduceInteger");

10 sharedObject = shared;
11 }
12
13 // ProduceInteger thread loops 10 times and calls
14 // sharedObject's setSharedInt method each time
15 public void run()
16 {
17 for (int count = 1; count <= 10; count++) {
18
19 // sleep for a random interval
20 try {
21 Thread.sleep((int) (Math.random() * 3000));
22 }
23
24 // process InterruptedException during sleep
25 catch(InterruptedException exception) {
26 System.err.println(exception.toString());
27 }
28
29 // call sharedObject method from this
30 // thread of execution
31 sharedObject.setSharedInt(count);
32 }
33
34 System.err.println(
35 getName() + " finished producing values" +
36 "\nTerminating " + getName());
37 }
38
39 } // end class ProduceInteger

Fig. 15.4Fig. 15.4Fig. 15.4Fig. 15.4 Class ProduceInteger represents the producer in a producer/
consumer relationship.

Chapter 15 Multithreading 851

Class ConsumeInteger (Fig. 15.5)—a subclass of Thread—consists of instance
variable sharedObject (line 4), a constructor (lines 7–11) and a run method (lines 15–
39). The constructor initializes instance variable sharedObject (line 10) to refer to the
HoldIntegerUnsynchronized object shared that was passed as an argument.
Class ConsumeInteger’s run method (lines 15–39) consists of a do/while structure
that loops until the value 10 is read from the HoldIntegerUnsynchronized object
to which sharedObject refers. Each iteration of the loop invokes method sleep to put
the ConsumeInteger object into the sleeping state for a random time interval between
0 and 3 seconds. Next, line 31 invokes class HoldIntegerUnsynchronized’s get-
SharedInt method to get the value of the shared object’s instance variable sharedInt.
Then, line 32 adds the value returned by getSharedInt to the variable sum. When the
loop completes, the ConsumeInteger thread displays a line in the command window
indicating that it has finished consuming data and terminates (i.e., the thread dies).

1 // Fig. 15.5: ConsumeInteger.java
2 // Definition of threaded class ConsumeInteger
3 public class ConsumeInteger extends Thread {
4 private HoldIntegerUnsynchronized sharedObject;
5
6 // initialize ConsumerInteger thread object
7 public ConsumeInteger(HoldIntegerUnsynchronized shared)
8 {
9 super("ConsumeInteger");

10 sharedObject = shared;
11 }
12
13 // ConsumeInteger thread loops until it receives 10
14 // from sharedObject's getSharedInt method
15 public void run()
16 {
17 int value, sum = 0;
18
19 do {
20
21 // sleep for a random interval
22 try {
23 Thread.sleep((int) (Math.random() * 3000));
24 }
25
26 // process InterruptedException during sleep
27 catch(InterruptedException exception) {
28 System.err.println(exception.toString());
29 }
30
31 value = sharedObject.getSharedInt();
32 sum += value;
33
34 } while (value != 10);
35

Fig. 15.5Fig. 15.5Fig. 15.5Fig. 15.5 Class ConsumeInteger represents the consumer in a producer/
consumer relationship (part 1 of 2).

852 Multithreading Chapter 15

Class HoldIntegerUnsynchronized consists of instance variable sharedInt
(line 4), method setSharedInt (lines 7–13) and method getSharedInt (lines 16–
22). Methods setSharedInt and getSharedInt do not synchronize access to
instance variable sharedInt. Note that each method uses static Thread method
currentThread to obtain a reference to the currently executing thread, then use
Thread method getName to obtain the thread’s name.

Class SharedCell’s main method (lines 6–20) instantiates the shared HoldIn-
tegerUnsynchronized object sharedObject and uses it as the argument to the
constructors for the ProduceInteger object producer and the ConsumeInteger
object consumer. The sharedObject contains the data that will be shared between the
two threads. Next, method main invokes the Thread class start method on the pro-
ducer and consumer threads to place them in the ready state. This launches these
threads.

36 System.err.println(
37 getName() + " retrieved values totaling: " + sum +
38 "\nTerminating " + getName());
39 }
40
41 } // end class ConsumeInteger

1 // Fig. 15.6: HoldIntegerUnsynchronized.java
2 // Definition of class HoldIntegerUnsynchronized.
3 public class HoldIntegerUnsynchronized {
4 private int sharedInt = -1;
5
6 // unsynchronized method to place value in sharedInt
7 public void setSharedInt(int value)
8 {
9 System.err.println(Thread.currentThread().getName() +

10 " setting sharedInt to " + value);
11
12 sharedInt = value;
13 }
14
15 // unsynchronized method return sharedInt's value
16 public int getSharedInt()
17 {
18 System.err.println(Thread.currentThread().getName() +
19 " retrieving sharedInt value " + sharedInt);
20
21 return sharedInt;
22 }
23
24 } // end class HoldIntegerUnsynchronized

Fig. 15.6Fig. 15.6Fig. 15.6Fig. 15.6 Class HoldIntegerUnsynchronized maintains the data shared
between the producer and consumer threads.

Fig. 15.5Fig. 15.5Fig. 15.5Fig. 15.5 Class ConsumeInteger represents the consumer in a producer/
consumer relationship (part 2 of 2).

Chapter 15 Multithreading 853

Ideally, we would like every value produced by the ProduceInteger object to be
consumed exactly once by the ConsumeInteger object. However, when we study the
output of Fig. 15.7, we see that the values 1, 3, 4, 6 and 7 are lost (i.e., never seen by the
consumer) and that the values 8 and 9 are incorrectly retrieved more than once by the con-

1 // Fig. 15.7: SharedCell.java
2 // Show multiple threads modifying shared object.
3 public class SharedCell {
4
5 // execute application
6 public static void main(String args[])
7 {
8 HoldIntegerUnsynchronized sharedObject =
9 new HoldIntegerUnsynchronized();

10
11 // create threads
12 ProduceInteger producer =
13 new ProduceInteger(sharedObject);
14 ConsumeInteger consumer =
15 new ConsumeInteger(sharedObject);
16
17 // start threads
18 producer.start();
19 consumer.start();
20 }
21
22 } // end class SharedCell

ConsumeInteger retrieving sharedInt value -1
ConsumeInteger retrieving sharedInt value -1
ProduceInteger setting sharedInt to 1
ProduceInteger setting sharedInt to 2
ConsumeInteger retrieving sharedInt value 2
ProduceInteger setting sharedInt to 3
ProduceInteger setting sharedInt to 4
ProduceInteger setting sharedInt to 5
ConsumeInteger retrieving sharedInt value 5
ProduceInteger setting sharedInt to 6
ProduceInteger setting sharedInt to 7
ProduceInteger setting sharedInt to 8
ConsumeInteger retrieving sharedInt value 8
ConsumeInteger retrieving sharedInt value 8
ProduceInteger setting sharedInt to 9
ConsumeInteger retrieving sharedInt value 9
ConsumeInteger retrieving sharedInt value 9
ProduceInteger setting sharedInt to 10
ProduceInteger finished producing values
Terminating ProduceInteger
ConsumeInteger retrieving sharedInt value 10
ConsumeInteger retrieved values totaling: 49
Terminating ConsumeInteger

Fig. 15.7Fig. 15.7Fig. 15.7Fig. 15.7 Threads modifying a shared object without synchronization.

854 Multithreading Chapter 15

sumer. Also, notice that the consumer twice retrieved value –1 (the default value of
sharedInt set at line 5 of Fig. 15.6) before the producer ever assigned 1 to the
sharedInt variable. This example clearly demonstrates that access to shared data by
concurrent threads must be controlled carefully or a program may produce incorrect results.

To solve the problems of lost data and doubled data in the previous example, we will
synchronize access of the concurrent producer and consumer threads to the shared data.
Each method used by a producer or consumer to access the shared data is declared with the
synchronized keyword. When a method declared synchronized is running in an
object, the object is locked so no other synchronized method can run in that object at
the same time.

15.7 Producer/Consumer Relationship with Thread
Synchronization
The application in Fig. 15.8 demonstrates a producer and a consumer accessing a shared
cell of memory with synchronization so that the consumer only consumes after the produc-
er produces a value. Classes ProduceInteger (Fig. 15.8), ConsumeInteger
(Fig. 15.9) and SharedCell (Fig. 15.11) are identical to Fig. 15.4, Fig. 15.5 and
Fig. 15.7 except that they use the new class HoldIntegerSynchronized in this ex-
ample.

Class HoldIntegerSynchronized (Fig. 15.10) contains two instance vari-
ables—sharedInt (line 6) and writeable (line 7). Also, method setSharedInt
(lines 12–39) and method getSharedInt (lines 44–70) are now synchronized
methods. Objects of class HoldIntegerSynchronized have monitors, because
HoldIntegerSynchronized contains synchronized methods. Instance variable
writeable is known as the monitor’s condition variable—is a boolean used by
methods setSharedInt and getSharedInt of class HoldIntegerSynchro-
nized. If writeable is true, setSharedInt can place a value into variable
sharedInt, because the variable currently does not contain information. However, this
means getSharedInt currently cannot read the value of sharedInt. If writeable
is false, getSharedInt can read a value from variable sharedInt because the vari-
able currently does contain information. However, this means setSharedInt currently
cannot place a value into sharedInt.

1 // Fig. 15.8: ProduceInteger.java
2 // Definition of threaded class ProduceInteger
3 public class ProduceInteger extends Thread {
4 private HoldIntegerSynchronized sharedObject;
5
6 // initialize ProduceInteger thread object
7 public ProduceInteger(HoldIntegerSynchronized shared)
8 {
9 super("ProduceInteger");

10 sharedObject = shared;
11 }
12

Fig. 15.8Fig. 15.8Fig. 15.8Fig. 15.8 Class ProduceInteger represents the producer in a producer/
consumer relationship (part 1 of 2).

Chapter 15 Multithreading 855

13 // ProduceInteger thread loops 10 times and calls
14 // sharedObject's setSharedInt method each time
15 public void run()
16 {
17 for (int count = 1; count <= 10; count++) {
18
19 // sleep for a random interval
20 try {
21 Thread.sleep((int) (Math.random() * 3000));
22 }
23
24 // process InterruptedException during sleep
25 catch(InterruptedException exception) {
26 System.err.println(exception.toString());
27 }
28
29 // call sharedObject method from this
30 // thread of execution
31 sharedObject.setSharedInt(count);
32 }
33
34 System.err.println(
35 getName() + " finished producing values" +
36 "\nTerminating " + getName());
37 }
38
39 } // end class ProduceInteger

1 // Fig. 15.9: ConsumeInteger.java
2 // Definition of threaded class ConsumeInteger
3 public class ConsumeInteger extends Thread {
4 private HoldIntegerSynchronized sharedObject;
5
6 // initialize ConsumerInteger thread object
7 public ConsumeInteger(HoldIntegerSynchronized shared)
8 {
9 super("ConsumeInteger");

10 sharedObject = shared;
11 }
12
13 // ConsumeInteger thread loops until it receives 10
14 // from sharedObject's getSharedInt method
15 public void run()
16 {
17 int value, sum = 0;
18

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 Class ConsumeInteger represents the consumer in a producer/
consumer relationship (part 1 of 2).

Fig. 15.8Fig. 15.8Fig. 15.8Fig. 15.8 Class ProduceInteger represents the producer in a producer/
consumer relationship (part 2 of 2).

856 Multithreading Chapter 15

When the ProduceInteger thread object invokes synchronized method set-
SharedInt (line 31 of Fig. 15.8), the thread acquires a lock on the HoldIntegerSyn-
chronized monitor object. The while structure in HoldIntegerSynchronized
at lines 14–25 tests the writeable variable with the condition !writeable. If this
condition is true, the thread invokes method wait. This places the ProduceInteger
thread object that called method setSharedInt into the waiting state for the HoldIn-
tegerSynchronized object and releases the lock on it. Now another thread can invoke
a synchronized method on the HoldIntegerSynchronized object.

The ProduceInteger object remains in the waiting state until it is notified that it
may proceed—at which point it enters the ready state and waits for the system to assign a
processor to it. When the ProduceInteger object reenters the running state, it reac-
quires the lock on the HoldIntegerSynchronized object implicitly and the set-
SharedInt method continues executing in the while structure with the next statement
after wait. There are no more statements, so the program reevaluates the while condi-
tion. If the condition is false, the program outputs a line to the command window indi-
cating that the producer is setting sharedInt to a new value, assigns value to
sharedInt, sets writeable to false to indicate that the shared memory is now full
(i.e., a consumer can read the value and a producer cannot put another value there yet) and
invokes method notify. If there are any waiting threads, one of those waiting threads
enters the ready state, indicating that the thread can now attempt its task again (as soon as
it is assigned a processor). The notify method returns immediately and method set-
SharedInt returns to its caller.

19 do {
20
21 // sleep for a random interval
22 try {
23 Thread.sleep((int) (Math.random() * 3000));
24 }
25
26 // process InterruptedException during sleep
27 catch(InterruptedException exception) {
28 System.err.println(exception.toString());
29 }
30
31 value = sharedObject.getSharedInt();
32 sum += value;
33
34 } while (value != 10);
35
36 System.err.println(
37 getName() + " retrieved values totaling: " + sum +
38 "\nTerminating " + getName());
39 }
40
41 } // end class ConsumeInteger

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 Class ConsumeInteger represents the consumer in a producer/
consumer relationship (part 2 of 2).

Chapter 15 Multithreading 857

1 // Fig. 15.10: HoldIntegerSynchronized.java
2 // Definition of class HoldIntegerSynchronized that
3 // uses thread synchronization to ensure that both
4 // threads access sharedInt at the proper times.
5 public class HoldIntegerSynchronized {
6 private int sharedInt = -1;
7 private boolean writeable = true; // condition variable
8
9 // synchronized method allows only one thread at a time to

10 // invoke this method to set the value for a particular
11 // HoldIntegerSynchronized object
12 public synchronized void setSharedInt(int value)
13 {
14 while (!writeable) { // not the producer's turn
15
16 // thread that called this method must wait
17 try {
18 wait();
19 }
20
21 // process Interrupted exception while thread waiting
22 catch (InterruptedException exception) {
23 exception.printStackTrace();
24 }
25 }
26
27 System.err.println(Thread.currentThread().getName() +
28 " setting sharedInt to " + value);
29
30 // set new sharedInt value
31 sharedInt = value;
32
33 // indicate that producer cannot store another value until
34 // a consumer retrieve current sharedInt value
35 writeable = false;
36
37 // tell a waiting thread to become ready
38 notify();
39 }
40
41 // synchronized method allows only one thread at a time to
42 // invoke this method to get the value for a particular
43 // HoldIntegerSynchronized object
44 public synchronized int getSharedInt()
45 {
46 while (writeable) { // not the consumer's turn
47
48 // thread that called this method must wait
49 try {
50 wait();
51 }
52

Fig. 15.10Fig. 15.10Fig. 15.10Fig. 15.10 Class HoldIntegerSynchronized monitors access to a shared
integer (part 1 of 2).

858 Multithreading Chapter 15

Methods getSharedInt and setSharedInt are implemented similarly. When
the ConsumeInteger object invokes method getSharedInt, the calling thread
acquires a lock on the HoldIntegerSynchronized object. The while structure at
lines 46–57 tests the writeable variable. If writeable is true (i.e., there is
nothing to consume), the thread invokes method wait. This places the ConsumeIn-
teger thread object that called method getSharedInt into the waiting state for the
HoldIntegerSynchronized object and releases the lock on it so other synchro-
nized methods can be invoked on the object. The ConsumeInteger object remains
in the waiting state until it is notified that it may proceed—at which point it enters the
ready state and waits to be assigned a processor. When the ConsumeInteger object
reenters the running state, the thread reacquires the lock on the HoldIntegerSyn-
chronized object and the getSharedInt method continues executing in the
while structure with the next statement after wait. There are no more statements, so
the program tests the while condition again. If the condition is false, the program sets
writeable to true to indicate that the shared memory is now empty and invokes
method notify. If there are any waiting threads, one of those waiting threads enters the
ready state, indicating that the thread can now attempt its task again (as soon as it is
assigned a processor). The notify method returns immediately. Then, get-
SharedInt outputs a line to the command window indicating that the consumer is
retrieving sharedInt, then returns the value of sharedInt to getSharedInt’s
caller.

Study the output in Fig. 15.11. Observe that every integer produced is consumed
once—no values are lost and no values are doubled. Also, the consumer cannot read a value
until the producer produces a value.

53 // process Interrupted exception while thread waiting
54 catch (InterruptedException exception) {
55 exception.printStackTrace();
56 }
57 }
58
59 // indicate that producer cant store another value
60 // because a consumer just retrieved sharedInt value
61 writeable = true;
62
63 // tell a waiting thread to become ready
64 notify();
65
66 System.err.println(Thread.currentThread().getName() +
67 " retrieving sharedInt value " + sharedInt);
68
69 return sharedInt;
70 }
71
72 } // end class HoldIntegerSynchronized

Fig. 15.10Fig. 15.10Fig. 15.10Fig. 15.10 Class HoldIntegerSynchronized monitors access to a shared
integer (part 2 of 2).

Chapter 15 Multithreading 859

1 // Fig. 15.11: SharedCell.java
2 // Show multiple threads modifying shared object.
3 public class SharedCell {
4
5 // execute application
6 public static void main(String args[])
7 {
8 HoldIntegerSynchronized sharedObject =
9 new HoldIntegerSynchronized();

10
11 // create threads
12 ProduceInteger producer =
13 new ProduceInteger(sharedObject);
14 ConsumeInteger consumer =
15 new ConsumeInteger(sharedObject);
16
17 // start threads
18 producer.start();
19 consumer.start();
20 }
21
22 } // end class SharedCell

ProduceInteger setting sharedInt to 1
ConsumeInteger retrieving sharedInt value 1
ProduceInteger setting sharedInt to 2
ConsumeInteger retrieving sharedInt value 2
ProduceInteger setting sharedInt to 3
ConsumeInteger retrieving sharedInt value 3
ProduceInteger setting sharedInt to 4
ConsumeInteger retrieving sharedInt value 4
ProduceInteger setting sharedInt to 5
ConsumeInteger retrieving sharedInt value 5
ProduceInteger setting sharedInt to 6
ConsumeInteger retrieving sharedInt value 6
ProduceInteger setting sharedInt to 7
ConsumeInteger retrieving sharedInt value 7
ProduceInteger setting sharedInt to 8
ConsumeInteger retrieving sharedInt value 8
ProduceInteger setting sharedInt to 9
ConsumeInteger retrieving sharedInt value 9
ProduceInteger setting sharedInt to 10
ProduceInteger finished producing values
Terminating ProduceInteger
ConsumeInteger retrieving sharedInt value 10
ConsumeInteger retrieved values totaling: 55
Terminating ConsumeInteger

Fig. 15.11Fig. 15.11Fig. 15.11Fig. 15.11 Threads modifying a shared object with synchronization.

860 Multithreading Chapter 15

15.8 Producer/Consumer Relationship: The Circular Buffer
The program of Fig. 15.8–Fig. 15.11 does access the shared data correctly, but it may not
perform optimally. Because the threads are running asynchronously, we cannot predict
their relative speeds. If the producer wants to produce faster than the consumer can con-
sume, it cannot do so. To enable the producer to continue producing, we can use a circular
buffer that has enough extra cells to handle the “extra” production. The program of
Fig. 15.13–Fig. 15.16 demonstrates a producer and a consumer accessing a circular buffer
(in this case, a shared array of five cells) with synchronization so that the consumer only
consumes a value when there are one or more values in the array, and the producer only
produces a value when there are one or more available cells in the array. This program is
implemented as a windowed application that sends its output to a JTextArea. Class
SharedCell’s constructor creates the HoldIntegerSynchronized, Produce-
Integer and ConsumeInteger objects. The HoldIntegerSynchronized ob-
ject sharedObject’s constructor receives a reference to a JTextArea object in which
the program’s output will appear.

This is the first program in which we use separate threads to modify the content dis-
played in Swing GUI components. The nature of multithreaded programming prevents
the programmer from knowing exactly when a thread will execute. Swing components
are not thread-safe—if multiple threads access a Swing GUI component, the results may
not be correct. All interactions with Swing GUI components should be performed from
one thread at a time. Normally, this thread is the event-dispatch thread (also known as
the event-handling thread). Class SwingUtilities (package javax.swing) pro-
vides static method invokeLater to help with this process. Method invoke-
Later receives a Runnable argument. We will see in the next section that Runnable
objects have a run method. In fact, class Thread implements interface Runnable, so
all Threads have a run method. The threads in this example pass objects of class
UpdateThread (Fig. 15.13) to method invokeLater. Each UpdateThread
object receives a reference to the JTextArea in which to append the output and the
message to display. Method run of class UpdateThread appends the message to the
JTextArea. When the program calls invokeLater, the GUI component update will
be queued for execution in the event-dispatch thread. The run method will then be
invoked as part of the event-dispatch thread, ensuring that the GUI component updates
in a thread-safe manner.

Common Programming Error 15.3
Interactions with Swing GUI components that change or obtain property values of the com-
ponents may have incorrect results if the interactions are performed from multiple threads. 15.3

Software Engineering Observation 15.2
Use SwingUtilities static method invokeLater to ensure that all GUI interac-
tions are performed from the event-dispatch thread. 15.2

Class ProduceInteger (Fig. 15.13) has been modified slightly from the version
presented in Fig. 15.8. The new version places its output in a JTextArea. ProduceIn-
teger receives a reference to the JTextArea when the program calls the Produce-
Integer constructor. Note the use of SwingUtilities method invokeLater in
lines 42–44 to ensure that the GUI updates properly.

Chapter 15 Multithreading 861

1 // Fig. 15.12: UpdateThread.java
2 // Class for updating JTextArea with output.
3
4 // Java extension packages
5 import javax.swing.*;
6
7 public class UpdateThread extends Thread {
8 private JTextArea outputArea;
9 private String messageToOutput;

10
11 // initialize outputArea and message
12 public UpdateThread(JTextArea output, String message)
13 {
14 outputArea = output;
15 messageToOutput = message;
16 }
17
18 // method called to update outputArea
19 public void run()
20 {
21 outputArea.append(messageToOutput);
22 }
23
24 } // end class UpdateThread

Fig. 15.12Fig. 15.12Fig. 15.12Fig. 15.12 UpdateThread used by SwingUtilities method invokeLater
to ensure GUI updates properly.

1 // Fig. 15.13: ProduceInteger.java
2 // Definition of threaded class ProduceInteger
3
4 // Java extension packages
5 import javax.swing.*;
6
7 public class ProduceInteger extends Thread {
8 private HoldIntegerSynchronized sharedObject;
9 private JTextArea outputArea;

10
11 // initialize ProduceInteger
12 public ProduceInteger(HoldIntegerSynchronized shared,
13 JTextArea output)
14 {
15 super("ProduceInteger");
16
17 sharedObject = shared;
18 outputArea = output;
19 }
20
21 // ProduceInteger thread loops 10 times and calls
22 // sharedObject's setSharedInt method each time

Fig. 15.13Fig. 15.13Fig. 15.13Fig. 15.13 Class ProduceInteger represents the producer in a producer/
consumer relationship (part 1 of 2).

862 Multithreading Chapter 15

Class ConsumeInteger (Fig. 15.14) has been modified slightly from the version
presented in Fig. 15.9. The new version places its output in a JTextArea. ConsumeIn-
teger receives a reference to the JTextArea when the program calls the ConsumeIn-
teger constructor. Note the use of SwingUtilities method invokeLater in lines
45–47 to ensure that the GUI updates properly.

23 public void run()
24 {
25 for (int count = 1; count <= 10; count++) {
26
27 // sleep for a random interval
28 // Note: Interval shortened purposely to fill buffer
29 try {
30 Thread.sleep((int) (Math.random() * 500));
31 }
32
33 // process InterruptedException during sleep
34 catch(InterruptedException exception) {
35 System.err.println(exception.toString());
36 }
37
38 sharedObject.setSharedInt(count);
39 }
40
41 // update Swing GUI component
42 SwingUtilities.invokeLater(new UpdateThread(outputArea,
43 "\n" + getName() + " finished producing values" +
44 "\nTerminating " + getName() + "\n"));
45 }
46
47 } // end class ProduceInteger

1 // Fig. 15.14: ConsumeInteger.java
2 // Definition of threaded class ConsumeInteger
3
4 // Java extension packages
5 import javax.swing.*;
6
7 public class ConsumeInteger extends Thread {
8 private HoldIntegerSynchronized sharedObject;
9 private JTextArea outputArea;

10
11 // initialize ConsumeInteger
12 public ConsumeInteger(HoldIntegerSynchronized shared,
13 JTextArea output)
14 {
15 super("ConsumeInteger");

Fig. 15.14Fig. 15.14Fig. 15.14Fig. 15.14 Class ConsumeInteger represents the consumer in a producer/
consumer relationship (part 1 of 2).

Fig. 15.13Fig. 15.13Fig. 15.13Fig. 15.13 Class ProduceInteger represents the producer in a producer/
consumer relationship (part 2 of 2).

Chapter 15 Multithreading 863

Once again, the primary changes in this example are in the definition of class Hold-
IntegerSynchronized (Fig. 15.15). The class now contains six instance variables—
sharedInt is a five-element integer array that is used as the circular buffer, write-
able indicates if a producer can write into the circular buffer, readable indicates if a
consumer can read from the circular buffer, readLocation indicates the current position
from which the consumer can read the next value, writeLocation indicates the next
location in which the producer can place a value and outputArea is the JTextArea
used by the threads in this program to display output.

16
17 sharedObject = shared;
18 outputArea = output;
19 }
20
21 // ConsumeInteger thread loops until it receives 10
22 // from sharedObject's getSharedInt method
23 public void run()
24 {
25 int value, sum = 0;
26
27 do {
28
29 // sleep for a random interval
30 try {
31 Thread.sleep((int) (Math.random() * 3000));
32 }
33
34 // process InterruptedException during sleep
35 catch(InterruptedException exception) {
36 System.err.println(exception.toString());
37 }
38
39 value = sharedObject.getSharedInt();
40 sum += value;
41
42 } while (value != 10);
43
44 // update Swing GUI component
45 SwingUtilities.invokeLater(new UpdateThread(outputArea,
46 "\n" + getName() + " retrieved values totaling: " +
47 sum + "\nTerminating " + getName() + "\n"));
48 }
49
50 } // end class ConsumeInteger

1 // Fig. 15.15: HoldIntegerSynchronized.java
2 // Definition of class HoldIntegerSynchronized that

Fig. 15.15Fig. 15.15Fig. 15.15Fig. 15.15 Class HoldIntegerSynchronized monitors access to a shared array
of integers (part 1 of 5).

Fig. 15.14Fig. 15.14Fig. 15.14Fig. 15.14 Class ConsumeInteger represents the consumer in a producer/
consumer relationship (part 2 of 2).

864 Multithreading Chapter 15

3 // uses thread synchronization to ensure that both
4 // threads access sharedInt at the proper times.
5
6 // Java core packages
7 import java.text.DecimalFormat;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class HoldIntegerSynchronized {
13
14 // array of shared locations
15 private int sharedInt[] = { -1, -1, -1, -1, -1 };
16
17 // variables to maintain buffer information
18 private boolean writeable = true;
19 private boolean readable = false;
20 private int readLocation = 0, writeLocation = 0;
21
22 // GUI component to display output
23 private JTextArea outputArea;
24
25 // initialize HoldIntegerSynchronized
26 public HoldIntegerSynchronized(JTextArea output)
27 {
28 outputArea = output;
29 }
30
31 // synchronized method allows only one thread at a time to
32 // invoke this method to set a value in a particular
33 // HoldIntegerSynchronized object
34 public synchronized void setSharedInt(int value)
35 {
36 while (!writeable) {
37
38 // thread that called this method must wait
39 try {
40
41 // update Swing GUI component
42 SwingUtilities.invokeLater(new UpdateThread(
43 outputArea, " WAITING TO PRODUCE " + value));
44
45 wait();
46 }
47
48 // process InterrupteException while thread waiting
49 catch (InterruptedException exception) {
50 System.err.println(exception.toString());
51 }
52 }
53

Fig. 15.15Fig. 15.15Fig. 15.15Fig. 15.15 Class HoldIntegerSynchronized monitors access to a shared array
of integers (part 2 of 5).

Chapter 15 Multithreading 865

54 // place value in writeLocation
55 sharedInt[writeLocation] = value;
56
57 // indicate that consumer can read a value
58 readable = true;
59
60 // update Swing GUI component
61 SwingUtilities.invokeLater(new UpdateThread(outputArea,
62 "\nProduced " + value + " into cell " +
63 writeLocation));
64
65 // update writeLocation for future write operation
66 writeLocation = (writeLocation + 1) % 5;
67
68 // update Swing GUI component
69 SwingUtilities.invokeLater(new UpdateThread(outputArea,
70 "\twrite " + writeLocation + "\tread " +
71 readLocation));
72
73 displayBuffer(outputArea, sharedInt);
74
75 // test if buffer is full
76 if (writeLocation == readLocation) {
77 writeable = false;
78
79 // update Swing GUI component
80 SwingUtilities.invokeLater(new UpdateThread(outputArea,
81 "\nBUFFER FULL"));
82 }
83
84 // tell a waiting thread to become ready
85 notify();
86
87 } // end method setSharedInt
88
89 // synchronized method allows only one thread at a time to
90 // invoke this method to get a value from a particular
91 // HoldIntegerSynchronized object
92 public synchronized int getSharedInt()
93 {
94 int value;
95
96 while (!readable) {
97
98 // thread that called this method must wait
99 try {
100
101 // update Swing GUI component
102 SwingUtilities.invokeLater(new UpdateThread(
103 outputArea, " WAITING TO CONSUME"));
104

Fig. 15.15Fig. 15.15Fig. 15.15Fig. 15.15 Class HoldIntegerSynchronized monitors access to a shared array
of integers (part 3 of 5).

866 Multithreading Chapter 15

105 wait();
106 }
107
108 // process InterrupteException while thread waiting
109 catch (InterruptedException exception) {
110 System.err.println(exception.toString());
111 }
112 }
113
114 // indicate that producer can write a value
115 writeable = true;
116
117 // obtain value at current readLocation
118 value = sharedInt[readLocation];
119
120 // update Swing GUI component
121 SwingUtilities.invokeLater(new UpdateThread(outputArea,
122 "\nConsumed " + value + " from cell " +
123 readLocation));
124
125 // update read location for future read operation
126 readLocation = (readLocation + 1) % 5;
127
128 // update Swing GUI component
129 SwingUtilities.invokeLater(new UpdateThread(outputArea,
130 "\twrite " + writeLocation + "\tread " +
131 readLocation));
132
133 displayBuffer(outputArea, sharedInt);
134
135 // test if buffer is empty
136 if (readLocation == writeLocation) {
137 readable = false;
138
139 // update Swing GUI component
140 SwingUtilities.invokeLater(new UpdateThread(
141 outputArea, "\nBUFFER EMPTY"));
142 }
143
144 // tell a waiting thread to become ready
145 notify();
146
147 return value;
148
149 } // end method getSharedInt
150
151 // diplay contents of shared buffer
152 public void displayBuffer(JTextArea outputArea,
153 int buffer[])
154 {
155 DecimalFormat formatNumber = new DecimalFormat(" #;-#");
156 StringBuffer outputBuffer = new StringBuffer();

Fig. 15.15Fig. 15.15Fig. 15.15Fig. 15.15 Class HoldIntegerSynchronized monitors access to a shared array
of integers (part 4 of 5).

Chapter 15 Multithreading 867

Method setSharedInt (lines 34–87) performs the same tasks as it did in
Fig. 15.10, with a few modifications. When execution continues at line 55 after the while
loop, setSharedInt places the produced value in the circular buffer at location
writeLocation. Next, readable is set to true (line 58), because there is at least one
value in the buffer that the client can read. Lines 61–63 use SwingUtilities method
invokeLater to append the value produced and the cell where the value was placed to
the JTextArea (method run of class UpdateThread performs the actual append oper-
ation). Then, line 66 updates writeLocation for the next call to setSharedInt. The
output continues with the current writeLocation and readLocation values and the
values in the circular buffer (lines 69–73). If the writeLocation is equal to the read-
Location, the circular buffer is currently full, so writeable is set to false (line 77)
and the program displays the string BUFFER FULL (lines 80–81). Finally, line 85 invokes
method notify to indicate that a waiting thread should move to the ready state.

Method getSharedInt (lines 92–149) also performs the same tasks in this example
as it did in Fig. 15.10, with a few minor modifications. When execution continues at line
115 after the while loop, writeable is set to true because there will be at least one
open position in the buffer in which the producer can place a value. Next, line 118 assigns
value the value at readLocation in the circular buffer. Lines 121–123 append to the
JTextArea the value consumed and the cell from which the value was read. Then, line
126 updates readLocation for the next call to method getSharedInt. Lines 129–
131 continue the output in the JTextArea with the current writeLocation and
readLocation values and the current values in the circular buffer. If the readLoca-
tion is equal to the writeLocation, the circular buffer is currently empty, so read-
able is set to false (line 137), and lines 140–141 display the string BUFFER EMPTY.
Finally, line 145 invokes method notify to place the next waiting thread into the ready
state, and line 147 returns the retrieved value to the calling method.

In this version of the program, the outputs include the current writeLocation and
readLocation values and the current contents of the buffer sharedInt. The elements
of the sharedInt array were initialized to –1 for output purposes so that you can see each
value inserted in the buffer. Notice that after the program places the fifth value in the fifth
element of the buffer, the program inserts the sixth value at the beginning of the array—
thus providing the circular buffer effect. Method displayBuffer (lines 152–166) uses

157
158 // place buffer elements in outputBuffer
159 for (int count = 0; count < buffer.length; count++)
160 outputBuffer.append(
161 " " + formatNumber.format(buffer[count]));
162
163 // update Swing GUI component
164 SwingUtilities.invokeLater(new UpdateThread(outputArea,
165 "\tbuffer: " + outputBuffer));
166 }
167
168 } // end class HoldIntegerSynchronized

Fig. 15.15Fig. 15.15Fig. 15.15Fig. 15.15 Class HoldIntegerSynchronized monitors access to a shared array
of integers (part 5 of 5).

868 Multithreading Chapter 15

a DecimalFormat object to format the contents of the array buffer. The format con-
trol string " #;-#" indicates a positive number format and a negative number format—
the formats are separated by a semicolon (;). The format specifies that positive values
should be preceded by a space and negative values should be preceded by a minus sign.

1 // Fig. 15.16: SharedCell.java
2 // Show multiple threads modifying shared object.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.text.DecimalFormat;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class SharedCell extends JFrame {
13
14 // set up GUI
15 public SharedCell()
16 {
17 super("Demonstrating Thread Synchronization");
18
19 JTextArea outputArea = new JTextArea(20, 30);
20 getContentPane().add(new JScrollPane(outputArea));
21
22 setSize(500, 500);
23 show();
24
25 // set up threads
26 HoldIntegerSynchronized sharedObject =
27 new HoldIntegerSynchronized(outputArea);
28
29 ProduceInteger producer =
30 new ProduceInteger(sharedObject, outputArea);
31
32 ConsumeInteger consumer =
33 new ConsumeInteger(sharedObject, outputArea);
34
35 // start threads
36 producer.start();
37 consumer.start();
38 }
39
40 // execute application
41 public static void main(String args[])
42 {
43 SharedCell application = new SharedCell();
44
45 application.setDefaultCloseOperation(
46 JFrame.EXIT_ON_CLOSE);
47 }

Fig. 15.16Fig. 15.16Fig. 15.16Fig. 15.16 Threads modifying a shared array of cells (part 1 of 2).

Chapter 15 Multithreading 869

15.9 Daemon Threads
A daemon thread is a thread that runs for the benefit of other threads. Unlike conventional
user threads (i.e., any non-daemon thread in a program), daemon threads do not prevent a
program from terminating. The garbage collector is a daemon thread. Nondaemon threads
are conventional user threads or threads such as the event-dispatch thread used to process
GUI events. We designate a thread as a daemon with the method call

setDaemon(true);

A false argument means that the thread is not a daemon thread. A program can include
a mixture of daemon threads and nondaemon threads. When only daemon threads remain
in a program, the program exits. If a thread is to be a daemon, it must be set as such before
its start method is called or an IllegalThreadStateException is thrown.
Method isDaemon returns true if a thread is a daemon thread and false otherwise.

Common Programming Error 15.4
Starting a thread, then attempting to make the thread a daemon thread, causes an Ille-
galThreadStateException. 15.4

48
49 } // end class SharedCell

Fig. 15.16Fig. 15.16Fig. 15.16Fig. 15.16 Threads modifying a shared array of cells (part 2 of 2).

870 Multithreading Chapter 15

Software Engineering Observation 15.3
The event-dispatch thread is an infinite loop and is not a daemon thread. As such, the event-
dispatch thread will not terminate in a windowed application until the application calls
System method exit. 15.3

Good Programming Practice 15.1
Do not assign critical tasks to a daemon thread. They are terminated without warning, which
may prevent those tasks from completing properly. 15.1

15.10 Runnable Interface
Until now, we extended class Thread to create new classes that support multithreading.
We overrode the run method to specify the tasks to be performed concurrently. However,
if we want multithreading support in a class that already extends a class other than
Thread, we must implement the Runnable interface in that class, because Java does not
allow a class to extend more than one class at a time. Class Thread itself implements the
Runnable interface (package java.lang) as expressed in the class header

public class Thread extends Object implements Runnable

Implementing the Runnable interface in a class enables a program to manipulate
objects of that class as Runnable objects. As with deriving from the Thread class, the
code that controls the thread is placed in method run.

A program that uses a Runnable object creates a Thread object and associates the
Runnable object with that Thread. Class Thread provides four constructors that can
receive references to Runnable objects as arguments. For example, the constructor

public Thread(Runnable runnableObject)

registers method run of runnableObject as the method to be invoked when the thread
begins execution. The constructor

public Thread(Runnable runnableObject, String threadName)

constructs a Thread with the name threadName and registers method run of its
runnableObject argument as the method to be invoked when the thread begins exe-
cution. As always, the thread object’s start method must be called to begin the thread’s
execution.

Figure 15.17 demonstrates an applet with a private inner class and an anonymous
inner class that each implement interface Runnable. The example also demonstrates how
to suspend a thread (i.e., temporarily prevent it from executing), how to resume a suspended
thread and how to terminate a thread that executes until a condition becomes false. Each of
these techniques is important because Thread methods suspend, resume and stop
were deprecated (i.e., they should no longer be used in Java programs) with the introduction
of the Java 2 Platform. Because these methods are deprecated, we must code our own
mechanisms for suspending, resuming and stopping threads. As we will demonstrate, these
mechanisms rely on synchronized blocks of code, loops and boolean flag variables.

Chapter 15 Multithreading 871

The applet class RandomCharacters displays three JLabels and three JCheck-
Boxes. A separate thread of execution is associated with each JLabel and button pair.
Each thread randomly displays letters from the alphabet in its corresponding JLabel
object. The applet defines the String alphabet (line 16) containing the letters from A
to Z. This string is shared among the three threads. The applet’s start method (lines 52–
65) instantiates three Thread objects (lines 59–60) and initializes each with an instance
of class RunnableObject, which implements interface Runnable. Line 63 invokes
the Thread class start method on each Thread, placing the threads in the ready state.

Class RunnableObject is defined at lines 115–185. Its run method (line 120)
defines two local variables. Line 123 uses static method currentThread of class
Thread to determine the currently executing Thread object. Line 125 calls the applet’s
utility method getIndex (defined at lines 68–76) to determine the index of the currently
executing thread in the array threads. The current thread displays a random character in
the JLabel object with the same index in array outputs.

1 // Fig. 15.17: RandomCharacters.java
2 // Demonstrating the Runnable interface.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class RandomCharacters extends JApplet
12 implements ActionListener {
13
14 // declare variables used by applet and
15 // inner class RunnableObject
16 private String alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
17 private final static int SIZE = 3;
18
19 private JLabel outputs[];
20 private JCheckBox checkboxes[];
21
22 private Thread threads[];
23 private boolean suspended[];
24
25 // set up GUI and arrays
26 public void init()
27 {
28 outputs = new JLabel[SIZE];
29 checkboxes = new JCheckBox[SIZE];
30 threads = new Thread[SIZE];
31 suspended = new boolean[SIZE];
32
33 Container container = getContentPane();
34 container.setLayout(new GridLayout(SIZE, 2, 5, 5));

Fig. 15.17Fig. 15.17Fig. 15.17Fig. 15.17 Demonstrating the Runnable interface, suspending threads and
resuming threads (part 1 of 5).

872 Multithreading Chapter 15

35
36 // create GUI components, register listeners and attach
37 // components to content pane
38 for (int count = 0; count < SIZE; count++) {
39 outputs[count] = new JLabel();
40 outputs[count].setBackground(Color.green);
41 outputs[count].setOpaque(true);
42 container.add(outputs[count]);
43
44 checkboxes[count] = new JCheckBox("Suspended");
45 checkboxes[count].addActionListener(this);
46 container.add(checkboxes[count]);
47 }
48 }
49
50 // Create and start threads. This method called after init
51 // and when user revists Web page containing this applet
52 public void start()
53 {
54 // create threads and start every time start is called
55 for (int count = 0; count < threads.length; count++) {
56
57 // create Thread and initialize it with object that
58 // implements Runnable
59 threads[count] = new Thread(new RunnableObject(),
60 "Thread " + (count + 1));
61
62 // begin executing Thread
63 threads[count].start();
64 }
65 }
66
67 // determine thread location in threads array
68 private int getIndex(Thread current)
69 {
70 for (int count = 0; count < threads.length; count++)
71
72 if (current == threads[count])
73 return count;
74
75 return -1;
76 }
77
78 // called when user switches Web pages; stops all threads
79 public synchronized void stop()
80 {
81 // Indicate that each thread should terminate. Setting
82 // these references to null causes each thread's run
83 // method to complete execution.
84 for (int count = 0; count < threads.length; count++)
85 threads[count] = null;
86

Fig. 15.17Fig. 15.17Fig. 15.17Fig. 15.17 Demonstrating the Runnable interface, suspending threads and
resuming threads (part 2 of 5).

Chapter 15 Multithreading 873

87 // make all waiting threads ready to execute, so they
88 // can terminate themselves
89 notifyAll();
90 }
91
92 // handle button events
93 public synchronized void actionPerformed(ActionEvent event)
94 {
95 for (int count = 0; count < checkboxes.length; count++) {
96
97 if (event.getSource() == checkboxes[count]) {
98 suspended[count] = !suspended[count];
99
100 // change label color on suspend/resume
101 outputs[count].setBackground(
102 !suspended[count] ? Color.green : Color.red);
103
104 // if thread resumed, make sure it starts executing
105 if (!suspended[count])
106 notifyAll();
107
108 return;
109 }
110 }
111 }
112
113 // private inner class that implements Runnable so objects
114 // of this class can control threads
115 private class RunnableObject implements Runnable {
116
117 // Place random characters in GUI. Local variables
118 // currentThread and index are declared final so
119 // they can be used in an anonymous inner class.
120 public void run()
121 {
122 // get reference to executing thread
123 final Thread currentThread = Thread.currentThread();
124
125 // determine thread's position in array
126 final int index = getIndex(currentThread);
127
128 // loop condition determines when thread should stop
129 while (threads[index] == currentThread) {
130
131 // sleep from 0 to 1 second
132 try {
133 Thread.sleep((int) (Math.random() * 1000));
134
135 // Determine whether thread should suspend
136 // execution. Use applet as monitor.
137 synchronized(RandomCharacters.this) {
138

Fig. 15.17Fig. 15.17Fig. 15.17Fig. 15.17 Demonstrating the Runnable interface, suspending threads and
resuming threads (part 3 of 5).

874 Multithreading Chapter 15

139 while (suspended[index] &&
140 threads[index] == currentThread) {
141
142 // Temporarily stop thread execution. Use
143 // applet as monitor.
144 RandomCharacters.this.wait();
145 }
146
147 } // end synchronized block
148 }
149
150 // process InterruptedExceptions during sleep or wait
151 catch (InterruptedException interruptedException) {
152 System.err.println("sleep interrupted");
153 }
154
155 // display character on corresponding label
156 SwingUtilities.invokeLater(
157
158 // anonymous inner class used by SwingUtilities
159 // method invokeLater to ensure GUI
160 // updates properly
161 new Runnable() {
162
163 // updates Swing GUI component
164 public void run()
165 {
166 // pick random character
167 char displayChar = alphabet.charAt(
168 (int) (Math.random() * 26));
169
170 outputs[index].setText(
171 currentThread.getName() + ": " +
172 displayChar);
173 }
174
175 } // end anonymous inner class
176
177); // end call to SwingUtilities.invokeLater
178
179 } // end while
180
181 System.err.println(
182 currentThread.getName() + " terminating");
183 }
184
185 } // end private inner class RunnableObject
186
187 } // end class RandomCharacters

Fig. 15.17Fig. 15.17Fig. 15.17Fig. 15.17 Demonstrating the Runnable interface, suspending threads and
resuming threads (part 4 of 5).

Chapter 15 Multithreading 875

The while loop at lines 129–179 continues to execute as long as the specified Thread
reference is equal to the reference to the currently executing thread (currentThread). In
each iteration of the loop, the thread sleeps for a random interval from 0 to 1 second.

When the user clicks the JCheckBox to the right of a particular JLabel, the corre-
sponding Thread should be suspended (temporarily prevented from executing) or
resumed (allowed to continue executing). In previous versions of Java, methods suspend
and resume of class Thread were provided to suspend and resume a thread’s execution.
These methods are now deprecated (i.e., they should no longer be used) because they intro-
duce the possibility of deadlock in a program if they are not used correctly. Suspending and
resuming of a thread can be implemented using thread synchronization and methods wait
and notify of class Object. Lines 137–147 define a synchronized block of code
(also called a synchronized statement) that helps suspend the currently executing
Thread. When the Thread reaches the synchronized block, the applet object (refer-
enced with RandomCharacters.this) is locked and the while structure tests
suspended[index] to determine if the Thread should be suspended (i.e., true). If
so, line 144 invokes method wait on the applet object to place the Thread in the waiting
state. [Note the use of RandomCharacters.this to access the applet class’s this
reference from the private inner class RunnableObject.] When the Thread should
resume, the program tells all waiting threads to become ready to execute (we will discuss
this shortly). However, only the resumed thread will get a chance to execute. The other sus-
pended thread(s) will reenter the waiting state. Lines 156–177 use SwingUtilities
method invokeLater to update the JLabel for the appropriate thread. This example
uses an anonymous inner class to implement the Runnable interface (lines 161–175) and
passes the anonymous inner class object to invokeLater. Lines 167–168 choose a
random character from the alphabet string. Lines 170–172 display the character on the
appropriate JLabel object.

Software Engineering Observation 15.4
An inner class can reference its outer class’s this reference by preceding the this refer-
ence with the outer class name and a dot operator. 15.4

If the user clicks the Suspended check box next to a particular JLabel, the program
invokes method actionPerformed (lines 93–111). The method determines which
checkbox received the event. Using the index of that checkbox in array outputs, line 98
toggles the corresponding boolean in array suspended. Lines 101–102 set the back-
ground color of the JLabel to red if the thread is being suspended and green if the thread

Fig. 15.17Fig. 15.17Fig. 15.17Fig. 15.17 Demonstrating the Runnable interface, suspending threads and
resuming threads (part 5 of 5).

876 Multithreading Chapter 15

is being resumed. If the appropriate boolean variable is false, the program calls
method notifyAll (line 106) to move all waiting threads into the ready state and prepare
them to resume execution. When each thread is dispatched to the processor to resume exe-
cution, the while condition at lines 139–140 in the run method fails for the resumed
thread and the loop terminates. Execution of the run method then continues from line 156.
For any other threads that became ready, but still are suspended, the condition at lines 139–
140 remains true and the threads reenter the waiting state.

The applet’s stop method (lines 79–90) is provided to stop all three threads if the user
leaves the Web page on which this applet resides (you can simulate this by selecting Stop
from the appletviewer’s Applet menu). The for loop at lines 84–85 sets each
Thread reference in array threads to null. Line 89 invokes Object method noti-
fyAll to ensure that all waiting threads get ready to execute. When the program encoun-
ters the while loop condition at line 129 for each thread, the condition fails and the run
method terminates. Thus, each thread dies. If the user returns to the Web page, the applet
container calls the applet’s start method to instantiate and start three new threads.

Performance Tip 15.5
Stopping applet threads when leaving a Web page is a polite programming practice because
it prevents your applet from using processor time (which can reduce performance) on the
browser’s machine when the applet is not being viewed. The threads can be restarted from
the applet’s start method, which is invoked by the browser when the Web page is revisited
by the user. 15.5

15.11 Thread Groups
Sometimes it is useful to identify various threads as belonging to a thread group; class
ThreadGroup contains methods for creating and manipulating thread groups. At con-
structor time, the group is given a unique name via a String argument.

The threads in a thread group can be manipulated as a group. It may, for example, be
desirable to interrupt all the threads in a group. A thread group can be the parent
thread group to a child thread group. Method calls sent to a parent thread group are also
sent to all the threads in that parent’s child thread groups.

Class ThreadGroup provides two constructors. The constructor

public ThreadGroup(String stringName)

constructs a ThreadGroup with name stringName. The constructor

public ThreadGroup(ThreadGroup parentThreadGroup,
 String stringName)

constructs a child ThreadGroup of parentThreadGroup called stringName.
Class Thread provides three constructors that enable the programmer to instantiate a

Thread and associate it with a ThreadGroup. The constructor

public Thread(ThreadGroup threadGroup, String stringName)

constructs a Thread that belongs to threadGroup and has the name stringName.
This constructor is normally invoked for derived classes of Thread whose objects should
be associated with a ThreadGroup.

Chapter 15 Multithreading 877

The constructor

public Thread(ThreadGroup threadGroup,
 Runnable runnableObject)

constructs a Thread that belongs to threadGroup and that invokes the run method of
runnableObject when the thread is assigned a processor to begin execution.

The constructor

public Thread(ThreadGroup threadGroup,
 Runnable runnableObject, String stringName)

constructs a Thread that belongs to threadGroup and that invokes the run method of
runnableObject when the thread is assigned a processor to begin execution. The name
of this Thread is indicated by stringName.

Class ThreadGroup contains many methods for processing groups of threads. Some
of these methods are summarized here. For more information on these methods, see the
Java API documentation.

1. Method activeCount reports the number of active threads in a thread group
plus the number of active threads in all its child thread groups.

2. Method enumerate has four versions. Two versions copy into an array of
Thread references the active threads in the ThreadGroup (one of these also
allows you to recursively get copies of all the active threads in child Thread-
Group). Two versions copy into an array of ThreadGroup references the ac-
tive child thread groups in the ThreadGroup (one of these also allows you to
recursively get copies of all the active thread groups in all the child Thread-
Groups).

3. Method getMaxPriority returns the maximum priority of a ThreadGroup.
Method setMaxPriority sets a new maximum priority for a ThreadGroup.

4. Method getName returns as a String the ThreadGroup’s name.

5. Method getParent determines the parent of a thread group.

6. Method parentOf returns true if the ThreadGroup to which the message is
sent is the parent of, or the same as, the ThreadGroup supplied as an argument
and returns false otherwise.

Testing and Debugging Tip 15.5
 Method list lists the ThreadGroup. This can help in debugging. 15.5

15.12 (Optional Case Study) Thinking About Objects:
Multithreading
Real-world objects perform their operations independently of one another and concurrently
(in parallel). As you learned in this chapter, Java is a multithreaded programming language
that facilitates the implementation of concurrent activities. The UML also contains support
for designing concurrent models, as we will see shortly. In this section, we discuss how our
simulation benefits from multithreading.

878 Multithreading Chapter 15

In “Thinking About Objects” Section 10.22, we encountered a problem with the col-
laboration diagram of Fig. 10.26—the waitingPassenger (the Person waiting to
ride the Elevator) always enters the Elevator before the ridingPassenger (the
Person riding the Elevator) exits. Proper use of multithreading in Java avoids this
problem by guaranteeing that the waitingPassenger must wait for the ridingPas-
senger to exit the Elevator—as would happen in real life. In our collaboration dia-
grams, objects pass messages to other objects by calling methods of those other objects—
a sending object may proceed only after a method returns. Java refers to such a message
pass as a synchronous call. However, the synchronous call is not synchronized, because
several objects may access the method at the same time—the synchronous call cannot guar-
antee exclusivity to one object. This poses a problem when we model our elevator simula-
tion, because according to Fig. 10.26, the waitingPassenger and the
ridingPassenger may occupy the Elevator at the same time, which violates the
“capacity-of-one” requirement specified in the problem statement. In this section, we use a
synchronized method to guarantee that only one Person may occupy the Elevator
at a time.

Threads, Active Classes and Synchronized Methods
Java uses threads—flows of program control independent of other flows—to represent in-
dependent, concurrent activities. The UML provides the notion of an active class to repre-
sent a thread. Classes Elevator and Person are active classes (threads), because their
objects must be able to operate concurrently and independently of one another and of other
objects in the system. For example, the Elevator must be able to move between Floors
while a Person is walking on a Floor. Figure 15.8 updates the collaboration diagram of
Fig. 10.26 to support active classes, which are denoted by a thick black border in the dia-
gram. To ensure that Persons enter and exit the Elevator in the proper order, we re-
quire a specific order in which to send messages—the Elevator must send message
3.3.1 (ridingPassenger exits) before sending message 3.2.1.1 (waiting-
Passenger enters the Elevator). The UML provides a notation to allow synchroniza-
tion in collaboration diagrams—if we have two messages A and B, the notation B/A
indicates that message A must wait for B to complete before message A occurs. For exam-
ple, the 3.3.1/3.2.1.1 notation before the enterElevator message indicates that
waitingPassenger must wait for ridingPassenger to exit the Elevator (mes-
sage 3.3.1) before entering (message 3.2.1.1).

Software Engineering Observation 15.5
Messages in collaboration diagrams must complete in order (e.g., message 3.1 must com-
plete before issuing message 3.2). However, messages between active classes may specify
different ordering as necessary to guarantee synchronization between certain messages. 15.5

A Person must synchronize with the Elevator when traveling to guarantee that
only one Person occupies the Elevator at a time. In Fig. 15.8, we include the ride
message (3.2.1.2) to represent the Person riding the Elevator to the other Floor.
The {concurrent} keyword placed after the ride message indicates that method ride is
synchronized when we implement our design in Java. The Elevator contains
method ride for the Person to allow the synchronization.

Chapter 15 Multithreading 879

public synchronized void ride()
{

try {
 Thread.sleep(maxTravelTime);
 }

catch (InterruptedException interruptedException) {
 // method doorOpened in Person interrupts method sleep;
 // Person has finished riding Elevator
 }
}

Fig. 15.8Fig. 15.8Fig. 15.8Fig. 15.8 Modified collaboration diagram with active classes for passengers
entering and exiting the Elevator.

firstFloorLight : Light

elevatorDoor : Door

: ElevatorShaft

: Elevator

: Bell

firstFloorButton : Button

elevatorButton : Button

waitingPassenger : Person

firstFloorDoor : Door

ridingPassenger : Person

3.2.1 : doorOpened()

4.2.1 : turnOnLight()4.1.1 : resetButton()

3.3.1 : exitElevator()

4 : elevatorArrived()

3 : elevator
 Arrived()

3.2 : openDoor()

3.3 : doorOpened()

3.1 : openDoor()

1 : elevatorArrived()

1.1 : resetButton()

2.1 : ringBell()

2 : elevator
 Arrived()

4.1 : elevatorArrived() 4.2 : elevatorArrived()

<<parameter>>
(DoorEvent)

<<parameter>>
(ElevatorMoveEvent)

<<parameter>>
(Location)

3.2.1.2 : ride()
{concurrent}

3.3.1 / 3.2.1.1 : enterElevator()

880 Multithreading Chapter 15

Method ride guarantees that only one Person may ride the Elevator at a time—
as described in Section 15.5, only one synchronized method may be active on an object
at once, so all other Person threads attempting to invoke ride must wait for the current
thread to exit method ride.

Method ride invokes static method sleep of class Thread to put the Person
thread into the sleep state, which represents the Person waiting for the ride to complete.
We must specify the maximum amount of time that a Person will wait for the Elevator
to complete traveling—however, there is no such information specified in the problem state-
ment. We introduce a new attribute that represents this time—maxTravelTime, to which
we arbitrarily assign a value of 10 minutes (i.e., a Person will wait 10 minutes for the
travel to complete). Attribute maxTravelTime is a safeguard in case the Elevator—
for whatever reason—never reaches the other Floor. The Person should never have to
wait this long—if the Person waits 10 minutes, then the Elevator is broken, and we
assume that our Person crawls out of the Elevator and exits the simulation.

Software Engineering Observation 15.6
In a software-development process, the analysis phase yields a requirements document (e.g.,
our problem statement). As we continue the design and implementation phase, we discover
additional issues that were not apparent to us at the analysis phase. As designers, we must
anticipate these issues and deal with them accordingly. 15.6

Software Engineering Observation 15.7
One false assumption to make is that the system requirements remain stable (i.e., they pro-
vide all information necessary to build the system) throughout the analysis and design
phases. In large systems that have long implementation phases, requirements can, and often
do, change to accommodate those issues that were not apparent during analysis. 15.7

If our Elevator works correctly, the Elevator travels for five seconds—specifi-
cally, invoking method sleep halts the Elevator’s thread for five seconds to simulate
the travel. When the Elevator thread awakens, it sends elevatorArrived events as
described in Section 10.22. The elevatorDoor receives this event and invokes method
doorOpened (message 3.3) of the ridingPassenger, as in:

public void doorOpened(DoorEvent doorEvent)
{

// set Person on Floor where Door opened
 setLocation(doorEvent.getLocation());

 // interrupt Person's sleep method in run method and
 // Elevator's ride method
 interrupt();
}

Method doorOpened sets the ridingPassenger’s Location to the Floor at
which the Elevator arrived, then calls the ridingPassenger thread’s interrupt
method. The interrupt method terminates the sleep method invoked in method
ride, method ride terminates, and the ridingPassenger leaves the Elevator,
then exits the simulation. When the ridingPassenger exits the Elevator, the
ridingPassenger releases the monitor on the Elevator object, which allows the
waitingPassenger to invoke the ride method and obtain the monitor. Now, the
waitingPassenger may invoke method ride to ride the Elevator.

Chapter 15 Multithreading 881

The ridingPassenger does not need to send the exitElevator message (mes-
sage 3.3.1) to the Elevator, because the waitingPassenger cannot invoke ride
until the ridingPassenger releases the Elevator’s monitor—the ridingPas-
senger releases the monitor when the ridingPassenger thread exits method ride
after calling its interrupt method. Therefore, the Person thread’s interrupt
method is equivalent to the exitElevator method (except that the Person sends itself
the interrupt message), and we can substitute method interrupt for method
exitElevator. Also, we can combine methods ride and enterElevator to handle
both entering and riding the Elevator—our system needs only method ride, which
allows a Person to obtain a monitor on the Elevator. As we implement our model in
Appendix H, we use our collaboration diagram to help generate code in Java—however,
we will make subtle “Java-specific” adjustments to our code to guarantee that the Persons
enter and exit the Elevator correctly.

Sequence Diagrams
We now present the other type of interaction diagram, called a sequence diagram. Like
the collaboration diagram, the sequence diagram shows interactions among objects; how-
ever, the sequence diagram emphasizes how messages are sent between objects over
time. Both diagrams model interactions in a system. Collaboration diagrams emphasize
what objects interact in a system, and sequence diagrams emphasize when these interac-
tions occur.

Figure 15.9 is the sequence diagram for a Person changing floors. A rectangle
enclosing the name of an object represents that object. We write object names in sequence
diagrams using the same convention we have been using with collaboration diagrams. The
dotted line extending down from an object’s rectangle is that object’s lifeline, which repre-
sents the progression of time. Actions occur along an object’s lifeline in chronological
order from top to bottom—an action near the top of a lifeline happens before an action near
the bottom. We provide several notes in this diagram to clarify where the Person exists
in the simulation. Note that the diagram includes several dashed arrows. These arrows rep-
resent “return messages,” or the return of control to the sending object. Every message ulti-
mately yields a return message. Showing return messages is not mandatory in a sequence
diagram—we show return messages for clarity.

Message passing in sequence diagrams is similar to that in collaboration diagrams. An
arrow extending from the object sending the message to the object receiving the message
represents a message between two objects. The arrowhead points to the rectangle on the
receiving object’s lifeline. As previously mentioned, when an object returns control, a
return message—represented as a dashed line with an arrowhead—extends from the object
returning control to the object that initially sent the message.

The sequence in Fig. 15.9 begins when a Person presses a Button on a Floor by
sending message pressButton to that Button. The Button then requests the Ele-
vator by sending message requestElevator to the Elevator.

The Person must wait for the Elevator to process this message before continuing.
However, the Person does not need to wait for the Elevator’s arrival before pro-
ceeding with other actions. In our simulation, we force the Person to wait, but we could
have had the Person perform other actions, such as read a newspaper, sway back and forth
or place a call on a cell phone as the Elevator travels to the Floor of the Person.

882 Multithreading Chapter 15

Note the split in flow for the Elevator after being requested; the flow of execution
depends on which Floor generated the request. If the Elevator is on a different Floor

Fig. 15.9Fig. 15.9Fig. 15.9Fig. 15.9 Sequence diagram for a single Person changing floors in system.

pressButton()

doorOpened()

ride() {concurrent}

requestElevator()

elevatorArrived()

pressButton()

elevatorArrived()

openDoor()

closeDoor()

closeDoor()

openDoor()

setMoving(true)

doorOpened()

[Elevator
on same
Floor of
request]

person : Person

floorButton : Button

elevatorButton : Button

elevator: Elevator

floorDoor : Door

elevatorDoor : Door

person exits
elevator

person enters
elevator

person waits
for elevator

interrupt()

person rides
elevator

[Elevator on
opposite
Floor of
request]

buttonPressed()

elevator travels
5 seconds

setMoving(false)

elevator travels
to other floor

terminate
method ride

Chapter 15 Multithreading 883

than the request, the Elevator must move to the Floor on which the Person is
waiting. To save space, the note informing that the Elevator moves to the other Floor
represents this sequence (We will construct this sequence momentarily when we discuss
how the Person rides the Elevator to the other Floor.) When the Elevator travels
to the other Floor, the branched sequence merges with the original sequence in the Ele-
vator’s lifeline, and the elevatorDoor sends an elevatorArrived message to
the elevatorDoor upon arrival.

If the Elevator is on the same Floor as the request, the elevatorDoor imme-
diately sends an elevatorArrived message to the elevatorDoor upon arrival. The
elevatorDoor receives the arrival message and opens the Door on the arrival Floor.
This door sends a doorOpened message to the Person—that Person then enters the
Elevator.

The Person then presses the elevatorButton, which sends a button-
Pressed event to the Elevator. The Elevator gets ready to leave by calling its
private method setMoving, which changes the Elevator’s boolean attribute
moving to true. The Elevator then closes the elevatorDoor, which closes the
Door on that Floor. The Person then rides the Elevator by invoking the Ele-
vator’s synchronized method ride. As in the collaboration diagram, the {concur-
rent} keyword placed after method ride indicates the method is synchronized, when
implemented in Java.

The remainder of the diagram shows the sequence after the Elevator’s arrival at
the destination Floor (also described in Fig. 15.9). Upon arrival, the Elevator stops
moving by calling private method setMoving, which sets attribute moving to
false. The Elevator then sends an elevatorArrived message to the Eleva-
torDoor, which opens the Door on that Floor and sends the Person a doorO-
pened message. Method doorOpened wakes the sleeping Person’s thread by
invoking method interrupt, causing method ride to terminate and return the
Person’s thread to the “ready” state. The Person exits the simulation shortly after-
wards. Note the large “X” at the bottom of the Person’s lifeline. In a sequence diagram,
this “X” indicates that the associated object destroys itself (in Java, the Person object
is marked for garbage collection).

Our Final Class Diagram
The integration of multithreading in our elevator model concludes the design of the mod-
el. We implement this model in Appendix H. Figure 15.10 presents the complete class
diagram we use when implementing the model. Note that the major difference between
the class diagrams of Fig. 15.10 and Fig. 10.31 is the presence of active classes in
Fig. 15.10. We have established that classes Elevator and Person are active classes.
However, the problem statement mentioned that “if a person neither enters nor requests
the elevator, the elevator closes its door.” Having discussed multithreading, we believe
that a better requirement would be for the Doors to close automatically (using a thread)
if they have been open for more than a brief period (e.g., three seconds). In addition, al-
though not mentioned in the problem statement, the Lights should turn off automatical-
ly—currently, the Lights turn off only when the Elevator departs from a Floor.
We mark the Doors and Lights as active classes to handle this change. We implement
this change in Appendix H.

884 Multithreading Chapter 15

Figure 15.11 presents the attributes and operations for all classes in Fig. 15.10. We use
both diagrams to implement the model. We have omitted method enterElevator and
exitElevator from class Elevator, because as discussed in the interaction dia-
grams, method ride appears to handle the Person’s entering, riding and exiting the
Elevator. In addition, we have replaced method departElevator with private
method setMoving, because according to Fig. 15.9, method setMoving provides the
service that allows the Elevator to depart from a Floor. We also include private
attribute maxTravelTime, which represents the maximum time the Person will wait

Fig. 15.10Fig. 15.10Fig. 15.10Fig. 15.10 Final class diagram of the elevator simulation

Light ElevatorModel Floor

ElevatorShaft

Bell

Person

Elevator

Creates

Presses

2

2 2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1
1

1

0..*

1
1

1

1

2

Signals to
move

ResetsOpens /
Closes

Occupies

Signals
arrival

Turns
on/off

Rings

Door Button

Location

Signals
arrival

Signals
arrival

Signals
arrival

Signals
arrival

Signals
arrival

Informs of
opening

1

1

1

1

1

1

1

1

1 1

Chapter 15 Multithreading 885

to ride the Elevator, to class Person. We assign maxTravelTime a value of 10
minutes (10 * 60 seconds). We will use these class diagrams to implement our Java code
in Appendix H, but we will continue making subtle “Java-specific” adjustments to code. In
the appendices, for each class, we create methods that access object references and imple-
ment interface methods.

In “Thinking About Objects” Section 22.9, we design the view—the display of our
model. When we implement this display in Appendix I, we will have a fully functional
3,594-line elevator simulation.

Fig. 15.11Fig. 15.11Fig. 15.11Fig. 15.11 Final class diagram with attributes and operations.

Person

- ID : Integer
- moving : Boolean = true
- location : Location
- maxTravelTime : Integer = 10 * 60

+ doorOpened() : void

ElevatorShaft

Bell

ElevatorModel

- numberOfPeople : Integer = 0

+ ringBell() : void

Light

- lightOn : Boolean = false

+ turnOnLight() : void
+ turnOffLight() : void

+ addPerson() : void

Button

- pressed : Boolean = false

+ resetButton() : void
+ pressButton() : void

Door

- open : Boolean = false

+ openDoor() : void
+ closeDoor() : void

Floor

+ getButton() : Button
+ getDoor() : Door

Elevator

- moving : Boolean = false
- summoned : Boolean = false
- currentFloor : Location
- destinationFloor : Location
- travelTime : Integer = 5
+ ride() : void
+ requestElevator() : void
– setMoving(Boolean) : void
+ getButton() : Button
+ getDoor() : Door

Location

- locationName : String
setLocationName(String) : void
+ getLocationName() : String
+ getButton() : Button
+ getDoor() : Door

886 Multithreading Chapter 15

15.13 (Optional) Discovering Design Patterns: Concurrent
Design Patterns
Many additional design patterns have been created since the publication of the gang-of-four
book, which introduced patterns involving object-oriented systems. Some of these new pat-
terns involve specific object-oriented systems, such as concurrent, distributed or parallel
systems. In this section, we discuss concurrency patterns to conclude our discussion of mul-
tithreaded programming.

Concurrency Design Patterns
Multithreaded programming languages such as Java allow designers to specify concurrent
activities—that is, those that operate in parallel with one another. Designing concurrent
systems improperly can introduce concurrency problems. For example, two objects at-
tempting to alter shared data at the same time could corrupt that data. In addition, if two
objects wait for one another to finish tasks, and if neither can complete their task, these ob-
jects could potentially wait forever—a situation called deadlock. Using Java, Doug Lea1

and Mark Grand2 created concurrency patterns for multithreaded design architectures to
prevent various problems associated with multithreading. We provide a partial list of these
design patterns:

• The Single-Threaded Execution design pattern (Grand, 98) prevents several
threads from invoking the same method of another object concurrently. In Java,
the synchronized keyword (discussed in Chapter 15) can be used to apply this
pattern.

• The Guarded Suspension design pattern (Lea, 97) suspends a thread’s activity and
resumes that thread’s activity when some condition is satisfied. Lines 137–147
and lines 95–109 of class RandomCharacters (Fig. 15.17) use this design pat-
tern—methods wait and notify suspend and resume, respectively, the pro-
gram threads, and line 98 toggles the variable that the condition evaluates.

• The Balking design pattern (Lea, 97) ensures that a method will balk—that is, re-
turn without performing any actions—if an object occupies a state that cannot ex-
ecute that method. A variation of this pattern is that the method throws an
exception describing why that method is unable to execute—for example, a meth-
od throwing an exception when accessing a data structure that does not exist.

• The Read/Write Lock design pattern (Lea, 97) allows multiple threads to obtain
concurrent read access on an object but prevents multiple threads from obtaining
concurrent write access on that object. Only one thread at a time may obtain write
access on an object—when that thread obtains write access, the object is locked to
all other threads.

• The Two-Phase Termination design pattern (Grand, 98) uses a two-phase termi-
nation process for a thread to ensure that a thread frees resources—such as other
spawned threads—in memory (phase one) before termination (phase two). In

1. D. Lea, Concurrent Programing in Java, Second Edition: Design Principles and Patterns. Massa-
chusetts: Addison-Wesley. November 1999.

2. M. Grand, Patterns in Java; A Catalog of Reusable Design Patterns Illustrated with UML. New
York: John Wiley and Sons, 1998.

Chapter 15 Multithreading 887

Java, a Thread object can use this pattern in method run. For instance, method
run can contain an infinite loop that is terminated by some state change—upon
termination, method run can invoke a private method responsible for stop-
ping any other spawned threads (phase one). The thread then terminates after
method run terminates (phase two).

In “Discovering Design Patterns” Section 17.10, we return to the gang-of-four design
patterns. Using the material introduced in Chapters 16 and 17, we identify those classes in
package java.io and java.net that use design patterns.

SUMMARY
• Computers perform operations concurrently, such as compiling a program, printing a file and re-

ceiving e-mail messages over a network.

• Programming languages generally provide only a simple set of control structures that enable pro-
grammers to perform one action at a time, then proceed to the next action after the previous one is
finished.

• The concurrency that computers perform today is normally implemented as operating system
“primitives” available only to highly experienced “systems programmers.”

• Java makes concurrency primitives available to the programmer.

• Applications contain threads of execution, each thread designating a portion of a program that may
execute concurrently with other threads. This capability is called multithreading.

• Java provides a low-priority garbage collector thread that reclaims dynamically allocated memory
that is no longer needed. The garbage collector runs when processor time is available and there are
no higher priority runnable threads. The garbage collector runs immediately when the system is
out of memory to try to reclaim memory.

• Method run contains the code that controls a thread’s execution.

• A program launches a thread’s execution by calling the thread’s start method, which, in turn,
calls method run.

• Method interrupt is called to interrupt a thread.

• Method isAlive returns true if start has been called for a given thread and the thread is not
dead (i.e., the run method has not completed execution).

• Method setName sets the name of the Thread. Method getName returns the name of the
Thread. Method toString returns a String consisting of the name of the thread, the priority
of the thread and the thread’s group.

• Thread static method currentThread returns a reference to the executing Thread.

• Method join waits for the Thread on which join is called to die before the current Thread
can proceed.

• Waiting can be dangerous; it can lead to two serious problems called deadlock and indefinite post-
ponement. Indefinite postponement is also called starvation.

• A thread that was just created is in the born state. The thread remains in this state until the thread’s
start method is called; this causes the thread to enter the ready state.

• A highest priority-ready thread enters the running state when the system assigns a processor to the
thread.

• A thread enters the dead state when its run method completes or terminates for any reason. The
system eventually will dispose of a dead thread.

888 Multithreading Chapter 15

• A running thread enters the blocked state when the thread issues an input/output request. A
blocked thread becomes ready when the I/O it is waiting for completes. A blocked thread cannot
use a processor even if one is available.

• When a running method calls wait, the thread enters a waiting state for the particular object in
which the thread was running. A thread in the waiting state for a particular object becomes ready
on a call to notify issued by another thread associated with that object.

• Every thread in the waiting state for a given object becomes ready on a call to notifyAll by
another thread associated with that object.

• Every Java thread has a priority in the range Thread.MIN_PRIORITY (a constant of 1) and
Thread.MAX_PRIORITY (a constant of 10). By default, each thread is given priority
Thread.NORM_PRIORITY (a constant of 5).

• Some Java platforms support a concept called timeslicing and some do not. Without timeslicing,
threads of equal priority run to completion before their peers get a chance to execute. With
timeslicing, each thread receives a brief burst of processor time called a quantum during which
that thread can execute. At the completion of the quantum, even if that thread has not finished
executing, the processor is taken away from that thread and given to the next thread of equal pri-
ority, if one is available.

• The job of the Java scheduler is to keep a highest priority thread running at all times and, if
timeslicing is available, to ensure that several equally high-priority threads each execute for a
quantum in round-robin fashion.

• A thread’s priority can be adjusted with the setPriority method. Method getPriority
returns the thread’s priority.

• A thread can call the yield method to give other threads a chance to execute.

• Every object that has synchronized methods has a monitor. The monitor lets only one thread
at a time execute a synchronized method on the object.

• A thread executing in a synchronized method may determine that it cannot proceed, so the
thread voluntarily calls wait. This removes the thread from contention for the processor and
from contention for the object.

• A thread that has called wait is awakened by a thread that calls notify. The notify acts as
a signal to the waiting thread that the condition the waiting thread has been waiting for is now (or
could be) satisfied, so it is acceptable for that thread to reenter the monitor.

• A daemon thread serves other threads. When only daemon threads remain in a program, Java will
exit. If a thread is to be a daemon, it must be set as such before its start method is called.

• To support multithreading in a class derived from some class other than Thread, implement the
Runnable interface in that class.

• Implementing the Runnable interface gives us the ability to treat the new class as a Runnable
object (just like inheriting from a class allows us to treat our subclass as an object of its super-
class). As with deriving from the Thread class, the code that controls the thread is placed in the
run method.

• A thread with a Runnable class is created by passing to the Thread class constructor a refer-
ence to an object of the class that implements the Runnable interface. The Thread constructor
registers the run method of the Runnable object as the method to be invoked when the thread
begins execution.

• Class ThreadGroup contains the methods for creating and manipulating groups of related
threads in a program.

Chapter 15 Multithreading 889

TERMINOLOGY
asynchronous threads new (state of a thread)
blocked (state of a thread) nonpreemptive scheduling
blocked on I/O NORM_PRIORITY(5)
busy wait notify method
child thread group notifyAll method
circular buffer parallelism
concurrent execution of threads parent thread
condition variable parent thread group
consumer preemptive scheduling
consumer thread priority of a thread
context producer thread
currentThread method producer/consumer relationship
daemon thread programmer-defined thread
dead (state of a thread) quantum
deadlock round-robin scheduling
destroy method run method
dumpStack method Runnable interface (in java.lang package)
Error class ThreadDeath runnable state (of a thread)
execution context running (thread state)
fixed-priority scheduling scheduler
garbage collection by a low-priority thread scheduling a thread
getName method setDaemon method
getParent method of ThreadGroup class setName method
highest priority runnable thread setPriority method
I/O completion shared objects
IllegalArgumentException single-threaded language
IllegalMonitorStateException single-threaded program
IllegalThreadStateException sleep method of Thread class
indefinite postponement sleeping state (of a thread)
inherit thread priority start method
interrupt method starvation
interrupted method synchronization
InterruptedException synchronized method
InterruptedException class thread
interthread communication Thread class (in java.lang package)
isAlive method thread group
isDaemon method thread priority
isInterrupted method thread safe
join method thread states
kill a thread thread synchronization
MAX_PRIORITY(10) Thread.MAX_PRIORITY
memory leak Thread.MIN_PRIORITY
MIN_PRIORITY(1) Thread.NORM_PRIORITY
monitor Thread.sleep()
multiple inheritance ThreadDeath exception
multiprocessing ThreadGroup class
multithreaded program timeslicing
multithreaded server wait method
multithreading yield method

890 Multithreading Chapter 15

SELF-REVIEW EXERCISES
15.1 Fill in the blanks in each of the following statements:

a) C and C++ are -threaded languages whereas Java is a -threaded
language.

b) Java provides a thread that reclaims dynamically allocated memory.
c) Java eliminates most errors that occur commonly in languages like C and

C++ when dynamically allocated memory is not explicitly reclaimed by the program.
d) Three reasons a thread that is alive could be not runnable (i.e., blocked) are ,

 and .
e) A thread enters the dead state when .
f) A thread’s priority can be changed with the method.
g) A thread may give up the processor to a thread of the same priority by calling the

method.
h) To wait for a designated number of milliseconds and resume execution, a thread should

call the method.
i) The method moves a thread in the object’s waiting state to the ready state.

15.2 State whether each of the following is true or false. If false, explain why.
a) A thread is not runnable if it is dead.
b) In Java, a higher priority runnable thread will preempt threads of lower priority.
c) The Windows and Windows NT Java systems use timeslicing. Therefore, they can enable

threads to preempt threads of the same priority.
d) Threads may yield to threads of lower priority.

ANSWERS TO SELF-REVIEW EXERCISES
15.1 a) single, multi. b) garbage collector. c) memory leak. d) waiting, sleeping, blocked for in-
put/output. e) its run method terminates. f) setPriority. g) yield. h) sleep. i) notify.

15.2 a) True. b) True. c) False. Timeslicing allows a thread to execute until its timeslice (or
quantum) expires. Then other threads of equal priority can execute. d) False. Threads can only yield
to threads of equal priority.

EXERCISES
15.3 State whether each of the following is true or false. If false, explain why.

a) The sleep method does not consume processor time while a thread sleeps.
b) Declaring a method synchronized guarantees that deadlock cannot occur.
c) Java provides a powerful capability called multiple inheritance.
d) Thread methods suspend and resume are deprecated.

15.4 Define each of the following terms.
a) thread
b) multithreading
c) ready state
d) blocked state
e) preemptive scheduling
f) Runnable interface
g) monitor
h) notify method
i) producer/consumer relationship

15.5 a) List each of the reasons stated in this chapter for using multithreading.
b) List additional reasons for using multithreading.

Chapter 15 Multithreading 891

15.6 List each of the three reasons given in the text for entering the blocked state. For each of
these, describe how the program will normally leave the blocked state and enter the runnable state.

15.7 Distinguish between preemptive scheduling and nonpreemptive scheduling. Which does
Java use?

15.8 What is timeslicing? Give a fundamental difference in how scheduling is performed on Java
systems that support timeslicing vs. scheduling on Java systems that do not support timeslicing.

15.9 Why would a thread ever want to call yield?

15.10 What aspects of developing Java applets for the World Wide Web encourage applet designers
to use yield and sleep abundantly?

15.11 If you choose to write your own start method, what must you be sure to do to ensure that
your threads start up properly?

15.12 Distinguish among each of the following means of pausing threads:
a) busy wait
b) sleep
c) blocking I/O

15.13 Write a Java statement that tests if a thread is alive.

15.14 a) What is multiple inheritance?
b) Explain why Java does not offer multiple inheritance.
c) What feature does Java offer instead of multiple inheritance?
d) Explain the typical use of this feature.
e) How does this feature differ from abstract classes?

15.15 Distinguish between the notions of extends and implements.

15.16 Discuss each of the following terms in the context of monitors:
a) monitor
b) producer
c) consumer
d) wait
e) notify
f) InterruptedException
g) synchronized

15.17 (Tortoise and the Hare) In the Chapter 7 exercises, you were asked to simulate the legendary
race of the tortoise and the hare. Implement a new version of that simulation, this time placing each
of the animals in a separate thread. At the start of the race call the start methods for each of the
threads. Use wait, notify and notifyAll to synchronize the animals’ activities.

15.18 (Multithreaded, Networked, Collaborative Applications) In Chapter 17, we cover networking
in Java. A multithreaded Java application can communicate concurrently with several host computers.
This creates the possibility of being able to build some interesting kinds of collaborative applications.
In anticipation of studying networking in Chapter 17, develop proposals for several possible multi-
threaded networked applications. After studying Chapter 17, implement some of those applications.

15.19 Write a Java program to demonstrate that as a high-priority thread executes, it will delay the
execution of all lower priority threads.

15.20 If your system supports timeslicing, write a Java program that demonstrates timeslicing
among several equal-priority threads. Show that a lower priority thread’s execution is deferred by the
timeslicing of the higher-priority threads.

15.21 Write a Java program that demonstrates a high priority thread using sleep to give lower pri-
ority threads a chance to run.

892 Multithreading Chapter 15

15.22 If your system does not support timeslicing, write a Java program that demonstrates two
threads using yield to enable one another to execute.

15.23 Two problems that can occur in systems like Java, that allow threads to wait, are deadlock,
in which one or more threads will wait forever for an event that cannot occur, and indefinite postpone-
ment, in which one or more threads will be delayed for some unpredictably long time. Give an exam-
ple of how each of these problems can occur in a multithreaded Java program.

15.24 (Readers and Writers) This exercise asks you to develop a Java monitor to solve a famous
problem in concurrency control. This problem was first discussed and solved by P. J. Courtois, F.
Heymans and D. L. Parnas in their research paper, “Concurrent Control with Readers and Writers,”
Communications of the ACM, Vol. 14, No. 10, October 1971, pp. 667–668. The interested student
might also want to read C. A. R. Hoare’s seminal research paper on monitors, “Monitors: An Oper-
ating System Structuring Concept,” Communications of the ACM, Vol. 17, No. 10, October 1974, pp.
549–557. Corrigendum, Communications of the ACM, Vol. 18, No. 2, February 1975, p. 95. [The
readers and writers problem is discussed at length in Chapter 5 of the author’s book: Deitel, H. M.,
Operating Systems, Reading, MA: Addison-Wesley, 1990.]

a) With multithreading, many threads can access shared data; as we have seen, access to
shared data needs to be synchronized carefully to avoid corrupting the data.

b) Consider an airline-reservation system in which many clients are attempting to book
seats on particular flights between particular cities. All of the information about flights
and seats is stored in a common database in memory. The database consists of many en-
tries, each representing a seat on a particular flight for a particular day between particular
cities. In a typical airline-reservation scenario, the client will probe around in the data-
base looking for the “optimal” flight to meet that client’s needs. So a client may probe
the database many times before deciding to book a particular flight. A seat that was avail-
able during this probing phase could easily be booked by someone else before the client
has a chance to book it. In that case, when the client attempts to make the reservation, the
client will discover that the data has changed and the flight is no longer available.

c) The client probing around the database is called a reader. The client attempting to book
the flight is called a writer. Clearly, any number of readers can be probing shared data at
once, but each writer needs exclusive access to the shared data to prevent the data from
being corrupted.

d) Write a multithreaded Java program that launches multiple reader threads and multiple
writer threads, each attempting to access a single reservation record. A writer thread has
two possible transactions, makeReservation and cancelReservation. A read-
er has one possible transaction, queryReservation.

e) First implement a version of your program that allows unsynchronized access to the res-
ervation record. Show how the integrity of the database can be corrupted. Next imple-
ment a version of your program that uses Java monitor synchronization with wait and
notify to enforce a disciplined protocol for readers and writers accessing the shared
reservation data. In particular, your program should allow multiple readers to access the
shared data simultaneously when no writer is active. But if a writer is active, then no read-
ers should be allowed to access the shared data.

f) Be careful. This problem has many subtleties. For example, what happens when there are
several active readers and a writer wants to write? If we allow a steady stream of readers
to arrive and share the data, they could indefinitely postpone the writer (who may become
tired of waiting and take his or her business elsewhere). To solve this problem, you might
decide to favor writers over readers. But here, too, there is a trap, because a steady stream
of writers could then indefinitely postpone the waiting readers, and they, too, might
choose to take their business elsewhere! Implement your monitor with the following
methods: startReading, which is called by any reader who wants to begin accessing

Chapter 15 Multithreading 893

a reservation; stopReading to be called by any reader who has finished reading a res-
ervation; startWriting to be called by any writer who wants to make a reservation
and stopWriting to be called by any writer who has finished making a reservation.

15.25 Write a program that bounces a blue ball inside an applet. The ball should be initiated with a
mousePressed event. When the ball hits the edge of the applet, the ball should bounce off the edge
and continue in the opposite direction.

15.26 Modify the program of Exercise 15.25 to add a new ball each time the user clicks the mouse.
Provide for a minimum of 20 balls. Randomly choose the color for each new ball.

15.27 Modify the program of Exercise 15.26 to add shadows. As a ball moves, draw a solid black
oval at the bottom of the applet. You may consider adding a 3-D effect by increasing or decreasing
the size of each ball when a ball hits the edge of the applet.

15.28 Modify the program of Exercise 15.25 or 15.26 to bounce the balls off each other when they
collide.

16
Files and Streams

Objectives
• To be able to create, read, write and update files.
• To understand the Java streams class hierarchy.
• To be able to use the FileInputStream and
FileOutputStream classes.

• To be able to use the ObjectInputStream and
ObjectOutputStream classes.

• To be able to use class RandomAccessFile.
• To be able to use a JFileChooser dialog to access

files and directories.
• To become familiar with sequential-access and

random-access file processing.
• To be able to use class File.
I can only assume that a “Do Not File” document is filed in
a “Do Not File” file.
Senator Frank Church
Senate Intelligence Subcommittee Hearing, 1975

Consciousness … does not appear to itself chopped up in
bits. … A “river” or a “stream” are the metaphors by which
it is most naturally described.
William James

I read part of it all the way through.
Samuel Goldwyn

It is quite a three-pipe problem.
Sir Arthur Conan Doyle

Chapter 16 Files and Streams 895

16.1 Introduction
Storage of data in variables and arrays is temporary—the data is lost when a local variable
“goes out of scope” or when the program terminates. Programs use files for long-term re-
tention of large amounts of data, even after programs that create the data terminate. We re-
fer to data maintained in files as persistent data, because the data exists beyond the duration
of program execution. Computers store files on secondary storage devices such as magnet-
ic disks, optical disks and magnetic tapes. In this chapter, we explain how Java programs
create, update and process data files. We consider both “sequential-access” files and “ran-
dom-access” files and discuss typical applications for each.

File processing is one of the most important capabilities a language must have to support
commercial applications that typically process massive amounts of persistent data. In this
chapter, we discuss Java’s powerful file-processing and stream input/output features. File
processing is a subset of Java’s stream-processing capabilities that enable a program to read
and write bytes in memory, in files and over network connections. We have two goals in this
chapter—to introduce file-processing paradigms and to provide the reader with sufficient
stream-processing capabilities to support the networking features introduced in Chapter 17.

Software Engineering Observation 16.1
It would be dangerous to enable applets arriving from anywhere on the World Wide Web to
be able to read and write files on the client system. By default, Web browsers prevent applets
from performing file processing on the client system. Therefore, file-processing programs
generally are implemented as Java applications. 16.1

16.2 Data Hierarchy
Ultimately, a computer processes all data items as combinations of zeros and ones, because
it is simple and economical for engineers to build electronic devices that can assume two
stable states—one state represents 0, the other state represents 1. It is remarkable that the

Outline

16.1 Introduction
16.2 Data Hierarchy
16.3 Files and Streams
16.4 Creating a Sequential-Access File
16.5 Reading Data from a Sequential-Access File
16.6 Updating Sequential-Access Files
16.7 Random-Access Files
16.8 Creating a Random-Access File
16.9 Writing Data Randomly to a Random-Access File
16.10 Reading Data Sequentially from a Random-Access File
16.11 Example: A Transaction-Processing Program
16.12 Class File

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

896 Files and Streams Chapter 16

impressive functions performed by computers involve only the most fundamental manipu-
lations of 0s and 1s.

The smallest data item in a computer can assume the value 0 or the value 1. Such a
data item is called a bit (short for “binary digit”—a digit that can assume one of two values).
Computer circuitry performs various simple bit manipulations, such as examining the value
of a bit, setting the value of a bit and reversing a bit (from 1 to 0 or from 0 to 1).

It is cumbersome for programmers to work with data in the low-level form of bits.
Instead, programmers prefer to work with data in such forms as decimal digits (0–9), letters
(A–Z and a–z), and special symbols (e.g., $, @, %, &, *, (,), -, +, ", :, ?, / and many others).
Digits, letters and special symbols are known as characters. The computer’s character set
is the set of all characters used to write programs and represent data items. Computers can
process only 1s and 0s, so a computer’s character set represents every character as a pattern
of 1s and 0s. Characters in Java are Unicode characters composed of 2 bytes. Bytes are
most commonly composed of eight bits. Programmers create programs and data items with
characters. Computers manipulate and process these characters as patterns of bits. See
Appendix K for more information on Unicode.

Just as characters are composed of bits, fields are composed of characters or bytes. A
field is a group of characters or bytes that conveys meaning. For example, a field consisting
of uppercase and lowercase letters can be used to represent a person’s name.

Data items processed by computers form a data hierarchy in which data items become
larger and more complex in structure as we progress from bits, to characters, to fields, etc.

Typically, several fields (called instance variables in Java) compose a record (imple-
mented as a class in Java). In a payroll system, for example, a record for a particular
employee might consist of the following fields (possible data types for these fields are
shown in parentheses following each field):

• Employee identification number (int)

• Name (String)

• Address (String)

• Hourly pay rate (double)

• Number of exemptions claimed (int)

• Year-to-date earnings (int or double)

• Amount of taxes withheld (int or double)

Thus, a record is a group of related fields. In the preceding example, each of the fields be-
longs to the same employee. Of course, a particular company might have many employees
and will have a payroll record for each employee. A file is a group of related records.1 A
company’s payroll file normally contains one record for each employee. Thus, a payroll file
for a small company might contain only 22 records, whereas a payroll file for a large com-
pany might contain 100,000 records. It is not unusual for a company to have many files,
some containing millions, or even billions, of characters of information. Figure 16.1 illus-
trates the data hierarchy.

1. More generally, a file can contain arbitrary data in arbitrary formats. In some operating systems,
a file is viewed as nothing more than a collection of bytes. In such an operating system, any orga-
nization of the bytes in a file (such as organizing the data into records) is a view created by the
applications programmer.

Chapter 16 Files and Streams 897

To facilitate the retrieval of specific records from a file, at least one field in each record
is chosen as a record key. A record key identifies a record as belonging to a particular
person or entity that is unique from all other records. In the payroll record described previ-
ously, the employee identification number normally would be chosen as the record key.

There are many ways to organize records in a file. The most common organization is
called a sequential file in which records are stored in order by the record-key field. In a pay-
roll file, records are placed in order by employee identification number. The first employee
record in the file contains the lowest employee identification number, and subsequent
records contain increasingly higher employee identification numbers.

Most businesses store data in many different files. For example, companies might have
payroll files, accounts receivable files (listing money due from clients), accounts payable
files (listing money due to suppliers), inventory files (listing facts about all the items han-
dled by the business) and many other file types. Often, a group of related files is called a
database. A collection of programs designed to create and manage databases is called a
database management system (DBMS).

16.3 Files and Streams
Java views each file as a sequential stream of bytes (Fig. 16.2). Each file ends either with
an end-of-file marker or at a specific byte number recorded in a system-maintained admin-
istrative data structure. Java abstracts this concept from the programmer. A Java program
processing a stream of bytes simply receives an indication from the system when the pro-
gram reaches the end of the stream—the program does not need to know how the underly-

Fig. 16.1Fig. 16.1Fig. 16.1Fig. 16.1 The data hierarchy.

Randy Red

1

01001010

J u d y

Judy Green

Sally Black

Tom Blue

Judy Green

Iris Orange

File

Record

Field

Byte (ASCII character J)

Bit

898 Files and Streams Chapter 16

ing platform represents files or streams. In some cases, the end-of-file indication occurs as
an exception. In other cases, the indication is a return value from a method invoked on a
stream-processing object. We demonstrate both cases in this chapter.

A Java program opens a file by creating an object and associating a stream of bytes
with the object. Java also can associates streams of bytes associated with devices. In fact,
Java creates three stream objects that are associated with devices when a Java program
begins executing—System.in, System.out and System.err. The streams associ-
ated with these objects provide communication channels between a program and a partic-
ular device. For example, object System.in (the standard input stream object) normally
enables a program to input bytes from the keyboard, object System.out (the standard
output stream object) normally enables a program to output data to the screen and object
System.err (the standard error stream object) normally enables a program to output
error messages to the screen. Each of these streams can be redirected. For System.in,
this enables the program to read bytes from a different source. For System.out and
System.err, this enables the output to be sent to a different location, such as a file on
disk. Class System provides methods setIn, setOut and setErr to redirect the stan-
dard input, output and error streams.

Java programs perform file processing by using classes from package java.io. This
package includes definitions for the stream classes, such as FileInputStream (for
byte-based input from a file), FileOutputStream (for byte-based output to a file),
FileReader (for character-based input from a file) and FileWriter (for character-
based output to a file). Files are opened by creating objects of these stream classes that
inherit from classes InputStream, OutputStream, Reader and Writer, respec-
tively. Thus, the methods of these stream classes can all be applied to file streams as well.
To perform input and output of data types, objects of class ObjectInputStream,
DataInputStream, ObjectOutputStream and DataOutputStream will be
used together with the byte-based file stream classes FileInputStream and File-
OutputStream. Figure 16.3 summarizes the inheritance relationships of many of the
Java I/O classes (abstract classes are shown in italic font). The following discussion
overviews the capabilities of each of the classes in Fig. 16.3.

Java offers many classes for performing input/output. This section briefly overviews
many of these classes and explains how they relate to one another. In the rest of the chapter,
we use several of these stream classes as we implement a variety of file-processing pro-
grams that create, manipulate and destroy sequential-access files and random-access files.
We also include a detailed example on class File, which is useful for obtaining informa-
tion about files and directories. In Chapter 17, Networking, we use stream classes exten-
sively to implement networking applications.

Fig. 16.2Fig. 16.2Fig. 16.2Fig. 16.2 Java’s view of a file of n bytes.

0 1 2 3 4 5 6 7 8 9

...

n-1...

end-of-file marker

Chapter 16 Files and Streams 899

A portion of the class hierarchy of the java.io package

java.lang.Object

 File

 FileDescriptor

InputStream

 ByteArrayInputStream

 FileInputStream

 FilterInputStream

 BufferedInputStream

 DataInputStream

 PushbackInputStream

 ObjectInputStream

 PipedInputStream

 SequenceInputStream

OutputStream

 ByteArrayOutputStream

 FileOutputStream

 FilterOutputStream

 BufferedOutputStream

 DataOutputStream

 PrintStream

 ObjectOutputStream

 PipedOutputStream

 RandomAccessFile

Reader

 BufferedReader

 LineNumberReader

 CharArrayReader

 FilterReader

 PushbackReader

 InputStreamReader

 FileReader

 PipedReader

 StringReader

Fig. 16.3Fig. 16.3Fig. 16.3Fig. 16.3 A portion of the class hierarchy of the java.io package (part 1 of 2).

900 Files and Streams Chapter 16

InputStream and OutputStream (subclasses of Object) are abstract
classes that define methods for performing byte-based input and output, respectively.

Programs perform byte-based file input/output with FileInputStream (a subclass
of InputStream) and FileOutputStream (a subclass of OutputStream). We use
these classes extensively in the examples in this chapter.

Pipes are synchronized communication channels between threads or processes. Java
provides PipedOutputStream (a subclass of OutputStream) and PipedInput-
Stream (a subclass of InputStream) to establish pipes between two threads. One
thread sends data to another by writing to a PipedOutputStream. The target thread
reads information from the pipe via a PipedInputStream.

A PrintStream (a subclass of FilterOutputStream) performs text output to
the specified stream. Actually, we have been using PrintStream output throughout the
text to this point—System.out is a PrintStream, as is System.err.

A FilterInputStream filters an InputStream, and a FilterOutStream fil-
ters an OutputStream; filtering simply means that the filter stream provides additional
functionality, such as buffering, monitoring line numbers or aggregating data bytes into
meaningful primitive-data-type units. FilterInputStream and FilterOutput-
Stream are abstract classes, so additional functionality is provided by their subclasses.

Reading data as raw bytes is fast but crude. Usually programs read data as aggregates
of bytes that form an int, a float, a double and so on. Java programs can use several
classes to input and output data in aggregate form.

A RandomAccessFile is useful for direct-access applications, such as transaction-
processing applications like airline-reservations systems and point-of-sale systems. With a
sequential-access file, each successive input/output request reads or writes the next consec-
utive set of data in the file. With a random-access file, each successive input/output request
could be directed to any part of the file—perhaps one widely separated from the part of the
file referenced in the previous request. Direct-access applications provide rapid access to
specific data items in large files; often, such applications are used in applications that
require users to wait for answers—these answers must be made available quickly, or the
people might become impatient and “take their business elsewhere.”

Writer

 BufferedWriter

 CharArrayWriter

 FilterWriter

 OutputStreamWriter

 FileWriter

 PipedWriter

 PrintWriter

 StringWriter

A portion of the class hierarchy of the java.io package

Fig. 16.3Fig. 16.3Fig. 16.3Fig. 16.3 A portion of the class hierarchy of the java.io package (part 2 of 2).

Chapter 16 Files and Streams 901

The DataInput interface is implemented by class DataInputStream and class
RandomAccessFile (discussed later in the chapter); each needs to read primitive data
types from a stream. DataInputStreams enable a program to read binary data from an
InputStream. The DataInput interface includes methods read (for byte arrays),
readBoolean, readByte, readChar, readDouble, readFloat, readFully
(for byte arrays), readInt, readLong, readShort, readUnsignedByte,
readUnsignedShort, readUTF (for strings) and skipBytes.

The DataOutput interface is implemented by class DataOutputStream (a sub-
class of FilterOutputStream) and class RandomAccessFile; each needs to write
primitive data types to an OutputStream. DataOutputStreams enable a program to
write binary data to an OutputStream. The DataOutput interface includes methods
flush, size, write (for a byte), write (for a byte array), writeBoolean,
writeByte, writeBytes, writeChar, writeChars (for Unicode Strings),
writeDouble, writeFloat, writeInt, writeLong, writeShort and
writeUTF.

Buffering is an I/O-performance-enhancement technique. With a BufferedOut-
putStream (a subclass of class FilterOutputStream), each output statement does
not necessarily result in an actual physical transfer of data to the output device. Rather, each
output operation is directed to a region in memory called a buffer that is large enough to
hold the data of many output operations. Then, actual transfer to the output device is per-
formed in one large physical output operation each time the buffer fills. The output opera-
tions directed to the output buffer in memory are often called logical output operations.
With a BufferedOutputStream, a partially filled buffer can be forced out to the
device at any time by invoking the stream object’s flush method.

Performance Tip 16.1
Since typical physical output operations are extremely slow compared to the speed of access-
ing computer memory, buffered outputs normally yield significant performance improve-
ments over unbuffered outputs. 16.1

With a BufferedInputStream (a subclass of class FilterInputStream),
many “logical” chunks of data from a file are read as one large physical input operation
into a memory buffer. As a program requests each new chunk of data, it is taken from the
buffer (this is sometimes referred to as a logical input operation). When the buffer is empty,
the next actual physical input operation from the input device is performed to read in the
next group of “logical” chunks of data. Thus, the number of actual physical input operations
is small compared with the number of read requests issued by the program.

Performance Tip 16.2
Since typical input operations are extremely slow compared to the speed of accessing com-
puter memory, buffered inputs normally yield significant performance improvements over
unbuffered inputs. 16.2

A PushbackInputStream (a subclass of class FilterInputStream) is for
applications more exotic than those most programmers require. Essentially, the application
reading a PushbackInputStream reads bytes from the stream and forms aggregates
consisting of several bytes. Sometimes, to determine that one aggregate is complete, the
application must read the first character “past the end” of the first aggregate. Once the pro-
gram determines that the current aggregate is complete, the extra character is “pushed

902 Files and Streams Chapter 16

back” onto the stream. PushbackInputStreams are used by programs (like compilers)
that parse their inputs—that is, break them into meaningful units (such as the keywords,
identifiers and operators that the compiler must recognize).

When object instance variables are output to a disk file, in a sense we lose the object’s
type information. We have only data, not type information, on a disk. If the program that is
going to read this data knows what object type it corresponds to, then the data is simply read
into objects of that type. Sometimes, we would like to read or write an entire object to a file.
The ObjectInputStream and ObjectOutputStream classes, which respectively
implement the ObjectInput and ObjectOutput interfaces, enable an entire object to
be read from or written to a file (or other stream type). We often chain ObjectInput-
Streams to FileInputStreams. (We also chain ObjectOutputStreams to File-
OutputStreams.) The ObjectOutput interface contains method writeObject,
which takes an Object that implements interface Serializable as an argument and
writes its information to the OutputStream. Correspondingly, the ObjectInput inter-
face requires method readObject, which reads and returns an Object from an Input-
Stream. After the reading of an object, it can be cast to the desired type. Additionally, these
interfaces include other Object-centric methods as well as the same methods as
DataInput and DataOutput for reading and writing primitive data types.

Java stream I/O includes capabilities for inputting from byte arrays in memory and
outputting to byte arrays in memory. A ByteArrayInputStream (a subclass of
InputStream) reads from a byte array in memory. A ByteArrayOutputStream
(a subclass of OutputStream) outputs to a byte array in memory. One application of
byte-array I/O is data validation. A program can input an entire line at a time from the
input stream into a byte array. Then, a validation routine can scrutinize the contents of the
byte array and correct the data, if necessary. Then, the program can proceed to input from
the byte array, knowing that the input data is in the proper format. Outputting to a byte
array is a nice way to take advantage of the powerful output-formatting capabilities of Java
streams. For example, data can be prepared in a byte array, using the same formatting that
will be displayed at a later time, then output to a disk file to preserve the screen image.

A SequenceInputStream (a subclass of InputStream) enables concatenation
of several InputStreams, so that the program sees the group as one continuous Input-
Stream. As the program reaches the end of an input stream, that stream closes and the next
stream in the sequence opens.

In addition to the byte based streams, Java provides Reader and Writer classes,
which are Unicode, two-byte, character based streams. Most of the byte-based streams have
corresponding character-based Reader or Writer classes.

Class BufferedReader (a subclass of abstract class Reader) and class
BufferedWriter (a subclass of abstract class Writer) enable efficient buffering
for character-based streams. Character-based streams use Unicode characters—such
streams can process data in any language that the Unicode character set represents.

Class CharArrayReader and class CharArrayWriter read and write a stream
of characters to a character array.

A PushbackReader (a subclass of abstract class FilterReader) enables
characters to be pushed back on a character stream. A LineNumberReader (a subclass
of BufferedReader) is a buffered character-stream that keeps track of line numbers
(i.e., a newline, a return or a carriage-return line-feed combination).

Chapter 16 Files and Streams 903

Class FileReader (a subclass of InputStreamReader) and class File-
Writer (a subclass of OutputStreamWriter) read characters from and write charac-
ters to a file, respectively. Class PipedReader and class PipedWriter implement
piped-character streams that can be used to transfer information between threads. Class
StringReader and StringWriter read and write characters to Strings. A
PrintWriter writes characters to a stream.

Class File enables programs to obtain information about a file or directory. We dis-
cuss class File extensively in Section 16.12.

16.4 Creating a Sequential-Access File
Java imposes no structure on a file. Notions like “record” do not exist in Java files. There-
fore, the programmer must structure files to meet the requirements of applications. In the
following example, we see how the programmer can impose a simple record structure on a
file. First we present the program, then we analyze it in detail.

The program of Fig. 16.4–Fig. 16.6 creates a simple sequential-access file that might
be used in an accounts receivable system to help manage the money owed by a company’s
credit clients. For each client, the program obtains an account number, the client’s first
name, the client’s last name and the client’s balance (i.e., the amount the client still owes
the company for goods and services received in the past). The data obtained for each client
constitutes a record for that client. The program uses the account number as the record key;
that is, the file will be created and maintained in account-number order. [Note: This pro-
gram assumes the user enters the records in account-number order. In a comprehensive
accounts receivable system, a sorting capability would be provided so the user could enter
the records in any order—the records would then be sorted and written to the file.]

Most of the programs in this chapter have a similar GUI, so this program defines class
BankUI (Fig. 16.4) to encapsulate the GUI. (See the second sample output screen in
Fig. 16.6.) Also, the program defines class AccountRecord (Fig. 16.5) to encapsulate
the client record information (i.e., account, first name, etc.) used by the examples in this
chapter. For reuse, classes BankUI and AccountRecord are defined in package
com.deitel.jhtp4.ch16.

[Note: Most of the programs in this chapter use classes BankUI and Account-
Record. When you compile these classes, or any others that will be reused in this chapter,
you should place the classes in a common directory. When you compile classes that use
BankUI and AccountRecord, be sure to specify the -classpath command line
argument to both javac and java, as in

javac -classpath .;packageLocation ClassName.java
java -classpath .;packageLocation ClassName

where packageLocation represents the common directory in which the classes of the package
com.deitel.jhtp4.ch16 reside and ClassName represents the class to compile or ex-
ecute. Be sure to include the current directory (specified with .) in the class path. [Note: If
your packaged classes are in a JAR file, the packageLocation should include the location and
name of the actual JAR file.] Also, the path separator shown (;, which is used in Microsoft
Windows) should be appropriate for your platform (such as : on UNIX/Linux).]

Class BankUI (Fig. 16.4) contains two JButtons and arrays of JLabels and
JTextFields. The number of JLabels and JTextFields is set with the constructor

904 Files and Streams Chapter 16

defined at lines 34–75. Methods getFieldValues (lines 116–124), setField-
Values (lines 104–113) and clearFields (lines 96–100) manipulate the text of the
JTextFields. Methods getFields (lines 90–93), getDoTask1Button (lines 78–
81) and getDoTask2Button (lines 84–87) return individual GUI components, so that a
client program can add ActionListeners (for example).

1 // Fig. 16.4: BankUI.java
2 // A reusable GUI for the examples in this chapter.
3 package com.deitel.jhtp4.ch16;
4
5 // Java core packages
6 import java.awt.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class BankUI extends JPanel {
12
13 // label text for GUI
14 protected final static String names[] = { "Account number",
15 "First name", "Last name", "Balance",
16 "Transaction Amount" };
17
18 // GUI components; protected for future subclass access
19 protected JLabel labels[];
20 protected JTextField fields[];
21 protected JButton doTask1, doTask2;
22 protected JPanel innerPanelCenter, innerPanelSouth;
23
24 // number of text fields in GUI
25 protected int size;
26
27 // constants representing text fields in GUI
28 public static final int ACCOUNT = 0, FIRSTNAME = 1,
29 LASTNAME = 2, BALANCE = 3, TRANSACTION = 4;
30
31 // Set up GUI. Constructor argument of 4 creates four rows
32 // of GUI components. Constructor argument of 5 (used in a
33 // later program) creates five rows of GUI components.
34 public BankUI(int mySize)
35 {
36 size = mySize;
37 labels = new JLabel[size];
38 fields = new JTextField[size];
39
40 // create labels
41 for (int count = 0; count < labels.length; count++)
42 labels[count] = new JLabel(names[count]);
43
44 // create text fields
45 for (int count = 0; count < fields.length; count++)
46 fields[count] = new JTextField();

Fig. 16.4Fig. 16.4Fig. 16.4Fig. 16.4 BankUI contains a reusable GUI for several programs (part 1 of 3).

Chapter 16 Files and Streams 905

47
48 // create panel to lay out labels and fields
49 innerPanelCenter = new JPanel();
50 innerPanelCenter.setLayout(new GridLayout(size, 2));
51
52 // attach labels and fields to innerPanelCenter
53 for (int count = 0; count < size; count++) {
54 innerPanelCenter.add(labels[count]);
55 innerPanelCenter.add(fields[count]);
56 }
57
58 // create generic buttons; no labels or event handlers
59 doTask1 = new JButton();
60 doTask2 = new JButton();
61
62 // create panel to lay out buttons and attach buttons
63 innerPanelSouth = new JPanel();
64 innerPanelSouth.add(doTask1);
65 innerPanelSouth.add(doTask2);
66
67 // set layout of this container and attach panels to it
68 setLayout(new BorderLayout());
69 add(innerPanelCenter, BorderLayout.CENTER);
70 add(innerPanelSouth, BorderLayout.SOUTH);
71
72 // validate layout
73 validate();
74
75 } // end constructor
76
77 // return reference to generic task button doTask1
78 public JButton getDoTask1Button()
79 {
80 return doTask1;
81 }
82
83 // return reference to generic task button doTask2
84 public JButton getDoTask2Button()
85 {
86 return doTask2;
87 }
88
89 // return reference to fields array of JTextFields
90 public JTextField[] getFields()
91 {
92 return fields;
93 }
94
95 // clear content of text fields
96 public void clearFields()
97 {
98 for (int count = 0; count < size; count++)
99 fields[count].setText("");

Fig. 16.4Fig. 16.4Fig. 16.4Fig. 16.4 BankUI contains a reusable GUI for several programs (part 2 of 3).

906 Files and Streams Chapter 16

Class AccountRecord (Fig. 16.5) implements interface Serializable, which
allows objects of AccountRecord to be used with ObjectInputStreams and
ObjectOutputStreams. Interface Serializable is known as a tagging interface.
Such an interface contains no methods. A class that implements this interface is tagged as
being a Serializable object, which is important because an ObjectOutput-
Stream will not output an object unless it is a Serializable object. In a class that
implements Serializable, the programmer must ensure that every instance variable of
the class is a Serializable type, or must declare particular instance variables as
transient to indicate that those variables are not Serializable and they should be
ignored during the serialization process. By default, all primitive type variables are tran-
sient. For non-primitive types, you must check the definition of the class (and possibly its
superclasses) to ensure that the type is Serializable. Class AccountRecord con-
tains private data members account, firstName, lastName and balance. This
class also provides public “get” and “set” methods for accessing the private data
members.

100 }
101
102 // set text field values; throw IllegalArgumentException if
103 // incorrect number of Strings in argument
104 public void setFieldValues(String strings[])
105 throws IllegalArgumentException
106 {
107 if (strings.length != size)
108 throw new IllegalArgumentException("There must be " +
109 size + " Strings in the array");
110
111 for (int count = 0; count < size; count++)
112 fields[count].setText(strings[count]);
113 }
114
115 // get array of Strings with current text field contents
116 public String[] getFieldValues()
117 {
118 String values[] = new String[size];
119
120 for (int count = 0; count < size; count++)
121 values[count] = fields[count].getText();
122
123 return values;
124 }
125
126 } // end class BankUI

1 // Fig. 16.5: AccountRecord.java
2 // A class that represents one record of information.
3 package com.deitel.jhtp4.ch16;

Fig. 16.5Fig. 16.5Fig. 16.5Fig. 16.5 Class AccountRecord maintains information for one account (part 1 of 3).

Fig. 16.4Fig. 16.4Fig. 16.4Fig. 16.4 BankUI contains a reusable GUI for several programs (part 3 of 3).

Chapter 16 Files and Streams 907

4
5 // Java core packages
6 import java.io.Serializable;
7
8 public class AccountRecord implements Serializable {
9 private int account;

10 private String firstName;
11 private String lastName;
12 private double balance;
13
14 // no-argument constructor calls other constructor with
15 // default values
16 public AccountRecord()
17 {
18 this(0, "", "", 0.0);
19 }
20
21 // initialize a record
22 public AccountRecord(int acct, String first,
23 String last, double bal)
24 {
25 setAccount(acct);
26 setFirstName(first);
27 setLastName(last);
28 setBalance(bal);
29 }
30
31 // set account number
32 public void setAccount(int acct)
33 {
34 account = acct;
35 }
36
37 // get account number
38 public int getAccount()
39 {
40 return account;
41 }
42
43 // set first name
44 public void setFirstName(String first)
45 {
46 firstName = first;
47 }
48
49 // get first name
50 public String getFirstName()
51 {
52 return firstName;
53 }
54

Fig. 16.5Fig. 16.5Fig. 16.5Fig. 16.5 Class AccountRecord maintains information for one account (part 2 of 3).

908 Files and Streams Chapter 16

Now, let us discuss the code that creates the sequential-access file (Fig. 16.6). In this
example, we introduce class JFileChooser (package javax.swing) for selecting files
(as on the second screen in Fig. 16.6). Line 103 constructs a JFileChooser instance and
assigns it to reference fileChooser. Lines 104–105 call method setFileSelec-
tionMode to specify what the user can select from the fileChooser. For this program,
we use JFileChooser static constant FILES_ONLY to indicate that only files can be
selected. Other static constants include FILES_AND_DIRECTORIES and
DIRECTORIES_ONLY.

55 // set last name
56 public void setLastName(String last)
57 {
58 lastName = last;
59 }
60
61 // get last name
62 public String getLastName()
63 {
64 return lastName;
65 }
66
67 // set balance
68 public void setBalance(double bal)
69 {
70 balance = bal;
71 }
72
73 // get balance
74 public double getBalance()
75 {
76 return balance;
77 }
78
79 } // end class AccountRecord

1 // Fig. 16.6: CreateSequentialFile.java
2 // Demonstrating object output with class ObjectOutputStream.
3 // The objects are written sequentially to a file.
4
5 // Java core packages
6 import java.io.*;
7 import java.awt.*;
8 import java.awt.event.*;
9

10 // Java extension packages
11 import javax.swing.*;
12

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 Creating a sequential file (part 1 of 6).

Fig. 16.5Fig. 16.5Fig. 16.5Fig. 16.5 Class AccountRecord maintains information for one account (part 3 of 3).

Chapter 16 Files and Streams 909

13 // Deitel packages
14 import com.deitel.jhtp4.ch16.BankUI;
15 import com.deitel.jhtp4.ch16.AccountRecord;
16
17 public class CreateSequentialFile extends JFrame {
18 private ObjectOutputStream output;
19 private BankUI userInterface;
20 private JButton enterButton, openButton;
21
22 // set up GUI
23 public CreateSequentialFile()
24 {
25 super("Creating a Sequential File of Objects");
26
27 // create instance of reusable user interface
28 userInterface = new BankUI(4); // four textfields
29 getContentPane().add(
30 userInterface, BorderLayout.CENTER);
31
32 // get reference to generic task button doTask1 in BankUI
33 // and configure button for use in this program
34 openButton = userInterface.getDoTask1Button();
35 openButton.setText("Save into File ...");
36
37 // register listener to call openFile when button pressed
38 openButton.addActionListener(
39
40 // anonymous inner class to handle openButton event
41 new ActionListener() {
42
43 // call openFile when button pressed
44 public void actionPerformed(ActionEvent event)
45 {
46 openFile();
47 }
48
49 } // end anonymous inner class
50
51); // end call to addActionListener
52
53 // get reference to generic task button doTask2 in BankUI
54 // and configure button for use in this program
55 enterButton = userInterface.getDoTask2Button();
56 enterButton.setText("Enter");
57 enterButton.setEnabled(false); // disable button
58
59 // register listener to call addRecord when button pressed
60 enterButton.addActionListener(
61
62 // anonymous inner class to handle enterButton event
63 new ActionListener() {
64

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 Creating a sequential file (part 2 of 6).

910 Files and Streams Chapter 16

65 // call addRecord when button pressed
66 public void actionPerformed(ActionEvent event)
67 {
68 addRecord();
69 }
70
71 } // end anonymous inner class
72
73); // end call to addActionListener
74
75 // register window listener to handle window closing event
76 addWindowListener(
77
78 // anonymous inner class to handle windowClosing event
79 new WindowAdapter() {
80
81 // add current record in GUI to file, then close file
82 public void windowClosing(WindowEvent event)
83 {
84 if (output != null)
85 addRecord();
86
87 closeFile();
88 }
89
90 } // end anonymous inner class
91
92); // end call to addWindowListener
93
94 setSize(300, 200);
95 show();
96
97 } // end CreateSequentialFile constructor
98
99 // allow user to specify file name
100 private void openFile()
101 {
102 // display file dialog, so user can choose file to open
103 JFileChooser fileChooser = new JFileChooser();
104 fileChooser.setFileSelectionMode(
105 JFileChooser.FILES_ONLY);
106
107 int result = fileChooser.showSaveDialog(this);
108
109 // if user clicked Cancel button on dialog, return
110 if (result == JFileChooser.CANCEL_OPTION)
111 return;
112
113 // get selected file
114 File fileName = fileChooser.getSelectedFile();
115

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 Creating a sequential file (part 3 of 6).

Chapter 16 Files and Streams 911

116 // display error if invalid
117 if (fileName == null ||
118 fileName.getName().equals(""))
119 JOptionPane.showMessageDialog(this,
120 "Invalid File Name", "Invalid File Name",
121 JOptionPane.ERROR_MESSAGE);
122
123 else {
124
125 // open file
126 try {
127 output = new ObjectOutputStream(
128 new FileOutputStream(fileName));
129
130 openButton.setEnabled(false);
131 enterButton.setEnabled(true);
132 }
133
134 // process exceptions from opening file
135 catch (IOException ioException) {
136 JOptionPane.showMessageDialog(this,
137 "Error Opening File", "Error",
138 JOptionPane.ERROR_MESSAGE);
139 }
140 }
141
142 } // end method openFile
143
144 // close file and terminate application
145 private void closeFile()
146 {
147 // close file
148 try {
149 output.close();
150
151 System.exit(0);
152 }
153
154 // process exceptions from closing file
155 catch(IOException ioException) {
156 JOptionPane.showMessageDialog(this,
157 "Error closing file", "Error",
158 JOptionPane.ERROR_MESSAGE);
159 System.exit(1);
160 }
161 }
162
163 // add record to file
164 public void addRecord()
165 {
166 int accountNumber = 0;
167 AccountRecord record;
168 String fieldValues[] = userInterface.getFieldValues();

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 Creating a sequential file (part 4 of 6).

912 Files and Streams Chapter 16

169
170 // if account field value is not empty
171 if (! fieldValues[BankUI.ACCOUNT].equals("")) {
172
173 // output values to file
174 try {
175 accountNumber = Integer.parseInt(
176 fieldValues[BankUI.ACCOUNT]);
177
178 if (accountNumber > 0) {
179
180 // create new record
181 record = new AccountRecord(accountNumber,
182 fieldValues[BankUI.FIRSTNAME],
183 fieldValues[BankUI.LASTNAME],
184 Double.parseDouble(
185 fieldValues[BankUI.BALANCE]));
186
187 // output record and flush buffer
188 output.writeObject(record);
189 output.flush();
190 }
191
192 // clear textfields
193 userInterface.clearFields();
194 }
195
196 // process invalid account number or balance format
197 catch (NumberFormatException formatException) {
198 JOptionPane.showMessageDialog(this,
199 "Bad account number or balance",
200 "Invalid Number Format",
201 JOptionPane.ERROR_MESSAGE);
202 }
203
204 // process exceptions from file output
205 catch (IOException ioException) {
206 closeFile();
207 }
208
209 } // end if
210
211 } // end method addRecord
212
213 // execute application; CreateSequentialFile constructor
214 // displays window
215 public static void main(String args[])
216 {
217 new CreateSequentialFile();
218 }
219
220 } // end class CreateSequentialFile

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 Creating a sequential file (part 5 of 6).

Chapter 16 Files and Streams 913

Line 107 calls method showSaveDialog to display the JFileChooser dialog
titled Save. Argument this specifies the JFileChooser dialog’s parent window,
which determines the position of the dialog on the screen. If null is passed, the dialog is
displayed in the center of the window; otherwise, the dialog is centered over the application
window. When displayed, a JFileChooser dialog does not allow the user to interact
with any other program window until the user closes the JFileChooser dialog by
clicking Save or Cancel. Dialogs that behave in this fashion are called modal dialogs. The
user selects the drive, directory and file name, then clicks Save. Method showSaveDi-
alog returns an integer specifying which button the user clicked (Save or Cancel) to
close the dialog. Line 110 tests whether the user clicked Cancel by comparing result
to static constant CANCEL_OPTION. If so, the method returns.

Fig. 16.6Fig. 16.6Fig. 16.6Fig. 16.6 Creating a sequential file (part 6 of 6).

Files and
directories are
displayed here

Select location
for file here

Click Save to
submit new
file name to
program

BankUI graphical
user interface

914 Files and Streams Chapter 16

Line 114 retrieves the file the user selected by calling method getSelectedFile,
which returns an object of type File that encapsulates information about the file (e.g.,
name and location), but does not represent the contents of the file. This File object does
not open the file. We assign this File object to the reference fileName.

As stated previously, a program opens a file by creating an object of stream class
FileInputStream or FileOutputStream. In this example, the file is to be opened
for output, so the program creates a FileOutputStream. One argument is passed to the
FileOutputStream’s constructor—a File object. Existing files opened for output are
truncated—all data in the file is discarded.

Common Programming Error 16.1
It is a logic error to open an existing file for output when, in fact, the user wants to preserve
the file. The contents of the file are discarded without warning. 16.1

Class FileOutputStream provides methods for writing byte arrays and indi-
vidual bytes to a file. For this program, we need to write objects to a file—a capability not
provided by FileOutputStream. The solution to this problem is a technique called
chaining of stream objects—the ability to add the services of one stream to another. To
chain an ObjectOutputStream to the FileOutputStream, we pass the File-
OutputStream object to the ObjectOutputStream’s constructor (lines 127–128).
The constructor could throw an IOException if a problem occurs during opening of the
file (e.g., when a file is opened for writing on a drive with insufficient space, a read-only
file is opened for writing or a nonexistent file is opened for reading). If so, the program dis-
plays a JOptionPane. If construction of the two streams does not throw an IOExcep-
tion, the file is open. Then, reference output can be used to write objects to the file.

The program assumes data is input correctly and in the proper record number order.
The user populates the JTextFields and clicks Enter to write the data to the file. The
Enter button’s actionPerformed method (lines 66–69) calls our method
addRecord (lines 164–211) to perform the write operation. Line 188 calls method
writeObject to write the record object to file. Line 189 calls method flush to
ensure that any data stored in memory is written to the file immediately.

When the user clicks the close box (the X in the window’s top-right corner), the pro-
gram calls method windowClosing (lines 82–88), which compares output to null
(line 84). If output is not null, the stream is open and methods addRecord and
closeFile (lines 145–161) are called. Method closeFile calls method close for
output to close the file.

Performance Tip 16.3
Always release resources explicitly and at the earliest possible moment at which it is deter-
mined that the resource is no longer needed. This makes the resource immediately available
to be reused by your program or by another program, thus improving resource utilization. 16.3

When using chained stream objects, the outermost object (the ObjectOutput-
Stream in this example) should be used to close the file.

Performance Tip 16.4
Explicitly close each file as soon as it is known that the program will not reference the file
again. This can reduce resource usage in a program that will continue executing long after it
no longer needs to be referencing a particular file. This practice also improves program clarity. 16.4

Chapter 16 Files and Streams 915

In the sample execution for the program of Fig. 16.6, we entered information for five
accounts (see Fig. 16.7). The program does not show how the data records actually appear
in the file. To verify that the file has been created successfully, in the next section we create
a program to read the file.

16.5 Reading Data from a Sequential-Access File
Data are stored in files so that they may be retrieved for processing when needed. The pre-
vious section demonstrated how to create a file for sequential access. In this section, we dis-
cuss how to read data sequentially from a file.

The program of Fig. 16.8 reads records from a file created by the program of Fig. 16.6
and displays the contents of the records. The program opens the file for input by creating a
FileInputStream object. The program specifies the name of the file to open as an
argument to the FileInputStream constructor. In Fig. 16.6, we wrote objects to the
file, using an ObjectOutputStream object. Data must be read from the file in the same
format in which it was written to the file. Therefore, we use an ObjectInputStream
chained to a FileInputStream in this program. Note that the third sample screen cap-
ture shows the GUI displaying the last record in the file.

Sample Data

100 Bob Jones 24.98

200 Steve Doe -345.67

300 Pam White 0.00

400 Sam Stone -42.16

500 Sue Rich 224.62

Fig. 16.7Fig. 16.7Fig. 16.7Fig. 16.7 Sample data for the program of Fig. 16.6.

1 // Fig. 16.8: ReadSequentialFile.java
2 // This program reads a file of objects sequentially
3 // and displays each record.
4
5 // Java core packages
6 import java.io.*;
7 import java.awt.*;
8 import java.awt.event.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 // Deitel packages
14 import com.deitel.jhtp4.ch16.*;
15
16 public class ReadSequentialFile extends JFrame {
17 private ObjectInputStream input;

Fig. 16.8Fig. 16.8Fig. 16.8Fig. 16.8 Reading a sequential file (part 1 of 6).

916 Files and Streams Chapter 16

18 private BankUI userInterface;
19 private JButton nextButton, openButton;
20
21 // Constructor -- initialize the Frame
22 public ReadSequentialFile()
23 {
24 super("Reading a Sequential File of Objects");
25
26 // create instance of reusable user interface
27 userInterface = new BankUI(4); // four textfields
28 getContentPane().add(
29 userInterface, BorderLayout.CENTER);
30
31 // get reference to generic task button doTask1 from BankUI
32 openButton = userInterface.getDoTask1Button();
33 openButton.setText("Open File");
34
35 // register listener to call openFile when button pressed
36 openButton.addActionListener(
37
38 // anonymous inner class to handle openButton event
39 new ActionListener() {
40
41 // close file and terminate application
42 public void actionPerformed(ActionEvent event)
43 {
44 openFile();
45 }
46
47 } // end anonymous inner class
48
49); // end call to addActionListener
50
51 // register window listener for window closing event
52 addWindowListener(
53
54 // anonymous inner class to handle windowClosing event
55 new WindowAdapter() {
56
57 // close file and terminate application
58 public void windowClosing(WindowEvent event)
59 {
60 if (input != null)
61 closeFile();
62
63 System.exit(0);
64 }
65
66 } // end anonymous inner class
67
68); // end call to addWindowListener
69

Fig. 16.8Fig. 16.8Fig. 16.8Fig. 16.8 Reading a sequential file (part 2 of 6).

Chapter 16 Files and Streams 917

70 // get reference to generic task button doTask2 from BankUI
71 nextButton = userInterface.getDoTask2Button();
72 nextButton.setText("Next Record");
73 nextButton.setEnabled(false);
74
75 // register listener to call readRecord when button pressed
76 nextButton.addActionListener(
77
78 // anonymous inner class to handle nextRecord event
79 new ActionListener() {
80
81 // call readRecord when user clicks nextRecord
82 public void actionPerformed(ActionEvent event)
83 {
84 readRecord();
85 }
86
87 } // end anonymous inner class
88
89); // end call to addActionListener
90
91 pack();
92 setSize(300, 200);
93 show();
94
95 } // end ReadSequentialFile constructor
96
97 // enable user to select file to open
98 private void openFile()
99 {
100 // display file dialog so user can select file to open
101 JFileChooser fileChooser = new JFileChooser();
102 fileChooser.setFileSelectionMode(
103 JFileChooser.FILES_ONLY);
104
105 int result = fileChooser.showOpenDialog(this);
106
107 // if user clicked Cancel button on dialog, return
108 if (result == JFileChooser.CANCEL_OPTION)
109 return;
110
111 // obtain selected file
112 File fileName = fileChooser.getSelectedFile();
113
114 // display error if file name invalid
115 if (fileName == null ||
116 fileName.getName().equals(""))
117 JOptionPane.showMessageDialog(this,
118 "Invalid File Name", "Invalid File Name",
119 JOptionPane.ERROR_MESSAGE);
120
121 else {
122

Fig. 16.8Fig. 16.8Fig. 16.8Fig. 16.8 Reading a sequential file (part 3 of 6).

918 Files and Streams Chapter 16

123 // open file
124 try {
125 input = new ObjectInputStream(
126 new FileInputStream(fileName));
127
128 openButton.setEnabled(false);
129 nextButton.setEnabled(true);
130 }
131
132 // process exceptions opening file
133 catch (IOException ioException) {
134 JOptionPane.showMessageDialog(this,
135 "Error Opening File", "Error",
136 JOptionPane.ERROR_MESSAGE);
137 }
138
139 } // end else
140
141 } // end method openFile
142
143 // read record from file
144 public void readRecord()
145 {
146 AccountRecord record;
147
148 // input the values from the file
149 try {
150 record = (AccountRecord) input.readObject();
151
152 // create array of Strings to display in GUI
153 String values[] = {
154 String.valueOf(record.getAccount()),
155 record.getFirstName(),
156 record.getLastName(),
157 String.valueOf(record.getBalance()) };
158
159 // display record contents
160 userInterface.setFieldValues(values);
161 }
162
163 // display message when end-of-file reached
164 catch (EOFException endOfFileException) {
165 nextButton.setEnabled(false);
166
167 JOptionPane.showMessageDialog(this,
168 "No more records in file",
169 "End of File", JOptionPane.ERROR_MESSAGE);
170 }
171
172 // display error message if cannot read object
173 // because class not found
174 catch (ClassNotFoundException classNotFoundException) {
175 JOptionPane.showMessageDialog(this,

Fig. 16.8Fig. 16.8Fig. 16.8Fig. 16.8 Reading a sequential file (part 4 of 6).

Chapter 16 Files and Streams 919

176 "Unable to create object",
177 "Class Not Found", JOptionPane.ERROR_MESSAGE);
178 }
179
180 // display error message if cannot read
181 // due to problem with file
182 catch (IOException ioException) {
183 JOptionPane.showMessageDialog(this,
184 "Error during read from file",
185 "Read Error", JOptionPane.ERROR_MESSAGE);
186 }
187 }
188
189 // close file and terminate application
190 private void closeFile()
191 {
192 // close file and exit
193 try {
194 input.close();
195 System.exit(0);
196 }
197
198 // process exception while closing file
199 catch (IOException ioException) {
200 JOptionPane.showMessageDialog(this,
201 "Error closing file",
202 "Error", JOptionPane.ERROR_MESSAGE);
203
204 System.exit(1);
205 }
206 }
207
208 // execute application; ReadSequentialFile constructor
209 // displays window
210 public static void main(String args[])
211 {
212 new ReadSequentialFile();
213 }
214
215 } // end class ReadSequentialFile

Fig. 16.8Fig. 16.8Fig. 16.8Fig. 16.8 Reading a sequential file (part 5 of 6).

920 Files and Streams Chapter 16

Most of the code in this example is similar to Fig. 16.6, so we discuss only the key lines
of code that are different. Line 105 calls JFileChooser method showOpenDialog to
display the Open dialog (second screen capture in Fig. 16.8). The behavior and GUI are
the same as the dialog displayed by showSaveDialog, except that the title of the dialog
and the Save button are both replaced with Open.

Lines 125–126 create a ObjectInputStream object and assign it to input. The
File fileName is passed to the FileInputStream constructor to open the file.

The program reads a record from the file each time the user clicks the Next Record
button. Line 84 in Next Record’s actionPerformed method calls method
readRecord (lines 144–187) to read one record from the file. Line 150 calls method
readObject to read an Object from the ObjectInputStream. To use Accoun-
tRecord specific methods, we cast the returned Object to type AccountRecord. If
the end-of-file marker is reached during reading, readObject throws an EndOfFile-
Exception.

To retrieve data sequentially from a file, programs normally start reading from the
beginning of the file and read all the data consecutively until the desired data are found. It
might be necessary to process the file sequentially several times (from the beginning of the
file) during the execution of a program. Class FileInputStream does not provide the
ability to reposition to the beginning of the file to read the file again unless the program
closes the file and reopens it. Class RandomAccessFile objects can reposition to the
beginning of the file. Class RandomAccessFile provides all the capabilities of the

Fig. 16.8Fig. 16.8Fig. 16.8Fig. 16.8 Reading a sequential file (part 6 of 6).

Chapter 16 Files and Streams 921

classes FileInputStream, FileOutputStream, DataInputStream and
DataOutputStream and adds several other methods, including a seek that repositions
the file-position pointer (the byte number of the next byte in the file to be read or written)
to any position in the file. However, class RandomAccessFile cannot read and write
entire objects.

Performance Tip 16.5
The process of closing and reopening a file for the purpose of positioning the file-position
pointer back to the beginning of a file is a time-consuming task for the computer. If this is
done frequently, it can slow the performance of your program. 16.5

The program of Fig. 16.9 enables a credit manager to display the account information
for those customers with zero balances (i.e., customers who do not owe the company any
money), credit balances (i.e., customers to whom the company owes money) and debit bal-
ances (i.e., customers who owe the company money for goods and services received in the
past).

The program displays buttons that allow a credit manager to obtain credit information.
The Credit balances button produces a list of accounts with credit balances. The Debit
balances button produces a list of accounts with debit balances. The Zero balances
button produces a list of accounts with zero balances.

Records are displayed in a JTextArea called recordDisplayArea. The record
information is collected by reading through the entire file and determining, for each record,
whether it satisfies the criteria for the account type selected by the credit manager. Clicking
one of the balance buttons sets variable accountType (line 274) to the clicked button’s
text (e.g., Zero balances) and invokes method readRecords (191–238), which loops
through the file and reads every record. Line 208 of method readRecords calls method
shouldDisplay (241–259) to determine whether the current record satisfies the account
type requested. If shouldDisplay returns true, the program appends the account
information for the current record to the JTextArea recordDisplay. When the end-
of-file marker is reached, line 219 calls method closeFile to close the file.

1 // Fig. 16.9: CreditInquiry.java
2 // This program reads a file sequentially and displays the
3 // contents in a text area based on the type of account the
4 // user requests (credit balance, debit balance or
5 // zero balance).
6
7 // Java core packages
8 import java.io.*;
9 import java.awt.*;

10 import java.awt.event.*;
11 import java.text.DecimalFormat;
12
13 // Java extension packages
14 import javax.swing.*;
15
16 // Deitel packages
17 import com.deitel.jhtp4.ch16.AccountRecord;

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Credit inquiry program (part 1 of 7).

922 Files and Streams Chapter 16

18
19 public class CreditInquiry extends JFrame {
20 private JTextArea recordDisplayArea;
21 private JButton openButton,
22 creditButton, debitButton, zeroButton;
23 private JPanel buttonPanel;
24
25 private ObjectInputStream input;
26 private FileInputStream fileInput;
27 private File fileName;
28 private String accountType;
29
30 // set up GUI
31 public CreditInquiry()
32 {
33 super("Credit Inquiry Program");
34
35 Container container = getContentPane();
36
37 // set up panel for buttons
38 buttonPanel = new JPanel();
39
40 // create and configure button to open file
41 openButton = new JButton("Open File");
42 buttonPanel.add(openButton);
43
44 // register openButton listener
45 openButton.addActionListener(
46
47 // anonymous inner class to handle openButton event
48 new ActionListener() {
49
50 // open file for processing
51 public void actionPerformed(ActionEvent event)
52 {
53 openFile(true);
54 }
55
56 } // end anonymous inner class
57
58); // end call to addActionListener
59
60 // create and configure button to get
61 // accounts with credit balances
62 creditButton = new JButton("Credit balances");
63 buttonPanel.add(creditButton);
64 creditButton.addActionListener(new ButtonHandler());
65
66 // create and configure button to get
67 // accounts with debit balances
68 debitButton = new JButton("Debit balances");
69 buttonPanel.add(debitButton);
70 debitButton.addActionListener(new ButtonHandler());

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Credit inquiry program (part 2 of 7).

Chapter 16 Files and Streams 923

71
72 // create and configure button to get
73 // accounts with credit balances
74 zeroButton = new JButton("Zero balances");
75 buttonPanel.add(zeroButton);
76 zeroButton.addActionListener(new ButtonHandler());
77
78 // set up display area
79 recordDisplayArea = new JTextArea();
80 JScrollPane scroller =
81 new JScrollPane(recordDisplayArea);
82
83 // attach components to content pane
84 container.add(scroller, BorderLayout.CENTER);
85 container.add(buttonPanel, BorderLayout.SOUTH);
86
87 // disable creditButton, debitButton and zeroButton
88 creditButton.setEnabled(false);
89 debitButton.setEnabled(false);
90 zeroButton.setEnabled(false);
91
92 // register window listener
93 addWindowListener(
94
95 // anonymous inner class for windowClosing event
96 new WindowAdapter() {
97
98 // close file and terminate program
99 public void windowClosing(WindowEvent event)
100 {
101 closeFile();
102 System.exit(0);
103 }
104
105 } // end anonymous inner class
106
107); // end call to addWindowListener
108
109 // pack components and display window
110 pack();
111 setSize(600, 250);
112 show();
113
114 } // end CreditInquiry constructor
115
116 // enable user to choose file to open first time;
117 // otherwise, reopen chosen file
118 private void openFile(boolean firstTime)
119 {
120 if (firstTime) {
121
122 // display dialog, so user can choose file
123 JFileChooser fileChooser = new JFileChooser();

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Credit inquiry program (part 3 of 7).

924 Files and Streams Chapter 16

124 fileChooser.setFileSelectionMode(
125 JFileChooser.FILES_ONLY);
126
127 int result = fileChooser.showOpenDialog(this);
128
129 // if user clicked Cancel button on dialog, return
130 if (result == JFileChooser.CANCEL_OPTION)
131 return;
132
133 // obtain selected file
134 fileName = fileChooser.getSelectedFile();
135 }
136
137 // display error if file name invalid
138 if (fileName == null ||
139 fileName.getName().equals(""))
140 JOptionPane.showMessageDialog(this,
141 "Invalid File Name", "Invalid File Name",
142 JOptionPane.ERROR_MESSAGE);
143
144 else {
145
146 // open file
147 try {
148
149 // close file from previous operation
150 if (input != null)
151 input.close();
152
153 fileInput = new FileInputStream(fileName);
154 input = new ObjectInputStream(fileInput);
155 openButton.setEnabled(false);
156 creditButton.setEnabled(true);
157 debitButton.setEnabled(true);
158 zeroButton.setEnabled(true);
159 }
160
161 // catch problems manipulating file
162 catch (IOException ioException) {
163 JOptionPane.showMessageDialog(this,
164 "File does not exist", "Invalid File Name",
165 JOptionPane.ERROR_MESSAGE);
166 }
167 }
168
169 } // end method openFile
170
171 // close file before application terminates
172 private void closeFile()
173 {
174 // close file
175 try {
176 input.close();

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Credit inquiry program (part 4 of 7).

Chapter 16 Files and Streams 925

177 }
178
179 // process exception from closing file
180 catch (IOException ioException) {
181 JOptionPane.showMessageDialog(this,
182 "Error closing file",
183 "Error", JOptionPane.ERROR_MESSAGE);
184
185 System.exit(1);
186 }
187 }
188
189 // read records from file and display only records of
190 // appropriate type
191 private void readRecords()
192 {
193 AccountRecord record;
194 DecimalFormat twoDigits = new DecimalFormat("0.00");
195 openFile(false);
196
197 // read records
198 try {
199 recordDisplayArea.setText("The accounts are:\n");
200
201 // input the values from the file
202 while (true) {
203
204 // read one AccountRecord
205 record = (AccountRecord) input.readObject();
206
207 // if proper acount type, display record
208 if (shouldDisplay(record.getBalance()))
209 recordDisplayArea.append(record.getAccount() +
210 "\t" + record.getFirstName() + "\t" +
211 record.getLastName() + "\t" +
212 twoDigits.format(record.getBalance()) +
213 "\n");
214 }
215 }
216
217 // close file when end-of-file reached
218 catch (EOFException eofException) {
219 closeFile();
220 }
221
222 // display error if cannot read object
223 // because class not found
224 catch (ClassNotFoundException classNotFound) {
225 JOptionPane.showMessageDialog(this,
226 "Unable to create object",
227 "Class Not Found", JOptionPane.ERROR_MESSAGE);
228 }
229

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Credit inquiry program (part 5 of 7).

926 Files and Streams Chapter 16

230 // display error if cannot read
231 // because problem with file
232 catch (IOException ioException) {
233 JOptionPane.showMessageDialog(this,
234 "Error reading from file",
235 "Error", JOptionPane.ERROR_MESSAGE);
236 }
237
238 } // end method readRecords
239
240 // uses record ty to determine if a record should be displayed
241 private boolean shouldDisplay(double balance)
242 {
243 if (accountType.equals("Credit balances") &&
244 balance < 0)
245
246 return true;
247
248 else if (accountType.equals("Debit balances") &&
249 balance > 0)
250
251 return true;
252
253 else if (accountType.equals("Zero balances") &&
254 balance == 0)
255
256 return true;
257
258 return false;
259 }
260
261 // execute application
262 public static void main(String args[])
263 {
264 new CreditInquiry();
265 }
266
267 // private inner class for creditButton, debitButton and
268 // zeroButton event handling
269 private class ButtonHandler implements ActionListener {
270
271 // read records from file
272 public void actionPerformed(ActionEvent event)
273 {
274 accountType = event.getActionCommand();
275 readRecords();
276 }
277
278 } // end class ButtonHandler
279
280 } // end class CreditInquiry

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Credit inquiry program (part 6 of 7).

Chapter 16 Files and Streams 927

16.6 Updating Sequential-Access Files
Data that is formatted and written to a sequential-access file as shown in Section 16.4 can-
not be modified without reading and writing all the data in the file. For example, if the name
White needed to be changed to Worthington, the old name cannot simply be overwrit-
ten. Such updating can be done, but it is awkward. To make the preceding name change,
the records before White in a sequential-access file could be copied to a new file, the up-
dated record would then be written to the new file, and the records after White would be
copied to the new file. This requires processing every record in the file to update one record.
If many records are being updated in one pass of the file, this technique can be acceptable.

Fig. 16.9Fig. 16.9Fig. 16.9Fig. 16.9 Credit inquiry program (part 7 of 7).

928 Files and Streams Chapter 16

16.7 Random-Access Files
So far, we have seen how to create sequential-access files and to search through them to
locate particular information. Sequential-access files are inappropriate for so-called “in-
stant-access” applications, in which a particular record of information must be located im-
mediately. Some popular instant-access applications are airline reservation systems,
banking systems, point-of-sale systems, automated-teller machines and other kinds of
transaction-processing systems that require rapid access to specific data. The bank at which
you have your account might have hundreds of thousands or even millions of other custom-
ers, yet, when you use an automated teller machine, the bank determines in seconds wheth-
er your account has sufficient funds for the transaction. This kind of instant access is
possible with random-access files. A program can access individual records of a random-
access file directly (and quickly) without searching through other records. Random-access
files are sometimes called direct-access files.

As we have said, Java does not impose structure on a file, so an application that wants
to use random-access files must create them. Several techniques can be used to create
random-access files. Perhaps the simplest is to require that all records in a file be of the
same fixed length.

Using fixed-length records makes it easy for a program to calculate (as a function of
the record size and the record key) the exact location of any record relative to the beginning
of the file. We will soon see how this facilitates immediate access to specific records, even
in large files.

Figure 16.10 illustrates Java’s view of a random-access file composed of fixed-length
records (each record in this figure is 100 bytes long). A random-access file is like a railroad
train with many cars—some empty, some with contents.

A program can insert data in a random-access file without destroying other data in
the file. Also, a program can update or delete data stored previously without rewriting the
entire file. In the following sections, we explain how to create a random-access file, enter
data, read the data both sequentially and randomly, update the data and delete data no
longer needed.

16.8 Creating a Random-Access File
RandomAccessFile objects have all the capabilities of DataInputStream and
DataOutputStream objects discussed earlier. When a program associates an object of
class RandomAccessFile with a file, the program reads or writes data beginning at the
location in the file specified by the file-position pointer and manipulates all data as primi-
tive data types. When writing an int value, 4 bytes are output to the file. When reading a
double value, 8 bytes are input from the file. The size of the data types is guaranteed, be-
cause Java has fixed sizes for all primitive data types regardless of the computing platform.

Random-access file-processing programs rarely write a single field to a file. Normally,
they write one object at a time, as we show in the following examples.

Consider the following problem statement:

Create a transaction-processing program capable of storing up to 100 fixed-length records
for a company that can have up to 100 customers. Each record should consist of an account
number that will be used as the record key, a last name, a first name and a balance. The pro-
gram should be able to update an account, insert a new account and delete an account.

Chapter 16 Files and Streams 929

The next several sections introduce the techniques necessary to create this credit-pro-
cessing program. Figure 16.11 contains the RandomAccessAccountRecord class that
is used by the next four programs for both reading records from and writing records to a file.

Fig. 16.10Fig. 16.10Fig. 16.10Fig. 16.10 Java’s view of a random-access file.

1 // Fig. 16.11: RandomAccessAccountRecord.java
2 // Subclass of AccountRecord for random access file programs.
3 package com.deitel.jhtp4.ch16;
4
5 // Java core packages
6 import java.io.*;
7
8 public class RandomAccessAccountRecord extends AccountRecord {
9

10 // no-argument constructor calls other constructor
11 // with default values
12 public RandomAccessAccountRecord()
13 {
14 this(0, "", "", 0.0);
15 }
16
17 // initialize a RandomAccessAccountRecord
18 public RandomAccessAccountRecord(int account,
19 String firstName, String lastName, double balance)
20 {
21 super(account, firstName, lastName, balance);
22 }
23
24 // read a record from specified RandomAccessFile
25 public void read(RandomAccessFile file) throws IOException
26 {
27 setAccount(file.readInt());
28 setFirstName(padName(file));
29 setLastName(padName(file));
30 setBalance(file.readDouble());
31 }
32

Fig. 16.11Fig. 16.11Fig. 16.11Fig. 16.11 RandomAccessAccountRecord class used in the random-access file
programs (part 1 of 2).

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

100
bytes

0 100 200 300 400 500
byte offsets

930 Files and Streams Chapter 16

Class RandomAccessAccountRecord inherits AccountRecord’s (Fig. 16.5)
implementation, which includes private instance variables—account, lastName,
firstName and balance—as well as their public set and get methods.

33 // ensure that name is proper length
34 private String padName(RandomAccessFile file)
35 throws IOException
36 {
37 char name[] = new char[15], temp;
38
39 for (int count = 0; count < name.length; count++) {
40 temp = file.readChar();
41 name[count] = temp;
42 }
43
44 return new String(name).replace('\0', ' ');
45 }
46
47 // write a record to specified RandomAccessFile
48 public void write(RandomAccessFile file) throws IOException
49 {
50 file.writeInt(getAccount());
51 writeName(file, getFirstName());
52 writeName(file, getLastName());
53 file.writeDouble(getBalance());
54 }
55
56 // write a name to file; maximum of 15 characters
57 private void writeName(RandomAccessFile file, String name)
58 throws IOException
59 {
60 StringBuffer buffer = null;
61
62 if (name != null)
63 buffer = new StringBuffer(name);
64 else
65 buffer = new StringBuffer(15);
66
67 buffer.setLength(15);
68 file.writeChars(buffer.toString());
69 }
70
71 // NOTE: This method contains a hard coded value for the
72 // size of a record of information.
73 public static int size()
74 {
75 return 72;
76 }
77
78 } // end class RandomAccessAccountRecord

Fig. 16.11Fig. 16.11Fig. 16.11Fig. 16.11 RandomAccessAccountRecord class used in the random-access file
programs (part 2 of 2).

Chapter 16 Files and Streams 931

Method read (lines 25–31) reads one record from the RandomAccessFile object
passed as an argument. Methods readInt (line 27) and readDouble (line 30) read the
account and balance, respectively. Method read calls private method padName
(lines 34–45) twice to obtain the first and last names. Method padName reads fifteen char-
acters from the RandomAccessFile and returns a String. If a name is shorter than 15
characters, the program fills each extra character with a null byte ('\0'). Swing compo-
nents, such as JTextFields, cannot display null byte characters (which are displayed
instead as rectangles). Line 44 solves this problem by replacing null bytes with spaces.

Method write (48–54) outputs one record to the RandomAccessFile object
passed in as an argument. This method uses method writeInt to output the integer
account, method writeChars (called from utility method writeName) to output the
firstName and lastName character arrays and method writeDouble to output the
double balance. [Note: In order to ensure that all records in the RandomAccess-
File have the same size, we write exactly 15 characters for the first name and exactly 15
characters for the last name.] Method writeName (lines 57–69) performs the write oper-
ations for the first and last name.

Figure 16.12 illustrates opening a random-access file and writing data to the disk.
This program writes 100 RandomAccessAccountRecords, using method write
(Fig. 16.11). Each RandomAccessAccountRecord object contains 0 for the account
number, null for the last name, null for the first name and 0.0 for the balance. The file
is initialized to create the proper amount of “empty” space in which the account data will
be stored and to enable us to determine in subsequent programs whether each record is
empty or contains data.

1 // Fig. 16.12: CreateRandomFile.java
2 // This program creates a random access file sequentially
3 // by writing 100 empty records to disk.
4
5 // Java core packages
6 import java.io.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 // Deitel packages
12 import com.deitel.jhtp4.ch16.RandomAccessAccountRecord;
13
14 public class CreateRandomFile {
15
16 // enable user to select file to open
17 private void createFile()
18 {
19 // display dialog so user can choose file
20 JFileChooser fileChooser = new JFileChooser();
21 fileChooser.setFileSelectionMode(
22 JFileChooser.FILES_ONLY);
23
24 int result = fileChooser.showSaveDialog(null);

Fig. 16.12Fig. 16.12Fig. 16.12Fig. 16.12 Creating a random-access file sequentially (part 1 of 3).

932 Files and Streams Chapter 16

25
26 // if user clicked Cancel button on dialog, return
27 if (result == JFileChooser.CANCEL_OPTION)
28 return;
29
30 // obtain selected file
31 File fileName = fileChooser.getSelectedFile();
32
33 // display error if file name invalid
34 if (fileName == null ||
35 fileName.getName().equals(""))
36 JOptionPane.showMessageDialog(null,
37 "Invalid File Name", "Invalid File Name",
38 JOptionPane.ERROR_MESSAGE);
39
40 else {
41
42 // open file
43 try {
44 RandomAccessFile file =
45 new RandomAccessFile(fileName, "rw");
46
47 RandomAccessAccountRecord blankRecord =
48 new RandomAccessAccountRecord();
49
50 // write 100 blank records
51 for (int count = 0; count < 100; count++)
52 blankRecord.write(file);
53
54 // close file
55 file.close();
56
57 // display message that file was created
58 JOptionPane.showMessageDialog(null,
59 "Created file " + fileName, "Status",
60 JOptionPane.INFORMATION_MESSAGE);
61
62 System.exit(0); // terminate program
63 }
64
65 // process exceptions during open, write or
66 // close file operations
67 catch (IOException ioException) {
68 JOptionPane.showMessageDialog(null,
69 "Error processing file", "Error processing file",
70 JOptionPane.ERROR_MESSAGE);
71
72 System.exit(1);
73 }
74 }
75
76 } // end method openFile
77

Fig. 16.12Fig. 16.12Fig. 16.12Fig. 16.12 Creating a random-access file sequentially (part 2 of 3).

Chapter 16 Files and Streams 933

Lines 44–45 attempt to open a RandomAccessFile for use in this program. The
RandomAccessFile constructor receives two arguments—the file name and the file
open mode. The file open mode for a RandomAccessFile is either "r" to open the file
for reading or "rw" to open the file for reading and writing.

If an IOException occurs during the open process, the program displays a message
dialog and terminates. If the file opens properly, the program uses a for structure (lines
51–52) to invoke RandomAccessAccountRecord method write 100 times. This
statement causes the data members of object blankRecord to be written to the file asso-
ciated with RandomAccessFile object file.

16.9 Writing Data Randomly to a Random-Access File
Figure 16.13 writes data to a file that is opened with the "rw" mode for reading and writ-
ing. It uses the RandomAccessFile method seek to determine the exact location in the
file at which a record of information is stored. Method seek sets the file-position pointer
to a specific position in the file relative to the beginning of the file, and the Random-
AccessAccountRecord class method write outputs the data. This program assumes

78 // execute application to create file user specifies
79 public static void main(String args[])
80 {
81 CreateRandomFile application = new CreateRandomFile();
82
83 application.createFile();
84 }
85
86 } // end class CreateRandomFile

Fig. 16.12Fig. 16.12Fig. 16.12Fig. 16.12 Creating a random-access file sequentially (part 3 of 3).

934 Files and Streams Chapter 16

the user does not enter duplicate account numbers and that the user enters appropriate data
in each JTextField.

1 // Fig. 16.13: WriteRandomFile.java
2 // This program uses textfields to get information from the
3 // user at the keyboard and writes the information to a
4 // random-access file.
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.io.*;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 // Deitel packages
15 import com.deitel.jhtp4.ch16.*;
16
17 public class WriteRandomFile extends JFrame {
18 private RandomAccessFile output;
19 private BankUI userInterface;
20 private JButton enterButton, openButton;
21
22 // set up GUI
23 public WriteRandomFile()
24 {
25 super("Write to random access file");
26
27 // create instance of reusable user interface BankUI
28 userInterface = new BankUI(4); // four textfields
29 getContentPane().add(userInterface,
30 BorderLayout.CENTER);
31
32 // get reference to generic task button doTask1 in BankUI
33 openButton = userInterface.getDoTask1Button();
34 openButton.setText("Open...");
35
36 // register listener to call openFile when button pressed
37 openButton.addActionListener(
38
39 // anonymous inner class to handle openButton event
40 new ActionListener() {
41
42 // allow user to select file to open
43 public void actionPerformed(ActionEvent event)
44 {
45 openFile();
46 }
47
48 } // end anonymous inner class
49
50); // end call to addActionListener

Fig. 16.13Fig. 16.13Fig. 16.13Fig. 16.13 Writing data randomly to a random-access file (part 1 of 5).

Chapter 16 Files and Streams 935

51
52 // register window listener for window closing event
53 addWindowListener(
54
55 // anonymous inner class to handle windowClosing event
56 new WindowAdapter() {
57
58 // add record in GUI, then close file
59 public void windowClosing(WindowEvent event)
60 {
61 if (output != null)
62 addRecord();
63
64 closeFile();
65 }
66
67 } // end anonymous inner class
68
69); // end call to addWindowListener
70
71 // get reference to generic task button doTask2 in BankUI
72 enterButton = userInterface.getDoTask2Button();
73 enterButton.setText("Enter");
74 enterButton.setEnabled(false);
75
76 // register listener to call addRecord when button pressed
77 enterButton.addActionListener(
78
79 // anonymous inner class to handle enterButton event
80 new ActionListener() {
81
82 // add record to file
83 public void actionPerformed(ActionEvent event)
84 {
85 addRecord();
86 }
87
88 } // end anonymous inner class
89
90); // end call to addActionListener
91
92 setSize(300, 150);
93 show();
94 }
95
96 // enable user to choose file to open
97 private void openFile()
98 {
99 // display file dialog so user can select file
100 JFileChooser fileChooser = new JFileChooser();
101 fileChooser.setFileSelectionMode(
102 JFileChooser.FILES_ONLY);
103

Fig. 16.13Fig. 16.13Fig. 16.13Fig. 16.13 Writing data randomly to a random-access file (part 2 of 5).

936 Files and Streams Chapter 16

104 int result = fileChooser.showOpenDialog(this);
105
106 // if user clicked Cancel button on dialog, return
107 if (result == JFileChooser.CANCEL_OPTION)
108 return;
109
110 // obtain selected file
111 File fileName = fileChooser.getSelectedFile();
112
113 // display error if file name invalid
114 if (fileName == null ||
115 fileName.getName().equals(""))
116 JOptionPane.showMessageDialog(this,
117 "Invalid File Name", "Invalid File Name",
118 JOptionPane.ERROR_MESSAGE);
119
120 else {
121
122 // open file
123 try {
124 output = new RandomAccessFile(fileName, "rw");
125 enterButton.setEnabled(true);
126 openButton.setEnabled(false);
127 }
128
129 // process exception while opening file
130 catch (IOException ioException) {
131 JOptionPane.showMessageDialog(this,
132 "File does not exist",
133 "Invalid File Name",
134 JOptionPane.ERROR_MESSAGE);
135 }
136 }
137
138 } // end method openFile
139
140 // close file and terminate application
141 private void closeFile()
142 {
143 // close file and exit
144 try {
145 if (output != null)
146 output.close();
147
148 System.exit(0);
149 }
150
151 // process exception while closing file
152 catch(IOException ioException) {
153 JOptionPane.showMessageDialog(this,
154 "Error closing file",
155 "Error", JOptionPane.ERROR_MESSAGE);
156

Fig. 16.13Fig. 16.13Fig. 16.13Fig. 16.13 Writing data randomly to a random-access file (part 3 of 5).

Chapter 16 Files and Streams 937

157 System.exit(1);
158 }
159 }
160
161 // add one record to file
162 public void addRecord()
163 {
164 int accountNumber = 0;
165 String fields[] = userInterface.getFieldValues();
166 RandomAccessAccountRecord record =
167 new RandomAccessAccountRecord();
168
169 // ensure account field has a value
170 if (! fields[BankUI.ACCOUNT].equals("")) {
171
172 // output values to file
173 try {
174 accountNumber =
175 Integer.parseInt(fields[BankUI.ACCOUNT]);
176
177 if (accountNumber > 0 && accountNumber <= 100) {
178 record.setAccount(accountNumber);
179
180 record.setFirstName(fields[BankUI.FIRSTNAME]);
181 record.setLastName(fields[BankUI.LASTNAME]);
182 record.setBalance(Double.parseDouble(
183 fields[BankUI.BALANCE]));
184
185 output.seek((accountNumber - 1) *
186 RandomAccessAccountRecord.size());
187 record.write(output);
188 }
189
190 userInterface.clearFields(); // clear TextFields
191 }
192
193 // process improper account number or balance format
194 catch (NumberFormatException formatException) {
195 JOptionPane.showMessageDialog(this,
196 "Bad account number or balance",
197 "Invalid Number Format",
198 JOptionPane.ERROR_MESSAGE);
199 }
200
201 // process exceptions while writing to file
202 catch (IOException ioException) {
203 closeFile();
204 }
205 }
206
207 } // end method addRecord
208

Fig. 16.13Fig. 16.13Fig. 16.13Fig. 16.13 Writing data randomly to a random-access file (part 4 of 5).

938 Files and Streams Chapter 16

The user enters values for the account number, first name, last name and balance.
When the user clicks the Enter button, the program calls method addRecord (162–207)
of class WriteRandomFile to retrieve the data from the BankAccountUI’s JText-
Fields, store the data in RandomAccessAccountRecord class object record and
call the write method of class RandomAccessAccountRecord to output the data.

Lines 185–186 call RandomAccessFile method seek to position the file-position
pointer for object output to the byte location calculated by (accountNumber - 1) *
RandomAccessAccountRecord.size(). Account numbers in this program should
be between 1 and 100. We subtract 1 from the account number when calculating the byte
location of the record. Thus, for record 1, the file-position pointer is set to byte 0 of the file.

209 // execute application
210 public static void main(String args[])
211 {
212 new WriteRandomFile();
213 }
214
215 } // end class WriteRandomFile

Fig. 16.13Fig. 16.13Fig. 16.13Fig. 16.13 Writing data randomly to a random-access file (part 5 of 5).

Chapter 16 Files and Streams 939

When the user closes the window, the program attempts to add the last record to the
file (if there is one in the GUI waiting to be output), closes the file and terminates.

16.10 Reading Data Sequentially from a Random-Access File
In the previous sections, we created a random-access file and wrote data to that file. In this
section, we develop a program (Fig. 16.14) that opens a RandomAccessFile for read-
ing with the "r" file open mode, reads through the file sequentially and displays only those
records containing data. This program produces an additional benefit. See whether you can
determine what it is; we will reveal it at the end of this section.

Good Programming Practice 16.1
Open a file with the "r" file open mode for input if the contents of the file should not be modi-
fied. This prevents unintentional modification of the file’s contents. This is another example
of the principle of least privilege. 16.1

1 // Fig. 16.14: ReadRandomFile.java
2 // This program reads a random-access file sequentially and
3 // displays the contents one record at a time in text fields.
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8 import java.io.*;
9 import java.text.DecimalFormat;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 // Deitel packages
15 import com.deitel.jhtp4.ch16.*;
16
17 public class ReadRandomFile extends JFrame {
18 private BankUI userInterface;
19 private RandomAccessFile input;
20 private JButton nextButton, openButton;
21
22 // set up GUI
23 public ReadRandomFile()
24 {
25 super("Read Client File");
26
27 // create reusable user interface instance
28 userInterface = new BankUI(4); // four textfields
29 getContentPane().add(userInterface);
30
31 // configure generic doTask1 button from BankUI
32 openButton = userInterface.getDoTask1Button();
33 openButton.setText("Open File for Reading...");
34

Fig. 16.14Fig. 16.14Fig. 16.14Fig. 16.14 Reading a random-access file sequentially (part 1 of 5).

940 Files and Streams Chapter 16

35 // register listener to call openFile when button pressed
36 openButton.addActionListener(
37
38 // anonymous inner class to handle openButton event
39 new ActionListener() {
40
41 // enable user to select file to open
42 public void actionPerformed(ActionEvent event)
43 {
44 openFile();
45 }
46
47 } // end anonymous inner class
48
49); // end call to addActionListener
50
51 // configure generic doTask2 button from BankUI
52 nextButton = userInterface.getDoTask2Button();
53 nextButton.setText("Next");
54 nextButton.setEnabled(false);
55
56 // register listener to call readRecord when button pressed
57 nextButton.addActionListener(
58
59 // anonymous inner class to handle nextButton event
60 new ActionListener() {
61
62 // read a record when user clicks nextButton
63 public void actionPerformed(ActionEvent event)
64 {
65 readRecord();
66 }
67
68 } // end anonymous inner class
69
70); // end call to addActionListener
71
72 // register listener for window closing event
73 addWindowListener(
74
75 // anonymous inner class to handle windowClosing event
76 new WindowAdapter() {
77
78 // close file and terminate application
79 public void windowClosing(WindowEvent event)
80 {
81 closeFile();
82 }
83
84 } // end anonymous inner class
85
86); // end call to addWindowListener
87

Fig. 16.14Fig. 16.14Fig. 16.14Fig. 16.14 Reading a random-access file sequentially (part 2 of 5).

Chapter 16 Files and Streams 941

88 setSize(300, 150);
89 show();
90 }
91
92 // enable user to select file to open
93 private void openFile()
94 {
95 // display file dialog so user can select file
96 JFileChooser fileChooser = new JFileChooser();
97 fileChooser.setFileSelectionMode(
98 JFileChooser.FILES_ONLY);
99
100 int result = fileChooser.showOpenDialog(this);
101
102 // if user clicked Cancel button on dialog, return
103 if (result == JFileChooser.CANCEL_OPTION)
104 return;
105
106 // obtain selected file
107 File fileName = fileChooser.getSelectedFile();
108
109 // display error is file name invalid
110 if (fileName == null ||
111 fileName.getName().equals(""))
112 JOptionPane.showMessageDialog(this,
113 "Invalid File Name", "Invalid File Name",
114 JOptionPane.ERROR_MESSAGE);
115
116 else {
117
118 // open file
119 try {
120 input = new RandomAccessFile(fileName, "r");
121 nextButton.setEnabled(true);
122 openButton.setEnabled(false);
123 }
124
125 // catch exception while opening file
126 catch (IOException ioException) {
127 JOptionPane.showMessageDialog(this,
128 "File does not exist", "Invalid File Name",
129 JOptionPane.ERROR_MESSAGE);
130 }
131 }
132
133 } // end method openFile
134
135 // read one record
136 public void readRecord()
137 {
138 DecimalFormat twoDigits = new DecimalFormat("0.00");
139 RandomAccessAccountRecord record =
140 new RandomAccessAccountRecord();

Fig. 16.14Fig. 16.14Fig. 16.14Fig. 16.14 Reading a random-access file sequentially (part 3 of 5).

942 Files and Streams Chapter 16

141
142 // read a record and display
143 try {
144
145 do {
146 record.read(input);
147 } while (record.getAccount() == 0);
148
149 String values[] = {
150 String.valueOf(record.getAccount()),
151 record.getFirstName(),
152 record.getLastName(),
153 String.valueOf(record.getBalance()) };
154 userInterface.setFieldValues(values);
155 }
156
157 // close file when end-of-file reached
158 catch (EOFException eofException) {
159 JOptionPane.showMessageDialog(this, "No more records",
160 "End-of-file reached",
161 JOptionPane.INFORMATION_MESSAGE);
162 closeFile();
163 }
164
165 // process exceptions from problem with file
166 catch (IOException ioException) {
167 JOptionPane.showMessageDialog(this,
168 "Error Reading File", "Error",
169 JOptionPane.ERROR_MESSAGE);
170
171 System.exit(1);
172 }
173
174 } // end method readRecord
175
176 // close file and terminate application
177 private void closeFile()
178 {
179 // close file and exit
180 try {
181 if (input != null)
182 input.close();
183
184 System.exit(0);
185 }
186
187 // process exception closing file
188 catch(IOException ioException) {
189 JOptionPane.showMessageDialog(this,
190 "Error closing file",
191 "Error", JOptionPane.ERROR_MESSAGE);
192
193 System.exit(1);

Fig. 16.14Fig. 16.14Fig. 16.14Fig. 16.14 Reading a random-access file sequentially (part 4 of 5).

Chapter 16 Files and Streams 943

When the user clicks the Next button to read the next record in the file, the program
invokes class ReadRandomFile’s readRecord method (lines 136–174). This method
invokes class RandomAccessAccountRecord’s read method (line 146) to read the
data into RandomAccessAccountRecord class object record. Method
readRecord reads from the file until it encounters a record with a nonzero account
number (zero is the initial value for the account). When readRecord encounters a valid
account number (i.e., a nonzero value), the loop terminates, and readRecord displays the
record data in the text fields. When the user clicks the Done button or when the end-of-file

194 }
195 }
196
197 // execute application
198 public static void main(String args[])
199 {
200 new ReadRandomFile();
201 }
202
203 } // end class ReadRandomFile

Fig. 16.14Fig. 16.14Fig. 16.14Fig. 16.14 Reading a random-access file sequentially (part 5 of 5).

944 Files and Streams Chapter 16

marker is encountered while reading, method closeFile is invoked to close the file and
terminate the program.

What about that additional benefit we promised? If you examine the GUI as the pro-
gram executes, you will notice that the records are displayed in sorted order (by account
number)! This is a simple consequence of the way we stored these records in the file, using
direct-access techniques. Compared to the bubble sort we have seen (Chapter 7), sorting
with direct-access techniques is blazingly fast. The speed is achieved by making the file
large enough to hold every possible record that might be created, which enables the pro-
gram to insert a record between other records without having to reorganize the file. This,
of course, means that the file could be sparsely occupied most of the time, a waste of
storage. So this is another example of the space/time trade-off. By using large amounts of
space, we are able to develop a much faster sorting algorithm.

16.11 Example: A Transaction-Processing Program
We now present a substantial transaction-processing program (Fig. 16.20), using a random-
access file to achieve “instant” access processing. The program maintains a bank’s account
information. The program updates existing accounts, adds new accounts and deletes ac-
counts. We assume that the program of Fig. 16.12 has been executed to create a file and that
the program of Fig. 16.13 has been executed to insert initial data. The techniques used in
this example have been presented in the earlier RandomAccessFile examples.

This program GUI consists of a window with a menu bar containing a File menu and
internal frames that enable the user to perform insert, update and delete record operations
on the file. The internal frames are subclasses of JInternalFrame that are managed by
a JDesktopPane (as discussed in Chapter 13). The File menu has five menu items to
select various tasks, as shown in Fig. 16.15.

When the user selects Update Record from the File menu, the Update Record
internal frame (Fig. 16.16) allows the user to update an existing account. The code that imple-
ments the Update Record internal frame is in class UpdateDialog (lines 238–458 of
Fig. 16.20). In the first screen capture of Fig. 16.16, the user inputs an account number and
presses Enter to invoke the account textfield’s actionPerformed method (lines 345–360
of Fig. 16.20). This reads the account from the file with method getRecord (lines 371–418
of Fig. 16.20), which validates the account number, then reads the record with RandomAc-
cessAccountRecord method read. Next, getRecord compares the account number
with zero (i.e., no record) to determine whether the record contains information. If not,
getRecord displays a message stating that the record does not exist; otherwise, it returns
the record. Lines 350–357 of the account textfield’s actionPerformed method extract
the account information from the record and display the account information in the internal
frame (as shown in the second screen capture of Fig. 16.16). The Transaction amount tex-
tfield initially contains the string charge (+) or payment (–). The user should select this
text and type the transaction amount (a positive value for a charge or a negative value for a
payment), then press Enter to invoke the transaction textfield’s actionPerformed
method (lines 295–330 of Fig. 16.20). Method addRecord (lines 421–456 of Fig. 16.20)
takes the transaction amount, adds it to the current balance and calls RandomAccessAc-
countRecord method setBalance to update the display. Clicking Save Changes
writes the updated record to disk; clicking Cancel closes the internal frame without writing
the record to disk. The windows in Fig. 16.17 show a sample of a transaction being input.

Chapter 16 Files and Streams 945

When the user selects New Record from the File menu, the New Record internal
frame in Fig. 16.18 allows the user to add a new record. The code that implements the New
Record internal frame is in class NewDialog (lines 461–615 of Fig. 16.20). The user
enters data in the JTextFields and clicks Save Changes to write the record to disk.
If the account number already exists, the program displays an error message and does not
attempt to write the record. Clicking Cancel closes the internal frame without attempting
to write the record.

Selecting Delete Record from the File menu displays the Delete Record internal
frame in Fig. 16.19, which allows the user to delete a record from the file. The code that
implements the Delete Record internal frame is in class DeleteDialog (lines 618–
774 of Fig. 16.20). The user enters the account number in the JTextField and presses
Enter. Only an existing record can be deleted, so, if the specified account is empty, the pro-
gram displays an error message. This enables the user to check whether the record exists
before deleting the record. Clicking the Delete Record button in the internal frame sets
the record’s account number to 0 (which this application considers to be an empty record).
Clicking Cancel closes the internal frame without deleting the record.

Fig. 16.15Fig. 16.15Fig. 16.15Fig. 16.15 The initial Transaction Processor window.

Fig. 16.16Fig. 16.16Fig. 16.16Fig. 16.16 Loading a record into the Update Record internal frame.

Type account number and press
the Enter key to load record.

946 Files and Streams Chapter 16

Fig. 16.17Fig. 16.17Fig. 16.17Fig. 16.17 Inputting a transaction in the Update Record internal frame.

Fig. 16.18Fig. 16.18Fig. 16.18Fig. 16.18 New Record internal frame.

Fig. 16.19Fig. 16.19Fig. 16.19Fig. 16.19 Delete Record internal frame.

Type transaction amount and
press the Enter key to update
balance in dialog.

Press Save Changes to
store new balance in file.

Chapter 16 Files and Streams 947

The TransactionProcessor program appears in Fig. 16.20. The program opens
the file with file open mode "rw" (reading and writing).

1 // Transaction processing program using RandomAccessFiles.
2 // This program reads a random-access file sequentially,
3 // updates records already written to the file, creates new
4 // records to be placed in the file and deletes data
5 // already in the file.
6
7 // Java core packages
8 import java.awt.*;
9 import java.awt.event.*;

10 import java.io.*;
11 import java.text.DecimalFormat;
12
13 // Java extension packages
14 import javax.swing.*;
15
16 // Deitel packages
17 import com.deitel.jhtp4.ch16.*;
18
19 public class TransactionProcessor extends JFrame {
20 private UpdateDialog updateDialog;
21 private NewDialog newDialog;
22 private DeleteDialog deleteDialog;
23 private JMenuItem newItem, updateItem, deleteItem,
24 openItem, exitItem;
25 private JDesktopPane desktop;
26 private RandomAccessFile file;
27 private RandomAccessAccountRecord record;
28
29 // set up GUI
30 public TransactionProcessor()
31 {
32 super("Transaction Processor");
33
34 // set up desktop, menu bar and File menu
35 desktop = new JDesktopPane();
36 getContentPane().add(desktop);
37
38 JMenuBar menuBar = new JMenuBar();
39 setJMenuBar(menuBar);
40
41 JMenu fileMenu = new JMenu("File");
42 menuBar.add(fileMenu);
43
44 // set up menu item for adding a record
45 newItem = new JMenuItem("New Record");
46 newItem.setEnabled(false);
47

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 1 of 15).

948 Files and Streams Chapter 16

48 // display new record dialog when user selects New Record
49 newItem.addActionListener(
50
51 new ActionListener() {
52
53 public void actionPerformed(ActionEvent event)
54 {
55 newDialog.setVisible(true);
56 }
57 }
58);
59
60 // set up menu item for updating a record
61 updateItem = new JMenuItem("Update Record");
62 updateItem.setEnabled(false);
63
64 // display update dialog when user selects Update Record
65 updateItem.addActionListener(
66
67 new ActionListener() {
68
69 public void actionPerformed(ActionEvent event)
70 {
71 updateDialog.setVisible(true);
72 }
73 }
74);
75
76 // set up menu item for deleting a record
77 deleteItem = new JMenuItem("Delete Record");
78 deleteItem.setEnabled(false);
79
80 // display delete dialog when user selects Delete Record
81 deleteItem.addActionListener(
82
83 new ActionListener() {
84
85 public void actionPerformed(ActionEvent event)
86 {
87 deleteDialog.setVisible(true);
88 }
89 }
90);
91
92 // set up button for opening file
93 openItem = new JMenuItem("New/Open File");
94
95 // enable user to select file to open, then set up
96 // dialog boxes
97 openItem.addActionListener(
98
99 new ActionListener() {
100

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 2 of 15).

Chapter 16 Files and Streams 949

101 public void actionPerformed(ActionEvent event)
102 {
103 boolean opened = openFile();
104
105 if (!opened)
106 return;
107
108 openItem.setEnabled(false);
109
110 // set up internal frames for record processing
111 updateDialog = new UpdateDialog(file);
112 desktop.add(updateDialog);
113
114 deleteDialog = new DeleteDialog(file);
115 desktop.add (deleteDialog);
116
117 newDialog = new NewDialog(file);
118 desktop.add(newDialog);
119 }
120
121 } // end anonymous inner class
122
123); // end call to addActionListener
124
125 // set up menu item for exiting program
126 exitItem = new JMenuItem("Exit");
127 exitItem.setEnabled(true);
128
129 // teminate application
130 exitItem.addActionListener(
131
132 new ActionListener() {
133
134 public void actionPerformed(ActionEvent event)
135 {
136 closeFile();
137 }
138 }
139);
140
141 // attach menu items to File menu
142 fileMenu.add(openItem);
143 fileMenu.add(newItem);
144 fileMenu.add(updateItem);
145 fileMenu.add(deleteItem);
146 fileMenu.addSeparator();
147 fileMenu.add(exitItem);
148
149 // configure window
150 setDefaultCloseOperation(
151 WindowConstants.DO_NOTHING_ON_CLOSE);
152
153 setSize(400, 250);

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 3 of 15).

950 Files and Streams Chapter 16

154 setVisible(true);
155
156 } // end TransactionProcessor constructor
157
158 // enable user to select file to open
159 private boolean openFile()
160 {
161 // display dialog so user can select file
162 JFileChooser fileChooser = new JFileChooser();
163 fileChooser.setFileSelectionMode(
164 JFileChooser.FILES_ONLY);
165
166 int result = fileChooser.showOpenDialog(this);
167
168 // if user clicked Cancel button on dialog, return
169 if (result == JFileChooser.CANCEL_OPTION)
170 return false;
171
172 // obtain selected file
173 File fileName = fileChooser.getSelectedFile();
174
175 // display error if file name invalid
176 if (fileName == null ||
177 fileName.getName().equals("")) {
178 JOptionPane.showMessageDialog(this,
179 "Invalid File Name", "Invalid File Name",
180 JOptionPane.ERROR_MESSAGE);
181
182 return false;
183 }
184
185 else {
186
187 // open file
188 try {
189 file = new RandomAccessFile(fileName, "rw");
190 openItem.setEnabled(false);
191 newItem.setEnabled(true);
192 updateItem.setEnabled(true);
193 deleteItem.setEnabled(true);
194 }
195
196 // process problems opening file
197 catch (IOException ioException) {
198 JOptionPane.showMessageDialog(this,
199 "File does not exist", "Invalid File Name",
200 JOptionPane.ERROR_MESSAGE);
201
202 return false;
203 }
204 }
205
206 return true; // file opened

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 4 of 15).

Chapter 16 Files and Streams 951

207 }
208
209 // close file and terminate application
210 private void closeFile()
211 {
212 // close file and exit
213 try {
214 if (file != null)
215 file.close();
216
217 System.exit(0);
218 }
219
220 // process exceptions closing file
221 catch(IOException ioException) {
222 JOptionPane.showMessageDialog(this,
223 "Error closing file",
224 "Error", JOptionPane.ERROR_MESSAGE);
225 System.exit(1);
226 }
227 }
228
229 // execute application
230 public static void main(String args[])
231 {
232 new TransactionProcessor();
233 }
234
235 } // end class TransactionProcessor
236
237 // class for udpating records
238 class UpdateDialog extends JInternalFrame {
239 private RandomAccessFile file;
240 private BankUI userInterface;
241
242 // set up GUI
243 public UpdateDialog(RandomAccessFile updateFile)
244 {
245 super("Update Record");
246
247 file = updateFile;
248
249 // set up GUI components
250 userInterface = new BankUI(5);
251 getContentPane().add(userInterface,
252 BorderLayout.CENTER);
253
254 // set up Save Changes button and register listener
255 JButton saveButton = userInterface.getDoTask1Button();
256 saveButton.setText("Save Changes");
257
258 saveButton.addActionListener(
259

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 5 of 15).

952 Files and Streams Chapter 16

260 new ActionListener() {
261
262 public void actionPerformed(ActionEvent event)
263 {
264 addRecord(getRecord());
265 setVisible(false);
266 userInterface.clearFields();
267 }
268 }
269);
270
271 // set up Cancel button and register listener
272 JButton cancelButton = userInterface.getDoTask2Button();
273 cancelButton.setText("Cancel");
274
275 cancelButton.addActionListener(
276
277 new ActionListener() {
278
279 public void actionPerformed(ActionEvent event)
280 {
281 setVisible(false);
282 userInterface.clearFields();
283 }
284 }
285);
286
287 // set up listener for transaction textfield
288 JTextField transactionField =
289 userInterface.getFields()[BankUI.TRANSACTION];
290
291 transactionField.addActionListener(
292
293 new ActionListener() {
294
295 public void actionPerformed(ActionEvent event)
296 {
297 // add transaction amount to balance
298 try {
299 RandomAccessAccountRecord record = getRecord();
300
301 // get textfield values from userInterface
302 String fieldValues[] =
303 userInterface.getFieldValues();
304
305 // get transaction amount
306 double change = Double.parseDouble(
307 fieldValues[BankUI.TRANSACTION]);
308
309 // specify Strings to display in GUI
310 String[] values = {
311 String.valueOf(record.getAccount()),
312 record.getFirstName(),

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 6 of 15).

Chapter 16 Files and Streams 953

313 record.getLastName(),
314 String.valueOf(record.getBalance()
315 + change),
316 "Charge(+) or payment (-)" };
317
318 // display Strings in GUI
319 userInterface.setFieldValues(values);
320 }
321
322 // process invalid number in transaction field
323 catch (NumberFormatException numberFormat) {
324 JOptionPane.showMessageDialog(null,
325 "Invalid Transaction",
326 "Invalid Number Format",
327 JOptionPane.ERROR_MESSAGE);
328 }
329
330 } // end method actionPerformed
331
332 } // end anonymous inner class
333
334); // end call to addActionListener
335
336 // set up listener for account text field
337 JTextField accountField =
338 userInterface.getFields()[BankUI.ACCOUNT];
339
340 accountField.addActionListener(
341
342 new ActionListener() {
343
344 // get record and display contents in GUI
345 public void actionPerformed(ActionEvent event)
346 {
347 RandomAccessAccountRecord record = getRecord();
348
349 if (record.getAccount() != 0) {
350 String values[] = {
351 String.valueOf(record.getAccount()),
352 record.getFirstName(),
353 record.getLastName(),
354 String.valueOf(record.getBalance()),
355 "Charge(+) or payment (-)" };
356
357 userInterface.setFieldValues(values);
358 }
359
360 } // end method actionPerformed
361
362 } // end anonymous inner class
363
364); // end call to addActionListener
365

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 7 of 15).

954 Files and Streams Chapter 16

366 setSize(300, 175);
367 setVisible(false);
368 }
369
370 // get record from file
371 private RandomAccessAccountRecord getRecord()
372 {
373 RandomAccessAccountRecord record =
374 new RandomAccessAccountRecord();
375
376 // get record from file
377 try {
378 JTextField accountField =
379 userInterface.getFields()[BankUI.ACCOUNT];
380
381 int accountNumber =
382 Integer.parseInt(accountField.getText());
383
384 if (accountNumber < 1 || accountNumber > 100) {
385 JOptionPane.showMessageDialog(this,
386 "Account Does Not Exist",
387 "Error", JOptionPane.ERROR_MESSAGE);
388 return record;
389 }
390
391 // seek to appropriate record location in file
392 file.seek((accountNumber - 1) *
393 RandomAccessAccountRecord.size());
394 record.read(file);
395
396 if (record.getAccount() == 0)
397 JOptionPane.showMessageDialog(this,
398 "Account Does Not Exist",
399 "Error", JOptionPane.ERROR_MESSAGE);
400 }
401
402 // process invalid account number format
403 catch (NumberFormatException numberFormat) {
404 JOptionPane.showMessageDialog(this,
405 "Invalid Account", "Invalid Number Format",
406 JOptionPane.ERROR_MESSAGE);
407 }
408
409 // process file processing problems
410 catch (IOException ioException) {
411 JOptionPane.showMessageDialog(this,
412 "Error Reading File",
413 "Error", JOptionPane.ERROR_MESSAGE);
414 }
415
416 return record;
417
418 } // end method getRecord

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 8 of 15).

Chapter 16 Files and Streams 955

419
420 // add record to file
421 public void addRecord(RandomAccessAccountRecord record)
422 {
423 // update record in file
424 try {
425 int accountNumber = record.getAccount();
426
427 file.seek((accountNumber - 1) *
428 RandomAccessAccountRecord.size());
429
430 String[] values = userInterface.getFieldValues();
431
432 // set firstName, lastName and balance in record
433 record.setFirstName(values[BankUI.FIRSTNAME]);
434 record.setLastName(values[BankUI.LASTNAME]);
435 record.setBalance(
436 Double.parseDouble(values[BankUI.BALANCE]));
437
438 // rewrite record to file
439 record.write(file);
440 }
441
442 // process file processing problems
443 catch (IOException ioException) {
444 JOptionPane.showMessageDialog(this,
445 "Error Writing To File",
446 "Error", JOptionPane.ERROR_MESSAGE);
447 }
448
449 // process invalid balance value
450 catch (NumberFormatException numberFormat) {
451 JOptionPane.showMessageDialog(this,
452 "Bad Balance", "Invalid Number Format",
453 JOptionPane.ERROR_MESSAGE);
454 }
455
456 } // end method addRecord
457
458 } // end class UpdateDialog
459
460 // class for creating new records
461 class NewDialog extends JInternalFrame {
462 private RandomAccessFile file;
463 private BankUI userInterface;
464
465 // set up GUI
466 public NewDialog(RandomAccessFile newFile)
467 {
468 super("New Record");
469
470 file = newFile;
471

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 9 of 15).

956 Files and Streams Chapter 16

472 // attach user interface to dialog
473 userInterface = new BankUI(4);
474 getContentPane().add(userInterface,
475 BorderLayout.CENTER);
476
477 // set up Save Changes button and register listener
478 JButton saveButton = userInterface.getDoTask1Button();
479 saveButton.setText("Save Changes");
480
481 saveButton.addActionListener(
482
483 new ActionListener() {
484
485 // add new record to file
486 public void actionPerformed(ActionEvent event)
487 {
488 addRecord(getRecord());
489 setVisible(false);
490 userInterface.clearFields();
491 }
492
493 } // end anonymous inner class
494
495); // end call to addActionListener
496
497 JButton cancelButton = userInterface.getDoTask2Button();
498 cancelButton.setText("Cancel");
499
500 cancelButton.addActionListener(
501
502 new ActionListener() {
503
504 // dismiss dialog without storing new record
505 public void actionPerformed(ActionEvent event)
506 {
507 setVisible(false);
508 userInterface.clearFields();
509 }
510
511 } // end anonymous inner class
512
513); // end call to addActionListener
514
515 setSize(300, 150);
516 setVisible(false);
517
518 } // end constructor
519
520 // get record from file
521 private RandomAccessAccountRecord getRecord()
522 {
523 RandomAccessAccountRecord record =
524 new RandomAccessAccountRecord();

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 10 of 15).

Chapter 16 Files and Streams 957

525
526 // get record from file
527 try {
528 JTextField accountField =
529 userInterface.getFields()[BankUI.ACCOUNT];
530
531 int accountNumber =
532 Integer.parseInt(accountField.getText());
533
534 if (accountNumber < 1 || accountNumber > 100) {
535 JOptionPane.showMessageDialog(this,
536 "Account Does Not Exist",
537 "Error", JOptionPane.ERROR_MESSAGE);
538 return record;
539 }
540
541 // seek to record location
542 file.seek((accountNumber - 1) *
543 RandomAccessAccountRecord.size());
544
545 // read record from file
546 record.read(file);
547 }
548
549 // process invalid account number format
550 catch (NumberFormatException numberFormat) {
551 JOptionPane.showMessageDialog(this,
552 "Account Does Not Exist", "Invalid Number Format",
553 JOptionPane.ERROR_MESSAGE);
554 }
555
556 // process file processing problems
557 catch (IOException ioException) {
558 JOptionPane.showMessageDialog(this,
559 "Error Reading File",
560 "Error", JOptionPane.ERROR_MESSAGE);
561 }
562
563 return record;
564
565 } // end method getRecord
566
567 // add record to file
568 public void addRecord(RandomAccessAccountRecord record)
569 {
570 String[] fields = userInterface.getFieldValues();
571
572 if (record.getAccount() != 0) {
573 JOptionPane.showMessageDialog(this,
574 "Record Already Exists",
575 "Error", JOptionPane.ERROR_MESSAGE);
576 return;
577 }

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 11 of 15).

958 Files and Streams Chapter 16

578
579 // output the values to the file
580 try {
581
582 // set account, first name, last name and balance
583 // for record
584 record.setAccount(Integer.parseInt(
585 fields[BankUI.ACCOUNT]));
586 record.setFirstName(fields[BankUI.FIRSTNAME]);
587 record.setLastName(fields[BankUI.LASTNAME]);
588 record.setBalance(Double.parseDouble(
589 fields[BankUI.BALANCE]));
590
591 // seek to record location
592 file.seek((record.getAccount() - 1) *
593 RandomAccessAccountRecord.size());
594
595 // write record
596 record.write(file);
597 }
598
599 // process invalid account or balance format
600 catch (NumberFormatException numberFormat) {
601 JOptionPane.showMessageDialog(this,
602 "Invalid Balance", "Invalid Number Format",
603 JOptionPane.ERROR_MESSAGE);
604 }
605
606 // process file processing problems
607 catch (IOException ioException) {
608 JOptionPane.showMessageDialog(this,
609 "Error Writing To File",
610 "Error", JOptionPane.ERROR_MESSAGE);
611 }
612
613 } // end method addRecord
614
615 } // end class NewDialog
616
617 // class for deleting records
618 class DeleteDialog extends JInternalFrame {
619 private RandomAccessFile file; // file for output
620 private BankUI userInterface;
621
622 // set up GUI
623 public DeleteDialog(RandomAccessFile deleteFile)
624 {
625 super("Delete Record");
626
627 file = deleteFile;
628
629 // create BankUI with only account field
630 userInterface = new BankUI(1);

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 12 of 15).

Chapter 16 Files and Streams 959

631
632 getContentPane().add(userInterface,
633 BorderLayout.CENTER);
634
635 // set up Delete Record button and register listener
636 JButton deleteButton = userInterface.getDoTask1Button();
637 deleteButton.setText("Delete Record");
638
639 deleteButton.addActionListener(
640
641 new ActionListener() {
642
643 // overwrite existing record
644 public void actionPerformed(ActionEvent event)
645 {
646 addRecord(getRecord());
647 setVisible(false);
648 userInterface.clearFields();
649 }
650
651 } // end anonymous inner class
652
653); // end call to addActionListener
654
655 // set up Cancel button and register listener
656 JButton cancelButton = userInterface.getDoTask2Button();
657 cancelButton.setText("Cancel");
658
659 cancelButton.addActionListener(
660
661 new ActionListener() {
662
663 // cancel delete operation by hiding dialog
664 public void actionPerformed(ActionEvent event)
665 {
666 setVisible(false);
667 }
668
669 } // end anonymous inner class
670
671); // end call to addActionListener
672
673 // set up listener for account text field
674 JTextField accountField =
675 userInterface.getFields()[BankUI.ACCOUNT];
676
677 accountField.addActionListener(
678
679 new ActionListener() {
680
681 public void actionPerformed(ActionEvent event)
682 {
683 RandomAccessAccountRecord record = getRecord();

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 13 of 15).

960 Files and Streams Chapter 16

684 }
685
686 } // end anonymous inner class
687
688); // end call to addActionListener
689
690 setSize(300, 100);
691 setVisible(false);
692
693 } // end constructor
694
695 // get record from file
696 private RandomAccessAccountRecord getRecord()
697 {
698 RandomAccessAccountRecord record =
699 new RandomAccessAccountRecord();
700
701 // get record from file
702 try {
703 JTextField accountField =
704 userInterface.getFields()[BankUI.ACCOUNT];
705
706 int accountNumber =
707 Integer.parseInt(accountField.getText());
708
709 if (accountNumber < 1 || accountNumber > 100) {
710 JOptionPane.showMessageDialog(this,
711 "Account Does Not Exist",
712 "Error", JOptionPane.ERROR_MESSAGE);
713 return(record);
714 }
715
716 // seek to record location and read record
717 file.seek((accountNumber - 1) *
718 RandomAccessAccountRecord.size());
719 record.read(file);
720
721 if (record.getAccount() == 0)
722 JOptionPane.showMessageDialog(this,
723 "Account Does Not Exist",
724 "Error", JOptionPane.ERROR_MESSAGE);
725 }
726
727 // process invalid account number format
728 catch (NumberFormatException numberFormat) {
729 JOptionPane.showMessageDialog(this,
730 "Account Does Not Exist",
731 "Invalid Number Format",
732 JOptionPane.ERROR_MESSAGE);
733 }
734
735 // process file processing problems
736 catch (IOException ioException) {

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 14 of 15).

Chapter 16 Files and Streams 961

16.12 Class File
As we stated at the beginning of this chapter, the java.io package contains an abundance
of classes for processing input and output. We concentrated on the classes for processing
sequential files (FileInputStream and FileOutputStream), for processing object
streams (ObjectInputStream and ObjectOutputStream) and for processing ran-
dom-access files (RandomAccessFile). In this section, we discuss class File, which
is particularly useful for retrieving information about a file or a directory from a disk. Ob-
jects of class File do not open files or provide any file-processing capabilities.

One application of a File object is to determine whether a file exists before
attempting to open the file. In Common Programming Error 16.1, we warned that opening
an existing file for output by using a FileOutputStream object discards the contents

737 JOptionPane.showMessageDialog(this,
738 "Error Reading File",
739 "Error", JOptionPane.ERROR_MESSAGE);
740 }
741
742 return record;
743
744 } // end method getRecord
745
746 // add record to file
747 public void addRecord(RandomAccessAccountRecord record)
748 {
749 if (record.getAccount() == 0)
750 return;
751
752 // delete record by setting account number to 0
753 try {
754 int accountNumber = record.getAccount();
755
756 // seek to record position
757 file.seek((accountNumber - 1) *
758 RandomAccessAccountRecord.size());
759
760 // set account to 0 and overwrite record
761 record.setAccount(0);
762 record.write(file);
763 }
764
765 // process file processing problems
766 catch (IOException ioException) {
767 JOptionPane.showMessageDialog(this,
768 "Error Writing To File",
769 "Error", JOptionPane.ERROR_MESSAGE);
770 }
771
772 } // end method addRecord
773
774 } // end class DeleteDialog

Fig. 16.20Fig. 16.20Fig. 16.20Fig. 16.20 Transaction-processing program (part 15 of 15).

962 Files and Streams Chapter 16

of that file without warning. If a program using a File determines that a file already exists,
the program can warn that the user is about to discard the original file’s contents.

Good Programming Practice 16.2
Use a File object to determine whether a file exists before opening the file with a File-
OutputStream object. 16.2

Class File provides three constructors. The constructor

public File(String name)

stores the String argument name in the object. The name can contain path information
as well as a file or directory name. A file or directory’s path specifies the location of the file
or directory on disk. The path includes some or all of the directories leading to the file or
directory. An absolute path contains all the directories, starting with the root directory that
lead to a specific file or directory. Every file or directory on a particular disk drive has the
same root directory in its path. A relative path contains a subset of the directories leading
to a specific file or directory. Relative paths normally start from the directory in which the
application began executing.

The constructor

public File(String pathToName, String name)

uses argument pathToName (an absolute or relative path) to locate the file or directory
specified by name.

The constructor

public File(File directory, String name)

uses an existing File object directory (an absolute or relative path) to locate the file
or directory specified by name.

 Figure 16.21 discusses some common File methods. See the Java API for other
File methods.

Method Description

boolean canRead() Returns true if a file is readable; false otherwise.

boolean canWrite() Returns true if a file is writable; false otherwise.

boolean exists() Returns true if the name specified as the argument to the
File constructor is a file or directory in the specified path;
false otherwise.

boolean isFile() Returns true if the name specified as the argument to the
File constructor is a file; false otherwise.

boolean isDirectory() Returns true if the name specified as the argument to the
File constructor is a directory; false otherwise.

boolean isAbsolute() Returns true if the arguments specified to the File con-
structor indicate an absolute path to a file or directory;
false otherwise.

Fig. 16.21Fig. 16.21Fig. 16.21Fig. 16.21 Some commonly used File methods (part 1 of 2).

Chapter 16 Files and Streams 963

Good Programming Practice 16.3
Use File method isFile to determine that a File object represents a file (not a direc-
tory) before attempting to open a file. 16.3

Good Programming Practice 16.4
Before attempting to open a file for reading, use File method canRead to determine
whether the file is readable. 16.4

Good Programming Practice 16.5
Before attempting to open a file for writing, use File method canWrite to determine
whether the file is writable. 16.5

Figure 16.22 demonstrates class File. The FileTest application creates a GUI
containing a JTextField for entering a file name or directory name and a JTextArea
for displaying information about the file name or directory name input.

String getAbsolutePath() Returns a String with the absolute path of the file or direc-
tory.

String getName() Returns a String with the name of the file or directory.

String getPath() Returns a String with the path of the file or directory.

String getParent() Returns a String with the parent directory of the file or
directory—that is, the directory in which the file or directory
can be found.

long length() Returns the length of the file in bytes. If the File object
represents a directory, 0 is returned.

long lastModified() Returns a platform-dependent representation of the time at
which the file or directory was last modified. The value
returned is only useful for comparison with other values
returned by this method.

String[] list() Returns an array of Strings representing the contents of a
directory.

Method Description

Fig. 16.21Fig. 16.21Fig. 16.21Fig. 16.21 Some commonly used File methods (part 2 of 2).

1 // Fig. 16.22: FileTest.java
2 // Demonstrating the File class.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.io.*;
8

Fig. 16.22Fig. 16.22Fig. 16.22Fig. 16.22 Demonstrating class File (part 1 of 4).

964 Files and Streams Chapter 16

9 // Java extension packages
10 import javax.swing.*;
11
12 public class FileTest extends JFrame
13 implements ActionListener {
14
15 private JTextField enterField;
16 private JTextArea outputArea;
17
18 // set up GUI
19 public FileTest()
20 {
21 super("Testing class File");
22
23 enterField = new JTextField(
24 "Enter file or directory name here");
25 enterField.addActionListener(this);
26 outputArea = new JTextArea();
27
28 ScrollPane scrollPane = new ScrollPane();
29 scrollPane.add(outputArea);
30
31 Container container = getContentPane();
32 container.add(enterField, BorderLayout.NORTH);
33 container.add(scrollPane, BorderLayout.CENTER);
34
35 setSize(400, 400);
36 show();
37 }
38
39 // display information about file user specifies
40 public void actionPerformed(ActionEvent actionEvent)
41 {
42 File name = new File(actionEvent.getActionCommand());
43
44 // if name exists, output information about it
45 if (name.exists()) {
46 outputArea.setText(
47 name.getName() + " exists\n" +
48 (name.isFile() ?
49 "is a file\n" : "is not a file\n") +
50 (name.isDirectory() ?
51 "is a directory\n" : "is not a directory\n") +
52 (name.isAbsolute() ? "is absolute path\n" :
53 "is not absolute path\n") +
54 "Last modified: " + name.lastModified() +
55 "\nLength: " + name.length() +
56 "\nPath: " + name.getPath() +
57 "\nAbsolute path: " + name.getAbsolutePath() +
58 "\nParent: " + name.getParent());
59
60 // output information if name is a file
61 if (name.isFile()) {

Fig. 16.22Fig. 16.22Fig. 16.22Fig. 16.22 Demonstrating class File (part 2 of 4).

Chapter 16 Files and Streams 965

62
63 // append contents of file to outputArea
64 try {
65 BufferedReader input = new BufferedReader(
66 new FileReader(name));
67 StringBuffer buffer = new StringBuffer();
68 String text;
69 outputArea.append("\n\n");
70
71 while ((text = input.readLine()) != null)
72 buffer.append(text + "\n");
73
74 outputArea.append(buffer.toString());
75 }
76
77 // process file processing problems
78 catch(IOException ioException) {
79 JOptionPane.showMessageDialog(this,
80 "FILE ERROR",
81 "FILE ERROR", JOptionPane.ERROR_MESSAGE);
82 }
83 }
84
85 // output directory listing
86 else if (name.isDirectory()) {
87 String directory[] = name.list();
88
89 outputArea.append("\n\nDirectory contents:\n");
90
91 for (int i = 0; i < directory.length; i++)
92 outputArea.append(directory[i] + "\n");
93 }
94 }
95
96 // not file or directory, output error message
97 else {
98 JOptionPane.showMessageDialog(this,
99 actionEvent.getActionCommand() + " Does Not Exist",
100 "ERROR", JOptionPane.ERROR_MESSAGE);
101 }
102
103 } // end method actionPerformed
104
105 // execute application
106 public static void main(String args[])
107 {
108 FileTest application = new FileTest();
109
110 application.setDefaultCloseOperation(
111 JFrame.EXIT_ON_CLOSE);
112 }
113
114 } // end class FileTest

Fig. 16.22Fig. 16.22Fig. 16.22Fig. 16.22 Demonstrating class File (part 3 of 4).

966 Files and Streams Chapter 16

The user types a file name or directory name into the text field and presses the Enter
key to invoke method actionPerformed (lines 40–103), which creates a new File
object (line 42) and assigns it to name. Line 45 invokes File method exists to deter-
mine whether the name input by the user exists (either as a file or as a directory) on the disk.
If the name input by the user does not exist, the actionPerformed method proceeds to
lines 97–101 and displays a message dialog containing the name the user typed, followed
by “Does Not Exist.” Otherwise, the body of the if structure (lines 45–94) executes.
The program outputs the name of the file or directory, then outputs the results of testing the
File object with isFile (line 48), isDirectory (line 50) and isAbsolute (line
52). Next, the program displays the values returned by lastModified (line 54),

Fig. 16.22Fig. 16.22Fig. 16.22Fig. 16.22 Demonstrating class File (part 4 of 4).

Chapter 16 Files and Streams 967

length (line 55), getPath (line 56), getAbsolutePath (line 57) and getParent
(line 58).

If the File object represents a file (line 61), the program reads the contents of the file
and displays the contents in the JTextArea. The program uses a BufferedReader
object chained to a FileReader object (lines 65–66) to open the file for reading and to
read the file one line at a time with method readLine (line 71). Note that the
FileReader object was initialized with the File object name (line 66).

If the File object represents a directory (line 86), the program reads the contents of
the directory into the program by using File method list, then displays the directory
contents in the JTextArea.

The first output demonstrates a File object associated with the jfc directory from
the Java 2 Software Development Kit. The second output of this program demonstrates a
File object associated with the readme.txt file from the Java 2 Software Development
Kit. In both cases, we specified an absolute path on our personal computer.

Note that the \ separator character is used to separate directories and files in the path.
On a UNIX workstation, the separator character would be the / character. Java processes
both characters identically in a path name. So, if we specified the path

c:\java/readme.txt

which uses one of each separator character, Java still processes the file properly.

Common Programming Error 16.2
Using \ as a directory separator rather than \\ in a string literal is a logic error. A single
\ indicates that the \ and the next character represent an escape sequence. To insert a \ in
a string literal, you must use \\. 16.2

Good Programming Practice 16.6
When building Strings that represent path information, use File.separatorChar to
obtain the local computer’s proper separator character, rather than explicitly using / or \. 16.6

SUMMARY
• All data items processed by a computer are reduced to combinations of zeros and ones.

• The smallest data item in a computer (a bit) can assume the value 0 or the value 1.

• Digits, letters and special symbols are called characters. The set of all characters used to write pro-
grams and represent data items on a particular computer is called that computer’s character set.
Every character in a computer’s character set is represented as a pattern of 1s and 0s. (Characters
in Java are Unicode characters composed of 2 bytes.)

• A field is a group of characters (or bytes) that conveys meaning.

• A record is a group of related fields.

• At least one field in a record is chosen as a record key to identify a record as belonging to a par-
ticular person or entity that is unique from all other records in the file.

• Java imposes no structure on a file. Notions like “record” do not exist in Java. The programmer
must structure a file appropriately to meet the requirements of an application.

• A collection of programs designed to create and manage databases is called a database manage-
ment system (DBMS).

• Java views each file as a sequential stream of bytes.

968 Files and Streams Chapter 16

• Each file ends in some machine-dependent form of end-of-file marker.

• Streams provide communication channels between programs and files, memory or other programs
across a network.

• Programs use classes from package java.io to perform Java file I/O. This package includes the
definitions for the stream classes, such as FileInputStream, FileOutputStream,
DataInputStream and DataOutputStream.

• Files are opened by instantiating objects of stream classes FileInputStream, FileOut-
putStream, RandomAccessFile, FileReader and FileWriter.

• InputStream (a subclass of Object) and OutputStream (a subclass of Object) are ab-
stract classes that define methods for performing input and output, respectively.

• File input/output is done with FileInputStream (a subclass of InputStream) and File-
OutputStream (a subclass of OutputStream).

• Pipes are synchronized communication channels between threads. A pipe is established between
two threads. One thread sends data to another by writing to a PipedOutputStream (a subclass
of OutputStream). The target thread reads information from the pipe via a PipedInput-
Stream (a subclass of InputStream).

• A PrintStream (a subclass of FilterOutputStream) performs output to the screen (or the
“standard output” as defined by your local operating system). System.out is a PrintStream
(as is System.err).

• A FilterInputStream filters an InputStream; a FilterOutStream filters an Out-
putStream. Filtering means simply that the filter stream provides additional functionality, such
as buffering, monitoring of line numbers or aggregating of data bytes into meaningful primitive-
data-type units.

• Reading data as raw bytes is fast but crude. Usually, programs read data as aggregates of bytes that
form an int, a float, a double, and so on. To accomplish this, we use a DataInputStream
(a subclass of class FilterInputStream).

• Interface DataInput is implemented by class DataInputStream and class RandomAc-
cessFile; each needs to read primitive data types from a stream.

• DataInputStreams enable a program to read binary data from an InputStream.

• The DataInput interface includes methods read (for byte arrays), readBoolean, read-
Byte, readChar, readDouble, readFloat, readFully (for byte arrays), readInt,
readLine, readLong, readShort, readUnsignedByte, readUnsignedShort,
readUTF (for Unicode) and skipBytes.

• The DataOutput interface is implemented by class DataOutputStream (a subclass of class
FilterOutputStream) and class RandomAccessFile; each needs to write primitive data
types to an OutputStream.

• DataOutputStreams enable a program to write binary data to an OutputStream. The
DataOutput interface includes methods flush, size, write (for a byte), write (for a
byte array), writeBoolean, writeByte, writeBytes, writeChar, writeChars
(for Unicode Strings), writeDouble, writeFloat, writeInt, writeLong, write-
Short and writeUTF.

• Buffering is an I/O-performance-enhancement technique.

• With a BufferedOutputStream (a subclass of class FilterOutputStream), each output
statement does not necessarily result in an actual physical transfer of data to the output device.
Rather, each output operation is directed to a region in memory called a buffer that is large enough
to hold the data of many output operations. Then, actual output to the output device is performed

Chapter 16 Files and Streams 969

in one large physical output operation each time the buffer fills. The output operations directed to
the output buffer in memory are often called logical output operations.

• With a BufferedInputStream, many “logical” chunks of data from a file are read as one
large physical input operation into a memory buffer. As a program requests each new chunk of
data, it is taken from the buffer (this is sometimes referred to as a logical input operation). When
the buffer is empty, the next physical input operation from the input device is performed to read
in the next group of “logical” chunks of data. Thus, the number of physical input operations is
small compared with the number of read requests issued by the program.

• With a BufferedOutputStream a partially filled buffer can be forced out to the device at any
time with an explicit flush.

• The ObjectInput interface is similar to the DataInput interface, but includes additional
methods to read Objects from InputStreams.

• The ObjectOutput interface is similar to the DataOutput interface, but includes additional
methods to write Objects to OutputStreams.

• The ObjectInputStream and ObjectOutputStream classes implement the Object-
Input and ObjectOutput interfaces, respectively.

• A PushbackInputStream is a subclass of class FilterInputStream. The application
reading a PushbackInputStream reads bytes from the stream and forms aggregates consist-
ing of several bytes. Sometimes, to determine that one aggregate is complete, the application must
read the first character “past the end” of the first aggregate. Once the program has determined that
the current aggregate is complete, the extra character is “pushed back” onto the stream.

• PushbackInputStreams are used by programs, like compilers, that parse their inputs—that
is, break them into meaningful units (such as the keywords, identifiers and operators that the Java
compiler must recognize).

• A RandomAccessFile (a subclass of Object) is useful for such direct-access applications as
transaction-processing applications, like airline-reservations systems and point-of-sale systems.

• With a sequential-access file, each successive input/output request reads or writes the next consec-
utive set of data in the file.

• With a random-access file, each successive input/output request might be directed to any part of
the file, perhaps one widely separated from the part of the file referenced in the previous request.

• Direct-access applications provide rapid access to specific data items in large files; such applica-
tions are often used while people are waiting for answers—these answers must be made available
quickly, or the people might become impatient and “take their business elsewhere.”

• A ByteArrayInputStream (a subclass of abstract class InputStream) performs its
inputs from a byte array in memory.

• A ByteArrayOutputStream (a subclass of abstract class OutputStream) outputs to
a byte array in memory.

• An application of byte-array input/output is data validation. A program can input an entire line
at a time from the input stream into a byte array. Then, a validation routine can scrutinize the
contents of the byte array and correct the data, if necessary. The program can now proceed to
input from the byte array, knowing that the input data is in the proper format.

• A StringBufferInputStream (a subclass of abstract class InputStream) inputs
from a StringBuffer object.

• A SequenceInputStream (a subclass of abstract class InputStream) enables several
InputStreams to be concatenated so that the program will see the group as one continuous In-
putStream. As the end of each input stream is reached, the stream is closed, and the next stream
in the sequence is opened.

970 Files and Streams Chapter 16

• Class BufferedReader and class BufferedWriter enable efficient buffering for charac-
ter-based streams.

• Class CharArrayReader and class CharArrayWriter read and write a stream of charac-
ters to a character array.

• A PushbackReader (a subclass of abstract class FilterReader) enables characters to
be placed back on a character stream. A LineNumberReader (a subclass of BufferedRead-
er) is a buffered character-stream that keeps track of line numbers (e.g., a newline, a return or a
carriage-return line-feed combination).

• Class FileReader (a subclass of InputStreamReader) and class FileWriter (a sub-
class of OutputStreamWriter) read and write characters to a file. Class PipedReader and
class PipedWriter are piped-character streams. Class StringReader and StringWriter
read and write characters to Strings. A PrintWriter writes characters to a stream.

• Class File enables programs to obtain information about a file or directory.

• Files are opened for output by creating a FileOutputStream class object. One argument is
passed to the constructor—the filename. Existing files are truncated, and all data in the file is lost.
Nonexistent files are created.

• A program can process no files, one file or several files. Each file has a unique name and is asso-
ciated with an appropriate file stream object. All file-processing methods must refer to a file with
the appropriate object.

• A file-position pointer indicates the position in the file from which the next input is to occur or at
which the next output is to be placed.

• A convenient way to implement random-access files is by using only fixed-length records. Using
this technique, a program can quickly calculate the exact location of a record relative to the begin-
ning of the file.

• Data can be inserted in a random-access file without destroying other data in the file. Data can be
updated or deleted without rewriting the entire file.

• The RandomAccessFile class has the same capabilities for input and output as the DataIn-
putStream and DataOutputStream classes and also supports seeking to a specific byte po-
sition in the file, with method seek.

TERMINOLOGY
absolute path canWrite method of File class
alphabetic field chaining stream objects
alphanumeric field character field
binary digit character set
bit CharArrayReader class
buffer CharArrayWriter class
BufferedInputStream class close a file
BufferedOutputStream class close method
BufferedReader class data hierarchy
BufferedWriter class data validation
buffering database
byte database management system (DBMS)
ByteArrayInputStream class DataInput interface
ByteArrayOutputStream class DataOutput interface
CANCEL_OPTION constant decimal digit
canRead method of File class direct-access applications

Chapter 16 Files and Streams 971

DIRECTORIES_ONLY constant OutputStream class
directory OutputStreamWriter class
end-of-file partially filled buffer
end-of-file marker persistent data
EndOfFileException physical input operation
exists method of File class physical output operation
field pipe
file PipedInputStream class
File class PipedOutputStream class
file name PipedReader class
FileInputStream class PipedWriter class
FileOutputStream class PrintStream class
file-position pointer PrintWriter class
FileReader class PushbackInputStream class
FILES_AND_DIRECTORIES constant PushbackReader class
FILES_ONLY constant r file open mode
FileWriter class random-access file
FilterInputStream class RandomAccessFile class
FilterOutputStream class read method
FilterReader class readBoolean method
flush readByte method
getAbsolutePath method of File class readChar method
getName method of File class readDouble method
getParent method of File class Reader class
getPath method of File class readFloat method
getSelectedFile method readFully method
input stream readInt method
InputStream class readLong method
InputStreamReader class readObject method
instant-access application readShort method
IOException readUnsignedByte method
isAbsolute method of File class readUnsignedShort method
isDirectory method of File class record
isFile method of File class record key
JFileChooser class relative path
lastModified method of File class root directory
length method of File class rw file open mode
LineNumberReader class seek method
list method of File class SequenceInputStream class
logical input operation sequential-access file
logical output operation Serializable interface
memory buffer setFileSelectionMode method
modal dialog showOpenDialog method
numeric field showSaveDialog method
ObjectInput interface standard output
ObjectInputStream class StringReader class
ObjectOutput interface StringWriter class
ObjectOutputStream class System.err (standard error stream)
open a file System.in (standard input stream)
output stream System.out (standard output stream)

972 Files and Streams Chapter 16

SELF-REVIEW EXERCISES
16.1 Fill in the blanks in each of the following statements:

a) Ultimately, all data items processed by a computer are reduced to combinations of
 and .

b) The smallest data item a computer can process is called a .
c) A is a group of related records.
d) Digits, letters and special symbols are referred to as .
e) A group of related files is called a .
f) Method of the file stream classes FileOutputStream, FileInput-

Stream, and RandomAccessFile closes a file.
g) RandomAccessFile method reads an integer from the specified stream.
h) RandomAccessFile method reads a line of text from the specified

stream.
i) RandomAccessFile method sets the file-position pointer to a specific

location in a file for input or output.

16.2 State which of the following are true and which are false. If false, explain why.
a) The programmer must explicitly create the System.in, System.out and Sys-

tem.err objects.
b) If the file-position pointer points to a location in a sequential file other than the beginning

of the file, the file must be closed and reopened to read from the beginning of the file.
c) It is not necessary to search through all the records in a random-access file to find a spe-

cific record.
d) Records in random-access files must be of uniform length.
e) Method seek must seek relative to the beginning of a file.

16.3 Assume that each of the following statements applies to the same program.
a) Write a statement that opens file "oldmast.dat" for input; use ObjectInput-

Stream object inOldMaster chained to a FileInputStream object.
b) Write a statement that opens file "trans.dat" for input; use ObjectInput-

Stream object inTransaction chained to a FileInputStream object.
c) Write a statement that opens file "newmast.dat" for output (and creation); use Ob-

jectOutputStream object outNewMaster chained to a FileOutputStream.
d) Write a set of statements that read a record from the file "oldmast.dat". The record

consists of integer accountNumber, string name and floating-point currentBal-
ance; use ObjectInputStream object inOldMaster.

e) Write a set of statements that read a record from the file "trans.dat". The record con-
sists of integer accountNumber and floating-point dollarAmount; use Object-
InputStream object inTransaction.

f) Write a set of statements that outputs a record to the file "newmast.dat". The record
consists of integer accountNumber, string name and floating point currentBal-
ance; use DataOutputStream object outNewMaster.

transaction-processing systems writeChars method
truncate an existing file writeDouble method
Unicode character set writeFloat method
write method writeInt method
writeBoolean method writeLong method
writeByte method writeObject method
writeBytes method Writer class
writeChar method writeShort method

Chapter 16 Files and Streams 973

16.4 Find the error and show how to correct it in each of the following.
a) Assume account, company and amount are declared.

ObjectOutputStream outputStream;

outputStream.writeInt(account);
outputStream.writeChars(company);
outputStream.writeDouble(amount);

b) The following statement should read a record from the file "payables.dat". The
ObjectInputStream object inPayable refers to this file, and FileInput-
Stream object inReceivable refers to the file "receivables.dat".

account = inReceivable.readInt();
companyID = inReceivable.readLong();
amount = inReceivable.readDouble();

ANSWERS TO SELF-REVIEW EXERCISES
16.1 a) 1s, 0s. b) bit. c) file. d) characters. e) database. f) close. g) readInt.
h) readLine. i) seek.

16.2 a) False. These three streams are created automatically for the programmer.
b) True.
c) True.
d) False. Records in a random-access file are normally of uniform length.
e) True.

16.3 a) ObjectInputStream inOldMaster;
inOldMaster = new ObjectInputStream(

new FileInputStream("oldmast.dat"));
b) ObjectInputStream inTransaction;

inTransaction = new ObjectInputStream(
new FileInputStream("trans.dat"));

c) ObjectOutputStream outNewMaster;
outNewMaster = new ObjectOutputStream(

new FileOutputStream("newmast.dat"));
d) accountNumber = inOldMaster.readInt();

name = inOldMaster.readUTF();
currentBalance = inOldMaster.readDouble();

e) accountNumber = inTransaction.readInt();
dollarAmount = inTransaction.readDouble();

f) outNewMaster.writeInt(accountNumber);
outNewMaster.writeUTF(name);
outNewMaster.writeDouble(currentBalance);

16.4 a) Error: The file has not been opened before the attempt is made to output data to the
stream.
Correction: Create a new ObjectOutputStream object chained to a FileOutput-
Stream object to open the file for output.

b) Error: The incorrect FileInputStream object is being used to read a record from file
"payables.dat".
Correction: Use object inPayable to refer to "payables.dat".

974 Files and Streams Chapter 16

EXERCISES
16.5 Fill in the blanks in each of the following:

a) Computers store large amounts of data on secondary storage devices as .
b) A is composed of several fields.
c) A field that may contain only digits, letters and blanks is called an field.
d) To facilitate the retrieval of specific records from a file, one field in each record is chosen

as a .
e) The vast majority of information stored in computer systems is stored in files.
f) The standard stream objects are , and .

16.6 State which of the following are true and which are false. If false, explain why.
a) The impressive functions performed by computers essentially involve the manipulation

of zeros and ones.
b) People specify programs and data items as characters; computers then manipulate and

process these characters as groups of zeros and ones.
c) A person’s 5-digit zip code is an example of a numeric field.
d) A person's street address is generally considered to be an alphabetic field.
e) Data items represented in computers form a data hierarchy in which data items become

larger and more complex as we progress from fields to characters to bits, etc.
f) A record key identifies a record as belonging to a particular field.
g) Companies store all their information in a single file to facilitate computer processing.
h) When a program creates a file, the file is automatically retained by the computer for fu-

ture reference.

16.7 Exercise 16.3 asked the reader to write a series of single statements. Actually, these state-
ments form the core of an important type of file-processing program, namely, a file-matching pro-
gram. In commercial data processing, it is common to have several files in each application system.
In an accounts receivable system, for example, there is generally a master file containing detailed in-
formation about each customer, such as the customer’s name, address, telephone number, outstanding
balance, credit limit, discount terms, contract arrangements and possibly a condensed history of re-
cent purchases and cash payments.

a) As transactions occur (i.e., sales are made and cash payments arrive in the mail), they are
entered into a file. At the end of each business period (i.e., a month for some companies,
a week for others, and a day in some cases) the file of transactions (called
"trans.dat" in Exercise 16.3) is applied to the master file (called "oldmast.dat"
in Exercise 16.3), thus updating each account’s record of purchases and payments. Dur-
ing an updating run, the master file is rewritten as a new file ("newmast.dat"), which
is then used at the end of the next business period to begin the updating process again.

b) File-matching programs must deal with certain problems that do not exist in single-file
programs. For example, a match does not always occur. A customer on the master file
might not have made any purchases or cash payments in the current business period;
therefore, no record for this customer will appear on the transaction file. Similarly, a cus-
tomer who did make some purchases or cash payments could have just moved to this
community, and the company might not have had a chance to create a master record for
this customer.

c) Use the statements in Exercise 16.3 as a basis for writing a complete file-matching ac-
counts receivable program. Use the account number on each file as the record key for
matching purposes. Assume that each file is a sequential file with records stored in in-
creasing account-number order.

d) When a match occurs (i.e., records with the same account number appear on both the
master file and the transaction file), add the dollar amount on the transaction file to the

Chapter 16 Files and Streams 975

current balance on the master file, and write the "newmast.dat" record. (Assume that
purchases are indicated by positive amounts on the transaction file, payments by negative
amounts.) When there is a master record for a particular account but no corresponding
transaction record, merely write the master record to "newmast.dat". When there is
a transaction record but no corresponding master record, print the message "Un-
matched transaction record for account number …" (fill in the account
number from the transaction record).

16.8 After writing the program of Exercise 16.7, write a simple program to create some test data
for checking out the program. Use the sample account data in Fig. 16.23 and Fig. 16.24. Run the pro-
gram of Exercise 16.7, using the files of test data created in this exercise. Print the new master file.
Check that the accounts have been updated correctly.

16.9 It is possible (actually common) to have several transaction records with the same record key.
This occurs because a particular customer might make several purchases and cash payments during a
business period. Rewrite your accounts receivable file-matching program of Exercise 16.7 to provide
for the possibility of handling several transaction records with the same record key. Modify the test
data of Exercise 16.8 to include the additional transaction records in Fig. 16.25.

Master file
Account number Name Balance

100 Alan Jones 348.17

300 Mary Smith 27.19

500 Sam Sharp 0.00

700 Suzy Green -14.22

Fig. 16.23Fig. 16.23Fig. 16.23Fig. 16.23 Sample data for master file.

Transaction file
Account number Transaction amount

100 27.14

300 62.11

400 100.56

900 82.17

Fig. 16.24Fig. 16.24Fig. 16.24Fig. 16.24 Sample data for transaction file.

Account number Dollar amount

300 83.89

700 80.78

700 1.53

Fig. 16.25Fig. 16.25Fig. 16.25Fig. 16.25 Additional transaction records.

976 Files and Streams Chapter 16

16.10 You are the owner of a hardware store and need to keep an inventory that can tell you what
different tools you have, how many of each you have on hand and the cost of each one. Write a pro-
gram that initializes the random-access file "hardware.dat" to one hundred empty records, lets
you input the data concerning each tool, enables you to list all your tools, lets you delete a record for
a tool that you no longer have and lets you update any information in the file. The tool identification
number should be the record number. Use the information in Fig. 16.26 to start your file.

16.11 (Telephone Number Word Generator) Standard telephone keypads contain the digits 0
through 9. The numbers 2 through 9 each have three letters associated with them (see Fig. 16.27).

Many people find it difficult to memorize phone numbers, so they use the correspondence
between digits and letters to develop seven-letter words that correspond to their phone numbers. For
example, a person whose telephone number is 686-2377 might use the correspondence indicated in
Fig. 16.27 to develop the seven-letter word “NUMBERS.” Each seven-letter word corresponds to
exactly one seven-digit telephone number. The restaurant wishing to increase its takeout business
could surely do so with the number 825-3688 (i.e., “TAKEOUT”).

Record # Tool name Quantity Cost

3 Electric sander 18 35.99

19 Hammer 128 10.00

26 Jig saw 16 14.25

39 Lawn mower 10 79.50

56 Power saw 8 89.99

76 Screwdriver 236 4.99

81 Sledge hammer 32 19.75

88 Wrench 65 6.48

Fig. 16.26Fig. 16.26Fig. 16.26Fig. 16.26 Data for Exercise 16.10.

Digit Letters

2 A B C

3 D E F

4 G H I

5 J K L

6 M N O

7 P R S

8 T U V

9 W X Y

Fig. 16.27Fig. 16.27Fig. 16.27Fig. 16.27 Telephone keypad digits and letters.

Chapter 16 Files and Streams 977

Each seven-letter phone number corresponds to many separate seven-letter words. Unfortu-
nately, most of these represent unrecognizable juxtapositions of letters. It is possible, however, that
the owner of a barber shop would be pleased to know that the shop’s telephone number, 424-7288,
corresponds to “HAIRCUT.” The owner of a liquor store would, no doubt, be delighted to find that
the store’s number, 233-7226, corresponds to “BEERCAN.” A veterinarian with the phone number
738-2273 would be pleased to know that the number corresponds to the letters “PETCARE.” An
automotive dealership would be pleased to know that the dealership number, 639-2277, corresponds
to “NEWCARS.”

Write a program that, given a seven-digit number, writes to a file every possible seven-letter

word combination corresponding to that number. There are 2187 (37) such combinations. Avoid
phone numbers with the digits 0 and 1.

17
Networking

Objectives
• To understand Java networking with URIs, sockets

and datagrams.
• To implement Java networking applications by using

sockets and datagrams.
• To understand how to implement Java clients and

servers that communicate with one another.
• To understand how to implement network-based

collaborative applications.
• To construct a multithreaded server.
If the presence of electricity can be made visible in any part
of a circuit, I see no reason why intelligence may not be
transmitted instantaneously by electricity.
Samuel F. B. Morse

Mr. Watson, come here, I want you.
Alexander Graham Bell

What networks of railroads, highways and canals were in
another age, the networks of telecommunications,
information and computerization … are today.
Bruno Kreisky, Austrian Chancellor

Science may never come up with a better office-
communication system than the coffee break.
Earl Wilson

It’s currently a problem of access to gigabits through
punybaud.
J. C. R. Licklider

Chapter 17 Networking 979

17.1 Introduction
There is much excitement over the Internet and the World Wide Web. The Internet ties the
“information world” together. The World Wide Web makes the Internet easy to use and
gives it the flair and sizzle of multimedia. Organizations see the Internet and the Web as
crucial to their information-systems strategies. Java provides a number of built-in network-
ing capabilities that make it easy to develop Internet-based and Web-based applications.
Not only can Java specify parallelism through multithreading, but it can enable programs
to search the world for information and to collaborate with programs running on other com-
puters internationally, nationally or just within an organization. Java can enable applets and
applications to communicate with one another (subject to security constraints).

Networking is a massive and complex topic. Computer science and computer engi-
neering students will typically take a full-semester, upper level course in computer net-
working and continue with further study at the graduate level. Java provides a rich
complement of networking capabilities and will likely be used as an implementation
vehicle in computer networking courses. In Java How to Program, Fourth Edition, we
introduce a portion of Java’s networking concepts and capabilities. For more advanced net-
working capabilities, refer to our book Advanced Java 2 Platform How to Program.

Java’s networking capabilities are grouped into several packages. The fundamental
networking capabilities are defined by classes and interfaces of package java.net,

Outline

17.1 Introduction
17.2 Manipulating URIs
17.3 Reading a File on a Web Server
17.4 Establishing a Simple Server Using Stream Sockets
17.5 Establishing a Simple Client Using Stream Sockets
17.6 Client/Server Interaction with Stream Socket Connections
17.7 Connectionless Client/Server Interaction with Datagrams
17.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server
17.9 Security and the Network
17.10 DeitelMessenger Chat Server and Client

17.10.1 DeitelMessengerServer and Supporting Classes
17.10.2 DeitelMessenger Client and Supporting Classes

17.11 (Optional) Discovering Design Patterns: Design Patterns Used in
Packages java.io and java.net
17.11.1 Creational Design Patterns
17.11.2 Structural Design Patterns
17.11.3 Architectural Patterns
17.11.4 Conclusion

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

980 Networking Chapter 17

through which Java offers socket-based communications that enable applications to view
networking as streams of data. The classes and interfaces of package java.net also offer
packet-based communications that enable individual packets of information to be trans-
mitted—this is commonly used to transmit audio and video over the Internet. In this
chapter, we show how to create and manipulate sockets and how to communicate with
packets of data.

Our discussion of networking focuses on both sides of a client-server relationship. The
client requests that some action be performed, and the server performs the action and
responds to the client. A common implementation of the request-response model is
between World Wide Web browsers and World Wide Web servers. When a user selects a
Web site to browse through a browser (the client application), a request is sent to the appro-
priate Web server (the server application). The server normally responds to the client by
sending an appropriate HTML Web page.

We demonstrate the Swing GUI component JEditorPane and its ability to render
an HTML document downloaded from the World Wide Web. We also introduce Java’s a
socket-based communications, which enable applications to view networking as if it were
file I/O—a program can read from a socket or write to a socket as simply as reading from
a file or writing to a file. We show how to create and manipulate sockets.

Java provides stream sockets and datagram sockets. With stream sockets, a process
establishes a connection to another process. While the connection is in place, data flows
between the processes in continuous streams. Stream sockets are said to provide a connec-
tion-oriented service. The protocol used for transmission is the popular TCP (Transmission
Control Protocol).

With datagram sockets, individual packets of information are transmitted. This is not the
right protocol for everyday users, because, unlike TCP, the protocol used—UDP, the User
Datagram Protocol—is a connectionless service, and it does not guarantee that packets arrive
in any particular order. In fact, packets can be lost, can be duplicated and can even arrive out
of sequence. So, with UDP, significant extra programming is required on the user’s part to
deal with these problems (if the user chooses to do so). UDP is most appropriate for network
applications that do not require the error checking and reliability of TCP. Stream sockets and
the TCP protocol will be the most desirable for the vast majority of Java programmers.

Performance Tip 17.1
Connectionless services generally offer greater performance, but less reliability than con-
nection-oriented services. 17.1

Portability Tip 17.1
The TCP protocol and its related set of protocols enable a great variety of heterogeneous
computer systems (i.e., computer systems with different processors and different operating
systems) to intercommunicate. 17.1

The chapter ends with a case study in which we implement a client/server chat appli-
cation similar to the instant-messaging services popular on the Web today. The program
incorporates many networking techniques introduced in this chapter. The program also
introduces multicasting, in which a server can publish information and clients can sub-
scribe to that information. Each time the server publishes more information, all subscribers
receive that information. Throughout the examples of this chapter, we will see that many
of the networking details are handled by the Java classes we use.

Chapter 17 Networking 981

17.2 Manipulating URIs
The Internet offers many protocols. The HyperText Transfer Protocol (HTTP) that forms the
basis of the World Wide Web uses URIs (Uniform Resource Identifiers) to locate data on the
Internet. URIs frequently are called URLs (Uniform Resource Locators). Actually, a URL is
a type of URI. Common URIs refer to files or directories and can reference objects that per-
form complex tasks, such as database lookups and Internet searches. If you know the URI of
publicly available HTML files anywhere on the World Wide Web, you can access that data
through HTTP. Java makes it easy to manipulate URIs. Using a URI that refers to the exact
location of a resource (such as a Web page) as an argument to the showDocument method
of interface AppletContext causes the browser in which the applet is executing to display
the resource at the specified URI. The applet of Fig. 17.1 and Fig. 17.2 enables the user to se-
lect a Web page from a JList and causes the browser to display the corresponding page.

This applet takes advantage of applet parameters specified in the HTML document that
invokes the applet. When browsing the World Wide Web, often you will come across applets
that are in the public domain—you can use them free of charge on your own Web pages (nor-
mally in exchange for crediting the applet’s creator). One common feature of such applets is
the ability to customize the applet via parameters that are supplied from the HTML file that
invokes the applet. For example, Fig. 17.1 contains the HTML that invokes the applet Site-
Selector in Fig. 17.2. The HTML document contains eight parameters specified with the
param element—these lines must appear between the starting and ending applet tags. The
applet can read these values and use them to customize itself. Any number of param tags can
appear between the starting and ending applet tags. Each parameter has a name and a
value. Applet method getParameter retrieves the value associated with a specific
parameter and returns the value as a String. The argument passed to getParameter
is a String containing the name of the parameter in the param tag. In this example, param-
eters represent the title of each Web site the user can select and the location of each site. Any
number of parameters can be specified. However, these parameters must be named title#,
where the value of # starts at 0 and increments by one for each new title. Each title should
have a corresponding location parameter of the form location#, where the value of # starts
at 0 and increments by one for each new location. The statement

1 <html>
2 <title>Site Selector</title>
3 <body>
4 <applet code = "SiteSelector.class" width = "300" height = "75">
5 <param name = "title0" value = "Java Home Page">
6 <param name = "location0" value = "http://java.sun.com/">
7 <param name = "title1" value = "Deitel">
8 <param name = "location1" value = "http://www.deitel.com/">
9 <param name = "title2" value = "JGuru">

10 <param name = "location2" value = "http://www.jGuru.com/">
11 <param name = "title3" value = "JavaWorld">
12 <param name = "location3" value = "http://www.javaworld.com/">
13 </applet>
14 </body>
15 </html>

Fig. 17.1Fig. 17.1Fig. 17.1Fig. 17.1 HTML document to load SiteSelector applet.

982 Networking Chapter 17

String title = getParameter("title0");

gets the value associated with the "title0" parameter and assigns it to String refer-
ence title. If there is not a param tag containing the specified parameter, getParam-
eter returns null.

The applet (Fig. 17.2) obtains from the HTML document (Fig. 17.1) the choices that will
be displayed in the applet’s JList. Class SiteSelector uses a Hashtable (package
java.util) to store the World Wide Web site names and URIs. A Hashtable stores key/
value pairs. The program uses the key to store and retrieve the associated value in the Hash-
table. In this example, the key is the String in the JList that represents the Web site
name, and the value is a URL object that stores the URI of the Web site to display in the
browser. Class Hashtable provides two methods of importance in this example—put and
get. Method put takes two arguments—a key and its associated value—and places the
value in the Hashtable at a location determined by the key. Method get takes one argu-
ment—a key—and retrieves the value (as an Object reference) associated with the key.
Class SiteSelector also contains a Vector (package java.util) in which the site
names are placed so they can be used to initialize the JList (one version of the JList con-
structor receives a Vector object). A Vector is a dynamically resizable array of
Objects. Class Vector provides method add to add a new element to the end of the
Vector. Classes Hashtable and Vector are discussed in detail in Chapter 20.

Lines 23–24 in method init (lines 20–63) create the Hashtable and Vector
objects. Line 27 calls our utility method getSitesFromHTMLParameters (lines 66–
108) to obtain the HTML parameters from the HTML document that invoked the applet.

In method getSitesFromHTMLParameters, line 75 uses Applet method
getParameter to obtain a Web site title. If the title is not null, the loop at lines 78–
106 begins executing. Line 81 uses Applet method getParameter to obtain the cor-
responding location. Line 87 uses the location as the initial value of a new URL object.
The URL constructor determines whether the String passed as an argument represents a
valid Uniform Resource Identifier. If not, the URL constructor throws a Malformed-
URLException. Notice that the URL constructor must be called in a try block. If the
URL constructor generates a MalformedURLException, the call to printStack-
Trace (line 98) causes the program to display a stack trace. Then the program attempts to
obtain the next Web site title. The program does not add the site for the invalid URI to the
Hashtable, so the title will not be displayed in the JList.

Common Programming Error 17.1
A MalformedURLException is thrown when a String that is not in proper URI format
is passed to a URL constructor. 17.1

For a proper URL, line 90 places the title and URL into the Hashtable, and line
93 adds the title to the Vector. Line 104 gets the next title from the HTML document.
When the call to getParameter at line 104 returns null, the loop terminates.

When method getSitesFromHTMLParameters returns to init, lines 30–61
construct the applet’s GUI. Lines 31–32 add the JLabel “Choose a site to browse”
to the NORTH of the content pane’s BorderLayout. Lines 36–58 register an instance of
an anonymous inner class that implements ListSelectionListener to handle the
siteChooser’s events. Lines 60–61 add siteChooser to the CENTER of the content
pane’s BorderLayout.

Chapter 17 Networking 983

1 // Fig. 17.2: SiteSelector.java
2 // This program uses a button to load a document from a URL.
3
4 // Java core packages
5 import java.net.*;
6 import java.util.*;
7 import java.awt.*;
8 import java.applet.AppletContext;
9

10 // Java extension packages
11 import javax.swing.*;
12 import javax.swing.event.*;
13
14 public class SiteSelector extends JApplet {
15 private Hashtable sites; // site names and URLs
16 private Vector siteNames; // site names
17 private JList siteChooser; // list of sites to choose from
18
19 // read HTML parameters and set up GUI
20 public void init()
21 {
22 // create Hashtable and Vector
23 sites = new Hashtable();
24 siteNames = new Vector();
25
26 // obtain parameters from HTML document
27 getSitesFromHTMLParameters();
28
29 // create GUI components and layout interface
30 Container container = getContentPane();
31 container.add(new JLabel("Choose a site to browse"),
32 BorderLayout.NORTH);
33
34 siteChooser = new JList(siteNames);
35
36 siteChooser.addListSelectionListener(
37
38 new ListSelectionListener() {
39
40 // go to site user selected
41 public void valueChanged(ListSelectionEvent event)
42 {
43 // get selected site name
44 Object object = siteChooser.getSelectedValue();
45
46 // use site name to locate corresponding URL
47 URL newDocument = (URL) sites.get(object);
48
49 // get reference to applet container
50 AppletContext browser = getAppletContext();
51
52 // tell applet container to change pages
53 browser.showDocument(newDocument);

Fig. 17.2Fig. 17.2Fig. 17.2Fig. 17.2 Loading a document from a URL into a browser (part 1 of 3).

984 Networking Chapter 17

54 } // end method valueChanged
55
56 } // end anonymous inner class
57
58); // end call to addListSelectionListener
59
60 container.add(new JScrollPane(siteChooser),
61 BorderLayout.CENTER);
62
63 } // end method init
64
65 // obtain parameters from HTML document
66 private void getSitesFromHTMLParameters()
67 {
68 // look for applet parameters in the HTML document
69 // and add sites to Hashtable
70 String title, location;
71 URL url;
72 int counter = 0;
73
74 // obtain first site title
75 title = getParameter("title" + counter);
76
77 // loop until no more parameters in HTML document
78 while (title != null) {
79
80 // obtain site location
81 location = getParameter("location" + counter);
82
83 // place title/URL in Hashtable and title in Vector
84 try {
85
86 // convert location to URL
87 url = new URL(location);
88
89 // put title/URL in Hashtable
90 sites.put(title, url);
91
92 // put title in Vector
93 siteNames.add(title);
94 }
95
96 // process invalid URL format
97 catch (MalformedURLException urlException) {
98 urlException.printStackTrace();
99 }
100
101 ++counter;
102
103 // obtain next site title
104 title = getParameter("title" + counter);
105
106 } // end while

Fig. 17.2Fig. 17.2Fig. 17.2Fig. 17.2 Loading a document from a URL into a browser (part 2 of 3).

Chapter 17 Networking 985

When the user selects one of the Web sites in siteChooser, the program calls method
valueChanged (lines 41–54). Line 44 obtains the selected site name from the JList.
Line 47 passes the selected site name (the key) to Hashtable method get, which locates
and returns an Object reference to the corresponding URL object (the value). The URL cast
operator converts the reference to a URL that can be assigned to reference newDocument.

Line 50 uses Applet method getAppletContext to get a reference to an
AppletContext object that represents the applet container. Line 53 uses the Applet-
Context reference browser to invoke AppletContext method showDocument,
which receives a URL object as an argument and passes it to the AppletContext (i.e.,
the browser). The browser displays in the current browser window the World Wide Web
resource associated with that URL. In this example, all the resources are HTML documents.

For programmers familiar with HTML frames, there is a second version of Applet-
Context method showDocument that enables an applet to specify the so-called target
frame in which to display the World Wide Web resource. The second version of show-
Document takes two arguments—a URL object specifying the resource to display and a
String representing the target frame. There are some special target frames that can be
used as the second argument. The target frame _blank results in a new Web browser

107
108 } // end method getSitesFromHTMLParameters
109
110 } // end class SiteSelector

Fig. 17.2Fig. 17.2Fig. 17.2Fig. 17.2 Loading a document from a URL into a browser (part 3 of 3).

986 Networking Chapter 17

window to display the content from the specified URI. The target frame _self specifies
that the content from the specified URI should be displayed in the same frame as the applet
(the applet’s HTML page is replaced in this case). The target frame _top specifies that the
browser should remove the current frames in the browser window, then display the content
from the specified URI in the current window. For more information on HTML and frames,
see the World Wide Web Consortium (W3C) Web site

http://www.w3.org

[Note: This applet must be run from a World Wide Web browser, such as Netscape
Navigator or Microsoft Internet Explorer, to see the results of displaying another Web
page. The appletviewer is capable only of executing applets—it ignores all other
HTML tags. If the Web sites in the program contained Java applets, only those applets
would appear in the appletviewer when the user selects a Web site. Each applet would
execute in a separate appletviewer window. Of the browsers mentioned here, only
Netscape Navigator 6 currently supports the features of Java 2. You will need to use the
Java Plug-in (discussed in Chapter 3) to execute this applet in Microsoft Internet Explorer
or older versions of Netscape Navigator.]

17.3 Reading a File on a Web Server
The application of Fig. 17.3 uses Swing GUI component JEditorPane (from package
javax.swing) to display the contents of a file on a Web server. The user inputs the URI
in the JTextField at the top of the window, and the program displays the corresponding
document (if it exists) in the JEditorPane. Class JEditorPane is able to render both
plain text and HTML-formatted text, so this application acts as a simple Web browser. The
application also demonstrates how to process HyperlinkEvents when the user clicks a
hyperlink in the HTML document. The screen captures in Fig. 17.3 illustrate that the JEd-
itorPane can display both simple text (the first screen) and HTML text (the second
screen). The techniques shown in this example also can be used in applets. However, ap-
plets are allowed to read files only on the server from which the applet was downloaded.

1 // Fig. 17.3: ReadServerFile.java
2 // This program uses a JEditorPane to display the
3 // contents of a file on a Web server.
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8 import java.net.*;
9 import java.io.*;

10
11 // Java extension packages
12 import javax.swing.*;
13 import javax.swing.event.*;
14
15 public class ReadServerFile extends JFrame {
16 private JTextField enterField;
17 private JEditorPane contentsArea;

Fig. 17.3Fig. 17.3Fig. 17.3Fig. 17.3 Reading a file by opening a connection through a URL (part 1 of 4)

Chapter 17 Networking 987

18
19 // set up GUI
20 public ReadServerFile()
21 {
22 super("Simple Web Browser");
23
24 Container container = getContentPane();
25
26 // create enterField and register its listener
27 enterField = new JTextField("Enter file URL here");
28
29 enterField.addActionListener(
30
31 new ActionListener() {
32
33 // get document specified by user
34 public void actionPerformed(ActionEvent event)
35 {
36 getThePage(event.getActionCommand());
37 }
38
39 } // end anonymous inner class
40
41); // end call to addActionListener
42
43 container.add(enterField, BorderLayout.NORTH);
44
45 // create contentsArea and register HyperlinkEvent listener
46 contentsArea = new JEditorPane();
47 contentsArea.setEditable(false);
48
49 contentsArea.addHyperlinkListener(
50
51 new HyperlinkListener() {
52
53 // if user clicked hyperlink, go to specified page
54 public void hyperlinkUpdate(HyperlinkEvent event)
55 {
56 if (event.getEventType() ==
57 HyperlinkEvent.EventType.ACTIVATED)
58 getThePage(event.getURL().toString());
59 }
60
61 } // end anonymous inner class
62
63); // end call to addHyperlinkListener
64
65 container.add(new JScrollPane(contentsArea),
66 BorderLayout.CENTER);
67
68 setSize(400, 300);
69 setVisible(true);
70 }

Fig. 17.3Fig. 17.3Fig. 17.3Fig. 17.3 Reading a file by opening a connection through a URL (part 2 of 4)

988 Networking Chapter 17

71
72 // load document; change mouse cursor to indicate status
73 private void getThePage(String location)
74 {
75 // change mouse cursor to WAIT_CURSOR
76 setCursor(Cursor.getPredefinedCursor(
77 Cursor.WAIT_CURSOR));
78
79 // load document into contentsArea and display location in
80 // enterField
81 try {
82 contentsArea.setPage(location);
83 enterField.setText(location);
84 }
85
86 // process problems loading document
87 catch (IOException ioException) {
88 JOptionPane.showMessageDialog(this,
89 "Error retrieving specified URL",
90 "Bad URL", JOptionPane.ERROR_MESSAGE);
91 }
92
93 setCursor(Cursor.getPredefinedCursor(
94 Cursor.DEFAULT_CURSOR));
95 }
96
97 // begin application execution
98 public static void main(String args[])
99 {
100 ReadServerFile application = new ReadServerFile();
101
102 application.setDefaultCloseOperation(
103 JFrame.EXIT_ON_CLOSE);
104 }
105
106 } // end class ReadServerFile

Fig. 17.3Fig. 17.3Fig. 17.3Fig. 17.3 Reading a file by opening a connection through a URL (part 3 of 4)

Chapter 17 Networking 989

The application class ReadServerFile contains JTextField enterField, in
which the user enters the URI of the file to read and JEditorPane contentsArea to
display the contents of the file. When the user presses the Enter key in the JTextField,
the program calls method actionPerformed (lines 34–37). Line 36 uses Action-
Event method getActionCommand to get the String the user input in the JText-
Field and passes that string to utility method getThePage (lines 73–95).

Lines 76–77 in method getThePage use method setCursor (inherited into class
JFrame from class Component) to change the mouse cursor to the wait cursor (nor-
mally, an hourglass or a watch). If the file being downloaded is large, the wait cursor indi-
cates to the user that the program is performing a task and that the user should wait for the
task to complete. The static Cursor method getPredefinedCursor receives an
integer indicating the cursor type (Cursor.WAIT_CURSOR in this case). See the API
documentation for class Cursor for a complete list of cursors.

Line 82 uses JEditorPane method setPage to download the document specified
by location and display it in the JEditorPane contents. If there is an error down-
loading the document, method setPage throws an IOException. Also, if an invalid
URL is specified, a MalformedURLException (a sublcass of IOException) occurs.
If the document loads successfully, line 83 displays the current location in enterField.

Lines 93–94 sets the Cursor back to Cursor.DEFAULT_CURSOR (the default
Cursor) to indicate that the document download is complete.

Typically, an HTML document contains hyperlinks—text, images or GUI components
which, when clicked, provide quick access to another document on the Web. If a JEdi-
torPane contains an HTML document and the user clicks a hyperlink, the JEditor-
Pane generates a HyperlinkEvent (package javax.swing.event) and notifies
all registered HyperlinkListeners (package javax.swing.event) of that event.
Lines 49–63 register a HyperlinkListener to handle HyperlinkEvents. When a
HyperlinkEvent occurs, the program calls method hyperlinkUpdate (lines 54–

Fig. 17.3Fig. 17.3Fig. 17.3Fig. 17.3 Reading a file by opening a connection through a URL (part 4 of 4)

990 Networking Chapter 17

59). Lines 56–57 use HyperlinkEvent method getEventType to determine the type
of the HyperlinkEvent. Class HyperlinkEvent contains public inner class
EventType that defines three hyperlink event types: ACTIVATED (the user clicked a
hyperlink to change Web pages), ENTERED (the user moved the mouse over a hyperlink)
and EXITED (the user moved the mouse away from a hyperlink). If a hyperlink was
ACTIVATED, line 58 uses HyperlinkEvent method getURL to obtain the URL repre-
sented by the hyperlink. Method toString converts the returned URL to a String
format that can be passed to utility method getThePage.

Software Engineering Observation 17.1
A JEditorPane generates HyperlinkEvents only if it is uneditable. 17.1

17.4 Establishing a Simple Server Using Stream Sockets
The two examples discussed so far use high-level Java networking capabilities to commu-
nicate between applications. In those examples, it was not the Java programmer’s respon-
sibility to establish the connection between a client and a server. The first program relied
on the Web browser to communicate with a Web server. The second program relied on a
JEditorPane to perform the connection. This section begins our discussion of creating
your own applications that can communicate with one another.

Establishing a simple server in Java requires five steps. Step 1 is to create a Server-
Socket object. A call to the ServerSocket constructor such as

ServerSocket server = new ServerSocket(port, queueLength);

registers an available port number and specifies a maximum number of clients that can wait
to connect to the server (i.e., the queueLength). The port number is used by clients to locat-
ed the server application on the server computer. This often is called the handshake point.
If the queue is full, the server refuses client connections. The preceding statement establish-
es the port where the server waits for connections from clients (a process known as binding
the server to the port). Each client will ask to connect to the server on this port.

Programs manage each client connection with a Socket object. After binding the
server to a port with a ServerSocket (Step 2), the server listens indefinitely (or blocks)
for an attempt by a client to connect. To listen for a client, the program calls Server-
Socket method accept, as in

Socket connection = server.accept();

This statement returns a Socket object when a connection with a client is established.
Step 3 is to get the OutputStream and InputStream objects that enable the

server to communicate with the client by sending and receiving bytes. The server sends
information to the client via an OutputStream object. The server receives information
from the client via an InputStream object. To obtain the streams, the server invokes
method getOutputStream on the Socket to get a reference to the OutputStream
associated with the Socket and invokes method getInputStream on the Socket to
get a reference to the InputStream associated with the Socket.

The OutputStream and InputStream objects can be used to send or receive indi-
vidual bytes or sets of bytes with the OutputStream method write and the Input-
Stream method read, respectively. Often it is useful to send or receive values of primitive

Chapter 17 Networking 991

data types (such as int and double) or Serializable class data types (such as
String) rather than sending bytes. In this case, we can use the techniques of Chapter 16 to
chain other stream types (such as ObjectOutputStream and ObjectInputStream)
to the OutputStream and InputStream associated with the Socket. For example,

ObjectInputStream input =
new ObjectInputStream(connection.getInputStream());

ObjectOutputStream output =
new ObjectOutputStream(connection.getOutputStream());

The beauty of establishing these relationships is that whatever the server writes to the Ob-
jectOutputStream is sent via the OutputStream and is available at the client’s
InputStream and whatever the client writes to its OutputStream (with a correspond-
ing ObjectOutputStream) is available via the server’s InputStream.

Step 4 is the processing phase, in which the server and the client communicate via the
InputStream and OutputStream objects. In Step 5, when the transmission is com-
plete, the server closes the connection by invoking the close method on the Socket and
on the corresponding streams.

Software Engineering Observation 17.2
With sockets, network I/O appears to Java programs to be identical to sequential file I/O.
Sockets hide much of the complexity of network programming from the programmer. 17.2

Software Engineering Observation 17.3
With Java’s multithreading, we can create multithreaded servers that can manage many si-
multaneous connections with many clients; this multithreaded-server architecture is precise-
ly what popular network servers use. 17.3

Software Engineering Observation 17.4
A multithreaded server can take the Socket returned by each call to accept and create a
new thread that manages network I/O across that Socket, or a multithreaded server can
maintain a pool of threads (a set of already existing threads) ready to manage network I/O
across the new Sockets as they are created. 17.4

Performance Tip 17.2
In high-performance systems in which memory is abundant, a multithreaded server can be
implemented to create a pool of threads that can be assigned quickly to handle network I/O
across each new Socket as it is created. Thus, when the server receives a connection, the
server need not incur the overhead of thread creation. 17.2

17.5 Establishing a Simple Client Using Stream Sockets
Establishing a simple client in Java requires four steps. In Step 1, we create a Socket to
connect to the server. The Socket constructor establishes the connection to the server. For
example, the statement

Socket connection = new Socket(serverAddress, port);

uses the Socket constructor with two arguments—the server’s Internet address (server-
Address) and the port number. If the connection attempt is successful, this statement returns

992 Networking Chapter 17

a Socket. A connection attempt that fails throws an instance of a subclass of IOExcep-
tion, so many programs simply catch IOException. An UnknownHostException
occurs when a server address indicated by a client cannot be resolved. A ConnectEx-
ception is thrown when an error occurs while attempting to connect to a server.

In Step 2, the client uses Socket methods getInputStream and getOutput-
Stream to obtain references to the Socket’s InputStream and OutputStream. As
we mentioned in the preceding section, often it is useful to send or receive values of prim-
itive data types (such as int and double) or class data types (such as String and
Employee) rather than sending bytes. If the server is sending information in the form of
actual data types, the client should receive the information in the same format. Thus, if the
server sends values with an ObjectOutputStream, the client should read those values
with an ObjectInputStream.

Step 3 is the processing phase in which the client and the server communicate via the
InputStream and OutputStream objects. In Step 4, the client closes the connection
when the transmission is complete by invoking the close method on the Socket and the
corresponding streams. When processing information sent by a server, the client must
determine when the server is finished sending information so the client can call close to
close the Socket connection. For example, the InputStream method read returns the
value –1 when it detects end-of-stream (also called EOF—end-of-file). If an ObjectIn-
putStream is used to read information from the server, an EOFException occurs
when the client attempts to read a value from a stream on which end-of-stream is detected.

17.6 Client/Server Interaction with Stream Socket Connections
The applications of Fig. 17.4 and Fig. 17.5 use stream sockets to demonstrate a simple cli-
ent/server chat application. The server waits for a client connection attempt. When a client
application connects to the server, the server application sends a String object (remem-
ber that Strings are Serializable) indicating that the connection was successful to
the client. Then the client displays the message. Both the client and the server applications
contain JTextFields, which allow the user to type a message and send it to the other
application. When the client or the server sends the String “TERMINATE”, the connec-
tion between the client and the server terminates. Then the server waits for the next client
to connect. The definition of class Server appears in Fig. 17.4. The definition of class
Client appears in Fig. 17.5. The screen captures showing the execution between the cli-
ent and the server are shown as part of Fig. 17.5.

Class Server’s constructor (lines 25–58) creates the GUI of the application (a
JTextField and a JTextArea). The Server object displays its output in a JText-
Area. When the main method (lines 186–194) executes, it creates an instance of class
Server, specifies the window’s default close operation and calls method runServer
(defined at lines 61–97).

Method runServer does the work of setting up the server to receive a connection
and processing the connection when it occurs. The method creates a ServerSocket
called server (line 68) to wait for connections. The ServerSocket is set up to listen
for a connection from a client at port 5000. The second argument to the constructor is the
number of connections that can wait in a queue to connect to the server (100 in this
example). If the queue is full when a client attempts to connect, the server refuses the con-
nection.

Chapter 17 Networking 993

1 // Fig. 17.4: Server.java
2 // Set up a Server that will receive a connection
3 // from a client, send a string to the client,
4 // and close the connection.
5
6 // Java core packages
7 import java.io.*;
8 import java.net.*;
9 import java.awt.*;

10 import java.awt.event.*;
11
12 // Java extension packages
13 import javax.swing.*;
14
15 public class Server extends JFrame {
16 private JTextField enterField;
17 private JTextArea displayArea;
18 private ObjectOutputStream output;
19 private ObjectInputStream input;
20 private ServerSocket server;
21 private Socket connection;
22 private int counter = 1;
23
24 // set up GUI
25 public Server()
26 {
27 super("Server");
28
29 Container container = getContentPane();
30
31 // create enterField and register listener
32 enterField = new JTextField();
33 enterField.setEnabled(false);
34
35 enterField.addActionListener(
36
37 new ActionListener() {
38
39 // send message to client
40 public void actionPerformed(ActionEvent event)
41 {
42 sendData(event.getActionCommand());
43 }
44
45 } // end anonymous inner class
46
47); // end call to addActionListener
48
49 container.add(enterField, BorderLayout.NORTH);
50
51 // create displayArea
52 displayArea = new JTextArea();

Fig. 17.4Fig. 17.4Fig. 17.4Fig. 17.4 Server portion of a client/server stream-socket connection (part 1 of 4).

994 Networking Chapter 17

53 container.add(new JScrollPane(displayArea),
54 BorderLayout.CENTER);
55
56 setSize(300, 150);
57 setVisible(true);
58 }
59
60 // set up and run server
61 public void runServer()
62 {
63 // set up server to receive connections;
64 // process connections
65 try {
66
67 // Step 1: Create a ServerSocket.
68 server = new ServerSocket(5000, 100);
69
70 while (true) {
71
72 // Step 2: Wait for a connection.
73 waitForConnection();
74
75 // Step 3: Get input and output streams.
76 getStreams();
77
78 // Step 4: Process connection.
79 processConnection();
80
81 // Step 5: Close connection.
82 closeConnection();
83
84 ++counter;
85 }
86 }
87
88 // process EOFException when client closes connection
89 catch (EOFException eofException) {
90 System.out.println("Client terminated connection");
91 }
92
93 // process problems with I/O
94 catch (IOException ioException) {
95 ioException.printStackTrace();
96 }
97 }
98
99 // wait for connection to arrive, then display connection info
100 private void waitForConnection() throws IOException
101 {
102 displayArea.setText("Waiting for connection\n");
103
104 // allow server to accept a connection
105 connection = server.accept();

Fig. 17.4Fig. 17.4Fig. 17.4Fig. 17.4 Server portion of a client/server stream-socket connection (part 2 of 4).

Chapter 17 Networking 995

106
107 displayArea.append("Connection " + counter +
108 " received from: " +
109 connection.getInetAddress().getHostName());
110 }
111
112 // get streams to send and receive data
113 private void getStreams() throws IOException
114 {
115 // set up output stream for objects
116 output = new ObjectOutputStream(
117 connection.getOutputStream());
118
119 // flush output buffer to send header information
120 output.flush();
121
122 // set up input stream for objects
123 input = new ObjectInputStream(
124 connection.getInputStream());
125
126 displayArea.append("\nGot I/O streams\n");
127 }
128
129 // process connection with client
130 private void processConnection() throws IOException
131 {
132 // send connection successful message to client
133 String message = "SERVER>>> Connection successful";
134 output.writeObject(message);
135 output.flush();
136
137 // enable enterField so server user can send messages
138 enterField.setEnabled(true);
139
140 // process messages sent from client
141 do {
142
143 // read message and display it
144 try {
145 message = (String) input.readObject();
146 displayArea.append("\n" + message);
147 displayArea.setCaretPosition(
148 displayArea.getText().length());
149 }
150
151 // catch problems reading from client
152 catch (ClassNotFoundException classNotFoundException) {
153 displayArea.append("\nUnknown object type received");
154 }
155
156 } while (!message.equals("CLIENT>>> TERMINATE"));
157 }
158

Fig. 17.4Fig. 17.4Fig. 17.4Fig. 17.4 Server portion of a client/server stream-socket connection (part 3 of 4).

996 Networking Chapter 17

Software Engineering Observation 17.5
Port numbers can be between 0 and 65,535. Many operating systems reserve port numbers
below 1024 for system services (such as e-mail and World Wide Web servers). Generally,
these ports should not be specified as connection ports in user programs. In fact, some oper-
ating systems require special access privileges to use port numbers below 1024. 17.5

Line 73 calls method waitForConnection (lines 100–110) to wait for a client
connection. After the connection is established, line 76 calls method getStreams (lines
113–127) to obtain references to the InputStream and OutputStream for the con-
nection. Line 79 calls method processConnection to send the initial connection mes-
sage to the client and to process all messages received from the client. Line 82 calls method
closeConnection to terminate the connection with the client.

159 // close streams and socket
160 private void closeConnection() throws IOException
161 {
162 displayArea.append("\nUser terminated connection");
163 enterField.setEnabled(false);
164 output.close();
165 input.close();
166 connection.close();
167 }
168
169 // send message to client
170 private void sendData(String message)
171 {
172 // send object to client
173 try {
174 output.writeObject("SERVER>>> " + message);
175 output.flush();
176 displayArea.append("\nSERVER>>>" + message);
177 }
178
179 // process problems sending object
180 catch (IOException ioException) {
181 displayArea.append("\nError writing object");
182 }
183 }
184
185 // execute application
186 public static void main(String args[])
187 {
188 Server application = new Server();
189
190 application.setDefaultCloseOperation(
191 JFrame.EXIT_ON_CLOSE);
192
193 application.runServer();
194 }
195
196 } // end class Server

Fig. 17.4Fig. 17.4Fig. 17.4Fig. 17.4 Server portion of a client/server stream-socket connection (part 4 of 4).

Chapter 17 Networking 997

In method waitForConnection (lines 100–110), line 105 uses ServerSocket
method accept to wait for a connection from a client and assigns the resulting Socket
to connection. This method blocks until a connection is received (i.e., the thread in
which accept is called stops executing until a client connects). Lines 107–109 output the
host name of the computer that made the connection. Socket method getInetAd-
dress returns an InetAddress object (package java.net) containing information
about the client computer. InetAddress method getHostName returns the host name
of the client computer. For example, if the Internet address of the computer is
127.0.0.1, the corresponding host name would be localhost.

Method getStreams (lines 113–127) obtains references to the InputStream and
OutputStream of the Socket and uses them to initialize an ObjectInputStream
and an ObjectOutputStream, respectively. Notice the call to ObjectOutput-
Stream method flush at line 120. This statement causes the ObjectOutputStream
on the server to send a stream header to the corresponding client’s ObjectInputStream.
The stream header contains information such as the version of object serialization being used
to send objects. This information is required by the ObjectInputStream so it can pre-
pare to receive those objects correctly.

Software Engineering Observation 17.6
When using an ObjectOutputStream and ObjectInputStream to send and receive
objects over a network connection, always create the ObjectOutputStream first and
flush the stream so the client’s ObjectInputStream can prepare to receive the data.
This is required only for applications that communicate using ObjectOutputStream
and ObjectInputStream. 17.6

Line 134 of method processConnection (lines 130–157) uses ObjectOut-
putStream method writeObject to send the string “SERVER>>> Connection
successful” to the client. Line 135 flushes the output stream to ensure that the object
is sent immediately; otherwise, the object could be held in an output buffer until more infor-
mation is available to send.

Performance Tip 17.3
Output buffers typically are used to increase the efficiency of an application by sending larg-
er amounts of data fewer times. The input and output components of a computer are typically
much slower than the memory of the computer. 17.3

The do/while structure at lines 141–156 loops until the server receives the message
“CLIENT>>> TERMINATE.” Line 145 uses ObjectInputStream method read-
Object to read a String from the client. Line 146 displays the message in the JText-
Area. Lines 147–148 use JTextComponent method setCaretPosition to
position the input cursor in the JTextArea after the last character in the JTextArea.
This scrolls the JTextArea as text is appended to it.

 When the transmission is complete, method processConnection returns and the
program calls method closeConnection (lines 160–167) to close the streams associ-
ated with the Socket and close the Socket. Next, the server waits for the next connec-
tion attempt from a client by continuing with line 73 at the beginning of the while loop.

When the user of the server application enters a String in the JTextField and
presses the Enter key, the program calls method actionPerformed (lines 40–43), reads
the String from the JTextField and calls utility method sendData (lines 170–183).

998 Networking Chapter 17

Method sendData sends the String object to the client, flushes the output buffer and
appends the same String to the JTextArea in the server window.

Notice that the Server receives a connection, processes the connection, closes the
connection and waits for the next connection. A more likely scenario would be a Server
that receives a connection, sets up that connection to be processed as a separate thread of
execution, and waits for new connections. The separate threads that process existing con-
nections can continue to execute while the Server concentrates on new connection
requests.

Like class Server, class Client’s (Fig. 17.5) constructor creates the GUI of the
application (a JTextField and a JTextArea). The Client object displays its output
in a JTextArea. When the main method (line 175–188) executes, it creates an instance
of class Client, specifies the window’s default close operation and calls method run-
Client (defined at lines 63–90). In this example, you can execute the client from any
computer on the Internet and specify the Internet address or host name of the server com-
puter as a command-line argument to the program. For example,

java Client 192.168.1.15

connects to the Server on the computer with Internet address 192.168.1.15.

1 // Fig. 17.5: Client.java
2 // Set up a Client that will read information sent
3 // from a Server and display the information.
4
5 // Java core packages
6 import java.io.*;
7 import java.net.*;
8 import java.awt.*;
9 import java.awt.event.*;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 public class Client extends JFrame {
15 private JTextField enterField;
16 private JTextArea displayArea;
17 private ObjectOutputStream output;
18 private ObjectInputStream input;
19 private String message = "";
20 private String chatServer;
21 private Socket client;
22
23 // initialize chatServer and set up GUI
24 public Client(String host)
25 {
26 super("Client");
27
28 // set server to which this client connects
29 chatServer = host;

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 Demonstrating the client portion of a stream-socket connection between a
client and a server (part 1 of 5).

Chapter 17 Networking 999

30
31 Container container = getContentPane();
32
33 // create enterField and register listener
34 enterField = new JTextField();
35 enterField.setEnabled(false);
36
37 enterField.addActionListener(
38
39 new ActionListener() {
40
41 // send message to server
42 public void actionPerformed(ActionEvent event)
43 {
44 sendData(event.getActionCommand());
45 }
46
47 } // end anonymous inner class
48
49); // end call to addActionListener
50
51 container.add(enterField, BorderLayout.NORTH);
52
53 // create displayArea
54 displayArea = new JTextArea();
55 container.add(new JScrollPane(displayArea),
56 BorderLayout.CENTER);
57
58 setSize(300, 150);
59 setVisible(true);
60 }
61
62 // connect to server and process messages from server
63 public void runClient()
64 {
65 // connect to server, get streams, process connection
66 try {
67
68 // Step 1: Create a Socket to make connection
69 connectToServer();
70
71 // Step 2: Get the input and output streams
72 getStreams();
73
74 // Step 3: Process connection
75 processConnection();
76
77 // Step 4: Close connection
78 closeConnection();
79 }
80

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 Demonstrating the client portion of a stream-socket connection between a
client and a server (part 2 of 5).

1000 Networking Chapter 17

81 // server closed connection
82 catch (EOFException eofException) {
83 System.out.println("Server terminated connection");
84 }
85
86 // process problems communicating with server
87 catch (IOException ioException) {
88 ioException.printStackTrace();
89 }
90 }
91
92 // get streams to send and receive data
93 private void getStreams() throws IOException
94 {
95 // set up output stream for objects
96 output = new ObjectOutputStream(
97 client.getOutputStream());
98
99 // flush output buffer to send header information
100 output.flush();
101
102 // set up input stream for objects
103 input = new ObjectInputStream(
104 client.getInputStream());
105
106 displayArea.append("\nGot I/O streams\n");
107 }
108
109 // connect to server
110 private void connectToServer() throws IOException
111 {
112 displayArea.setText("Attempting connection\n");
113
114 // create Socket to make connection to server
115 client = new Socket(
116 InetAddress.getByName(chatServer), 5000);
117
118 // display connection information
119 displayArea.append("Connected to: " +
120 client.getInetAddress().getHostName());
121 }
122
123 // process connection with server
124 private void processConnection() throws IOException
125 {
126 // enable enterField so client user can send messages
127 enterField.setEnabled(true);
128
129 // process messages sent from server
130 do {
131

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 Demonstrating the client portion of a stream-socket connection between a
client and a server (part 3 of 5).

Chapter 17 Networking 1001

132 // read message and display it
133 try {
134 message = (String) input.readObject();
135 displayArea.append("\n" + message);
136 displayArea.setCaretPosition(
137 displayArea.getText().length());
138 }
139
140 // catch problems reading from server
141 catch (ClassNotFoundException classNotFoundException) {
142 displayArea.append("\nUnknown object type received");
143 }
144
145 } while (!message.equals("SERVER>>> TERMINATE"));
146
147 } // end method process connection
148
149 // close streams and socket
150 private void closeConnection() throws IOException
151 {
152 displayArea.append("\nClosing connection");
153 output.close();
154 input.close();
155 client.close();
156 }
157
158 // send message to server
159 private void sendData(String message)
160 {
161 // send object to server
162 try {
163 output.writeObject("CLIENT>>> " + message);
164 output.flush();
165 displayArea.append("\nCLIENT>>>" + message);
166 }
167
168 // process problems sending object
169 catch (IOException ioException) {
170 displayArea.append("\nError writing object");
171 }
172 }
173
174 // execute application
175 public static void main(String args[])
176 {
177 Client application;
178
179 if (args.length == 0)
180 application = new Client("127.0.0.1");
181 else
182 application = new Client(args[0]);
183

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 Demonstrating the client portion of a stream-socket connection between a
client and a server (part 4 of 5).

1002 Networking Chapter 17

Client method runClient (lines 63–90) performs the work necessary to connect
to the Server, to receive data from the Server and to send data to the Server. Line 69
calls method connectToServer (lines 110–121) to perform the connection. After con-
necting, line 72 calls method getStreams (lines 93–107) to obtain references to the
Socket’s InputStream and OutputStream objects. Then line 75 calls method
processConnection (124–147) to handle messages sent from the server. When the
connection terminates, line 78 calls closeConnection to close the streams and the
Socket.

Method connectToServer (lines 110–121) creates a Socket called client
(lines 115–116) to establish a connection. The method passes two arguments to the

184 application.setDefaultCloseOperation(
185 JFrame.EXIT_ON_CLOSE);
186
187 application.runClient();
188 }
189
190 } // end class Client

Fig. 17.5Fig. 17.5Fig. 17.5Fig. 17.5 Demonstrating the client portion of a stream-socket connection between a
client and a server (part 5 of 5).

The Server
and Client
windows after
the Client
connects to
the Server

The Server
and Client
windows after
the Client
sends a
message to
the Server

The Server
and Client
windows after
the Server
sends a
message to
the Client

The Server
and Client
windows after
the Client
terminates the
connection

Chapter 17 Networking 1003

Socket constructor—the Internet address of the server computer and the port number
(5000) where that computer is awaiting client connections. The call to InetAddress
static method getByName in the first argument returns an InetAddress object con-
taining the Internet address specified as a command-line argument to the application (or
127.0.0.1 if no command-line arguments are specified). Method getByName can
receive a String containing either the actual Internet address or the host name of the
server. The first argument also could have been written other ways. For the localhost
address 127.0.0.1, the first argument could be

InetAddress.getByName("localhost")

or

InetAddress.getLocalHost()

Also, there are versions of the Socket constructor that receive a String for the Internet
address or host name. The first argument could have been specified as "127.0.0.1" or
"localhost". [Note: We chose to demonstrate the client/server relationship by connect-
ing between programs executing on the same computer (localhost). Normally, this first
argument would be the Internet address of another computer. The InetAddress object
for another computer can be obtained by specifying the Internet address or host name of the
other computer as the String argument to InetAddress.getByName.]

The Socket constructor’s second argument is the server port number. This number
must match the port number at which the server is waiting for connections (called the hand-
shake point). Once the connection is made, a message is displayed in the JTextArea
(lines 119–120) indicating the name of the server computer to which the client connected.

The Client uses an ObjectOutputStream to send data to the server and an
ObjectInputStream to receive data from the server. Method getStreams (lines
93–107) creates the ObjectOutputStream and ObjectInputStream objects that
use the OutputStream and InputStream objects associated with client.

Method processConnection (lines 124–147) contains a do/while structure that
loops until the client receives the message “SERVER>>> TERMINATE.” Line 134 uses
ObjectInputStream method readObject to read a String from the server. Line
135 displays the message in the JTextArea. Lines 136–137 use JTextComponent
method setCaretPosition to position the input cursor in the JTextArea after the
last character in the JTextArea.

 When the transmission is complete, method closeConnection (lines 150–156)
closes the streams and the Socket.

When the user of the client application enters a String in the JTextField and
presses the Enter key, the program calls method actionPerformed (lines 42–45) to
read the String from the JTextField and invoke utility method sendData (159–
172). Method sendData sends the String object to server client, flushes the output
buffer and appends the same String to the JTextArea in the client window.

17.7 Connectionless Client/Server Interaction with Datagrams
We have been discussing connection-oriented, streams-based transmission. Now we con-
sider connectionless transmission with datagrams.

1004 Networking Chapter 17

Connection-oriented transmission is like the telephone system in which you dial and
are given a connection to the telephone of the person with whom you wish to communicate.
The connection is maintained for the duration of your phone call, even when you are not
talking.

Connectionless transmission with datagrams is more like the way mail is carried via
the postal service. If a large message will not fit in one envelope, you break it into separate
message pieces that you place in separate, sequentially numbered envelopes. Each of the
letters is then mailed at the same time. The letters could arrive in order, out of order or not
at all (although the last case is rare, it does happen). The person at the receiving end reas-
sembles the message pieces into sequential order before attempting to make sense of the
message. If your message is small enough to fit in one envelope, you do not have to worry
about the “out-of-sequence” problem, but it is still possible that your message might not
arrive. One difference between datagrams and postal mail is that duplicates of datagrams
can arrive on the receiving computer.

The programs of Fig. 17.6 and Fig. 17.7 use datagrams to send packets of information
between a client application and a server application. In the Client application
(Fig. 17.7), the user types a message into a JTextField and presses Enter. The program
converts the message into a byte array and places it in a datagram packet that is sent to
the server. The Server (Fig. 17.6) receives the packet and displays the information in the
packet, then echoes the packet back to the client. When the client receives the packet, the
client displays the information in the packet. In this example, the Client and Server
classes are implemented similarly.

Class Server (Fig. 17.6) defines two DatagramPackets that the server uses to
send and receive information and one DatagramSocket that sends and receives these
packets. The constructor for class Server (lines 20–41) creates the graphical user inter-
face where the packets of information will be displayed. Next the constructor creates the
DatagramSocket in a try block. Line 32 uses the DatagramSocket constructor
that takes an integer port number argument (5000) to bind the server to a port where the
server can receive packets from clients. Clients sending packets to this Server specify
port 5000 in the packets they send. The DatagramSocket constructor throws a
SocketException if it fails to bind the DatagramSocket to a port.

Common Programming Error 17.2
Specifying a port that is already in use or specifying an invalid port number when creating
a DatagramSocket results in a BindException. 17.2

1 // Fig. 17.6: Server.java
2 // Set up a Server that will receive packets from a
3 // client and send packets to a client.
4
5 // Java core packages
6 import java.io.*;
7 import java.net.*;
8 import java.awt.*;
9 import java.awt.event.*;

10

Fig. 17.6Fig. 17.6Fig. 17.6Fig. 17.6 Demonstrating the server side of connectionless client/server computing
with datagrams (part 1 of 4).

Chapter 17 Networking 1005

11 // Java extension packages
12 import javax.swing.*;
13
14 public class Server extends JFrame {
15 private JTextArea displayArea;
16 private DatagramPacket sendPacket, receivePacket;
17 private DatagramSocket socket;
18
19 // set up GUI and DatagramSocket
20 public Server()
21 {
22 super("Server");
23
24 displayArea = new JTextArea();
25 getContentPane().add(new JScrollPane(displayArea),
26 BorderLayout.CENTER);
27 setSize(400, 300);
28 setVisible(true);
29
30 // create DatagramSocket for sending and receiving packets
31 try {
32 socket = new DatagramSocket(5000);
33 }
34
35 // process problems creating DatagramSocket
36 catch(SocketException socketException) {
37 socketException.printStackTrace();
38 System.exit(1);
39 }
40
41 } // end Server constructor
42
43 // wait for packets to arrive, then display data and echo
44 // packet to client
45 public void waitForPackets()
46 {
47 // loop forever
48 while (true) {
49
50 // receive packet, display contents, echo to client
51 try {
52
53 // set up packet
54 byte data[] = new byte[100];
55 receivePacket =
56 new DatagramPacket(data, data.length);
57
58 // wait for packet
59 socket.receive(receivePacket);
60
61 // process packet
62 displayPacket();

Fig. 17.6Fig. 17.6Fig. 17.6Fig. 17.6 Demonstrating the server side of connectionless client/server computing
with datagrams (part 2 of 4).

1006 Networking Chapter 17

63
64 // echo information from packet back to client
65 sendPacketToClient();
66 }
67
68 // process problems manipulating packet
69 catch(IOException ioException) {
70 displayArea.append(ioException.toString() + "\n");
71 ioException.printStackTrace();
72 }
73
74 } // end while
75
76 } // end method waitForPackets
77
78 // display packet contents
79 private void displayPacket()
80 {
81 displayArea.append("\nPacket received:" +
82 "\nFrom host: " + receivePacket.getAddress() +
83 "\nHost port: " + receivePacket.getPort() +
84 "\nLength: " + receivePacket.getLength() +
85 "\nContaining:\n\t" +
86 new String(receivePacket.getData(), 0,
87 receivePacket.getLength()));
88 }
89
90 // echo packet to client
91 private void sendPacketToClient() throws IOException
92 {
93 displayArea.append("\n\nEcho data to client...");
94
95 // create packet to send
96 sendPacket = new DatagramPacket(receivePacket.getData(),
97 receivePacket.getLength(), receivePacket.getAddress(),
98 receivePacket.getPort());
99
100 // send packet
101 socket.send(sendPacket);
102
103 displayArea.append("Packet sent\n");
104 displayArea.setCaretPosition(
105 displayArea.getText().length());
106 }
107
108 // execute application
109 public static void main(String args[])
110 {
111 Server application = new Server();
112
113 application.setDefaultCloseOperation(
114 JFrame.EXIT_ON_CLOSE);

Fig. 17.6Fig. 17.6Fig. 17.6Fig. 17.6 Demonstrating the server side of connectionless client/server computing
with datagrams (part 3 of 4).

Chapter 17 Networking 1007

Server method waitForPackets (lines 45–76) uses an infinite loop to wait for
packets to arrive at the Server. Lines 54–56 create a DatagramPacket in which a
received packet of information can be stored. The DatagramPacket constructor for this
purpose receives two arguments—a byte array containing the data and the length of the
byte array. Line 59 waits for a packet to arrive at the Server. Method receive blocks
until a packet arrives, then stores the packet in its DatagramPacket argument. Method
receive throws an IOException if an error occurs receiving a packet.

When a packet arrives, the program calls method displayPacket (lines 79–88) to
append the packet’s contents to displayArea. DatagramPacket method getAd-
dress (line 82) returns an InetAddress object containing the host name of the computer
from which the packet was sent. Method getPort (line 83) returns an integer specifying the
port number through which the host computer sent the packet. Method getLength (line 84)
returns an integer representing the number of bytes of data that were sent. Method getData
(line 86) returns a byte array containing the data that was sent. The program uses the byte
array to initialize a String object so the data can be output to the JTextArea.

After displaying a packet, the program calls method sendPacketToClient (line
65) to create a new packet and send it to the client. Lines 96–98 create sendPacket and
pass four arguments to the DatagramPacket constructor. The first argument specifies
the byte array to send. The second argument specifies the number of bytes to send. The
third argument specifies the client computer’s Internet address, to which the packet will be
sent. The fourth argument specifies the port where the client is waiting to receive packets.
Line 101 sends the packet over the network. Method send throws an IOException if
an error occurs sending a packet.

Class Client (Fig. 17.7) works similarly to class Server, except that the Client
sends packets only when the user types a message in a JTextField and presses the Enter

115
116 application.waitForPackets();
117 }
118
119 } // end class Server

Fig. 17.6Fig. 17.6Fig. 17.6Fig. 17.6 Demonstrating the server side of connectionless client/server computing
with datagrams (part 4 of 4).

The Server window after the client
sends a packet of data

1008 Networking Chapter 17

key. When this occurs, the program calls method actionPerformed (lines 34–67),
which converts the String the user entered in the JTextField into a byte array (line
45). Lines 48–50 create a DatagramPacket and initialize it with the byte array, the
length of the String that was entered by the user, the Internet address to which the packet
is to be sent (InetAddress.getLocalHost() in this example) and the port number
at which the Server is waiting for packets. Line 53 sends the packet. Note that the client
in this example must know that the server is receiving packets at port 5000; otherwise, the
server will not receive the packets.

1 // Fig. 17.7: Client.java
2 // Set up a Client that will send packets to a
3 // server and receive packets from a server.
4
5 // Java core packages
6 import java.io.*;
7 import java.net.*;
8 import java.awt.*;
9 import java.awt.event.*;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 public class Client extends JFrame {
15 private JTextField enterField;
16 private JTextArea displayArea;
17 private DatagramPacket sendPacket, receivePacket;
18 private DatagramSocket socket;
19
20 // set up GUI and DatagramSocket
21 public Client()
22 {
23 super("Client");
24
25 Container container = getContentPane();
26
27 enterField = new JTextField("Type message here");
28
29 enterField.addActionListener(
30
31 new ActionListener() {
32
33 // create and send a packet
34 public void actionPerformed(ActionEvent event)
35 {
36 // create and send packet
37 try {
38 displayArea.append(
39 "\nSending packet containing: " +
40 event.getActionCommand() + "\n");
41

Fig. 17.7Fig. 17.7Fig. 17.7Fig. 17.7 Demonstrating the client side of connectionless client/server computing
with datagrams (part 1 of 4).

Chapter 17 Networking 1009

42 // get message from textfield and convert to
43 // array of bytes
44 String message = event.getActionCommand();
45 byte data[] = message.getBytes();
46
47 // create sendPacket
48 sendPacket = new DatagramPacket(
49 data, data.length,
50 InetAddress.getLocalHost(), 5000);
51
52 // send packet
53 socket.send(sendPacket);
54
55 displayArea.append("Packet sent\n");
56 displayArea.setCaretPosition(
57 displayArea.getText().length());
58 }
59
60 // process problems creating or sending packet
61 catch (IOException ioException) {
62 displayArea.append(
63 ioException.toString() + "\n");
64 ioException.printStackTrace();
65 }
66
67 } // end actionPerformed
68
69 } // end anonymous inner class
70
71); // end call to addActionListener
72
73 container.add(enterField, BorderLayout.NORTH);
74
75 displayArea = new JTextArea();
76 container.add(new JScrollPane(displayArea),
77 BorderLayout.CENTER);
78
79 setSize(400, 300);
80 setVisible(true);
81
82 // create DatagramSocket for sending and receiving packets
83 try {
84 socket = new DatagramSocket();
85 }
86
87 // catch problems creating DatagramSocket
88 catch(SocketException socketException) {
89 socketException.printStackTrace();
90 System.exit(1);
91 }
92
93 } // end Client constructor

Fig. 17.7Fig. 17.7Fig. 17.7Fig. 17.7 Demonstrating the client side of connectionless client/server computing
with datagrams (part 2 of 4).

1010 Networking Chapter 17

94
95 // wait for packets to arrive from Server,
96 // then display packet contents
97 public void waitForPackets()
98 {
99 // loop forever
100 while (true) {
101
102 // receive packet and display contents
103 try {
104
105 // set up packet
106 byte data[] = new byte[100];
107 receivePacket =
108 new DatagramPacket(data, data.length);
109
110 // wait for packet
111 socket.receive(receivePacket);
112
113 // display packet contents
114 displayPacket();
115 }
116
117 // process problems receiving or displaying packet
118 catch(IOException exception) {
119 displayArea.append(exception.toString() + "\n");
120 exception.printStackTrace();
121 }
122
123 } // end while
124
125 } // end method waitForPackets
126
127 // display contents of receivePacket
128 private void displayPacket()
129 {
130 displayArea.append("\nPacket received:" +
131 "\nFrom host: " + receivePacket.getAddress() +
132 "\nHost port: " + receivePacket.getPort() +
133 "\nLength: " + receivePacket.getLength() +
134 "\nContaining:\n\t" +
135 new String(receivePacket.getData(), 0,
136 receivePacket.getLength()));
137
138 displayArea.setCaretPosition(
139 displayArea.getText().length());
140 }
141
142 // execute application
143 public static void main(String args[])
144 {
145 Client application = new Client();

Fig. 17.7Fig. 17.7Fig. 17.7Fig. 17.7 Demonstrating the client side of connectionless client/server computing
with datagrams (part 3 of 4).

Chapter 17 Networking 1011

Notice that the DatagramSocket constructor call (line 84) in this application does
not specify any arguments. This constructor allows the computer to select the next available
port number for the DatagramSocket. The client does not need a specific port number,
because the server receives the client’s port number as part of each DatagramPacket
sent by the client. Thus, the server can send packets back to the same computer and port
number from which the server receives a packet of information.

Client method waitForPackets (lines 97–125) uses an infinite loop to wait for
packets from the server. Line 111 blocks until a packet arrives. Note that this does not pre-
vent the user from sending a packet, because the GUI events are handled in the event dis-
patch thread. It only prevents the while loop from continuing until a packet arrives at the
Client. When a packet arrives, line 111 stores the packet in receivePacket, and line
114 calls method displayPacket (128–140) to display the packet’s contents in the
JTextArea.

17.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server
In this section, we present the popular game Tic-Tac-Toe implemented by using client/server
techniques with stream sockets. The program consists of a TicTacToeServer application
(Fig. 17.8) that allows two TicTacToeClient applets (Fig. 17.9) to connect to the server
and play Tic-Tac-Toe (outputs shown in Fig. 17.10). As the server receives each client con-
nection, it creates an instance of inner class Player (lines 158–279 of Fig. 17.8) to process
the client in a separate thread. These threads enable the clients to play the game independent-
ly. The server assigns Xs to the first client to connect (X makes the first move) and assigns

146
147 application.setDefaultCloseOperation(
148 JFrame.EXIT_ON_CLOSE);
149
150 application.waitForPackets();
151 }
152
153 } // end class Client

Fig. 17.7Fig. 17.7Fig. 17.7Fig. 17.7 Demonstrating the client side of connectionless client/server computing
with datagrams (part 4 of 4).

The Client window after sending a
packet to the server and receiving
the packet back from the server

1012 Networking Chapter 17

Os to the second client to connect. The server maintains the information about the board so it
can determine whether a player’s move is a valid or invalid move. Each TicTacToe-
Client applet (Fig. 17.9) maintains its own GUI version of the Tic-Tac-Toe board on which
it displays the state of the game. The clients can place a mark only in an empty square on the
board. Class Square (lines 212–270 of Fig. 17.9) implements each of the nine squares on
the board. Class TicTacToeServer and class Player are implemented in file TicTac-
ToeServer.java (Fig. 17.8). Class TicTacToeClient and class Square are imple-
mented in file TicTacToeClient.java (Fig. 17.9).

1 // Fig. 17.8: TicTacToeServer.java
2 // This class maintains a game of Tic-Tac-Toe for two
3 // client applets.
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8 import java.net.*;
9 import java.io.*;

10
11 // Java extension packages
12 import javax.swing.*;
13
14 public class TicTacToeServer extends JFrame {
15 private byte board[];
16 private JTextArea outputArea;
17 private Player players[];
18 private ServerSocket server;
19 private int currentPlayer;
20
21 // set up tic-tac-toe server and GUI that displays messages
22 public TicTacToeServer()
23 {
24 super("Tic-Tac-Toe Server");
25
26 board = new byte[9];
27 players = new Player[2];
28 currentPlayer = 0;
29
30 // set up ServerSocket
31 try {
32 server = new ServerSocket(5000, 2);
33 }
34
35 // process problems creating ServerSocket
36 catch(IOException ioException) {
37 ioException.printStackTrace();
38 System.exit(1);
39 }
40
41 // set up JTextArea to display messages during execution
42 outputArea = new JTextArea();

Fig. 17.8Fig. 17.8Fig. 17.8Fig. 17.8 Server side of client/server Tic-Tac-Toe program (part 1 of 6).

Chapter 17 Networking 1013

43 getContentPane().add(outputArea, BorderLayout.CENTER);
44 outputArea.setText("Server awaiting connections\n");
45
46 setSize(300, 300);
47 setVisible(true);
48 }
49
50 // wait for two connections so game can be played
51 public void execute()
52 {
53 // wait for each client to connect
54 for (int i = 0; i < players.length; i++) {
55
56 // wait for connection, create Player, start thread
57 try {
58 players[i] = new Player(server.accept(), i);
59 players[i].start();
60 }
61
62 // process problems receiving connection from client
63 catch(IOException ioException) {
64 ioException.printStackTrace();
65 System.exit(1);
66 }
67 }
68
69 // Player X is suspended until Player O connects.
70 // Resume player X now.
71 synchronized (players[0]) {
72 players[0].setSuspended(false);
73 players[0].notify();
74 }
75
76 } // end method execute
77
78 // display a message in outputArea
79 public void display(String message)
80 {
81 outputArea.append(message + "\n");
82 }
83
84 // Determine if a move is valid.
85 // This method is synchronized because only one move can be
86 // made at a time.
87 public synchronized boolean validMove(
88 int location, int player)
89 {
90 boolean moveDone = false;
91
92 // while not current player, must wait for turn
93 while (player != currentPlayer) {
94

Fig. 17.8Fig. 17.8Fig. 17.8Fig. 17.8 Server side of client/server Tic-Tac-Toe program (part 2 of 6).

1014 Networking Chapter 17

95 // wait for turn
96 try {
97 wait();
98 }
99
100 // catch wait interruptions
101 catch(InterruptedException interruptedException) {
102 interruptedException.printStackTrace();
103 }
104 }
105
106 // if location not occupied, make move
107 if (!isOccupied(location)) {
108
109 // set move in board array
110 board[location] =
111 (byte) (currentPlayer == 0 ? 'X' : 'O');
112
113 // change current player
114 currentPlayer = (currentPlayer + 1) % 2;
115
116 // let new current player know that move occurred
117 players[currentPlayer].otherPlayerMoved(location);
118
119 // tell waiting player to continue
120 notify();
121
122 // tell player that made move that the move was valid
123 return true;
124 }
125
126 // tell player that made move that the move was not valid
127 else
128 return false;
129 }
130
131 // determine whether location is occupied
132 public boolean isOccupied(int location)
133 {
134 if (board[location] == 'X' || board [location] == 'O')
135 return true;
136 else
137 return false;
138 }
139
140 // place code in this method to determine whether game over
141 public boolean gameOver()
142 {
143 return false;
144 }
145

Fig. 17.8Fig. 17.8Fig. 17.8Fig. 17.8 Server side of client/server Tic-Tac-Toe program (part 3 of 6).

Chapter 17 Networking 1015

146 // execute application
147 public static void main(String args[])
148 {
149 TicTacToeServer application = new TicTacToeServer();
150
151 application.setDefaultCloseOperation(
152 JFrame.EXIT_ON_CLOSE);
153
154 application.execute();
155 }
156
157 // private inner class Player manages each Player as a thread
158 private class Player extends Thread {
159 private Socket connection;
160 private DataInputStream input;
161 private DataOutputStream output;
162 private int playerNumber;
163 private char mark;
164 protected boolean suspended = true;
165
166 // set up Player thread
167 public Player(Socket socket, int number)
168 {
169 playerNumber = number;
170
171 // specify player's mark
172 mark = (playerNumber == 0 ? 'X' : 'O');
173
174 connection = socket;
175
176 // obtain streams from Socket
177 try {
178 input = new DataInputStream(
179 connection.getInputStream());
180 output = new DataOutputStream(
181 connection.getOutputStream());
182 }
183
184 // process problems getting streams
185 catch(IOException ioException) {
186 ioException.printStackTrace();
187 System.exit(1);
188 }
189 }
190
191 // send message that other player moved; message contains
192 // a String followed by an int
193 public void otherPlayerMoved(int location)
194 {
195 // send message indicating move
196 try {
197 output.writeUTF("Opponent moved");

Fig. 17.8Fig. 17.8Fig. 17.8Fig. 17.8 Server side of client/server Tic-Tac-Toe program (part 4 of 6).

1016 Networking Chapter 17

198 output.writeInt(location);
199 }
200
201 // process problems sending message
202 catch (IOException ioException) {
203 ioException.printStackTrace();
204 }
205 }
206
207 // control thread's execution
208 public void run()
209 {
210 // send client message indicating its mark (X or O),
211 // process messages from client
212 try {
213 display("Player " + (playerNumber == 0 ?
214 'X' : 'O') + " connected");
215
216 // send player's mark
217 output.writeChar(mark);
218
219 // send message indicating connection
220 output.writeUTF("Player " +
221 (playerNumber == 0 ? "X connected\n" :
222 "O connected, please wait\n"));
223
224 // if player X, wait for another player to arrive
225 if (mark == 'X') {
226 output.writeUTF("Waiting for another player");
227
228 // wait for player O
229 try {
230 synchronized(this) {
231 while (suspended)
232 wait();
233 }
234 }
235
236 // process interruptions while waiting
237 catch (InterruptedException exception) {
238 exception.printStackTrace();
239 }
240
241 // send message that other player connected and
242 // player X can make a move
243 output.writeUTF(
244 "Other player connected. Your move.");
245 }
246
247 // while game not over
248 while (! gameOver()) {
249

Fig. 17.8Fig. 17.8Fig. 17.8Fig. 17.8 Server side of client/server Tic-Tac-Toe program (part 5 of 6).

Chapter 17 Networking 1017

We begin with a discussion of the server side of the Tic-Tac-Toe game. When the
TicTacToeServer application executes, the main method (lines 147–155) creates a
TicTacToeServer object called application. The constructor (lines 22–48)
attempts to set up a ServerSocket. If successful, the program displays the server

250 // get move location from client
251 int location = input.readInt();
252
253 // check for valid move
254 if (validMove(location, playerNumber)) {
255 display("loc: " + location);
256 output.writeUTF("Valid move.");
257 }
258 else
259 output.writeUTF("Invalid move, try again");
260 }
261
262 // close connection to client
263 connection.close();
264 }
265
266 // process problems communicating with client
267 catch(IOException ioException) {
268 ioException.printStackTrace();
269 System.exit(1);
270 }
271 }
272
273 // set whether or not thread is suspended
274 public void setSuspended(boolean status)
275 {
276 suspended = status;
277 }
278
279 } // end class Player
280
281 } // end class TicTacToeServer

Fig. 17.8Fig. 17.8Fig. 17.8Fig. 17.8 Server side of client/server Tic-Tac-Toe program (part 6 of 6).

1018 Networking Chapter 17

window, and main invokes the TicTacToeServer method execute (lines 51–76).
Method execute loops twice, blocking at line 58 each time while waiting for a client con-
nection. When a client connects, line 58 creates a new Player object to manage the con-
nection as a separate thread, and line 59 calls that object’s start method to begin
executing the thread.

When the TicTacToeServer creates a Player, the Player constructor (lines
167–189) receives the Socket object representing the connection to the client and gets the
associated input and output streams. The Player’s run method (lines 208–271) controls
the information that is sent to the client and the information that is received from the client.
First, it tells the client that the client’s connection has been made (lines 213–214), then it
passes to the client the character that the client will place on the board when a move is made
(line 217). Lines 230–233 suspend each Player thread as it starts executing, because nei-
ther player is allowed to make a move when it first connects. Player X can move only when
player O connects, and player O can make a move only after player X.

At this point, the game can be played, and the run method begins executing its while
structure (lines 248–260). Each iteration of this while structure reads an integer (line 253)
representing the location where the client wants to place a mark, and line 254 invokes the
TicTacToeServer method validMove (lines 87–129) to check the move. Lines 254–
259 send a message to the client indicating whether the move was valid. The program main-
tains board locations as numbers from 0 to 8 (0 through 2 for the first row, 3 through 5 for
the second row and 6 through 8 for the third row).

Method validMove (lines 87–129 in class TicTacToeServer) is a synchro-
nized method that allows only one player at a time to move. Synchronizing validMove
prevents both players from modifying the state information of the game simultaneously. If
the Player attempting to validate a move is not the current player (i.e., the one allowed
to make a move), the Player is placed in a wait state until it is that Player’s turn to
move. If the position for the move being validated is already occupied on the board,
validMove returns false. Otherwise, the server places a mark for the player in its local
representation of the board (lines 110–111), notifies the other Player object (line 117)
that a move has been made (so the client can be sent a message), invokes method notify
(line 120) so the waiting Player (if there is one) can validate a move and returns true
(line 123) to indicate that the move is valid.

When a TicTacToeClient (Fig. 17.9) applet begins execution, it creates a
JTextArea in which messages from the server and a representation of the board using
nine Square objects are displayed. The applet’s start method (lines 80–104) opens a
connection to the server and gets the associated input and output streams from the
Socket object. Class TicTacToeClient implements interface Runnable so that a
separate thread can read messages from the server. This approach enables the user to
interact with the board (in the event-dispatch thread) while waiting for messages from the
server. After establishing the connection to the server, line 102 creates Thread object
outputThread and initializes it with the Runnable applet, then line 103 calls the
thread’s start method. The applet’s run method (lines 108–137) controls the separate
thread of execution. The method first reads the mark character (X or O) from the server
(line 112), then loops continually (lines 123–135) and reads messages from the server
(line 127). Each message is passed to the applet’s processMessage method (lines
140–211) for processing.

Chapter 17 Networking 1019

1 // Fig. 17.9: TicTacToeClient.java
2 // Client for the TicTacToe program
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.net.*;
8 import java.io.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 // Client class to let a user play Tic-Tac-Toe with
14 // another user across a network.
15 public class TicTacToeClient extends JApplet
16 implements Runnable {
17
18 private JTextField idField;
19 private JTextArea displayArea;
20 private JPanel boardPanel, panel2;
21 private Square board[][], currentSquare;
22 private Socket connection;
23 private DataInputStream input;
24 private DataOutputStream output;
25 private Thread outputThread;
26 private char myMark;
27 private boolean myTurn;
28
29 // Set up user-interface and board
30 public void init()
31 {
32 Container container = getContentPane();
33
34 // set up JTextArea to display messages to user
35 displayArea = new JTextArea(4, 30);
36 displayArea.setEditable(false);
37 container.add(new JScrollPane(displayArea),
38 BorderLayout.SOUTH);
39
40 // set up panel for squares in board
41 boardPanel = new JPanel();
42 boardPanel.setLayout(new GridLayout(3, 3, 0, 0));
43
44 // create board
45 board = new Square[3][3];
46
47 // When creating a Square, the location argument to the
48 // constructor is a value from 0 to 8 indicating the
49 // position of the Square on the board. Values 0, 1,
50 // and 2 are the first row, values 3, 4, and 5 are the
51 // second row. Values 6, 7, and 8 are the third row.
52 for (int row = 0; row < board.length; row++) {
53

Fig. 17.9Fig. 17.9Fig. 17.9Fig. 17.9 Client side of client/server Tic-Tac-Toe program (part 1 of 6).

1020 Networking Chapter 17

54 for (int column = 0;
55 column < board[row].length; column++) {
56
57 // create Square
58 board[row][column] =
59 new Square(' ', row * 3 + column);
60
61 boardPanel.add(board[row][column]);
62 }
63
64 }
65
66 // textfield to display player's mark
67 idField = new JTextField();
68 idField.setEditable(false);
69 container.add(idField, BorderLayout.NORTH);
70
71 // set up panel to contain boardPanel (for layout purposes)
72 panel2 = new JPanel();
73 panel2.add(boardPanel, BorderLayout.CENTER);
74 container.add(panel2, BorderLayout.CENTER);
75 }
76
77 // Make connection to server and get associated streams.
78 // Start separate thread to allow this applet to
79 // continually update its output in text area display.
80 public void start()
81 {
82 // connect to server, get streams and start outputThread
83 try {
84
85 // make connection
86 connection = new Socket(
87 InetAddress.getByName("127.0.0.1"), 5000);
88
89 // get streams
90 input = new DataInputStream(
91 connection.getInputStream());
92 output = new DataOutputStream(
93 connection.getOutputStream());
94 }
95
96 // catch problems setting up connection and streams
97 catch (IOException ioException) {
98 ioException.printStackTrace();
99 }
100
101 // create and start output thread
102 outputThread = new Thread(this);
103 outputThread.start();
104 }
105

Fig. 17.9Fig. 17.9Fig. 17.9Fig. 17.9 Client side of client/server Tic-Tac-Toe program (part 2 of 6).

Chapter 17 Networking 1021

106 // control thread that allows continuous update of the
107 // text area displayArea
108 public void run()
109 {
110 // get player's mark (X or O)
111 try {
112 myMark = input.readChar();
113 idField.setText("You are player \"" + myMark + "\"");
114 myTurn = (myMark == 'X' ? true : false);
115 }
116
117 // process problems communicating with server
118 catch (IOException ioException) {
119 ioException.printStackTrace();
120 }
121
122 // receive messages sent to client and output them
123 while (true) {
124
125 // read message from server and process message
126 try {
127 String message = input.readUTF();
128 processMessage(message);
129 }
130
131 // process problems communicating with server
132 catch (IOException ioException) {
133 ioException.printStackTrace();
134 }
135 }
136
137 } // end method run
138
139 // process messages received by client
140 public void processMessage(String message)
141 {
142 // valid move occurred
143 if (message.equals("Valid move.")) {
144 displayArea.append("Valid move, please wait.\n");
145
146 // set mark in square from event-dispatch thread
147 SwingUtilities.invokeLater(
148
149 new Runnable() {
150
151 public void run()
152 {
153 currentSquare.setMark(myMark);
154 }
155
156 }
157

Fig. 17.9Fig. 17.9Fig. 17.9Fig. 17.9 Client side of client/server Tic-Tac-Toe program (part 3 of 6).

1022 Networking Chapter 17

158); // end call to invokeLater
159 }
160
161 // invalid move occurred
162 else if (message.equals("Invalid move, try again")) {
163 displayArea.append(message + "\n");
164 myTurn = true;
165 }
166
167 // opponent moved
168 else if (message.equals("Opponent moved")) {
169
170 // get move location and update board
171 try {
172 final int location = input.readInt();
173
174 // set mark in square from event-dispatch thread
175 SwingUtilities.invokeLater(
176
177 new Runnable() {
178
179 public void run()
180 {
181 int row = location / 3;
182 int column = location % 3;
183
184 board[row][column].setMark(
185 (myMark == 'X' ? 'O' : 'X'));
186 displayArea.append(
187 "Opponent moved. Your turn.\n");
188 }
189
190 }
191
192); // end call to invokeLater
193
194 myTurn = true;
195 }
196
197 // process problems communicating with server
198 catch (IOException ioException) {
199 ioException.printStackTrace();
200 }
201
202 }
203
204 // simply display message
205 else
206 displayArea.append(message + "\n");
207
208 displayArea.setCaretPosition(
209 displayArea.getText().length());

Fig. 17.9Fig. 17.9Fig. 17.9Fig. 17.9 Client side of client/server Tic-Tac-Toe program (part 4 of 6).

Chapter 17 Networking 1023

210
211 } // end method processMessage
212
213 // send message to server indicating clicked square
214 public void sendClickedSquare(int location)
215 {
216 if (myTurn) {
217
218 // send location to server
219 try {
220 output.writeInt(location);
221 myTurn = false;
222 }
223
224 // process problems communicating with server
225 catch (IOException ioException) {
226 ioException.printStackTrace();
227 }
228 }
229 }
230
231 // set current Square
232 public void setCurrentSquare(Square square)
233 {
234 currentSquare = square;
235 }
236
237 // private class for the sqaures on the board
238 private class Square extends JPanel {
239 private char mark;
240 private int location;
241
242 public Square(char squareMark, int squareLocation)
243 {
244 mark = squareMark;
245 location = squareLocation;
246
247 addMouseListener(
248
249 new MouseAdapter() {
250
251 public void mouseReleased(MouseEvent e)
252 {
253 setCurrentSquare(Square.this);
254 sendClickedSquare(getSquareLocation());
255 }
256
257 } // end anonymous inner class
258
259); // end call to addMouseListener
260
261 } // end Square constructor

Fig. 17.9Fig. 17.9Fig. 17.9Fig. 17.9 Client side of client/server Tic-Tac-Toe program (part 5 of 6).

1024 Networking Chapter 17

If the message received is Valid move., lines 143–159 display the message Valid
move, please wait. and call class Square’s setMark method to set the client’s
mark in the current square (the one in which the user clicked) using SwingUtilities
method invokeLater to ensure that the GUI updates occur in the event dispatch thread.
If the message received is Invalid move, try again., lines 162–165 display the
message so the user can click a different square. If the message received is Opponent
moved., lines 168–195 read an integer from the server indicating where the opponent
moved and place a mark in that square of the board (again using SwingUtilities
method invokeLater to ensure that the GUI updates occur in the event dispatch thread).
If any other message is received, line 206 simply displays the message.

262
263 // return preferred size of Square
264 public Dimension getPreferredSize()
265 {
266 return new Dimension(30, 30);
267 }
268
269 // return minimum size of Square
270 public Dimension getMinimumSize()
271 {
272 return getPreferredSize();
273 }
274
275 // set mark for Square
276 public void setMark(char newMark)
277 {
278 mark = newMark;
279 repaint();
280 }
281
282 // return Square location
283 public int getSquareLocation()
284 {
285 return location;
286 }
287
288 // draw Square
289 public void paintComponent(Graphics g)
290 {
291 super.paintComponent(g);
292
293 g.drawRect(0, 0, 29, 29);
294 g.drawString(String.valueOf(mark), 11, 20);
295 }
296
297 } // end class Square
298
299 } // end class TicTacToeClient

Fig. 17.9Fig. 17.9Fig. 17.9Fig. 17.9 Client side of client/server Tic-Tac-Toe program (part 6 of 6).

Chapter 17 Networking 1025

Fig. 17.10Fig. 17.10Fig. 17.10Fig. 17.10 Sample outputs from the client/server Tic-Tac-Toe program (part 1 of 2).

1026 Networking Chapter 17

17.9 Security and the Network
As much as we look forward to writing a great variety of powerful network-based applica-
tions, our efforts may be crimped by limitations imposed on Java because of security con-
cerns.c Many Web browsers, such as Netscape Communicator and Microsoft Internet
Explorer, by default prohibit Java applets from doing file processing on the machines on
which they execute. Think about it. A Java applet is designed to be sent to your browser via
an HTML document that could be downloaded from any Web server in the world. Often
you will know very little about the sources of Java applets that will execute on your system.
To allow these applets free rein with your files could be disastrous.

A more subtle situation occurs with limiting the machines to which executing applets
can connect. To build truly collaborative applications, we would ideally like to have our
applets communicate with machines almost anywhere. The Java security manager in a Web
browser often restricts an applet so that it can communicate only with the machine from
which it was originally downloaded.

These restrictions might seem too harsh. However, the Java Security API now provides
capabilities for signed applets that will enable browsers to determine whether an applet is
downloaded from a trusted source. In cases where an applet is trusted, the applet can be
given additional access to the computer on which the applet is executing. The features of
the Java Security API and additional networking capabilities are discussed in our text
Advanced Java 2 Platform How to Program.

17.10 DeitelMessenger Chat Server and Client
Chat rooms have become quite common on the Internet. Chat rooms provide a central lo-
cation where users can chat with each other through short text messages. Each participant
in a chat room can see all messages that other users post, and each user can post messages
in the chat room. This section presents our capstone networking case study that integrates
many of the Java networking, multithreading and Swing GUI features we have learned thus
far to build an online chat system. We also introduce multicast, which enables an applica-
tion to send DatagramPackets to groups of clients. After reading this section, you will
be able to build significant networking applications.

Fig. 17.10Fig. 17.10Fig. 17.10Fig. 17.10 Sample outputs from the client/server Tic-Tac-Toe program (part 2 of 2).

Chapter 17 Networking 1027

17.10.1 DeitelMessengerServer and Supporting Classes
The DeitelMessengerServer (Fig. 17.11) is the heart of the online chat system. Chat
clients can participate in a chat by connecting to the DeitelMessengerServer. Method
startServer (lines 19–54) launches DeitelMessengerServer. Lines 25–26 create
a ServerSocket to accept incoming network connections. Recall that the ServerSock-
et constructor takes as its first argument the port on which the server should listen for incom-
ing connections. Interface SocketMessengerConstants (Fig. 17.12) defines the port
value as the constant SERVER_PORT to ensure that the server and the clients uses the correct
port number. Class DeitelMessengerServer implements interface SocketMes-
sengerConstants to facilitate referencing the constants defined in that interface.

1 // DeitelMessengerServer.java
2 // DeitelMessengerServer is a multi-threaded, socket- and
3 // packet-based chat server.
4 package com.deitel.messenger.sockets.server;
5
6 // Java core packages
7 import java.util.*;
8 import java.net.*;
9 import java.io.*;

10
11 // Deitel packages
12 import com.deitel.messenger.*;
13 import com.deitel.messenger.sockets.*;
14
15 public class DeitelMessengerServer implements MessageListener,
16 SocketMessengerConstants {
17
18 // start chat server
19 public void startServer()
20 {
21 // create server and manage new clients
22 try {
23
24 // create ServerSocket for incoming connections
25 ServerSocket serverSocket =
26 new ServerSocket(SERVER_PORT, 100);
27
28 System.out.println("Server listening on port " +
29 SERVER_PORT + " ...");
30
31 // listen for clients constantly
32 while (true) {
33
34 // accept new client connection
35 Socket clientSocket = serverSocket.accept();
36
37 // create new ReceivingThread for receiving
38 // messages from client

Fig. 17.11Fig. 17.11Fig. 17.11Fig. 17.11 DeitelMessengerServer application for managing a chat room
(part 1 of 2).

1028 Networking Chapter 17

Lines 32–45 listen continuously for new client connections. Line 35 invokes method
accept of class ServerSocket to wait for and accept a new client connection. Line 39
creates and starts a new ReceivingThread for the client. Class ReceivingThread
(Fig. 17.14) is a Thread subclass that listens for new incoming messages from a particular
client. The first argument to the ReceivingThread constructor is a Message-
Listener (Fig. 17.13), to which messages from the client should be delivered. Class
DeitelMessengerServer implements interface MessageListener (line 15) and
therefore can pass the this reference to the ReceivingThread constructor.

39 new ReceivingThread(this, clientSocket).start();
40
41 // print connection information
42 System.out.println("Connection received from: " +
43 clientSocket.getInetAddress());
44
45 } // end while
46
47 } // end try
48
49 // handle exception creating server and connecting clients
50 catch (IOException ioException) {
51 ioException.printStackTrace();
52 }
53
54 } // end method startServer
55
56 // when new message is received, broadcast message to clients
57 public void messageReceived(String from, String message)
58 {
59 // create String containing entire message
60 String completeMessage = from + MESSAGE_SEPARATOR + message;
61
62 // create and start MulticastSendingThread to broadcast
63 // new messages to all clients
64 new MulticastSendingThread(
65 completeMessage.getBytes()).start();
66 }
67
68 // start the server
69 public static void main (String args[])
70 {
71 new DeitelMessengerServer().startServer();
72 }
73 }

Server listening on port 5000 ...
Connection received from: SEANSANTRY/XXX.XXX.XXX.XXX
Connection received from: PJD/XXX.XXX.XXX.XXX

Fig. 17.11Fig. 17.11Fig. 17.11Fig. 17.11 DeitelMessengerServer application for managing a chat room
(part 2 of 2).

Chapter 17 Networking 1029

Method messageReceived (lines 57–66) is required by interface Message-
Listener. When each ReceivingThread receives a new message from a client, the
ReceivingThread passes the message to a MessageListener through method
messageReceived. Line 60 concatenates the from String with the separator >>>
and the message body. Lines 64–65 create and start a new MulticastSending-
Thread to deliver completeMessage to all listening clients. Class Multicast-
SendingThread (Fig. 17.15) uses multicast as an efficient mechanism for sending one
message to multiple clients. We discuss the details of multicasting shortly. Method main
(lines 69–72) creates a new DeitelMessengerServer instance and starts the server.

Interface SocketMessengerConstants (Fig. 17.12) declares constants for use
in the various classes that make up the Deitel messenger system. Classes can access these
static constants either by referencing the constants through interface SocketMes-
sengerConstants (e.g., SocketMessengerConstants.SERVER_PORT) or by
implementing the interface and referencing the constants directly.

Line 9 defines the String constant MULTICAST_ADDRESS, which contains the
address to which a MulticastSendingThread (Fig. 17.15) should send messages.
This address is one of the addresses reserved for multicast, which we will describe soon.
Line 12 defines the integer constant MULTICAST_LISTENING_PORT—the port on
which clients should listen for new messages. Line 15 defines the integer constant
MULTICAST_SENDING_PORT—the port to which a MulticastSendingThread
should post new messages at the MULTICAST_ADDRESS. Line 18 defines the integer con-
stant SERVER_PORT—the port on which DeitelMessengerServer listens for
incoming client connections. Line 21 defines String constant DISCONNECT_STRING,
which is the String that a client sends to DeitelMessengerServer when the user
wishes to leave the chat room. Line 24 defines String constant
MESSAGE_SEPARATOR, which separates the user name from the message body. Line 27
specifies the maximum message size in bytes.

1 // SocketMessengerConstants.java
2 // SocketMessengerConstants defines constants for the port numbers
3 // and multicast address in DeitelMessenger
4 package com.deitel.messenger.sockets;
5
6 public interface SocketMessengerConstants {
7
8 // address for multicast datagrams
9 public static final String MULTICAST_ADDRESS = "230.0.0.1";

10
11 // port for listening for multicast datagrams
12 public static final int MULTICAST_LISTENING_PORT = 5555;
13
14 // port for sending multicast datagrams
15 public static final int MULTICAST_SENDING_PORT = 5554;
16
17 // port for Socket connections to DeitelMessengerServer
18 public static final int SERVER_PORT = 5000;

Fig. 17.12Fig. 17.12Fig. 17.12Fig. 17.12 SocketMessengerConstants declares constants for use throughout
the DeitelMessengerServer and DeitelMessenger
applications (part 1 of 2).

1030 Networking Chapter 17

Many different classes in the Deitel messenger system receive messages. For
example, DeitelMessengerServer receives messages from clients and delivers
those messages to all chat room participants. As we will see, the user interface for each
client also receives messages and displays those messages to the users. Each of the
classes that receives messages implements interface MessageListener (Fig. 17.13).
The interface declares method messageReceived, which allows an implementing
class to receive chat messages. Method messageReceived takes two String argu-
ments representing the name of the user who sent the message and the message body,
respectively.

DeitelMessengerServer uses instances of class ReceivingThread
(Fig. 17.14) to listen for new messages from each client. Class ReceivingThread
extends class Thread. This enables DeitelMessengerServer to create an object
of class ReceivingThread for each client, to handle messages from multiple clients
at once. When DeitelMessengerServer receives a new client connection,
DeitelMessengerServer creates a new ReceivingThread for the client, then
continues listening for new client connections. The ReceivingThread listens for new
messages from a single client and passes those messages back to the DeitelMessen-
gerServer through method messageReceived.

19
20 // String that indicates disconnect
21 public static final String DISCONNECT_STRING = "DISCONNECT";
22
23 // String that separates the user name from the message body
24 public static final String MESSAGE_SEPARATOR = ">>>";
25
26 // message size (in bytes)
27 public static final int MESSAGE_SIZE = 512;
28 }

1 // MessageListener.java
2 // MessageListener is an interface for classes that wish to
3 // receive new chat messages.
4 package com.deitel.messenger;
5
6 public interface MessageListener {
7
8 // receive new chat message
9 public void messageReceived(String from, String message);

10 }

Fig. 17.13Fig. 17.13Fig. 17.13Fig. 17.13 MessageListener interface that defines method
messageReceived for receiving new chat messages.

Fig. 17.12Fig. 17.12Fig. 17.12Fig. 17.12 SocketMessengerConstants declares constants for use throughout
the DeitelMessengerServer and DeitelMessenger
applications (part 2 of 2).

Chapter 17 Networking 1031

1 // ReceivingThread.java
2 // ReceivingThread is a Thread that listens for messages
3 // from a particular client and delivers messages to a
4 // MessageListener.
5 package com.deitel.messenger.sockets.server;
6
7 // Java core packages
8 import java.io.*;
9 import java.net.*;

10 import java.util.StringTokenizer;
11
12 // Deitel packages
13 import com.deitel.messenger.*;
14 import com.deitel.messenger.sockets.*;
15
16 public class ReceivingThread extends Thread implements
17 SocketMessengerConstants {
18
19 private BufferedReader input;
20 private MessageListener messageListener;
21 private boolean keepListening = true;
22
23 // ReceivingThread constructor
24 public ReceivingThread(MessageListener listener,
25 Socket clientSocket)
26 {
27 // invoke superclass constructor to name Thread
28 super("ReceivingThread: " + clientSocket);
29
30 // set listener to which new messages should be sent
31 messageListener = listener;
32
33 // set timeout for reading from clientSocket and create
34 // BufferedReader for reading incoming messages
35 try {
36 clientSocket.setSoTimeout(5000);
37
38 input = new BufferedReader(new InputStreamReader(
39 clientSocket.getInputStream()));
40 }
41
42 // handle exception creating BufferedReader
43 catch (IOException ioException) {
44 ioException.printStackTrace();
45 }
46
47 } // end ReceivingThread constructor
48
49 // listen for new messages and deliver them to MessageListener
50 public void run()
51 {
52 String message;

Fig. 17.14Fig. 17.14Fig. 17.14Fig. 17.14 ReceivingThread for listening for new messages from
DeitelMessengerServer clients in separate Threads (part 1 of 3).

1032 Networking Chapter 17

53
54 // listen for messages until stopped
55 while (keepListening) {
56
57 // read message from BufferedReader
58 try {
59 message = input.readLine();
60 }
61
62 // handle exception if read times out
63 catch (InterruptedIOException interruptedIOException) {
64
65 // continue to next iteration to keep listening
66 continue;
67 }
68
69 // handle exception reading message
70 catch (IOException ioException) {
71 ioException.printStackTrace();
72 break;
73 }
74
75 // ensure non-null message
76 if (message != null) {
77
78 // tokenize message to retrieve user name
79 // and message body
80 StringTokenizer tokenizer =
81 new StringTokenizer(message, MESSAGE_SEPARATOR);
82
83 // ignore messages that do not contain a user
84 // name and message body
85 if (tokenizer.countTokens() == 2) {
86
87 // send message to MessageListener
88 messageListener.messageReceived(
89 tokenizer.nextToken(), // user name
90 tokenizer.nextToken()); // message body
91 }
92
93 else
94
95 // if disconnect message received, stop listening
96 if (message.equalsIgnoreCase(MESSAGE_SEPARATOR +
97 DISCONNECT_STRING)) {
98
99 stopListening();
100 }
101
102 } // end if
103
104 } // end while

Fig. 17.14Fig. 17.14Fig. 17.14Fig. 17.14 ReceivingThread for listening for new messages from
DeitelMessengerServer clients in separate Threads (part 2 of 3).

Chapter 17 Networking 1033

The ReceivingThread constructor (lines 24–47) takes as its first argument a
MessageListener. The ReceivingThread will deliver new messages to this Mes-
sageListener by invoking method messageReceived of interface MessageLis-
tener. The Socket argument to the ReceivingThread constructor is the connection
to a particular client. Line 28 invokes the Thread constructor to provide a unique name
for each ReceivingThread instance. Naming the ReceivingThread this way can
be useful when debugging the application. Line 31 sets the MessageListener to which
the ReceivingThread should deliver new messages. Line 36 invokes method setSo-
Timeout of class Socket with an integer argument of 5000 milliseconds. Reading data
from a Socket is a blocking call—the current thread is put in the blocked state (Fig. 15.1)
while the thread waits for the read operation to complete. Method setSoTimeout spec-
ifies that, if no data is received in the given number of milliseconds, the Socket should
issue an InterruptedIOException, which the current thread can catch, then con-
tinue executing. This technique prevents the current thread from deadlocking if no more
data is available from the Socket. Lines 38–39 create a new BufferedReader for the
clientSocket’s InputStream. The ReceivingThread uses this Buffered-
Reader to read new messages from the client.

Method run (lines 50–116) listens continuously for new messages from the client.
Lines 55–104 loop as long as the boolean variable keepListening is true. Line 59
invokes BufferedReader method readLine to read a line of data from the client. If
more than 5000 milliseconds pass without reading any data, method readLine throws
an InterruptedIOException, which indicates that the timeout set on line 36 has
expired. Line 66 uses keyword continue to go to the next iteration of the while loop
to continue listening for messages. Lines 70–73 catch an IOException, which indicates
a more severe problem from method readLine. Line 71 prints a stack trace to aid in
debugging the application, and line 72 uses keyword break to terminate the while loop.

105
106 // close BufferedReader (also closes Socket)
107 try {
108 input.close();
109 }
110
111 // handle exception closing BufferedReader
112 catch (IOException ioException) {
113 ioException.printStackTrace();
114 }
115
116 } // end method run
117
118 // stop listening for incoming messages
119 public void stopListening()
120 {
121 keepListening = false;
122 }
123 }

Fig. 17.14Fig. 17.14Fig. 17.14Fig. 17.14 ReceivingThread for listening for new messages from
DeitelMessengerServer clients in separate Threads (part 3 of 3).

1034 Networking Chapter 17

When a client sends a message to the server, the client separates the user’s name from
the message body with the String MESSAGE_SEPARATOR. If there are no exceptions
thrown when reading data from the client and the message is not null (line 76), lines 80–
81 create a new StringTokenizer. This StringTokenizer separates each mes-
sage into two tokens delimited by MESSAGE_SEPARATOR. The first token is the sender’s
user name; the second token is the message. Line 85 checks for the proper number of
tokens, and lines 88–90 invoke method messageReceived of interface Message-
Listener to deliver the new message to the registered MessageListener. If the
StringTokenizer does not produce two tokens, lines 96–97 check the message to see
whether it matches the constant DISCONNECT_STRING, which would indicate that the
user wishes to leave the chat room. If the Strings match, line 99 invokes Receiving-
Thread method stopListening to terminate the ReceivingThread.

Method stopListening (lines 119–122) sets boolean variable keepListening
to false. This causes the while loop condition on line 55 to fail and causes the
ReceivingThread to close the client Socket (line 108). Then, method run returns,
which terminates the ReceivingThread’s execution.

MulticastSendingThread (Fig. 17.15) delivers DatagramPackets containing
chat messages to a group of clients. Multicast is an efficient way to send data to many clients
without the overhead of broadcasting that data to every host on the Internet. To understand
multicast, let us look at a real-world analogy—the relationship between a magazine publisher
and that magazine’s subscribers. The magazine publisher produces a magazine and provides
the magazine to a distributor. Customers interested in that magazine obtain a subscription and
begin receiving the magazine in the mail from the distributor. This communication is quite
different from a television broadcast. When a television station produces a television pro-
gram, the station broadcasts that television show throughout a geographical region or perhaps
throughout the world by using satellites. Broadcasting a television show for 10,000 viewers
is no more expensive to the television station than broadcasting a television show for 100
viewers—the radio signal carrying the broadcast reaches a wide area. However, printing and
delivering a magazine to 10,000 readers would be much more expensive than printing and
delivering the magazine to 100 readers. Most magazine publishers could not stay in business
if they had to broadcast their magazines to everyone, so magazine publishers multicast their
magazines to a group of subscribers instead.

Using multicast, an application can “publish” DatagramPackets to be delivered to
other applications—the “subscribers.” An application multicasts DatagramPackets by
sending the DatagramPackets to a multicast address, which is an IP address reserved
for multicast in the range from 224.0.0.0 to 239.255.255.255. Clients that wish to
receive these DatagramPackets can connect to the appropriate multicast address to join
the group of subscribers—the multicast group. When an application sends a Datagram-
Packet to the multicast address, each client in the multicast group receives the Data-
gramPacket. Multicast DatagramPackets, like unicast DatagramPackets
(Fig. 17.7), are not reliable—packets are not guaranteed to reach any destination. Also, the
order in which the particular clients receive the datagrams is not guaranteed.

Class MulticastSendingThread extends class Thread to enable Deitel-
MessengerServer to send multicast messages in a separate thread. Each time
DeitelMessengerServer needs to multicast a message, the server creates a new
MulticastSendingThread with the contents of the message and starts the thread.

Chapter 17 Networking 1035

The MulticastSendingThread constructor (lines 20–26) takes as an argument an
array of bytes containing the message.

1 // MulticastSendingThread.java
2 // MulticastSendingThread is a Thread that broadcasts a chat
3 // message using a multicast datagram.
4 package com.deitel.messenger.sockets.server;
5
6 // Java core packages
7 import java.io.*;
8 import java.net.*;
9

10 // Deitel packages
11 import com.deitel.messenger.sockets.*;
12
13 public class MulticastSendingThread extends Thread
14 implements SocketMessengerConstants {
15
16 // message data
17 private byte[] messageBytes;
18
19 // MulticastSendingThread constructor
20 public MulticastSendingThread(byte[] bytes)
21 {
22 // invoke superclass constructor to name Thread
23 super("MulticastSendingThread");
24
25 messageBytes = bytes;
26 }
27
28 // deliver message to MULTICAST_ADDRESS over DatagramSocket
29 public void run()
30 {
31 // deliver message
32 try {
33
34 // create DatagramSocket for sending message
35 DatagramSocket socket =
36 new DatagramSocket(MULTICAST_SENDING_PORT);
37
38 // use InetAddress reserved for multicast group
39 InetAddress group = InetAddress.getByName(
40 MULTICAST_ADDRESS);
41
42 // create DatagramPacket containing message
43 DatagramPacket packet = new DatagramPacket(
44 messageBytes, messageBytes.length, group,
45 MULTICAST_LISTENING_PORT);
46
47 // send packet to multicast group and close socket
48 socket.send(packet);

Fig. 17.15Fig. 17.15Fig. 17.15Fig. 17.15 MulticastSendingThread for delivering outgoing messages to a
multicast group via DatagramPackets.

1036 Networking Chapter 17

Method run (lines 29–57) delivers the message to the multicast address. Lines 35–36
create a new DatagramSocket. Recall from the packet-networking example that we
used DatagramSockets to send unicast DatagramPackets—packets sent from one
host directly to another host. Delivering DatagramPackets by using multicast is exactly
the same, except the address to which the DatagramPackets are sent is a multicast
address in the range from 224.0.0.0 to 239.255.255.255. Lines 39–40 create an
InetAddress object for the multicast address, which is defined as a constant in interface
SocketMessengerConstants. Lines 43–45 create the DatagramPacket con-
taining the message. The first argument to the DatagramPacket constructor is the byte
array containing the message. The second argument is the length of the byte array. The
third argument specifies the InetAddress to which the packet should be sent, and the
last argument specifies the port number through which the packet should be delivered to
the multicast address. Line 48 invokes method send of class DatagramSocket to send
the DatagramPacket. When the DatagramPacket is delivered to the multicast
address, all clients listening to that multicast address on the proper port receive the Data-
gramPacket. Line 49 closes the DatagramSocket, and the run method returns, ter-
minating the MulticastSendingThread.

17.10.2 DeitelMessenger Client and Supporting Classes

The client for the DeitelMessengerServer consists of several pieces. A class that
implements interface MessageManager (Fig. 17.16) manages communication with the
server. A Thread subclass listens for messages at DeitelMessengerServer’s mul-
ticast address. Another Thread subclass sends messages from the client to Deitel-
MessengerServer. A JFrame subclass provides a GUI for the client.

Interface MessageManager (Fig. 17.16) defines methods for managing communi-
cation with DeitelMessengerServer. We define this interface to abstract the base
functionality a client needs to interact with a chat server from the underlying communica-
tion mechanism needed to communicate with that chat server. This abstraction enables us
to provide MessageManager implementations that use other network protocols to
implement the communication details. For example, if we want to connect to a different
chat server that does not use multicast DatagramPackets, we could implement the
MessageManager interface with the appropriate network protocols for this alternate
messaging server. We would not need to modify any other code in the client, because the

49 socket.close();
50 }
51
52 // handle exception delivering message
53 catch (IOException ioException) {
54 ioException.printStackTrace();
55 }
56
57 } // end method run
58 }

Fig. 17.15Fig. 17.15Fig. 17.15Fig. 17.15 MulticastSendingThread for delivering outgoing messages to a
multicast group via DatagramPackets.

Chapter 17 Networking 1037

other components of the client refer only to interface MessageManager, and not to some
particular MessageManager implementation. Likewise, the MessageManager inter-
face methods refer to other components of the client only through interface Message-
Listener. Therefore, other components of the client can change without requiring
changes in the MessageManager or its implementations.Method connect (line 10)
connects MessageManager to DeitelMessengerServer and routes incoming
messages to the appropriate MessageListener. Method disconnect (line 14) dis-
connects the MessageManager from the DeitelMessengerServer and stops
delivering messages to the given MessageListener. Method sendMessage (line 17)
sends a new message to DeitelMessengerServer.

Class SocketMessageManager (Fig. 17.17) implements interface Message-
Manager (line 16), using Sockets and MulticastSockets to communicate with
DeitelMessengerServer and receive incoming messages. Line 20 declares the
Socket that SocketMessageManager uses to connect and send messages to Deitel-
MessengerServer. Line 26 declares the PacketReceivingThread (Fig. 17.19) that
listens for new incoming messages. The boolean flag connected (line 29) indicates
whether the SocketMessageManager is connected to DeitelMessengerServer. \

1 // MessageManager.java
2 // MessageManager is an interface for objects capable of managing
3 // communications with a message server.
4 package com.deitel.messenger;
5
6 public interface MessageManager {
7
8 // connect to message server and route incoming messages
9 // to given MessageListener

10 public void connect(MessageListener listener);
11
12 // disconnect from message server and stop routing
13 // incoming messages to given MessageListener
14 public void disconnect(MessageListener listener);
15
16 // send message to message server
17 public void sendMessage(String from, String message);
18 }

Fig. 17.16Fig. 17.16Fig. 17.16Fig. 17.16 MessageManager interface that defines methods for communicating
with a DeitelMessengerServer.

1 // SocketMessageManager.java
2 // SocketMessageManager is a MessageManager implementation for
3 // communicating with a DeitelMessengerServer using Sockets
4 // and MulticastSockets.
5 package com.deitel.messenger.sockets.client;
6

Fig. 17.17Fig. 17.17Fig. 17.17Fig. 17.17 SocketMessageManager implementation of interface
MessageManager for communicating via Sockets and multicast
DatagramPackets (part 1 of 4).

1038 Networking Chapter 17

7 // Java core packages
8 import java.util.*;
9 import java.net.*;

10 import java.io.*;
11
12 // Deitel packages
13 import com.deitel.messenger.*;
14 import com.deitel.messenger.sockets.*;
15
16 public class SocketMessageManager implements MessageManager,
17 SocketMessengerConstants {
18
19 // Socket for outgoing messages
20 private Socket clientSocket;
21
22 // DeitelMessengerServer address
23 private String serverAddress;
24
25 // Thread for receiving multicast messages
26 private PacketReceivingThread receivingThread;
27
28 // flag indicating connection status
29 private boolean connected = false;
30
31 // SocketMessageManager constructor
32 public SocketMessageManager(String address)
33 {
34 serverAddress = address;
35 }
36
37 // connect to server and send messages to given MessageListener
38 public void connect(MessageListener listener)
39 {
40 // if already connected, return immediately
41 if (connected)
42 return;
43
44 // open Socket connection to DeitelMessengerServer
45 try {
46 clientSocket = new Socket(
47 InetAddress.getByName(serverAddress), SERVER_PORT);
48
49 // create Thread for receiving incoming messages
50 receivingThread = new PacketReceivingThread(listener);
51 receivingThread.start();
52
53 // update connected flag
54 connected = true;
55
56 } // end try
57

Fig. 17.17Fig. 17.17Fig. 17.17Fig. 17.17 SocketMessageManager implementation of interface
MessageManager for communicating via Sockets and multicast
DatagramPackets (part 2 of 4).

Chapter 17 Networking 1039

58 // handle exception connecting to server
59 catch (IOException ioException) {
60 ioException.printStackTrace();
61 }
62
63 } // end method connect
64
65 // disconnect from server and unregister given MessageListener
66 public void disconnect(MessageListener listener)
67 {
68 // if not connected, return immediately
69 if (!connected)
70 return;
71
72 // stop listening thread and disconnect from server
73 try {
74
75 // notify server that client is disconnecting
76 Thread disconnectThread = new SendingThread(
77 clientSocket, "", DISCONNECT_STRING);
78 disconnectThread.start();
79
80 // wait 10 seconds for disconnect message to be sent
81 disconnectThread.join(10000);
82
83 // stop receivingThread and remove given MessageListener
84 receivingThread.stopListening();
85
86 // close outgoing Socket
87 clientSocket.close();
88
89 } // end try
90
91 // handle exception disconnecting from server
92 catch (IOException ioException) {
93 ioException.printStackTrace();
94 }
95
96 // handle exception joining disconnectThread
97 catch (InterruptedException interruptedException) {
98 interruptedException.printStackTrace();
99 }
100
101 // update connected flag
102 connected = false;
103
104 } // end method disconnect
105
106 // send message to server
107 public void sendMessage(String from, String message)
108 {

Fig. 17.17Fig. 17.17Fig. 17.17Fig. 17.17 SocketMessageManager implementation of interface
MessageManager for communicating via Sockets and multicast
DatagramPackets (part 3 of 4).

1040 Networking Chapter 17

The SocketMessageManager constructor (lines 32–35) receives the address of
the DeitelMessengerServer to which SocketMessageManager should con-
nect. Method connect (lines 38–63) connects SocketMessageManager to
DeitelMessengerServer. If SocketMessageManager was connected previ-
ously, line 42 returns from method connect. Lines 46–47 create a new Socket to com-
municate with DeitelMessengerServer. Line 47 creates an InetAddress object
for the server’s address and uses the constant SERVER_PORT to specify the port on which
the client should connect. Line 50 creates a new PacketReceivingThread, which lis-
tens for incoming multicast messages from DeitelMessengerServer. Line 51 starts
PacketReceivingThread. Line 54 updates boolean variable connected to indi-
cate that SocketMessageManager is connected to the server.

Method disconnect (lines 66–104) terminates the SocketMessageManager’s
connection to DeitelMessengerServer. If SocketMessageManager is not con-
nected, line 70 returns from method disconnect. Lines 76–77 create a new Sending-
Thread (Fig. 17.18) to send DISCONNECT_STRING to DeitelMessengerServer.
Class SendingThread delivers a message to DeitelMessengerServer over the
SocketMessageManager’s Socket connection. Line 78 starts the SendingThread
to deliver the message. Line 81 invokes SendingThread method join (inherited from
Thread) to wait for the disconnect message to be delivered. The integer argument 10000
specifies that the current thread should wait only 10 seconds to join the SendingThread
before continuing. Once the disconnect message has been delivered, line 84 invokes method
stopListening of class PacketReceivingThread to stop receiving incoming chat
messages. Line 87 closes the Socket connection to DeitelMessengerServer.

Method sendMessage (lines 107–115) sends an outgoing message to Deitel-
MessengerServer. If SocketMessageManager is not connected, line 111 returns
from method sendMessage. Line 114 creates and starts a new SendingThread
instance (Fig. 17.18) to deliver the new message in a separate thread of execution.

Class SendingThread (Fig. 17.18) extends class Thread to deliver outgoing mes-
sages to the DeitelMessengerServer in a separate thread of execution. Sending-
Thread’s constructor (lines 21–31) takes as arguments the Socket over which to send the
message, the userName from whom the message came and the message body. Line 30
concatenates userName, MESSAGE_SEPARATOR and message to build messageTo-
Send. Constant MESSAGE_SEPARATOR enables the message recipient to parse the mes-
sage into two parts—the sending user’s name and the message body—by using a
StringTokenizer.

109 // if not connected, return immediately
110 if (!connected)
111 return;
112
113 // create and start new SendingThread to deliver message
114 new SendingThread(clientSocket, from, message).start();
115 }
116 }

Fig. 17.17Fig. 17.17Fig. 17.17Fig. 17.17 SocketMessageManager implementation of interface
MessageManager for communicating via Sockets and multicast
DatagramPackets (part 4 of 4).

Chapter 17 Networking 1041

1 // SendingThread.java
2 // SendingThread sends a message to the chat server in a
3 // separate Thread.
4 package com.deitel.messenger.sockets.client;
5
6 // Java core packages
7 import java.io.*;
8 import java.net.*;
9

10 // Deitel packages
11 import com.deitel.messenger.sockets.*;
12
13 public class SendingThread extends Thread
14 implements SocketMessengerConstants {
15
16 // Socket over which to send message
17 private Socket clientSocket;
18 private String messageToSend;
19
20 // SendingThread constructor
21 public SendingThread(Socket socket, String userName,
22 String message)
23 {
24 // invoke superclass constructor to name Thread
25 super("SendingThread: " + socket);
26
27 clientSocket = socket;
28
29 // build the message to be sent
30 messageToSend = userName + MESSAGE_SEPARATOR + message;
31 }
32
33 // send message and exit Thread
34 public void run()
35 {
36 // send message and flush PrintWriter
37 try {
38 PrintWriter writer =
39 new PrintWriter(clientSocket.getOutputStream());
40 writer.println(messageToSend);
41 writer.flush();
42 }
43
44 // handle exception sending message
45 catch (IOException ioException) {
46 ioException.printStackTrace();
47 }
48
49 } // end method run
50 }

Fig. 17.18Fig. 17.18Fig. 17.18Fig. 17.18 SendingThread for delivering outgoing messages to
DeitelMessengerServer.

1042 Networking Chapter 17

Method run (lines 34–49) delivers the complete message to DeitelMessen-
gerServer, using the Socket provided to the SendingThread constructor. Lines
38–39 create a new PrintWriter for the clientSocket’s OutputStream. Line
40 invokes method println of class PrintWriter to send the message. Line 41
invokes method flush of class PrintWriter to ensure that the message is sent imme-
diately. Note that class SendingThread does not close the clientSocket. Class
SocketMessageManager uses a new instance of class SendingThread for each
message the client sends, so the clientSocket must remain open until the user discon-
nects from DeitelMessengerServer.

Class PacketReceivingThread extends class Thread to enable Socket-
MessageManager to listen for incoming messages in a separate thread of execution.
Line 19 declares the MessageListener to which PacketReceivingThread will
deliver incoming messages. Line 22 declares a MulticastSocket, which enables
PacketReceivingThread to receive multicast DatagramPackets. Line 25
declares an InetAddress reference for the multicast address to which Deitel-
MessengerServer posts new chat messages. The MulticastSocket connects to
this InetAddress to listen for incoming chat messages.

1 // PacketReceivingThread.java
2 // PacketReceivingThread listens for DatagramPackets containing
3 // messages from a DeitelMessengerServer.
4 package com.deitel.messenger.sockets.client;
5
6 // Java core packages
7 import java.io.*;
8 import java.net.*;
9 import java.util.*;

10
11 // Deitel packages
12 import com.deitel.messenger.*;
13 import com.deitel.messenger.sockets.*;
14
15 public class PacketReceivingThread extends Thread
16 implements SocketMessengerConstants {
17
18 // MessageListener to whom messages should be delivered
19 private MessageListener messageListener;
20
21 // MulticastSocket for receiving broadcast messages
22 private MulticastSocket multicastSocket;
23
24 // InetAddress of group for messages
25 private InetAddress multicastGroup;
26
27 // flag for terminating PacketReceivingThread
28 private boolean keepListening = true;
29

Fig. 17.19Fig. 17.19Fig. 17.19Fig. 17.19 PacketReceivingThread for listening for new multicast messages
from DeitelMessengerServer in a separate Thread (part 1 of 4).

Chapter 17 Networking 1043

30 // PacketReceivingThread constructor
31 public PacketReceivingThread(MessageListener listener)
32 {
33 // invoke superclass constructor to name Thread
34 super("PacketReceivingThread");
35
36 // set MessageListener
37 messageListener = listener;
38
39 // connect MulticastSocket to multicast address and port
40 try {
41 multicastSocket =
42 new MulticastSocket(MULTICAST_LISTENING_PORT);
43
44 multicastGroup =
45 InetAddress.getByName(MULTICAST_ADDRESS);
46
47 // join multicast group to receive messages
48 multicastSocket.joinGroup(multicastGroup);
49
50 // set 5 second time-out when waiting for new packets
51 multicastSocket.setSoTimeout(5000);
52 }
53
54 // handle exception connecting to multicast address
55 catch (IOException ioException) {
56 ioException.printStackTrace();
57 }
58
59 } // end PacketReceivingThread constructor
60
61 // listen for messages from multicast group
62 public void run()
63 {
64 // listen for messages until stopped
65 while (keepListening) {
66
67 // create buffer for incoming message
68 byte[] buffer = new byte[MESSAGE_SIZE];
69
70 // create DatagramPacket for incoming message
71 DatagramPacket packet = new DatagramPacket(buffer,
72 MESSAGE_SIZE);
73
74 // receive new DatagramPacket (blocking call)
75 try {
76 multicastSocket.receive(packet);
77 }
78
79 // handle exception when receive times out
80 catch (InterruptedIOException interruptedIOException) {
81

Fig. 17.19Fig. 17.19Fig. 17.19Fig. 17.19 PacketReceivingThread for listening for new multicast messages
from DeitelMessengerServer in a separate Thread (part 2 of 4).

1044 Networking Chapter 17

82 // continue to next iteration to keep listening
83 continue;
84 }
85
86 // handle exception reading packet from multicast group
87 catch (IOException ioException) {
88 ioException.printStackTrace();
89 break;
90 }
91
92 // put message data in a String
93 String message = new String(packet.getData());
94
95 // ensure non-null message
96 if (message != null) {
97
98 // trim extra whitespace from end of message
99 message = message.trim();
100
101 // tokenize message to retrieve user name
102 // and message body
103 StringTokenizer tokenizer =
104 new StringTokenizer(message, MESSAGE_SEPARATOR);
105
106 // ignore messages that do not contain a user
107 // name and message body
108 if (tokenizer.countTokens() == 2) {
109
110 // send message to MessageListener
111 messageListener.messageReceived(
112 tokenizer.nextToken(), // user name
113 tokenizer.nextToken()); // message body
114 }
115
116 } // end if
117
118 } // end while
119
120 // leave multicast group and close MulticastSocket
121 try {
122 multicastSocket.leaveGroup(multicastGroup);
123 multicastSocket.close();
124 }
125
126 // handle exception reading packet from multicast group
127 catch (IOException ioException) {
128 ioException.printStackTrace();
129 }
130
131 } // end method run
132

Fig. 17.19Fig. 17.19Fig. 17.19Fig. 17.19 PacketReceivingThread for listening for new multicast messages
from DeitelMessengerServer in a separate Thread (part 3 of 4).

Chapter 17 Networking 1045

The PacketReceivingThread constructor (lines 31–59) takes as an argument
the MessageListener to which the PacketReceivingThread should deliver
incoming messages. Recall that interface MessageListener defines a single method
messageReceived. When the PacketReceivingThread receives a new chat mes-
sage over the MulticastSocket, PacketReceivingThread invokes method
messageReceived to deliver the new message to the MessageListener.

Lines 41–42 create a new MulticastSocket and pass to the MulticastSocket
constructor the constant MULTICAST_LISTENING_PORT from interface SocketMes-
sengerConstants. This argument specifies the port on which the MulticastSocket
should listen for incoming chat messages. Lines 44–45 create an InetAddress object for
the MULTICAST_ADDRESS, to which DeitelMessengerServer multicasts new chat
messages. Line 48 invokes method joinGroup of class MulticastSocket to register
the MulticastSocket to receive messages sent to MULTICAST_ADDRESS. Line 51
invokes MulticastSocket method setSoTime-out to specify that, if no data is
received in 5000 milliseconds, the MulticastSocket should issue an Interrupte-
dIOException, which the current thread can catch, then continue executing. This
approach prevents PacketReceivingThread from deadlocking when waiting for
incoming data. Also, if the MulticastSocket did not ever time out, the while loop
would not be able to check the keepListening variable and would therefore prevent
PacketReceivingThread from stopping if keepListening were set to false.

Method run (lines 62–131) listens for incoming multicast messages. Line 68 creates
a byte array in which to store the incoming DatagramPacket data. Lines 71–72 create
a DatagramPacket to store the incoming message. Line 76 invokes method receive
of class MulticastSocket with the DatagramPacket packet as an argument. This
is a blocking call that reads an incoming packet from the multicast address. If 5000 milli-
seconds pass without receipt of a packet, method receive throws an Interrupted-
IOException, because we previously set a 5000 millisecond time-out (line 51). Line
83 uses keyword continue to proceed to the next while loop iteration to continue lis-
tening for incoming messages. For other IOExceptions, line 89 breaks the while
loop to terminate the PacketReceivingThread.

Line 93 invokes method getData of class DatagramPacket to retrieve the mes-
sage data. Line 99 invokes method trim of class String to remove extra whitespace
from the end of the message. Recall that DatagramPackets are a fixed size—512 bytes
in this example—so, if the message is shorter than 512 bytes, there will be extra
whitespace after the message. Lines 103–104 create a StringTokenizer to separate
the message body from the name of the user who sent the message. Line 108 checks for the
correct number of tokens. Lines 111–113 invoke method messageReceived of inter-

133 // stop listening for new messages
134 public void stopListening()
135 {
136 // terminate Thread
137 keepListening = false;
138 }
139 }

Fig. 17.19Fig. 17.19Fig. 17.19Fig. 17.19 PacketReceivingThread for listening for new multicast messages
from DeitelMessengerServer in a separate Thread (part 4 of 4).

1046 Networking Chapter 17

face MessageListener to deliver the incoming message to the PacketReceiving-
Thread’s MessageListener.

If the program invokes method stopListening (lines 134–138), the while loop
in method run (lines 62–118) terminates. Line 122 invokes method leaveGroup of
class MulticastSocket to stop receiving messages from the multicast address. Line
123 invokes method close of class MulticastSocket to close the Multicast-
Socket. PacketReceivingThread then terminates when method run returns.

Class ClientGUI (Fig. 17.20) extends class JFrame to create a GUI for a user to
send and receive chat messages. The GUI consists of a JTextArea for displaying
incoming messages (line 22), a JTextArea for entering new messages (line 23), JBut-
tons and JMenuItems for connecting to and disconnecting from the server (lines 26–29)
and a JButton for sending messages (line 32). The GUI also contains a JLabel that dis-
plays whether the client is connected or disconnected.

1 // ClientGUI.java
2 // ClientGUI provides a user interface for sending and receiving
3 // messages to and from the DeitelMessengerServer.
4 package com.deitel.messenger;
5
6 // Java core packages
7 import java.io.*;
8 import java.net.*;
9 import java.awt.*;

10 import java.awt.event.*;
11
12 // Java standard extensions
13 import javax.swing.*;
14 import javax.swing.border.*;
15
16 public class ClientGUI extends JFrame {
17
18 // JMenu for connecting/disconnecting server
19 private JMenu serverMenu;
20
21 // JTextAreas for displaying and inputting messages
22 private JTextArea messageArea;
23 private JTextArea inputArea;
24
25 // JButtons and JMenuItems for connecting and disconnecting
26 private JButton connectButton;
27 private JMenuItem connectMenuItem;
28 private JButton disconnectButton;
29 private JMenuItem disconnectMenuItem;
30
31 // JButton for sending messages
32 private JButton sendButton;
33
34 // JLabel for displaying connection status
35 private JLabel statusBar;

Fig. 17.20Fig. 17.20Fig. 17.20Fig. 17.20 ClientGUI subclass of JFrame for presenting a GUI for viewing and
sending chat messages (part 1 of 6).

Chapter 17 Networking 1047

36
37 // userName to add to outgoing messages
38 private String userName;
39
40 // MessageManager for communicating with server
41 private MessageManager messageManager;
42
43 // MessageListener for receiving incoming messages
44 private MessageListener messageListener;
45
46 // ClientGUI constructor
47 public ClientGUI(MessageManager manager)
48 {
49 super("Deitel Messenger");
50
51 // set the MessageManager
52 messageManager = manager;
53
54 // create MyMessageListener for receiving messages
55 messageListener = new MyMessageListener();
56
57 // create File JMenu
58 serverMenu = new JMenu ("Server");
59 serverMenu.setMnemonic('S');
60 JMenuBar menuBar = new JMenuBar();
61 menuBar.add(serverMenu);
62 setJMenuBar(menuBar);
63
64 // create ImageIcon for connect buttons
65 Icon connectIcon = new ImageIcon(
66 getClass().getResource("images/Connect.gif"));
67
68 // create connectButton and connectMenuItem
69 connectButton = new JButton("Connect", connectIcon);
70 connectMenuItem = new JMenuItem("Connect", connectIcon);
71 connectMenuItem.setMnemonic('C');
72
73 // create ConnectListener for connect buttons
74 ActionListener connectListener = new ConnectListener();
75 connectButton.addActionListener(connectListener);
76 connectMenuItem.addActionListener(connectListener);
77
78 // create ImageIcon for disconnect buttons
79 Icon disconnectIcon = new ImageIcon(
80 getClass().getResource("images/Disconnect.gif"));
81
82 // create disconnectButton and disconnectMenuItem
83 disconnectButton = new JButton("Disconnect",
84 disconnectIcon);
85 disconnectMenuItem = new JMenuItem("Disconnect",
86 disconnectIcon);
87 disconnectMenuItem.setMnemonic('D');

Fig. 17.20Fig. 17.20Fig. 17.20Fig. 17.20 ClientGUI subclass of JFrame for presenting a GUI for viewing and
sending chat messages (part 2 of 6).

1048 Networking Chapter 17

88
89 // disable disconnect buttons
90 disconnectButton.setEnabled(false);
91 disconnectMenuItem.setEnabled(false);
92
93 // create DisconnectListener for disconnect buttons
94 ActionListener disconnectListener =
95 new DisconnectListener();
96 disconnectButton.addActionListener(disconnectListener);
97 disconnectMenuItem.addActionListener(disconnectListener);
98
99 // add connect and disconnect JMenuItems to fileMenu
100 serverMenu.add(connectMenuItem);
101 serverMenu.add(disconnectMenuItem);
102
103 // add connect and disconnect JButtons to buttonPanel
104 JPanel buttonPanel = new JPanel();
105 buttonPanel.add(connectButton);
106 buttonPanel.add(disconnectButton);
107
108 // create JTextArea for displaying messages
109 messageArea = new JTextArea();
110
111 // disable editing and wrap words at end of line
112 messageArea.setEditable(false);
113 messageArea.setWrapStyleWord(true);
114 messageArea.setLineWrap(true);
115
116 // put messageArea in JScrollPane to enable scrolling
117 JPanel messagePanel = new JPanel();
118 messagePanel.setLayout(new BorderLayout(10, 10));
119 messagePanel.add(new JScrollPane(messageArea),
120 BorderLayout.CENTER);
121
122 // create JTextArea for entering new messages
123 inputArea = new JTextArea(4, 20);
124 inputArea.setWrapStyleWord(true);
125 inputArea.setLineWrap(true);
126 inputArea.setEditable(false);
127
128 // create Icon for sendButton
129 Icon sendIcon = new ImageIcon(
130 getClass().getResource("images/Send.gif"));
131
132 // create sendButton and disable it
133 sendButton = new JButton("Send", sendIcon);
134 sendButton.setEnabled(false);
135
136 // create ActionListener for sendButton
137 sendButton.addActionListener(
138 new ActionListener() {
139

Fig. 17.20Fig. 17.20Fig. 17.20Fig. 17.20 ClientGUI subclass of JFrame for presenting a GUI for viewing and
sending chat messages (part 3 of 6).

Chapter 17 Networking 1049

140 // send new message when user activates sendButton
141 public void actionPerformed(ActionEvent event)
142 {
143 messageManager.sendMessage(userName,
144 inputArea.getText());
145
146 // clear inputArea
147 inputArea.setText("");
148 }
149 } // end ActionListener
150);
151
152 // lay out inputArea and sendButton in BoxLayout and
153 // add Box to messagePanel
154 Box box = new Box(BoxLayout.X_AXIS);
155 box.add(new JScrollPane(inputArea));
156 box.add(sendButton);
157 messagePanel.add(box, BorderLayout.SOUTH);
158
159 // create JLabel for statusBar with a recessed border
160 statusBar = new JLabel("Not Connected");
161 statusBar.setBorder(
162 new BevelBorder(BevelBorder.LOWERED));
163
164 // lay out components in JFrame
165 Container container = getContentPane();
166 container.add(buttonPanel, BorderLayout.NORTH);
167 container.add(messagePanel, BorderLayout.CENTER);
168 container.add(statusBar, BorderLayout.SOUTH);
169
170 // add WindowListener to disconnect when user quits
171 addWindowListener (
172 new WindowAdapter () {
173
174 // disconnect from server and exit application
175 public void windowClosing (WindowEvent event)
176 {
177 messageManager.disconnect(messageListener);
178 System.exit(0);
179 }
180 }
181);
182
183 } // end ClientGUI constructor
184
185 // ConnectListener listens for user requests to connect to
186 // DeitelMessengerSever
187 private class ConnectListener implements ActionListener {
188
189 // connect to server and enable/disable GUI components
190 public void actionPerformed(ActionEvent event)
191 {

Fig. 17.20Fig. 17.20Fig. 17.20Fig. 17.20 ClientGUI subclass of JFrame for presenting a GUI for viewing and
sending chat messages (part 4 of 6).

1050 Networking Chapter 17

192 // connect to server and route messages to
193 // messageListener
194 messageManager.connect(messageListener);
195
196 // prompt for userName
197 userName = JOptionPane.showInputDialog(
198 ClientGUI.this, "Enter user name:");
199
200 // clear messageArea
201 messageArea.setText("");
202
203 // update GUI components
204 connectButton.setEnabled(false);
205 connectMenuItem.setEnabled(false);
206 disconnectButton.setEnabled(true);
207 disconnectMenuItem.setEnabled(true);
208 sendButton.setEnabled(true);
209 inputArea.setEditable(true);
210 inputArea.requestFocus();
211 statusBar.setText("Connected: " + userName);
212 }
213
214 } // end ConnectListener inner class
215
216 // DisconnectListener listens for user requests to disconnect
217 // from DeitelMessengerServer
218 private class DisconnectListener implements ActionListener {
219
220 // disconnect from server and enable/disable GUI components
221 public void actionPerformed(ActionEvent event)
222 {
223 // disconnect from server and stop routing messages
224 // to messageListener
225 messageManager.disconnect(messageListener);
226
227 // update GUI componets
228 sendButton.setEnabled(false);
229 disconnectButton.setEnabled(false);
230 disconnectMenuItem.setEnabled(false);
231 inputArea.setEditable(false);
232 connectButton.setEnabled(true);
233 connectMenuItem.setEnabled(true);
234 statusBar.setText("Not Connected");
235 }
236
237 } // end DisconnectListener inner class
238
239 // MyMessageListener listens for new messages from the
240 // MessageManager and displays the messages in messageArea
241 // using a MessageDisplayer.
242 private class MyMessageListener implements MessageListener {
243

Fig. 17.20Fig. 17.20Fig. 17.20Fig. 17.20 ClientGUI subclass of JFrame for presenting a GUI for viewing and
sending chat messages (part 5 of 6).

Chapter 17 Networking 1051

ClientGUI uses a MessageManager (line 41) to handle all communication with
the chat server. Recall that MessageManager is an interface and therefore allows Cli-
entGUI to use any MessageManager implementation without the need to change any
code in ClientGUI. Class ClientGUI also uses a MessageListener (line 44) to
receive incoming messages from the MessageManager.

The ClientGUI constructor (lines 47–183) takes as an argument the Message-
Manager for communicating with DeitelMessengerServer. Line 52 sets the Cli-

244 // when received, display new messages in messageArea
245 public void messageReceived(String from, String message)
246 {
247 // append message using MessageDisplayer and
248 // invokeLater, ensuring thread-safe access messageArea
249 SwingUtilities.invokeLater(
250 new MessageDisplayer(from, message));
251
252 } // end method messageReceived
253
254 } // end MyMessageListener inner class
255
256 // MessageDisplayer displays a new messaage by
257 // appending the message to the messageArea JTextArea. This
258 // Runnable object should be executed only on the Event
259 // thread, because it modifies a live Swing component.
260 private class MessageDisplayer implements Runnable {
261
262 private String fromUser;
263 private String messageBody;
264
265 // MessageDisplayer constructor
266 public MessageDisplayer(String from, String body)
267 {
268 fromUser = from;
269 messageBody = body;
270 }
271
272 // display new message in messageArea
273 public void run()
274 {
275 // append new message
276 messageArea.append("\n" + fromUser + "> " +
277 messageBody);
278
279 // move caret to end of messageArea to ensure new
280 // message is visible on screen
281 messageArea.setCaretPosition(
282 messageArea.getText().length());
283 }
284
285 } // end MessageDisplayer inner class
286 }

Fig. 17.20Fig. 17.20Fig. 17.20Fig. 17.20 ClientGUI subclass of JFrame for presenting a GUI for viewing and
sending chat messages (part 6 of 6).

1052 Networking Chapter 17

entGUI’s MessageManager. Line 55 creates an instance of MyMessageListener,
which implements interface MessageListener. Lines 58–62 create a Server menu
that contains JMenuItems for connecting to and disconnecting from the chat server. Lines
65–66 create an ImageIcon for connectButton and connectMenuItem.

Line 66 invokes method getClass (inherited from class Object) to retrieve the
Class object that represents the ClientGUI class definition. Line 66 then invokes
method getResource of class Class to load the connect image. The Java virtual
machine loads class definitions into memory, using a class loader. Method getRe-
source of Class uses the Class object’s class loader to specify the location of a
resource, such as an image file. Specifying resource locations in this manner enables pro-
grams to avoid hard-coded or absolute paths, which can make programs more difficult to
deploy. Using the techniques described here enables an applet or application to load files
from locations that are relative to the location of the .class file for a given class.

Lines 69–70 create connectButton and connectMenuItem, each with the label
"Connect" and the Icon connectIcon. Line 71 invokes method setMnemonic of
class JMenuItem to set the mnemonic character for keyboard access to connectMenu-
Item. Line 74 creates an instance of private inner class ConnectListener, which
implements interface ActionListener to handle ActionEvents from connect-
Button and connectMenuItem. Lines 75–76 add connectListener as an
ActionListener for connectButton and connectMenuItem.

Lines 79–80 create an ImageIcon for the disconnectButton and discon-
nectMenuItem components. Lines 83–86 create disconnectButton and
disconnectMenuItem, each with the label "Disconnect" and the Icon discon-
nectIcon. Line 87 invokes method setMnemonic of class JMenuItem to enable key-
board access to disconnectMenuItem. Lines 90–91 invoke method setEnabled of
class JButton and class JMenuItem with a false argument to disable discon-
nectButton and disconnectMenuItem. This prevents the user from attempting to
disconnect from the server because the client is not yet connected. Lines 94–95 create an
instance of private inner class DisconnectListener, which implements interface
ActionListener to handle ActionEvents from disconnectButton and
disconnectMenuItem. Lines 96–97 add disconnectListener as an Action-
Listener for the disconnectButton and disconnectMenuItem components.

Lines 100–101 add connectMenuItem and disconnectMenuItem to the
Server JMenu. Lines 104–106 create a JPanel and add connectButton and dis-
connectButton to that JPanel. Line 109 creates the JTextArea messageArea,
in which the client displays incoming messages. Line 112 invokes method setEnabled
with a false argument, to disable editing ot the text in messageArea. Lines 113–114
invoke methods setWrapStyleWord and setLineWrap of class JTextArea to
enable word wrapping in messageArea. If a message is longer than the width of the
messageArea, the messageArea will wrap the text after the last word that fits on each
line, making longer messages easier to read. Lines 117–120 create a JPanel for the mes-
sageArea and add the messageArea to the JPanel in a JScrollPane. The
JScrollPane adds scroll bars to the messageArea to enable the user to scroll through
messages that exceed the size of messageArea.

Line 123 creates the inputArea JTextArea for entering new messages. The argu-
ments to the JTextArea constructor specify a four-line JTextArea that is twenty char-

Chapter 17 Networking 1053

acters wide. Lines 124–125 enable word and line wrapping, and line 126 disables editing
the inputArea. When the client connects to the chat server, ConnectListener
enables the inputArea to allow the user to type new messages.

Line 129 creates an ImageIcon for sendButton. Line 133 creates sendButton,
which the user can click to send a message the user has typed. Line 134 disables send-
Button; the ConnectListener enables the sendButton when the client connects
to the chat server. Lines 137–150 add an ActionListener to sendButton. Lines
143–144 invoke method sendMessage of interface MessageManager with the
userName and inputArea text as arguments. This statement sends the user’s name and
whatever text the user entered in inputArea to DeitelMessengerServer as a new
chat message. Line 147 invokes method setText of class JTextArea with an empty
String argument to clear the inputArea for the next message.

Lines 154–157 use a BoxLayout to arrange the inputArea and sendButton.
Line 155 places inputArea in a JScrollPane to enable scrolling of long messages.
Line 157 adds the Box containing inputArea and sendButton to the SOUTH region
of messagePanel. Lines 160–162 create the statusBar JLabel. This JLabel dis-
plays whether the client is connected to or disconnected from the chat server. Lines 161–
162 invoke method setBorder of class JLabel and create a new BevelBorder of
type BevelBorder.LOWERED. This border makes the JLabel appear recessed, as is
common with status bars in many applications. Lines 165–168 lay out buttonPanel,
messagePanel and statusBar in the ClientGUI JFrame.

Lines 171–181 add a WindowListener to the ClientGUI JFrame. Line 177
invokes method disconnect of interface MessageManager to disconnect from the
chat server in case the user quits while still connected.

Inner class ConnectListener (lines 187–214) handles events from connect-
Button and connectMenuItem. Line 194 invokes method connect of class Mes-
sageManager to connect to the chat server. Line 194 passes as an argument to method
connect the MessageListener to which new messages should be delivered. Lines
197-198 prompt the user for a user name, and line 201 clears the messageArea JTex-
tArea. Lines 204–209 enable the components for disconnecting from the server and for
sending messages and disable components for connecting to the server. Line 210 invokes
method requestFocus of class JTextArea to place the text-input cursor in the in-
putArea so the user can begin typing a message more easily.

Inner class DisconnectListener (lines 218–237) handles events from discon-
nectButton and disconnectMenuItem. Line 225 invokes method disconnect
of class MessageManager to disconnect from the chat server. Lines 228–234 disable the
components for sending messages and the components for disconnecting then enable the
components for connecting to the chat server.

Inner class MyMessageListener (lines 242–254) implements interface Mes-
sageListener to receive incoming messages from the MessageManager. When a
new message is received, the program invokes method messageReceived (lines 242–
252) with the user name of the sender and the message body. Lines 249–250 invoke
static method invokeLater of class SwingUtilties with a new instance of
MessageDisplayer to append the new message to messageArea. Recall, from
Chapter 15, that Swing components should be accessed only from the event dispatching
thread. Method messageReceived is invoked by the PacketReceivingThread in

1054 Networking Chapter 17

class SocketMessageManager and therefore cannot append the message text to mes-
sageArea directly, as this would occur in PacketReceivingThread, not the event-
dispatch thread.

Inner class MessageDisplayer (lines 260–285) implements interface Runnable
to provide a thread-safe way to append text to the messageArea JTextArea. The
MessageDisplayer constructor (lines 266–270) takes as arguments the user name and
message to send. Method run (lines 273–283) appends the user name, "> " and mes-
sageBody to messageArea. Lines 281–282 invoke method setCaretPosition of
class JTextArea to scroll messageArea to the bottom to display the most recently
received message. Instances of class MessageDisplayer should execute only as part
of the event-dispatching thread, to ensure thread-safe access to the messageArea Swing
component.

Class DeitelMessenger (Fig. 17.21) launches the client for the DeitelMes-
sengerServer. Lines 18–21 create a new SocketMessageManager to connect to
the DeitelMessengerServer with the IP address specified as a command-line argu-
ment to the application. Lines 24–27 create a ClientGUI for the MessageManager,
set the ClientGUI size and make the ClientGUI visible.

1 // DeitelMessenger.java
2 // DeitelMessenger is a chat application that uses a ClientGUI
3 // and SocketMessageManager to communicate with
4 // DeitelMessengerServer.
5 package com.deitel.messenger.sockets.client;
6
7 // Deitel packages
8 import com.deitel.messenger.*;
9

10 public class DeitelMessenger {
11
12 // execute application
13 public static void main(String args[])
14 {
15 MessageManager messageManager;
16
17 // create new DeitelMessenger
18 if (args.length == 0)
19 messageManager = new SocketMessageManager("localhost");
20 else
21 messageManager = new SocketMessageManager(args[0]);
22
23 // create GUI for SocketMessageManager
24 ClientGUI clientGUI = new ClientGUI(messageManager);
25 clientGUI.setSize(300, 400);
26 clientGUI.setResizable(false);
27 clientGUI.setVisible(true);
28 }
29 }

Fig. 17.21Fig. 17.21Fig. 17.21Fig. 17.21 DeitelMessenger application for participating in a
DeitelMessengerServer chat session (part 1 of 3).

Chapter 17 Networking 1055

Fig. 17.21Fig. 17.21Fig. 17.21Fig. 17.21 DeitelMessenger application for participating in a
DeitelMessengerServer chat session (part 2 of 3).

1056 Networking Chapter 17

The Deitel messenger case study is a significant application that uses many interme-
diate Java features, such as networking with Sockets, DatagramPackets and Mul-
ticastSockets, multithreading and Swing GUI. The case study also demonstrates good
software engineering practices by separating interface from implementation, enabling
developers to build MessageManagers for different network protocols and Message-
Listeners that provide different user interfaces. You should now be able to apply these
techniques to your own, more complex, Java projects.

17.11 (Optional) Discovering Design Patterns: Design Patterns
Used in Packages java.io and java.net
This section introduces those design patterns associated with the Java file, streams and net-
working packages.

17.11.1 Creational Design Patterns
We now continue our discussion of creational design patterns.

Abstract Factory
Like the Factory Method design pattern, the Abstract Factory design pattern allows a sys-
tem to determine the subclass from which to instantiate an object at run time. Often, this
subclass is unknown during development. However, Abstract Factory uses an object known
as a factory that uses an interface to instantiate objects. A factory creates a product; in this
case, that product is an object of a subclass determined at run time.

The Java socket library in package java.net uses the Abstract Factory design pat-
tern. A socket describes a connection, or a stream of data, between two computers. Class
Socket references an object of a SocketImpl subclass (Section 17.5). Class Socket
also contains a static reference to an object implementing interface Socket-
ImplFactory. The Socket constructor invokes method createSocketImpl of
interface SocketFactory to create the SocketImpl object. The object that imple-

Fig. 17.21Fig. 17.21Fig. 17.21Fig. 17.21 DeitelMessenger application for participating in a
DeitelMessengerServer chat session (part 3 of 3).

Chapter 17 Networking 1057

ments interface SocketFactory is the factory, and an object of a SocketImpl sub-
class is the product of that factory. The system cannot specify the SocketImpl subclass
from which to instantiate until run time, because the system has no knowledge of what type
of Socket implementation is required (e.g., a socket configured to the local network’s
security requirements). Method createSocketImpl decides the SocketImpl sub-
class from which to instantiate the object at run time.

17.11.2 Structural Design Patterns

This section concludes our discussion of structural design patterns.

Decorator
Let us reexamine class CreateSequentialFile (Fig. 16.6). Lines 127–128 of this
class allow an ObjectOutputStream object, which writes objects to a file, to gain the
responsibilities of a FileOutputStream object, which provides methods for writing
bytes to files. Class CreateSequentialFile appears to “chain” objects—a File-
OutputStream object is the argument to the ObjectOutputStream’s constructor.
The fact that the ObjectOutputStream object can gain the behavior of a FileOut-
putStream dynamically prevents the need for creating a separate class called Object-
FileOutputStream, which would implement the behaviors of both classes.

Lines 127–128 of class CreateSequentialFile show an example of the Deco-
rator design pattern, which allows an object to gain additional responsibilities dynami-
cally. Using this pattern, designers do not have to create separate, unnecessary classes to
add responsibilities to objects of a given class.

Let us consider a more complex example to discover how the Decorator design pattern
can simplify a system’s structure. Suppose we wanted to enhance the I/O-performance of
the previous example by using a BufferedOutputStream. Using the Decorator design
pattern, we would write

output = new ObjectOutputStream(
new BufferedOutputStream(

 new FileOutputStream(fileName)));

We can chain objects in this manner, because ObjectOutputStream, Buffered-
OutputStream and FileOutputStream extend abstract superclass OutputStream,
and each subclass constructor takes an OutputStream object as a parameter. If the stream
objects in package java.io did not use the Decorator pattern (i.e., did not satisfy these two
requirements), package java.io would have to provide classes BufferedFileOut-
putStream, ObjectBufferedOutputStream, ObjectBufferedFileOut-
putStream and ObjectFileOutputStream. Consider how many classes we would
have to create if we chained even more stream objects without applying the Decorator pattern.

Facade
When driving a car, you know that pressing the gas pedal accelerates your car, but you are
unaware of exactly how the gas pedal causes your car to accelerate. This principle is the
foundation of the Facade design pattern, which allows an object—called a facade object—
to provide a simple interface for the behaviors of a subsystem—an aggregate of objects that
comprise collectively a major system responsibility. The gas pedal, for example, is the fa-
cade object for the car’s acceleration subsystem, the steering wheel is the facade object for

1058 Networking Chapter 17

the car’s steering subsystem and the brake is the facade object for the car’s deceleration
subsystem. A client object uses the facade object to access the objects behind the facade.
The client remains unaware of how the objects behind the facade fulfill responsibilities, so
the subsystem complexity is hidden from the client. When you press the gas pedal you act
as a client object. The Facade design pattern reduces system complexity, because a client
interacts with only one object (the facade). This pattern shields applications developers
from subsystem complexities. Developers need to be familiar with only the operations of
the facade object, rather than with the more detailed operations of the entire subsystem.

In package java.net, an object of class URL is a facade object. This object contains
a reference to an InetAddress object that specifies the host computer’s IP address. The
URL facade object also references an object from class URLStreamHandler, which
opens the URL connection. The client object that uses the URL facade object accesses the
InetAddress object and the URLStreamHandler object through the facade object.
However, the client object does not know how the objects behind the URL facade object
accomplish their responsibilities.

17.11.3 Architectural Patterns

Design patterns allow developers to design specific parts of systems, such as abstracting ob-
ject instantiations or aggregating classes into larger structures. Design patterns also promote
loose coupling among objects. Architectural patterns promote loose coupling among sub-
systems. These patterns specify all subsystems in the system and how they interact with each
other.1 We introduce the popular Model-View-Controller and Layers architectural patterns.

MVC
Consider the design of a simple text editor. In this program, the user inputs text from the
keyboard and formats this text using the mouse. Our program stores this text and format
information into a series of data structures, then displays this information on screen for the
user to read what has been inputted.

This program adheres to the Model-View-Controller (MVC) architectural pattern,
which separates application data (contained in the model) from graphical presentation com-
ponents (the view) and input-processing logic (the controller).2 Figure 17.22 shows the
relationships between components in MVC.

1. R. Hartman. “Building on Patterns.” Application Development Trends May 2001: 19–26.
2. Section 13.17 also discussed Model-View-Controller architecture and its relevance to the elevator

simulation case study.

Fig. 17.22Fig. 17.22Fig. 17.22Fig. 17.22 Model-View-Controller Architecture.

notifiesmodifies
ModelController View

Chapter 17 Networking 1059

The controller implements logic for processing user inputs. The model contains appli-
cation data, and the view presents the data stored in the model. When a user provides some
input, the controller modifies the model with the given input. The model contains the appli-
cation data. With regards to the text-editor example, the model might contain only the char-
acters that make up the document. When the model changes, it notifies the view of the
change so the view can update its presentation with the changed data. The view in a word
processor might display characters using a particular font, with a particular size, etc.

MVC does not restrict an application to a single view and a single controller. In a more
sophisticated program (e.g., a word processor), there might be two views of a document
model. One view might display an outline of the document and the other might display the
complete document. The word processor also might implement multiple controllers—one
for handling keyboard input and another for handling mouse selections. If either controller
makes a change in the model, both the outline view and the print-preview window will
show the change immediately when the model notifies all views of changes.

Another key benefit to the MVC architectural pattern is that developers can modify
each component individually without having to modify the other components. For example,
developers could modify the view that displays the document outline, but the developers
would not have to modify either the model or other views or controllers.

Layers
Consider the design in Fig. 17.23, which presents the basic structure of a three-tier appli-
cation, in which each tier contains a unique system component.

Fig. 17.23Fig. 17.23Fig. 17.23Fig. 17.23 Three-tier application model.

ApplicationMiddle tier

Information tier
(Bottom tier)

Client tier
(Top tier)

Database

1060 Networking Chapter 17

The information tier (also called the “bottom tier”) maintains data for the application,
typically storing the data in a database. The information tier for an online store may contain
product information, such as descriptions, prices and quantities in stock and customer
information, such as user names, billing addresses and credit-card numbers.

The middle tier acts as an intermediary between the information tier and the client tier.
The middle tier processes client-tier requests, reads data from and writes data to the data-
base. The middle tier then processes data from the information tier and presents the content
to the client tier. This processing is the application’s business logic, which handles such
tasks as retrieving data from the information tier, ensuring that data is reliable before
updating the database and presenting data to the client tier. For example, the business logic
associated with the middle tier for the online store can verify a customer’s credit card with
the credit-card issuer before the warehouse ships the customer’s order. This business logic
could then store (or retrieve) the credit information in the database and notify the client tier
that the verification was successful.

The client tier (also called the “top tier”) is the application’s user interface, such as a
standard Web browser. Users interact directly with the application through the user inter-
face. The client tier interacts with the middle tier to make requests and retrieve data from
the information tier. The client tier then displays data retrieved from the middle tier.

Figure 17.23 is an implementation of the Layers architectural pattern, which divides
functionality into separate layers. Each layer contains a set of system responsibilities and
depends on the services of only the next lower layer. In Fig. 17.23, each tier corresponds to
a layer. This architectural pattern is useful, because a designer can modify one layer without
having to modify the other layers. For example, a designer could modify the information
tier in Fig. 17.23 to accommodate a particular database product, but the designer would not
have to modify either the client tier or the middle tier.

17.11.4 Conclusion

In this “Discovering Design Patterns” section, we discussed how packages java.io and
java.net take advantage of specific design patterns and how developers can integrate
design patterns with networking/file applications in Java. We also introduced the Model-
View-Controller and Layers architectural patterns, which both assign system functionality
to separate subsystems. These patterns make designing a system easier for developers. In
“Discovering Design Patterns” Section 21.12, we conclude our presentation of design pat-
terns by discussing those design patterns used in package java.util.

SUMMARY
• Java provides stream sockets and datagram sockets. With stream sockets, a process establishes a

connection to another process. While the connection is in place, data flows between the processes
in continuous streams. Stream sockets are said to provide a connection-oriented service. The pro-
tocol used for transmission is the popular TCP (Transmission Control Protocol).

• With datagram sockets, individual packets of information are transmitted. This is not the right pro-
tocol for everyday users, because, unlike TCP, the protocol used, UDP—the User Datagram Pro-
tocol—is a connectionless service and does not guarantee that packets arrive in any particular way.
In fact, packets can be lost, can be duplicated and can even arrive out of sequence. So, with UDP,
significant extra programming is required on the user’s part to deal with these problems (if the user
chooses to do so).

Chapter 17 Networking 1061

• The HTTP protocol (Hypertext Transfer Protocol) that forms the basis of the World Wide Web
uses URIs (Uniform Resource Identifiers, also called URLs or Uniform Resource Locators) to lo-
cate data on the Internet. Common URIs represent files or directories and can represent complex
tasks such as database lookups and Internet searches.

• Web browsers often restrict an applet so that it can communicate only with the machine from
which it was originally downloaded.

• A Hashtable stores key/value pairs. A program uses a key to store and retrieve an associated
value in the Hashtable. Hashtable method put takes two arguments—a key and its associ-
ated value—and places the value in the Hashtable at a location determined by the key. Hash-
table method get takes one argument—a key—and retrieves the value (as an Object
reference) associated with the key.

• A Vector is a dynamically resizable array of Objects. Vector method addElement adds
a new element to the end of the Vector.

• Applet method getAppletContext returns a reference to an AppletContext object that
represents the applet’s environment (i.e., the browser in which the applet is executing).

• AppletContext method showDocument receives a URL object as an argument and passes it
to the AppletContext (i.e., the browser), which displays the World Wide Web resource asso-
ciated with that URL.

• A second version of AppletContext method showDocument enables an applet to specify the
target frame in which Web resource should be displayed. Special target frames include _blank
(display the content from the specified URI in a new Web browser window), _self (display the
content from the specified URI in the same frame as the applet) and _top (the browser should
remove the current frames, then display the content from the specified URI in the current window).

• Component method setCursor changes the mouse cursor when the cursor is positioned over
a specific GUI component. The Cursor constructor receives an integer indicating the cursor type
(such as Cursor.WAIT_CURSOR or Cursor.DEFAULT_CURSOR).

• JEditorPane method setPage downloads the document specified by its argument and dis-
plays it in the JEditorPane.

• Typically, an HTML document contains hyperlinks—text, images or GUI components that, when
clicked, link to another document on the Web. If an HTML document is displayed in a JEditor-
Pane and the user clicks a hyperlink, the JEditorPane generates a HyperlinkEvent
(package javax.swing.event) and notifies all registered HyperlinkListeners (pack-
age javax.swing.event) of that event.

• HyperlinkEvent method getEventType determines the type of the HyperlinkEvent.
Class HyperlinkEvent contains public static inner class EventType, which defines
three hyperlink event types: ACTIVATED (user clicked a hyperlink), ENTERED (user moved the
mouse over a hyperlink) and EXITED (user moved the mouse away from a hyperlink).

• HyperlinkEvent method getURL obtains the URL represented by the hyperlink.

• Stream-based connections are managed with Socket objects.

• A ServerSocket object establishes the port where a server waits for connections from clients.
The second argument to the ServerSocket constructor specifies the number of clients that can
wait for a connection and be processed by the server. If the queue of clients is full, client connec-
tions are refused. The ServerSocket method accept waits indefinitely (i.e., blocks) for a
connection from a client and returns a Socket object when a connection is established.

• Socket method getOutputStream gets a reference to the OutputStream associated with
a Socket. Socket method getInputStream gets a reference to the InputStream asso-
ciated with the Socket.

1062 Networking Chapter 17

• When transmission over a Socket connection is complete, the server closes the connection by
invoking the Socket’s close method.

• A Socket object connects a client to a server by specifying the server name and port number
when creating the Socket object. A failed connection attempt throws an IOException.

• When the InputStream method read returns –1, the stream detects that the end-of-stream has
been reached.

• An EOFException occurs when a ObjectInputStream attempts to read a value from a
stream on which end-of-stream is detected.

• InetAddress method getByName returns an InetAddress object containing the host
name of the computer for which the String host name or String Internet address is specified
as an argument.

• InetAddress method getLocalHost returns an InetAddress object containing the host
name of the local computer executing the program.

• The port at which a client connects to a server is sometimes called the handshake point.

• Connection-oriented transmission is like the telephone system—you dial and are given a connec-
tion to the telephone of the person with whom you wish to communicate. The connection is main-
tained for the duration of your phone call, even when you are not talking.

• Connectionless transmission with datagrams is similar to mail carried via the postal service. A
large message that will not fit in one envelope can be broken into separate message pieces that are
placed in separate, sequentially numbered envelopes. Each of the letters is then mailed at once.
The letters could arrive in order, out of order or not at all.

• DatagramPacket objects store packets of data for sending or store packets of data received by
an application. DatagramSockets send and receive DatagramPackets.

• The DatagramSocket constructor that takes no arguments binds the application to a port cho-
sen by the computer on which the program executes. The DatagramSocket constructor that
takes an integer port number argument binds the application to the specified port. If a Data-
gramSocket constructor fails to bind the application to a port, a SocketException occurs.

• DatagramSocket method receive blocks (waits) until a packet arrives, then stores the pack-
et in its argument.

• DatagramPacket method getAddress returns an InetAddress object containing infor-
mation about the host computer from which the packet was sent.

• DatagramPacket method getPort returns an integer specifying the port number through
which the host computer sent the DatagramPacket.

• DatagramPacket method getLength returns an integer representing the number of bytes of
data in a DatagramPacket.

• DatagramPacket method getData returns a byte array containing the data in a Datagram-
Packet.

• The DatagramPacket constructor for a packet to be sent takes four arguments—the byte array
to be sent, the number of bytes to be sent, the client address to which the packet will be sent and
the port number where the client is waiting to receive packets.

• DatagramSocket method send sends a DatagramPacket out over the network.

• If an error occurs when receiving or sending a DatagramPacket, an IOException occurs.

• Reading data from a Socket is a blocking call—the current thread is put in the blocked state
while the thread waits for the read operation to complete. Method setSoTimeout specifies that,
if no data is received in the given number of milliseconds, the Socket should issue an Inter-

Chapter 17 Networking 1063

ruptedIOException, which the current thread can catch, then continue executing. This pre-
vents the current thread from deadlocking if there is no more data available from the Socket.

• Multicast is an efficient way to send data to many clients without the overhead of broadcasting that
data to every host on the Internet.

• Using multicast, an application can “publish” DatagramPackets to be delivered to other appli-
cations—the “subscribers.”

• An application multicasts DatagramPackets by sending the DatagramPackets to a multicast
address—an IP address in the range from 224.0.0.0 to 239.255.255.255, reserved for multicast.

• Clients that wish to receive DatagramPackets can connect to the multicast address to join the
multicast group that will receive the published DatagramPackets.

• Multicast DatagramPackets are not reliable—packets are not guaranteed to reach any destina-
tion. Also, the order in which clients receive the datagrams is not guaranteed.

• The MulticastSocket constructor takes as an argument the port to which the Multicast-
Socket should connect to receive incoming DatagramPackets. Method joinGroup of class
MulticastSocket takes as an argument the InetAddress of the multicast group to join.

• Method receive of class MulticastSocket reads an incoming DatagramPacket from a
multicast address.

TERMINOLOGY
accept a connection deny a connection
accept method of ServerSocket class duplicated packets
addElement method of class Vector get method of class Hashtable
AppletContext interface getAddress method of DatagramPacket
bind to a port getAppletContext method of class Applet
BindException class getByName method of InetAddress
client getData method of class DatagramPacket
client connects to a server getEventType method
client/server relationship getInputStream method of class Socket
client-side socket getLength method of DatagramPacket
close a connection getLocalHost method
close method of class Socket getLocalHost method of InetAddress
collaborative computing getOutputStream method of class Socket
computer networking getPort method of class DatagramPacket
connect to a port getPredefinedCursor method of Cursor
connect to a World Wide Web site getURL method of class HyperlinkEvent
ConnectException class handshake point
connection Hashtable class
connection request heterogeneous computer systems
connectionless service host
connectionless transmission with datagrams Hyperlink.EventType class
connection-oriented service Hyperlink.EventType.ACTIVATED
Cursor class Hyperlink.EventType.ENTERED
Cursor.DEFAULT_CURSOR Hyperlink.EventType.EXITED
Cursor.WAIT_CURSOR HyperlinkEvent class
datagram HyperlinkListener interface
datagram socket hyperlinkUpdate method
DatagramPacket class InetAddress class
DatagramSocket class Internet

1064 Networking Chapter 17

SELF-REVIEW EXERCISES
17.1 Fill in the blanks in each of the following statements:

a) Exception occurs when an input/output error occurs when closing a socket.
b) Exception occurs when a server address indicated by a client cannot be re-

solved.
c) If a DatagramSocket constructor fails to set up a DatagramSocket properly, an

exception of type occurs.
d) Many of Java’s networking classes are contained in package .
e) Class binds the application to a port for datagram transmission.
f) An object of class contains an Internet address.
g) The two types of sockets we discussed in this chapter are sockets and

 sockets.
h) The acronym URL stands for .
i) The acronym URI stands for .
j) The key protocol that forms the basis of the World Wide Web is .
k) AppletContext method receives a URL object as an argument and dis-

plays in a browser the World Wide Web resource associated with that URL.
l) InetAddress method getLocalHost returns an object containing the

local host name of the computer on which the program is executing.
m) Method of class MulticastSocket subscribes the MulticastSock-

et to a multicast group.

Internet address register an available port number
InterruptedIOException class send method of class DatagramSocket
IOException class server
Java Security API server-side socket
java.net package ServerSocket class
JEditorPane class setCursor method of class Component
joinGroup method of MulticastSocket setPage method of class JEditorPane
key/value pair setSoTimeout method of class Socket
leaveGroup method of MulticastSocket showDocument method of AppletContext
lost packets socket
MalformedURLException class Socket class
multicast socket-based communications
multicast address SocketException
multicast group stream socket
MulticastSocket class TCP (Transmission Control Protocol)
multithreaded server UDP (User Datagram Protocol)
network programming UnknownHostException
networking URI (Uniform Resource Identifier)
open a socket URL (Uniform Resource Locator)
out-of-sequence packets URL class
packet Vector class
packet length wait for a connection
port wait for a packet
port number on a server Web browser
put method of class Hashtable Web server
read from a socket World Wide Web
receive method of class DatagramSocket

Chapter 17 Networking 1065

n) The URL constructor determines whether the String passed as an argument represents
a valid Uniform Resource Identifier. If so, the URL object is initialized to contain the
URI; otherwise, an exception of type occurs.

17.2 State whether each of the following is true or false. If false, explain why.
a) An application that uses multicast broadcasts DatagramPackets to every host on the

Internet.
b) UDP is a connection-oriented protocol.
c) With stream sockets a process establishes a connection to another process.
d) A server waits at a port for connections from a client.
e) Datagram packet transmission over a network is reliable—packets are guaranteed to ar-

rive in sequence.
f) For security reasons, many Web browsers such as Netscape Communicator allow Java

applets to do file processing only on the machines on which they execute.
g) Web browsers often restrict an applet so that it can only communicate with the machine

from which it was originally downloaded.
h) IP addresses in the range from 224.0.0.0 to 239.255.255.255 are reserved for

multicast.

ANSWERS TO SELF-REVIEW EXERCISES
17.1 a) IOException. b) UnknownHostException. c) SocketException.
d) java.net. e) DatagramSocket. f) InetAddress. g) stream, datagram. h) Uniform Re-
source Locator. i) Universal Resource Identifier. j) http. k) showDocument.
l) InetAddress. m) joinGroup. n) MalformedURLException.

17.2 a) False; multicast sends DatagramPackets only to hosts that have joined the multicast
group. b) False; UDP is a connectionless protocol and TCP is a connection-oriented protocol.
c) True. d) True. e) False; packets could be lost and packets can arrive out of order. f) False; most
browsers prevent applets from doing file processing on the client machine. g) True. h) True.

EXERCISES
17.3 Distinguish between connection-oriented and connectionless network services.

17.4 How does a client determine the host name of the client computer?

17.5 Under what circumstances would a SocketException be thrown?

17.6 How can a client get a line of text from a server?

17.7 Describe how a client connects to a server.

17.8 Describe how a server sends data to a client.

17.9 Describe how to prepare a server to receive a stream-based connection request from a single
client.

17.10 Describe how to prepare a server to receive connection requests from multiple clients if each
client that connects should be processed in parallel with all other connected clients.

17.11 How does a server listen for connections at a port?

17.12 What determines how many connect requests from clients can wait in a queue to connect to
a server?

17.13 As described in the text, what reasons might cause a server to refuse a connection request
from a client?

1066 Networking Chapter 17

17.14 Use a socket connection to allow a client to specify a file name and have the server send the
contents of the file or indicate that the file does not exist.

17.15 Modify Exercise 17.14 to allow the client to modify the contents of the file and send the file
back to the server for storage. The user can edit the file in a JTextArea, then click a save changes
button to send the file back to the server.

17.16 Modify program of Fig. 17.2 to allow users to add their own sites to the list and remove sites
from the list.

17.17 Multithreaded servers are quite popular today, especially because of the increasing use of
multiprocessing servers. Modify the simple server application presented in Section 17.6 to be a multi-
threaded server. Then use several client applications and have each of them connect to the server si-
multaneously. Use a Vector to store the client threads. Vector provides several methods of use in
this exercise. Method size determines the number of elements in a Vector. Method elementAt
returns the element in the specified location (as an Object reference). Method add places a new
element at the end of the Vector. Method remove deletes its argument from the Vector. Method
lastElement returns an Object reference to the last object you inserted in the Vector.

17.18 In the text, we presented a tic-tac-toe program controlled by a multithreaded server. Develop
a checkers program modeled after the tic-tac-toe program. The two users should alternate making
moves. Your program should mediate the players’ moves, determining whose turn it is and allowing
only valid moves. The players themselves will determine when the game is over.

17.19 Develop a chess-playing program modeled after the checkers program in the Exercise 17.18.

17.20 Develop a Blackjack card game program in which the server application deals cards to each
of the client applets. The server should deal additional cards (as per the rules of the game) to each
player as requested.

17.21 Develop a Poker card game in which the server application deals cards to each of the client ap-
plets. The server should deal additional cards (as per the rules of the game) to each player as requested.

17.22 (Modifications to the Multithreaded Tic-Tac-Toe Program) The programs of Fig. 17.8 and
Fig. 17.9 implemented a multithreaded, client/server version of the game Tic-Tac-Toe. Our goal in
developing this game was to demonstrate a multithreaded server that could process multiple connec-
tions from clients at the same time. The server in the example is really a mediator between the two
client applets—it makes sure that each move is valid and that each client moves in the proper order.
The server does not determine who won or lost or if there was a draw. Also, there is no capability to
allow a new game to be played or to terminate an existing game.

The following is a list of suggested modifications to the multithreaded Tic-Tac-Toe application
and applet.

a) Modify the TicTacToeServer class to test for a win, loss or draw on each move in
the game. Send a message to each client applet that indicates the result of the game when
the game is over.

b) Modify the TicTacToeClient class to display a button that when clicked allows the
client to play another game. The button should be enabled only when a game completes.
Note that both class TicTacToeClient and class TicTacToeServer must be mod-
ified to reset the board and all state information. Also, the other TicTacToeClient
should be notified that a new game is about to begin so its board and state can be reset.

c) Modify the TicTacToeClient class to provide a button that allows a client to termi-
nate the program at any time. When the user clicks the button, the server and the other
client should be notified. The server should then wait for a connection from another client
so a new game can begin.

d) Modify the TicTacToeClient class and the TicTacToeServer class so the winner
of a game can choose game piece X or O for the next game. Remember: X always goes first.

Chapter 17 Networking 1067

e) If you would like to be ambitious, allow a client to play against the server while the server
waits for a connection from another client.

17.23 (3-D Multithreaded Tic-Tac-Toe) Modify the multithreaded, client/server Tic-Tac-Toe pro-
gram to implement a three-dimensional 4-by-4-by-4 version of the game. Implement the server ap-
plication to mediate between the two clients. Display the three-dimensional board as four boards
containing four rows and four columns each. If you would like to be ambitious, try the following mod-
ifications:

a) Draw the board in a three-dimensional manner.
b) Allow the server to test for a win, loss or draw. Beware! There are many possible ways

to win on a 4-by-4-by-4 board!

17.24 (Networked Morse Code) Modify your solution to Exercise 10.27 to enable two applets to
send Morse Code messages to each other through a multithreaded server application. Each applet
should allow the user to type normal characters in JTextAreas, translate the characters into Morse
Code and send the coded message through the server to the other client. When messages are received,
they should be decoded and displayed as normal characters and as Morse Code. The applet should
have two JTextAreas: one for displaying the other client’s messages and one for typing.

18
Multimedia:

Images, Animation,
Audio and Video

Objectives
• To understand how to get and display images.
• To create animations from sequences of images.
• To customize an animation applet with applet

parameters specified in the applet’s HTML document.
• To create image maps.
• To be able to get, play, loop and stop sounds using an
AudioClip.

The wheel that squeaks the loudest … gets the grease.
John Billings (Henry Wheeler Shaw)

We’ll use a signal I have tried and found far-reaching and
easy to yell. Waa-hoo!
Zane Grey

There is a natural hootchy-kootchy motion to a goldfish.
Walt Disney

Between the motion and the act falls the shadow.
Thomas Stearns Eliot, The Hollow Men

Chapter 18 Multimedia: Images, Animation, Audio and Video 1069

18.1 Introduction
Welcome to what may be the largest revolution in the history of the computer industry.
Those of us who entered the field decades ago were interested in using computers primarily
to perform arithmetic calculations at high speed. As the computer field evolves, we are be-
ginning to realize that the data-manipulation capabilities of computers are now equally im-
portant. The “sizzle” of Java is multimedia, the use of sound, images, graphics and video
to make applications “come alive.” Today, many people consider two-dimensional color
video to be the “ultimate” in multimedia. Within the decade, we expect all kinds of exciting
new three-dimensional applications. Java programmers already can use the Java3D API to
create substantial 3D graphics applications. We discuss the Java3D API in our book Ad-
vanced Java 2 Platform How to Program.

Multimedia programming offers many new challenges. The field is already enormous
and will grow rapidly. People are rushing to equip their computers for multimedia. Most
new computers sold today are “multimedia ready,” with CD or DVD drives, audio boards
and sometimes with special video capabilities.

Among users who want graphics, two-dimensional graphics no longer suffice. Many
people now want three-dimensional, high-resolution, color graphics. True three-dimensional
imaging may become available within the next decade. Imagine having ultra-high-resolution,
“theater-in-the-round,” three-dimensional television. Sporting and entertainment events will
seem to take place on your living room floor! Medical students worldwide will see operations
being performed thousands of miles away, as if they were occurring in the same room. People
will be able to learn how to drive with extremely realistic driving simulators in their homes
before they get behind the wheel. The possibilities are exciting and endless.

Multimedia demands extraordinary computing power. Until recently, affordable com-
puters with this kind of power were not available. Today’s ultrafast processors, like the
SPARC Ultra from Sun Microsystems, the Pentium and Itanium from Intel, the Alpha from
Compaq Computer Corporation and the processors from MIPS/Silicon Graphics (among
others) make effective multimedia possible. The computer and communications industries
will be primary beneficiaries of the multimedia revolution. Users will be willing to pay for
the faster processors, larger memories and wider communications bandwidths that support
demanding multimedia applications. Ironically, users may not have to pay more as fierce
competition in these industries drives prices down.

Outline

18.1 Introduction
18.2 Loading, Displaying and Scaling Images
18.3 Animating a Series of Images
18.4 Customizing LogoAnimator via Applet Parameters
18.5 Image Maps
18.6 Loading and Playing Audio Clips
18.7 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1070 Multimedia: Images, Animation, Audio and Video Chapter 18

We need programming languages that make creating multimedia applications easy.
Most programming languages do not have built-in multimedia capabilities. However, Java
provides extensive multimedia facilities that enable you to start developing powerful mul-
timedia applications immediately.

This chapter presents a series of “live-code” examples that cover several interesting
multimedia features you will need to build useful applications, including:

1. the basics of manipulating images

2. creating smooth animations

3. customizing an animation applet via parameters supplied from the HTML file that
invokes an applet

4. playing audio files with the AudioClip interface

5. creating image maps that can sense when the cursor is over them even without a
mouse click

We will continue our coverage of Java’s multimedia capabilities in Chapter 22, where
we discuss the Java Media Framework (JMF) and the Java Sound APIs. JMF and Java
Sound enable Java programs to play and record audio and video. The JMF even enables
Java programs to send audio and video streams—so-called streaming media—across a net-
work or the Internet. The chapter exercises for this chapter and Chapter 22 suggest dozens
of challenging and interesting projects and even mention some “million-dollar” ideas that
could help you make your fortune! When we were creating these exercises, it seemed that
the ideas just kept flowing. Multimedia seems to leverage creativity in ways that we have
not experienced with “conventional” computer capabilities.

18.2 Loading, Displaying and Scaling Images
Java’s multimedia capabilities include graphics, images, animations, sounds and video. We
begin our multimedia discussion with images.

The applet of Fig. 18.1 demonstrates loading an Image (package java.awt) and
loading an ImageIcon (package javax.swing). The applet displays the Image in its
original size and scaled to a larger size, using two versions of Graphics method draw-
Image. The applet also draws the ImageIcon using its method paintIcon. Class
ImageIcon is easier than Image to use, because its constructor can receive arguments
of several different formats, including a byte array containing the bytes of an image, an
Image already loaded in memory, a String representing the location of an image and a
URL representing the location of an image.

1 // Fig. 18.1: LoadImageAndScale.java
2 // Load an image and display it in its original size
3 // and scale it to twice its original width and height.
4 // Load and display the same image as an ImageIcon.
5
6 // Java core packages
7 import java.applet.Applet;
8 import java.awt.*;

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 Loading and displaying an image in an applet (part 1 of 2).

Chapter 18 Multimedia: Images, Animation, Audio and Video 1071

9
10 // Java extension packages
11 import javax.swing.*;
12
13 public class LoadImageAndScale extends JApplet {
14 private Image logo1;
15 private ImageIcon logo2;
16
17 // load image when applet is loaded
18 public void init()
19 {
20 logo1 = getImage(getDocumentBase(), "logo.gif");
21 logo2 = new ImageIcon("logo.gif");
22 }
23
24 // display image
25 public void paint(Graphics g)
26 {
27 // draw original image
28 g.drawImage(logo1, 0, 0, this);
29
30 // draw image scaled to fit width of applet
31 // and height of applet minus 120 pixels
32 g.drawImage(logo1, 0, 120,
33 getWidth(), getHeight() - 120, this);
34
35 // draw icon using its paintIcon method
36 logo2.paintIcon(this, g, 180, 0);
37 }
38
39 } // end class LoadImageAndScale

Fig. 18.1Fig. 18.1Fig. 18.1Fig. 18.1 Loading and displaying an image in an applet (part 2 of 2).

1072 Multimedia: Images, Animation, Audio and Video Chapter 18

Lines 14 and 15 declare an Image reference and an ImageIcon reference, respec-
tively. Class Image is an abstract class; therefore, the applet cannot create an object of
class Image directly. Rather, the applet must call a method that causes the applet container
to load and return the Image for use in the program. Class Applet (the superclass of JAp-
plet) provides a method that does just that. Line 20 in method init uses Applet method
getImage to load an Image into the applet. This version of getImage takes two argu-
ments—the location of the image file and the file name of the image. In the first argument,
Applet method getDocumentBase returns a URL representing the location of the image
on the Internet (or on your computer if the applet was loaded from your computer). The pro-
gram assumes that the image is stored in the same directory as the HTML file that invoked
the applet. Method getDocumentBase returns the location of the HTML file on the
Internet as an object of class URL. The second argument specifies an image file name. Java
supports several image formats, including Graphics Interchange Format (GIF), Joint Photo-
graphic Experts Group (JPEG) and Portable Network Graphics (PNG). File names for each
of these types end with .gif, .jpg (or .jpeg) and .png, respectively.

Portability Tip 18.1
Class Image is an abstract class and, as a result, programs cannot instantiate Image
objects. To achieve platform independence, the Java implementation on each platform pro-
vides its own subclass of Image to store image information. 18.1

When line 20 invokes method getImage to set up loading of the image from the local
computer (or downloading of the image from the Internet). When the image is required by
the program, the image is loaded in a separate thread of execution. This enables the pro-
gram to continue execution while the image loads. [Note: If the requested file is not avail-
able, method getImage does not indicate an error.]

Class ImageIcon is not an abstract class; therefore, a program can create an
ImageIcon object. Line 21 in method init creates an ImageIcon object that loads the
same logo.gif image. Class ImageIcon provides several constructors that enable pro-
grams to initialize ImageIcon objects with images from the local computer or with
images stored on the Internet.

The applet’s paint method (lines 25–37) displays the images. Line 28 uses Graphics
method drawImage to display an Image. Method drawImage receives four arguments.
The first argument is a reference to the Image object to display (logo1). The second and
third arguments are the x- and y-coordinates at which to display the image on the applet; the
coordinates indicate the upper-left corner of the image. The last argument is a reference to an
ImageObserver object. Normally, the ImageObserver is the object on which the pro-
gram displays the image. An ImageObserver can be any object that implements interface
ImageObserver. Class Component (one of class Applet’s indirect superclasses)
implements interface ImageObserver. Therefore, all Components (including our
applet) are ImageObservers. The ImageObserver argument is important when dis-
playing large images that require a long time to download from the Internet. It is possible that
a program will execute the code that displays the image before the image downloads com-
pletely. The ImageObserver is notified to update the displayed image as the remainder of
the image loads. When executing this applet, watch carefully as pieces of the image display
while the image loads. [Note: On faster computers, you might not notice this effect.]

Lines 32–33 use another version of Graphics method drawImage to output a
scaled version of the image. The fourth and fifth arguments specify the width and height of

Chapter 18 Multimedia: Images, Animation, Audio and Video 1073

the image for display purposes. Method drawImage scales the image to fit the specified
width and height. In this example, the fourth argument indicates that the width of the scaled
image should be the width of the applet, and the fifth argument indicates that the height
should be 120 pixels less than the height of the applet. Line 33 determines the width and
height of the applet by calling methods getWidth and getHeight (inherited from class
Component).

Line 36 uses ImageIcon method paintIcon to display the image. The method
requires four arguments—a reference to the Component on which to display the image, a
reference to the Graphics object that will render the image, the x-coordinate of the upper-
left corner of the image and the y-coordinate of the upper-left corner of the image.

If you compare the two techniques for loading and displaying images in this example,
you can see that using ImageIcon is simpler. You can create objects of class Image-
Icon directly, and there is no need to use an ImageObserver reference when dis-
playing the image. For this reason, we use class ImageIcon for the remainder of the
chapter. [Note: Class ImageIcon’s paintIcon method does not allow scaling of an
image. However, the class provides method getImage, which returns an Image refer-
ence that Graphics method drawImage can use to display a scaled image.]

18.3 Animating a Series of Images
The next example demonstrates animating a series of images that are stored in an array. The
application uses the same techniques to load and display ImageIcons as shown in
Fig. 18.1. The animation presented in Fig. 18.2 is designed as a subclass of JPanel (called
LogoAnimator) that can be attached to an application window or possibly to a JAp-
plet. Class LogoAnimator also defines a main method (defined at lines 96–117) to
execute the animation as an application. Method main defines an instance of class
JFrame and attaches a LogoAnimator object to the JFrame to display the animation.

1 // Fig. 18.2: LogoAnimator.java
2 // Animation a series of images
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class LogoAnimator extends JPanel
12 implements ActionListener {
13
14 protected ImageIcon images[]; // array of images
15
16 protected int totalImages = 30, // number of images
17 currentImage = 0, // current image index
18 animationDelay = 50, // millisecond delay
19 width, // image width
20 height; // image height

Fig. 18.2Fig. 18.2Fig. 18.2Fig. 18.2 Animating a series of images (part 1 of 3).

1074 Multimedia: Images, Animation, Audio and Video Chapter 18

21
22 protected String imageName = "deitel"; // base image name
23 protected Timer animationTimer; // Timer drives animation
24
25 // initialize LogoAnimator by loading images
26 public LogoAnimator()
27 {
28 initializeAnimation();
29 }
30
31 // initialize animation
32 protected void initializeAnimation()
33 {
34 images = new ImageIcon[totalImages];
35
36 // load images
37 for (int count = 0; count < images.length; ++count)
38 images[count] = new ImageIcon(getClass().getResource(
39 "images/" + imageName + count + ".gif"));
40
41 width = images[0].getIconWidth(); // get icon width
42 height = images[0].getIconHeight(); // get icon height
43 }
44
45 // display current image
46 public void paintComponent(Graphics g)
47 {
48 super.paintComponent(g);
49
50 images[currentImage].paintIcon(this, g, 0, 0);
51 currentImage = (currentImage + 1) % totalImages;
52 }
53
54 // respond to Timer's event
55 public void actionPerformed(ActionEvent actionEvent)
56 {
57 repaint(); // repaint animator
58 }
59
60 // start or restart animation
61 public void startAnimation()
62 {
63 if (animationTimer == null) {
64 currentImage = 0;
65 animationTimer = new Timer(animationDelay, this);
66 animationTimer.start();
67 }
68 else // continue from last image displayed
69 if (! animationTimer.isRunning())
70 animationTimer.restart();
71 }
72

Fig. 18.2Fig. 18.2Fig. 18.2Fig. 18.2 Animating a series of images (part 2 of 3).

Chapter 18 Multimedia: Images, Animation, Audio and Video 1075

73 // stop animation timer
74 public void stopAnimation()
75 {
76 animationTimer.stop();
77 }
78
79 // return minimum size of animation
80 public Dimension getMinimumSize()
81 {
82 return getPreferredSize();
83 }
84
85 // return preferred size of animation
86 public Dimension getPreferredSize()
87 {
88 return new Dimension(width, height);
89 }
90
91 // execute animation in a JFrame
92 public static void main(String args[])
93 {
94 // create LogoAnimator
95 LogoAnimator animation = new LogoAnimator();
96
97 // set up window
98 JFrame window = new JFrame("Animator test");
99
100 Container container = window.getContentPane();
101 container.add(animation);
102
103 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
104
105 // size and display window
106 window.pack();
107 Insets insets = window.getInsets();
108
109 window.setSize(animation.getPreferredSize().width +
110 insets.left + insets.right,
111 animation.getPreferredSize().height +
112 insets.top + insets.bottom);
113
114 window.setVisible(true);
115 animation.startAnimation(); // begin animation
116
117 } // end method main
118
119 } // end class LogoAnimator

Fig. 18.2Fig. 18.2Fig. 18.2Fig. 18.2 Animating a series of images (part 3 of 3).

1076 Multimedia: Images, Animation, Audio and Video Chapter 18

Class LogoAnimator maintains an array of ImageIcons that are loaded in method
initializeAnimation (lines 32–43), which is called from the constructor. As the
for structure (lines 37–39) creates each ImageIcon object, the ImageIcon con-
structor loads one of the animation’s 30 images. The constructor argument uses String
concatenation to assemble the file name from the pieces "images/", imageName,
count and ".gif". Each of the images in the animation is in a file called
deitel#.gif, where # is a value in the range 0–29 specified by the loop’s control vari-
able count. Lines 41–42 determine the width and height of the animation from the size of
the first image in array images.

Performance Tip 18.1
It is more efficient to load the frames of the animation as one image than to load each image
separately. (A painting program can be used to combine the frames of the animation into one
image. If the images are being loaded from the Web, every image loaded requires a separate
connection to the site containing the images. 18.1

Performance Tip 18.2
Loading all the frames of an animation as one large image can force your program to wait
to begin displaying the animation. 18.2

After the LogoAnimator constructor loads the images, method main sets up the
window in which the animation will appear and calls startAnimation (defined at lines
61–71) to begin the animation. The animation is driven by an instance of class Timer
(package javax.swing). A Timer generates ActionEvents at a fixed interval in mil-
liseconds (normally specified as an argument to the Timer’s constructor) and notifies all of
its ActionListeners that the event occurred. Lines 63–67 determine whether the Timer
reference animationTimer is null. If so, line 64 sets currentImage to 0, to indicate
that the animation should begin with the image in the first element of array images. Line 65
assigns a new Timer object to animationTimer. The Timer constructor receives two
arguments—the delay in milliseconds (animationDelay is 50 in this example) and the
ActionListener that will respond to the Timer’s ActionEvents. Class Logo-
Animator implements ActionListener so line 65 specifies this as the listener. Line
66 starts the Timer object. Once started, animationTimer will generate an Action-
Event every 50 milliseconds. Lines 69–70 enable a program to restart an animation that the
program stopped previously. For example, to make an animation “browser friendly” in an
applet, the animation should stop when the user switches Web pages. If the user returns to the
Web page with the animation, method startAnimation can be called to restart the ani-
mation. The if condition at line 73 uses Timer method isRunning to determine whether
the Timer is running (i.e., generating events). If it is not running, line 70 calls Timer
method restart to indicate that the Timer should start generating events again.

In response to every Timer event in this example, the program calls method
actionPerformed (lines 55–58). Line 57 calls LogoAnimator’s repaint method
to schedule a call to the LogoAnimator’s update method (inherited from class
JPanel) which, in turn, calls LogoAnimator’s paintComponent method (lines 46–
52). Remember that any subclass of JComponent that performs drawing should do so in
its paintComponent method. As mentioned in Chapter 13, the first statement in any
paintComponent method should be a call to the superclass’s paintComponent
method to ensure that Swing components are displayed correctly.

Chapter 18 Multimedia: Images, Animation, Audio and Video 1077

Lines 50–51 paint the ImageIcon at element currentImage in the array and pre-
pare for the next image to be displayed by incrementing currentImage by 1. Notice the
modulus calculation to ensure that the value of currentImage is set to 0 when it is incre-
mented past 29 (the last element subscript in the array).

Method stopAnimation (lines 74–77) stops the animation with line 76, which calls
Timer method stop to indicate that the Timer should stop generating events. This pre-
vents actionPerformed from calling repaint to initiate the painting of the next
image in the array.

Software Engineering Observation 18.1
When creating an animation for use in an applet, provide a mechanism for disabling the an-
imation when the user browses a new Web page separate from the page on which the anima-
tion applet resides. 18.1

Methods getMinimumSize (lines 80–83) and getPreferredSize (lines 86–
89) override the corresponding methods inherited from class Component and enable
layout managers to determine the appropriate size of a LogoAnimator in a layout. In this
example, the images are 160 pixels wide and 80 pixels tall, so method getPreferred-
Size returns a Dimension object containing the numbers 160 and 80. Method get-
MinimumSize simply calls getPreferredSize (a common programming practice).

Lines 107–112 of main size the application window based on the LogoAnimator’s
preferred size and the window’s insets. The insets specify the number of pixels for the
window’s top, bottom, left and right borders. Using the insets of the window ensures that the
window’s client area is large enough to display the LogoAnimator correctly. The client
area is the part of a window in which the window displays GUI components. The program
obtains the window’s insets by calling method getInsets at line 107. The method returns
an Insets object that contains public data members top, bottom, left and right.

18.4 Customizing LogoAnimator via Applet Parameters
When browsing the World Wide Web, you often will come across applets that are in the
public domain—you can use them free of charge on your own Web pages (normally in ex-
change for crediting the applet’s creator). One common feature of such applets is the ability
to be customized via parameters that are supplied from the HTML file that invokes the ap-
plet. For example, the HTML

<html>
<applet code = "LogoApplet.class" width = 400 height = 400>
<param name = "totalimages" value = "30">
<param name = "imagename" value = "deitel">
<param name = "animationdelay" value = "200">
</applet>
</html>

from file LogoApplet.html, invokes the applet LogoApplet (Fig. 18.4) and speci-
fies three parameters. The param tag lines must appear between the starting and ending
applet tags. Each parameter has a name and a value. Applet method getParam-
eter returns a String representing the value associated with a specific parameter
name. The argument to getParameter is a String containing the name of the param-
eter in the param tag. For example, the statement

1078 Multimedia: Images, Animation, Audio and Video Chapter 18

parameter = getParameter("animationdelay");

gets the value 200 associated with parameter animationdelay and assigns it to
String reference parameter. If there is not a param tag containing the specified pa-
rameter name, getParameter returns null.

Class LogoAnimator2 (Fig. 18.3) extends class LogoAnimator and adds a con-
structor that takes three arguments—the total number of images in the animation, the delay
between displaying images and the base image name. Class LogoApplet (Fig. 18.4)
allows Web page designers to customize the animation to use their own images. Three
parameters are provided in the applet’s HTML document. Parameter animationdelay
is the number of milliseconds to sleep between displaying images. This value will be con-
verted to an integer and used as the value for instance variable sleepTime. Parameter
imagename is the base name of the images to be loaded. This String will be assigned
to instance variable imageName. The applet assumes that the images are in a subdirectory
named images that can be found in the same directory as the applet. The applet also
assumes that the image file names are numbered from 0 (as in Fig. 18.2). Parameter
totalimages represents the total number of images in the animation. Its value will be
converted to an integer and assigned to instance variable totalImages.

1 // Fig. 18.3: LogoAnimator2.java
2 // Animating a series of images
3
4 // Java core packages
5 import java.awt.*;
6
7 // Java extension packages
8 import javax.swing.*;
9

10 public class LogoAnimator2 extends LogoAnimator {
11
12 // default constructor
13 public LogoAnimator2()
14 {
15 super();
16 }
17
18 // new constructor to support customization
19 public LogoAnimator2(int count, int delay, String name)
20 {
21 totalImages = count;
22 animationDelay = delay;
23 imageName = name;
24
25 initializeAnimation();
26 }
27

Fig. 18.3Fig. 18.3Fig. 18.3Fig. 18.3 LogoAnimator2 subclass of LogoAnimator (Fig. 18.2) adds a
constructor for customizing the number of images, animation delay and
base image name (part 1 of 2).

Chapter 18 Multimedia: Images, Animation, Audio and Video 1079

28 // start animation as application in its own window
29 public static void main(String args[])
30 {
31 // create LogoAnimator
32 LogoAnimator2 animation = new LogoAnimator2();
33
34 // set up window
35 JFrame window = new JFrame("Animator test");
36
37 Container container = window.getContentPane();
38 container.add(animation);
39
40 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
41
42 // size and display window
43 window.pack();
44 Insets insets = window.getInsets();
45
46 window.setSize(animation.getPreferredSize().width +
47 insets.left + insets.right,
48 animation.getPreferredSize().height +
49 insets.top + insets.bottom);
50
51 window.setVisible(true);
52 animation.startAnimation(); // begin animation
53
54 } // end method main
55
56 } // end class LogoAnimator2

1 // Fig. 18.4: LogoApplet.java
2 // Customizing an applet via HTML parameters.
3 //
4 // HTML parameter "animationdelay" is an int indicating
5 // milliseconds to sleep between images (default 50).
6 //
7 // HTML parameter "imagename" is the base name of the images
8 // that will be displayed (i.e., "deitel" is the base name
9 // for images "deitel0.gif," "deitel1.gif," etc.). The applet

10 // assumes that images are in an "images" subdirectory of
11 // the directory in which the applet resides.
12 //
13 // HTML parameter "totalimages" is an integer representing the
14 // total number of images in the animation. The applet assumes
15 // images are numbered from 0 to totalimages - 1 (default 30).
16
17 // Java core packages
18 import java.awt.*;

Fig. 18.4Fig. 18.4Fig. 18.4Fig. 18.4 Customizing an animation applet via the param HTML tag (part 1 of 2).

Fig. 18.3Fig. 18.3Fig. 18.3Fig. 18.3 LogoAnimator2 subclass of LogoAnimator (Fig. 18.2) adds a
constructor for customizing the number of images, animation delay and
base image name (part 2 of 2).

1080 Multimedia: Images, Animation, Audio and Video Chapter 18

19
20 // Java extension packages
21 import javax.swing.*;
22
23 public class LogoApplet extends JApplet {
24
25 // obtain parameters from HTML and customize applet
26 public void init()
27 {
28 String parameter;
29
30 // get animation delay from HTML document
31 parameter = getParameter("animationdelay");
32
33 int animationDelay = (parameter == null ?
34 50 : Integer.parseInt(parameter));
35
36 // get base image name from HTML document
37 String imageName = getParameter("imagename");
38
39 // get total number of images from HTML document
40 parameter = getParameter("totalimages");
41
42 int totalImages = (parameter == null ?
43 0 : Integer.parseInt(parameter));
44
45 // create instance of LogoAnimator
46 LogoAnimator2 animator;
47
48 if (imageName == null || totalImages == 0)
49 animator = new LogoAnimator2();
50 else
51 animator = new LogoAnimator2(totalImages,
52 animationDelay, imageName);
53
54 // attach animator to applet and start animation
55 getContentPane().add(animator);
56 animator.startAnimation();
57
58 } // end method init
59
60 } // end class LogoApplet

Fig. 18.4Fig. 18.4Fig. 18.4Fig. 18.4 Customizing an animation applet via the param HTML tag (part 2 of 2).

Chapter 18 Multimedia: Images, Animation, Audio and Video 1081

Class LogoApplet (Fig. 18.4) defines an init method in which the three HTML
parameters are read with Applet method getParameter (lines 31, 37 and 40). After
the applet reads these parameters and the two integer parameters are converted to int
values, the if/else structure at lines 48 through 51 creates a LogoAnimator2 and calls
its three-argument constructor. If the imageName is null or totalImages is 0, the
applet calls the default LogoAnimator2 constructor and uses the default animation. Oth-
erwise, the applet passes totalImages, animationDelay and imageName to the
three-argument LogoAnimator2 constructor, and the constructor uses those arguments
to customize the animation. LogoAnimator2’s three-argument constructor invokes
LogoAnimator’s initalizeAnimation method to load the images and determine
the width and height of the animation.

18.5 Image Maps
Image maps are a common technique used to create interactive Web pages. An image map
is an image that has hot areas that the user can click to accomplish a task, such as loading
a different Web page into a browser. When the user positions the mouse pointer over a hot
area, normally a descriptive message appears in the status area of the browser or in a pop-
up window.

Figure 18.5 loads an image containing several of the common tip icons used
throughout this book. The program allows the user to position the mouse pointer over an
icon and display a descriptive message for the icon. Event handler mouseMoved (lines
42–46) takes the mouse coordinates and passes them to method translateLocation
(lines 63–76). Method translateLocation tests the coordinates to determine the icon
over which the mouse was positioned when the mouseMoved event occurred. Method
translateLocation then returns a message indicating what the icon represents. This
message is displayed in the appletviewer’s (or browser’s) status bar.

1 // Fig. 18.5: ImageMap.java
2 // Demonstrating an image map.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class ImageMap extends JApplet {
12 private ImageIcon mapImage;
13
14 private String captions[] = { "Common Programming Error",
15 "Good Programming Practice",
16 "Graphical User Interface Tip", "Performance Tip",
17 "Portability Tip", "Software Engineering Observation",
18 "Testing and Debugging Tip" };
19

Fig. 18.5Fig. 18.5Fig. 18.5Fig. 18.5 Demonstrating an image map (part 1 of 4).

1082 Multimedia: Images, Animation, Audio and Video Chapter 18

20 // set up mouse listeners
21 public void init()
22 {
23 addMouseListener(
24
25 new MouseAdapter() {
26
27 // indicate when mouse pointer exits applet area
28 public void mouseExited(MouseEvent event)
29 {
30 showStatus("Pointer outside applet");
31 }
32
33 } // end anonymous inner class
34
35); // end addMouseListener method call
36
37 addMouseMotionListener(
38
39 new MouseMotionAdapter() {
40
41 // determine icon over which mouse appears
42 public void mouseMoved(MouseEvent event)
43 {
44 showStatus(translateLocation(
45 event.getX(), event.getY()));
46 }
47
48 } // end anonymous inner class
49
50); // end addMouseMotionListener method call
51
52 mapImage = new ImageIcon("icons.png");
53
54 } // end method init
55
56 // display mapImage
57 public void paint(Graphics g)
58 {
59 mapImage.paintIcon(this, g, 0, 0);
60 }
61
62 // return tip caption based on mouse coordinates
63 public String translateLocation(int x, int y)
64 {
65 // if coordinates outside image, return immediately
66 if (x >= mapImage.getIconWidth() ||
67 y >= mapImage.getIconHeight())
68 return "";
69
70 // determine icon number (0 - 6)
71 int iconWidth = mapImage.getIconWidth() / 7;
72 int iconNumber = x / iconWidth;

Fig. 18.5Fig. 18.5Fig. 18.5Fig. 18.5 Demonstrating an image map (part 2 of 4).

Chapter 18 Multimedia: Images, Animation, Audio and Video 1083

73
74 // return appropriate icon caption
75 return captions[iconNumber];
76 }
77
78 } // end class ImageMap

Fig. 18.5Fig. 18.5Fig. 18.5Fig. 18.5 Demonstrating an image map (part 3 of 4).

1084 Multimedia: Images, Animation, Audio and Video Chapter 18

Clicking in this applet will not cause any action. In Chapter 17, Networking, we dis-
cussed the techniques required to load another Web page into a browser via URLs and the
AppletContext interface. Using those techniques, this applet could associate each icon
with a URL that the browser would display when the user clicks the icon.

18.6 Loading and Playing Audio Clips
Java programs can manipulate and play audio clips. It is easy for users to capture their own
audio clips, and there are many clips available in software products and over the Internet.
Your system needs to be equipped with audio hardware (speakers and a sound board) to be
able to play the audio clips.

Java provides several mechanisms for playing sounds in an applet. The two simplest
methods are the Applet’s play method and the play method from the AudioClip
interface. Additional audio capabilities are discussed in Chapter 22. If you would like to
play a sound once in a program, the Applet method play loads the sound and plays it
once; the sound is marked for garbage collection after it plays. The Applet method play
has two forms:

public void play(URL location, String soundFileName);
public void play(URL soundURL);

The first version loads the audio clip stored in file soundFileName from location
and plays the sound. The first argument is normally a call to the applet’s getDocument-

Fig. 18.5Fig. 18.5Fig. 18.5Fig. 18.5 Demonstrating an image map (part 4 of 4).

Chapter 18 Multimedia: Images, Animation, Audio and Video 1085

Base or getCodeBase method. Method getDocumentBase indicates the location of
the HTML file that loaded the applet (if the applet is in a package, this indicates the location
of the package or JAR file containing the package). Method getCodeBase indicates the
location of the applet’s .class file. The second version of method play takes a URL that
contains the location and the file name of the audio clip. The statement

play(getDocumentBase(), "hi.au");

loads the audio clip in file hi.au and plays it once.
The sound engine that plays the audio clips supports several audio file formats,

including Sun Audio file format (.au extension), Windows Wave file format (.wav exten-
sion), Macintosh AIFF file format (.aif or .aiff extension) and Musical Instrument
Digital Interface (MIDI) file format (.mid or .rmi extensions). The Java Media Frame-
work (JMF) and Java Sound APIs support additional formats.

The program of Fig. 18.6 demonstrates loading and playing an AudioClip (package
java.applet). This technique is more flexible than Applet method play. An applet
can use an AudioClip to store audio for repeated use throughout the program’s execution.
Applet method getAudioClip has two forms that take the same arguments as method
play described previously. Method getAudioClip returns a reference to an Audio-
Clip. An AudioClip has three methods—play, loop and stop. Method play plays
the audio once. Method loop continuously loops the audio clip in the background. Method
stop terminates an audio clip that is currently playing. In the program, each of these
methods is associated with a button on the applet.

Lines 62–63 in the applet’s init method use getAudioClip to load two audio
files—a Windows Wave file (welcome.wav) and a Sun Audio file (hi.au). The user
can select which audio clip to play from JComboBox chooseSound. Notice that the
applet’s stop method is overridden at lines 69–72. When the user switches Web pages,
the applet container calls the applet’s stop method. This enables the applet to stop playing
the audio clip. Otherwise, the audio clip continues to play in the background—even if the
applet is not displayed in the browser. This is not really a problem, but it can be annoying
to the user if the audio clip is looping. The stop method is provided here as a convenience
to the user.

Good Programming Practice 18.1
When playing audio clips in an applet or application, provide a mechanism for the user to
disable the audio. 18.1

1 // Fig. 18.6: LoadAudioAndPlay.java
2 // Load an audio clip and play it.
3
4 // Java core packages
5 import java.applet.*;
6 import java.awt.*;
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;

Fig. 18.6Fig. 18.6Fig. 18.6Fig. 18.6 Loading and playing an AudioClip (part 1 of 3).

1086 Multimedia: Images, Animation, Audio and Video Chapter 18

11
12 public class LoadAudioAndPlay extends JApplet {
13 private AudioClip sound1, sound2, currentSound;
14 private JButton playSound, loopSound, stopSound;
15 private JComboBox chooseSound;
16
17 // load the image when the applet begins executing
18 public void init()
19 {
20 Container container = getContentPane();
21 container.setLayout(new FlowLayout());
22
23 String choices[] = { "Welcome", "Hi" };
24 chooseSound = new JComboBox(choices);
25
26 chooseSound.addItemListener(
27
28 new ItemListener() {
29
30 // stop sound and change to sound to user's selection
31 public void itemStateChanged(ItemEvent e)
32 {
33 currentSound.stop();
34
35 currentSound =
36 chooseSound.getSelectedIndex() == 0 ?
37 sound1 : sound2;
38 }
39
40 } // end anonymous inner class
41
42); // end addItemListener method call
43
44 container.add(chooseSound);
45
46 // set up button event handler and buttons
47 ButtonHandler handler = new ButtonHandler();
48
49 playSound = new JButton("Play");
50 playSound.addActionListener(handler);
51 container.add(playSound);
52
53 loopSound = new JButton("Loop");
54 loopSound.addActionListener(handler);
55 container.add(loopSound);
56
57 stopSound = new JButton("Stop");
58 stopSound.addActionListener(handler);
59 container.add(stopSound);
60
61 // load sounds and set currentSound
62 sound1 = getAudioClip(getDocumentBase(), "welcome.wav");
63 sound2 = getAudioClip(getDocumentBase(), "hi.au");

Fig. 18.6Fig. 18.6Fig. 18.6Fig. 18.6 Loading and playing an AudioClip (part 2 of 3).

Chapter 18 Multimedia: Images, Animation, Audio and Video 1087

18.7 Internet and World Wide Web Resources
This section presents several Internet and Web resources for multimedia-related sites. (Ad-
ditional resources are provided in Chapter 22.)

www.nasa.gov/gallery/index.html
The NASA multimedia gallery contains a wide variety of images, audio clips and video clips that you
can download and use to test your Java multimedia programs.

sunsite.sut.ac.jp/multimed/
The Sunsite Japan Multimedia Collection also provides a wide variety of images, audio clips and vid-
eo clips that you can download for educational purposes.

www.anbg.gov.au/anbg/index.html
The Australian National Botanic Gardens Web site provides links to sounds of many animals. Try,
for example, the Common Birds link.

64 currentSound = sound1;
65
66 } // end method init
67
68 // stop the sound when the user switches Web pages
69 public void stop()
70 {
71 currentSound.stop();
72 }
73
74 // private inner class to handle button events
75 private class ButtonHandler implements ActionListener {
76
77 // process play, loop and stop button events
78 public void actionPerformed(ActionEvent actionEvent)
79 {
80 if (actionEvent.getSource() == playSound)
81 currentSound.play();
82
83 else if (actionEvent.getSource() == loopSound)
84 currentSound.loop();
85
86 else if (actionEvent.getSource() == stopSound)
87 currentSound.stop();
88 }
89 }
90
91 } // end class LoadAudioAndPlay

Fig. 18.6Fig. 18.6Fig. 18.6Fig. 18.6 Loading and playing an AudioClip (part 3 of 3).

1088 Multimedia: Images, Animation, Audio and Video Chapter 18

www.thefreesite.com
TheFreeSite.com has links to free sounds and clip art.

www.soundcentral.com
SoundCentral provides audio clips in WAV, AU, AIFF and MIDI formats.

www.animationfactory.com
The Animation Factory provides thousands of free GIF animations for personal use.

www.clipart.com
ClipArt.com contains links to Web sites that provide free art.

www.pngart.com
PNGART.com provides over 50,000 free images in PNG format, in an effort to help this newer image
format gain popularity.

developer.java.sun.com/developer/techDocs/hi/repository
The Java Look-and-Feel Graphics Repository provides standard images for use in a Swing GUI.

SUMMARY
• Applet method getImage loads an Image. One version of getImage takes two argu-

ments—a location where the image is stored, and the file name of the image.

• Applet method getDocumentBase returns the location of the applet’s HTML file on the In-
ternet as an object of class URL (package java.net).

• Java supports several image formats, including Graphics Interchange Format (GIF), Joint Photo-
graphic Experts Group (JPEG) and Portable Network Graphics (PNG). File names for each of
these types end with .gif, .jpg (or .jpeg) or .png, respectively.

• Class ImageIcon provides constructors that allow an ImageIcon object to be initialized with
an image from the local computer or with an image stored on a Web server on the Internet.

• Graphics method drawImage receives four arguments—a reference to the Image object in
which the image is stored, the x- and y-coordinates where the image should be displayed and a ref-
erence to an ImageObserver object.

• Another version of Graphics method drawImage outputs a scaled image. The fourth and fifth
arguments specify the width and height of the image for display purposes.

• Interface ImageObserver is implemented by class Component (an indirect superclass of Ap-
plet). ImageObservers are notified to update an image that was displayed as the remainder
of the image is loaded.

• ImageIcon method paintIcon displays the ImageIcon’s image. The method requires four
arguments—a reference to the Component on which the image will be displayed, a reference to
the Graphics object used to render the image, the x-coordinate of the upper-left corner of the
image and the y-coordinate of the upper-left corner of the image.

• Class ImageIcon’spaintIcon method does not allow scaling of an image. The class provides
method getImage, which returns an Image reference that can be used with Graphics method
drawImage to display a scaled version of an image.

• Timer objects generate ActionEvents at fixed intervals in milliseconds and notify their reg-
istered ActionListeners that the events occurred. The Timer constructor receives two argu-
ments—the delay in milliseconds and the ActionListener. Timer method start indicates
that the Timer should start generating events. Timer method stop indicates that the Timer
should stop generating events. Timer method restart indicates that the Timer should start
generating events again.

Chapter 18 Multimedia: Images, Animation, Audio and Video 1089

• Applets can be customized via parameters (the <param> tag) that are supplied from the HTML
file that invokes the applet. The <param> tag lines must appear between the starting applet tag
and the ending applet tag. Each parameter has a name and a value.

• Applet method getParameter gets the value associated with a specific parameter and re-
turns the value as a String. The argument passed to getParameter is a String contain-
ing the name of the parameter in the param tag. If there is no param tag containing the specified
parameter, getParameter returns null.

• An image map is an image that has hot areas that the user can click to accomplish a task, such as
loading a different Web page into a browser.

• Applet method play has two forms:

public void play(URL location, String soundFileName);
public void play(URL soundURL);

• One version loads the audio clip stored in file soundFileName from location and plays the
sound; the other takes a URL that contains the location and the file name of the audio clip.

• Applet method getDocumentBase indicates the location of the HTML file that loaded the
applet. Method getCodeBase indicates where the .class file for an applet is located.

• The sound engine that plays audio clips supports several audio file formats, including Sun Audio
file format (.au extension), Windows Wave file format (.wav extension), Macintosh AIFF file
format (.aif or .aiff extension) and Musical Instrument Digital Interface (MIDI) file format
(.mid or .rmi extensions). The Java Media Framework (JMF) supports other additional formats.

• Applet method getAudioClip has two forms that take the same arguments as the play
method. Method getAudioClip returns a reference to an AudioClip. AudioClips have
three methods—play, loop and stop. Method play plays the audio once. Method loop con-
tinuously loops the audio clip. Method stop terminates an audio clip that is currently playing.

TERMINOLOGY
.aif file name extension getImage method of ImageIcon
.aiff file name extension getParameter method of Applet
.au file name extension getWidth method of Component
.gif file name extension graphics
.jpeg file name extension Graphics Interchange Format (GIF)
.jpg file name extension height of an image
.mid file name extension hot area of an image map
.rmi file name extension Image class
.wav file name extension image map
animating a series of images ImageIcon class
animation ImageObserver interface
audio clip images
customize an applet information button
drawImage method of Graphics Joint Photographic Experts Group (JPEG)
getAudioClip method of Applet loop method of interface AudioClip
getCodeBase method of Applet Macintosh AIFF file (.aif or .aiff)
getDocumentBase method of Applet multimedia
getHeight method of Component Musical Instrument Digital Interface (MIDI)
getIconHeight method of ImageIcon mute button
getIconWidth method of ImageIcon name attribute of param tag
getImage method of Applet paintIcon method of class ImageIcon

1090 Multimedia: Images, Animation, Audio and Video Chapter 18

SELF-REVIEW EXERCISES
18.1 Fill in the blanks in each of the following statements:

a) Applet method loads an image into an applet.
b) Applet method returns as an object of class URL the location on the Inter-

net of the HTML file that invoked the applet.
c) Graphics method displays an image on an applet.
d) Java provides two mechanisms for playing sounds in an applet—the Applet’s play

method and the play method from the interface.
e) An is an image that has hot areas that the user can click to accomplish a task

such as loading a different Web page.
f) Method of class ImageIcon displays the ImageIcon’s image.
g) Java supports several image formats, including , and

.

18.2 State whether each of the following is true or false. If false, explain why.
a) A sound will be garbage collected as soon as it has finished playing.
b) Class ImageIcon provides constructors that allow an ImageIcon object to be initial-

ized only with an image from the local computer.
c) Applet method getParameter gets the value associated with a specific HTML

parameter and returns the value as a String.

ANSWERS TO SELF-REVIEW EXERCISES
18.1 a) getImage. b) getDocumentBase. c) drawImage. d) AudioClip. e) image map.
f) paintIcon. g) Graphics Interchange Format (GIF), Joint Photographic Experts Group (JPEG)
Portable Network Graphics (PNG).

18.2 a) False. The sound will be marked for garbage collection (if it is not referenced by an Au-
dioClip) and will be garbage collected when the garbage collector is able to run. b) False. Im-
ageIcon can load images from the Internet as well. c) True.

EXERCISES
18.3 Describe how to make an animation “browser friendly.”

18.4 Describe the Java methods for playing and manipulating audio clips.

18.5 How can Java applets be customized with information from an HTML file?

18.6 Explain how image maps are used. List 10 examples in which image maps are used.

18.7 (Randomly Erasing an Image) Suppose an image is displayed in a rectangular screen area.
One way to erase the image is simply to set every pixel to the same color immediately, but this is a
dull visual effect. Write a Java program that displays an image and then erases it by using random-

param tag stop method of class Timer
play method of class Applet stop method of interface AudioClip
play method of interface AudioClip Sun Audio file format (.au)
restart method of class Timer Timer class
scaling an image update method of class Component
sound value attribute of param tag
sound engine volume control
space/time trade-off width of an image
start method of class Timer Windows Wave file (.wav)

Chapter 18 Multimedia: Images, Animation, Audio and Video 1091

number generation to select individual pixels to erase. After most of the image is erased, erase all of
the remaining pixels at once. You can refer to individual pixels by having a line that starts and ends
at the same point. You might try several variants of this problem. For example, you might display
lines randomly or display shapes randomly to erase regions of the screen.

18.8 (Text Flasher) Create a Java program that repeatedly flashes text on the screen. Do this by
alternating the text with a plain background-color image. Allow the user to control the “blink speed”
and the background color or pattern.

18.9 (Image Flasher) Create a Java program that repeatedly flashes an image on the screen. Do
this by alternating the image with a plain background-color image.

18.10 (Digital Clock) Implement a program that displays a digital clock on the screen. You might
add options to scale the clock; display day, month and year; issue an alarm; play certain audios at des-
ignated times and the like.

18.11 (Calling Attention to an Image) If you want to emphasize an image, you might place a row
of simulated light bulbs around your image. You can let the light bulbs flash in unison, or you can let
them fire on and off in sequence one after the other.

18.12 (Image Zooming) Create a program that enables you to zoom in on, or away from, an image.

SPECIAL SECTION: CHALLENGING MULTIMEDIA PROJECTS
The preceding exercises are keyed to the text and designed to test the reader’s understanding of fun-
damental multimedia concepts. This section includes a collection of advanced multimedia projects.
The reader should find these problems challenging, yet entertaining. The problems vary consider-
ably in difficulty. Some require an hour or two of program writing and implementation. Others are
useful for lab assignments that might require two or three weeks of study and implementation. Some
are challenging term projects. [Note: Solutions are not provided for these exercises.].

18.13 (Animation) Create a a general purpose Java animation program. Your program should allow
the user to specify the sequence of frames to be displayed, the speed at which the images are dis-
played, audios that should be played while the animation is running and so on.

18.14 (Limericks) Modify the limerick-writing program you wrote in Exercise 10.10 to sing the
limericks your program creates.

18.15 (Random Inter-Image Transition) This provides a nice visual effect. If you are displaying one
image in a given area on the screen and you would like to transition to another image in the same
screen area, store the new screen image in an off-screen buffer and randomly copy pixels from the
new image to the display area, overlaying the previous pixels at those locations. When the vast ma-
jority of the pixels have been copied, copy the entire new image to the display area to be sure you are
displaying the complete new image. To implement this program, you may need to use the Pixel-
Grabber and MemoryImageSource classes (see the Java API documentation for descriptions of
these classes). You might try several variants of this problem. For example, try selecting all the pixels
in a randomly selected straight line or shape in the new image, and overlay those pixels above the
corresponding positions of the old image.

18.16 (Background Audio) Add background audio to one of your favorite applications by using the
loop method of class AudioClip to play the sound in the background while you interact with your
application in the normal way.

18.17 (Scrolling Marquee Sign) Create a Java program that scrolls dotted characters from right to
left (or from left to right if that is appropriate for your language) across a Marquee-like display sign.
As an option, display the text in a continuous loop, so that after the text disappears at one end it reap-
pears at the other end.

1092 Multimedia: Images, Animation, Audio and Video Chapter 18

18.18 (Scrolling Image Marquee) Create a Java program that scrolls an image across a Marquee
screen.

18.19 (Analog Clock) Create a Java program that displays an analog clock with hour, minute and
second hands that move appropriately as the time changes.

18.20 (Dynamic Audio and Graphical Kaleidoscope) Write a kaleidoscope program that displays
reflected graphics to simulate the popular children’s toy. Incorporate audio effects that “mirror” your
program’s dynamically changing graphics.

18.21 (Automatic Jigsaw Puzzle Generator) Create a Java jigsaw puzzle generator and manipula-
tor. Your user specifies an image. Your program loads and displays the image. Your program then
breaks the image into randomly selected shapes and shuffles the shapes. The user then uses the mouse
to move the puzzle pieces around to solve the puzzle. Add appropriate audio sounds as the pieces are
being moved around and snapped back into place. You might keep tabs on each piece and where it
really belongs and then use audio effects to help the user get the pieces into the correct positions.

18.22 (Maze Generator and Walker) Develop a multimedia-based maze generator and traverser
program based on the maze programs you wrote in Exercise 7.38–Exercise 7.40. Let the user custom-
ize the maze by specifying the number of rows and columns and by indicating the level of difficulty.
Have an animated mouse walk the maze. Use audio to dramatize the movement of your mouse char-
acter.

18.23 (One-Armed Bandit) Develop a multimedia simulation of a one-armed bandit. Have three
spinning wheels. Place various fruits and symbols on each wheel. Use true random-number genera-
tion to simulate the spinning of each wheel and the stopping of each wheel on a symbol.

18.24 (Horse Race) Create a Java simulation of a horse race. Have multiple contenders. Use audios
for a race announcer. Play the appropriate audios to indicate the correct status of each of the contend-
ers throughout the race. Use audios to announce the final results. You might try to simulate the kinds
of horse-racing games that are often played at carnivals. The players get turns at the mouse and have
to perform some skill-oriented manipulation with the mouse to advance their horses.

18.25 (Shuffleboard) Develop a multimedia-based simulation of the game of shuffleboard. Use ap-
propriate audio and visual effects.

18.26 (Game of Pool) Create a multimedia-based simulation of the game of pool. Each player takes
turns using the mouse to position a pool stick and to hit the stick against the ball at the appropriate
angle to try to get the pool balls to fall into the pockets. Your program should keep score.

18.27 (Artist) Design a Java art program that will give an artist a great variety of capabilities to
draw, use images, use animations, etc., to create a dynamic multimedia art display.

18.28 (Fireworks Designer) Create a Java program that someone might use to create a fireworks
display. Create a variety of fireworks demonstrations. Then orchestrate the firing of the fireworks for
maximum effect.

18.29 (Floor Planner) Develop a Java program that will help someone arrange furniture in his or
her home. Add features that enable the person to achieve the best possible arrangement.

18.30 (Crossword) Crossword puzzles are among the most popular pastimes. Develop a multime-
dia-based crossword-puzzle program. Your program should enable the player to place and erase
words easily. Tie your program to a large computerized dictionary. Your program also should be able
to suggest words based on which letters have already been filled in. Provide other features that will
make the crossword-puzzle enthusiast’s job easier.

18.31 (15 Puzzle) Write a multimedia-based Java program that enables the user to play the game of
15. There is a 4-by-4 board for a total of 16 slots. One of the slots is empty. The other slots are occu-
pied by 15 tiles numbered 1 through 15. Any tile next to the currently empty slot can be moved into

Chapter 18 Multimedia: Images, Animation, Audio and Video 1093

that slot by clicking on the tile. Your program should create the board with the tiles out of order. The
goal is to arrange the tiles into sequential order, row by row.

18.32 (Reaction Time/Reaction Precision Tester) Create a Java program that moves a randomly
created shape around the screen. The user moves the mouse to catch and click on the shape. The
shape’s speed and size can be varied. Keep statistics on how much time the user typically takes to
catch a shape of a given size. The user will probably have more difficulty catching faster moving,
smaller shapes.

18.33 (Calendar/Tickler File) Using both audio and images create a general purpose calendar and
“tickler” file. For example, the program should sing “Happy Birthday” when you use it on your birth-
day. Have the program display images and play audios associated with important events. Also, have
the program remind you in advance of these important events. It would be nice, for example, to have
the program give you a week’s notice so you can pick up an appropriate greeting card for that special
person.

18.34 (Rotating Images) Create a Java program that lets you rotate an image through some number
of degrees (out of a maximum of 360 degrees). The program should let you specify that you want to
spin the image continuously. The program should let you adjust the spin speed dynamically.

18.35 (Coloring Black and White Photographs and Images) Create a Java program that lets you
paint a black and white photograph with color. Provide a color palette for selecting colors. Your pro-
gram should let you apply different colors to different regions of the image.

18.36 (Multimedia-Based Simpletron Simulator) Modify the Simpletron simulator that you devel-
oped in the exercises in the previous chapters to include multimedia features. Add computer-like
sounds to indicate that the Simpletron is executing instructions. Add a breaking glass sound when a
fatal error occurs. Use flashing lights to indicate which cells of memory and/or which registers are
currently being manipulated. Use other multimedia techniques, as appropriate, to make your Sim-
pletron simulator more valuable to its users as an educational tool.

19
Data Structures

Objectives
• To be able to form linked data structures using

references, self-referential classes and recursion.
• To be able to create and manipulate dynamic data

structures, such as linked lists, queues, stacks and
binary trees.

• To understand various important applications of
linked data structures.

• To understand how to create reusable data structures
with classes, inheritance and composition.

Much that I bound, I could not free;
Much that I freed returned to me.
Lee Wilson Dodd

‘Will you walk a little faster?’ said a whiting to a snail,
‘There’s a porpoise close behind us, and he’s treading on my
tail.’
Lewis Carroll

There is always room at the top.
Daniel Webster

Push on—keep moving.
Thomas Morton

I think that I shall never see
A poem lovely as a tree.
Joyce Kilmer

Chapter 19 Data Structures 1095

19.1 Introduction
We have studied such fixed-size data structures as single- and double-subscripted arrays.
This chapter introduces dynamic data structures that grow and shrink at execution time.
Linked lists are collections of data items “lined up in a row”—insertions and deletions can
be made anywhere in a linked list. Stacks are important in compilers and operating systems;
insertions and deletions are made only at one end of a stack—its top. Queues represent
waiting lines; insertions are made at the back (also referred to as the tail) of a queue and
deletions are made from the front (also referred to as the head) of a queue. Binary trees fa-
cilitate high-speed searching and sorting of data, eliminating of duplicate data items effi-
ciently, representing file system directories, compiling expressions into machine language
and many other interesting applications.

We will discuss each of the major types of data structures and implement programs that
create and manipulate them. We use classes, inheritance and composition to create and
package these data structures for reusability and maintainability. In Chapter 20, “Java Util-
ities Package and Bit Manipulation,” and Chapter 21, “Collections,” we discuss Java’s pre-
defined classes that implement the data structures discussed in this chapter.

The chapter examples are practical programs that can be used in more advanced
courses and in industrial applications. The exercises include a rich collection of useful
applications.

We encourage you to attempt the major project described in the special section entitled
Building Your Own Compiler. You have been using a Java compiler to translate your Java
programs to bytecodes so that you could execute these programs on your computer. In this
project, you will actually build your own compiler. It will read a file of statements written
in a simple, yet powerful high-level language similar to early versions of the popular lan-
guage Basic. Your compiler will translate these statements into a file of Simpletron
Machine Language (SML) instructions—SML is the language you learned in the Chapter 7
special section, Building Your Own Computer. Your Simpletron Simulator program will
then execute the SML program produced by your compiler! Implementing this project by
using an object-oriented approach will give you a wonderful opportunity to exercise most
of what you have learned in this book. The special section carefully walks you through the
specifications of the high-level language and describes the algorithms you will need to con-

Outline

19.1 Introduction
19.2 Self-Referential Classes
19.3 Dynamic Memory Allocation
19.4 Linked Lists
19.5 Stacks
19.6 Queues
19.7 Trees

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Special Section: Building Your Own Compiler

1096 Data Structures Chapter 19

vert each type of high-level language statement into machine language instructions. If you
enjoy being challenged, you might attempt the many enhancements to both the compiler
and the Simpletron Simulator suggested in the exercises.

19.2 Self-Referential Classes
A self-referential class contains an instance variable that refers to another object of the
same class type. For example, the definition

class Node {
private int data;
private Node nextNode;

public Node(int data) { /* constructor body */ }
public void setData(int data) { /* method body */ }
public int getData() { /* method body */ }
public void setNext(Node next) { /* method body */ }
public Node getNext() { /* method body */ }

}

defines class Node. This type has two private instance variables—integer data and
Node reference nextNode. Member nextNode references an object of type Node, an
object of the same type as the one being declared here—hence, the term “self-referential
class.” Member nextNode is a link—nextNode “links” an object of type Node to an-
other object of the same type. Type Node also has five methods: a constructor that receives
an integer to initialize data, a setData method to set the value data, a getData meth-
od to return the value of data, a setNext method to set the value of nextNode and a
getNext method to return the value of member nextNode.

Programs can link self-referential objects together to form such useful data structures as
lists, queues, stacks and trees. Figure 19.1 illustrates two self-referential objects linked
together to form a list. A backslash—representing a null reference—is placed in the link
member of the second self-referential object to indicate that the link does not refer to another
object. The backslash is for illustration purposes; it does not correspond to the backslash
character in Java. Normally, a null reference indicates the end of a data structure.

Common Programming Error 19.1
Not setting the link in the last node of a list to null is a logic error. 19.1

19.3 Dynamic Memory Allocation
Creating and maintaining dynamic data structures requires dynamic memory allocation—
the ability for a program to obtain more memory space at execution time to hold new nodes
and to release space no longer needed. As we have already learned, Java programs do not
explicitly release dynamically allocated memory. Rather, Java performs automatic garbage
collection on objects that are no longer referenced in a program.

The limit for dynamic memory allocation can be as large as the amount of available
physical memory in the computer or the amount of available disk space in a virtual-memory
system. Often, the limits are much smaller, because the computer’s available memory must
be shared among many applications.

Chapter 19 Data Structures 1097

Operator new is essential to dynamic memory allocation. Operator new takes as an
operand the type of the object being dynamically allocated and returns a reference to a
newly created object of that type. For example, the statement

Node nodeToAdd = new Node(10);

allocates the appropriate amount of memory to store a Node object and places a reference
to this object in nodeToAdd. If no memory is available, new throws an OutOfMemory-
Error. The 10 is the Node object’s data.

The following sections discuss lists, stacks, queues and trees that use dynamic memory
allocation and self-referential classes to create dynamic data structures.

19.4 Linked Lists
A linked list is a linear collection (i.e., a sequence) of self-referential class objects, called
nodes, connected by reference links—hence, the term “linked” list. A program accesses
a linked list via a reference to the first node of the list. The program accesses each sub-
sequent node via the link reference stored in the previous node. By convention, the link
reference in the last node of a list is set to null to mark the end of the list. Data are stored
in a linked list dynamically—the list creates each node as necessary. A node can contain
data of any type, including objects of other classes. Stacks and queues are also linear data
structures and, as we will see, are constrained versions of linked lists. Trees are nonlinear
data structures.

Lists of data can be stored in arrays, but linked lists provide several advantages. A
linked list is appropriate when the number of data elements to be represented in the data
structure is unpredictable. Linked lists are dynamic, so the length of a list can increase or
decrease as necessary. The size of a “conventional” Java array, however, cannot be altered,
because the array size is fixed at the time the program creates the array. “Conventional”
arrays can become full. Linked lists become full only when the system has insufficient
memory to satisfy dynamic storage allocation requests. Package java.util contains
class LinkedList for implementing and manipulating linked lists that grow and shrink
during program execution. We discuss class LinkedList in Chapter 21, “Collections.”

Performance Tip 19.1
An array can be declared to contain more elements than the number of items expected, but
this can waste memory. Linked lists can provide better memory utilization in these situations.
Linked lists allow the program to adapt at runtime. 19.1

Performance Tip 19.2
Insertion into a linked list is fast—only two references have to be modified (after you have
located the place to do the insertion). All existing nodes remain at their current locations in
memory. 19.2

Fig. 19.1Fig. 19.1Fig. 19.1Fig. 19.1 Two self-referential class objects linked together.

15 10

1098 Data Structures Chapter 19

Linked lists can be maintained in sorted order simply by inserting each new element at
the proper point in the list (it does, of course, take time to locate the proper insertion point).
Existing list elements do not need to be moved.

Linked list nodes normally are not stored contiguously in memory. Rather, they are
logically contiguous. Figure 19.2 illustrates a linked list with several nodes. This diagram
presents a singly-linked list—each node contains one reference to the next node in the list.
Often, linked lists are implemented as doubly-linked lists—each node contains a reference
to the next node in the list and a reference to the previous node in the list. Java’s
LinkedList class (see Chapter 21) is a doubly-linked list implementation.

Performance Tip 19.3
Insertion and deletion in a sorted array can be time consuming—all the elements following
the inserted or deleted element must be shifted appropriately. 19.3

Performance Tip 19.4
The elements of an array are stored contiguously in memory. This allows immediate access
to any array element, because the address of any element can be calculated directly as its
offset from the beginning of the array. Linked lists do not afford such immediate access to
their elements—an element can be accessed only by traversing the list from the front. 19.4

Performance Tip 19.5
Using dynamic memory allocation (instead of arrays) for data structures that grow and
shrink at execution time can save memory. Keep in mind, however, that references occupy
space, and that dynamic memory allocation incurs the overhead of method calls. 19.5

The program of Fig. 19.3–Fig. 19.5 uses a List class to manipulate a list of miscel-
laneous object types. The main method of class ListTest (Fig. 19.5) creates a list of
objects, inserts objects at the beginning of the list using method insertAtFront, inserts
objects at the end of the list using method insertAtBack, deletes objects from the front
of the list using method removeFromFront and deletes objects from the end of the list
using method removeFromBack. After each insert and remove operation, ListTest
calls List method print to display the current list contents. A detailed discussion of the
program follows. If an attempt is made to remove an item from an empty list, an Empty-
ListException (Fig. 19.4) occurs.

The program of Fig. 19.3–Fig. 19.5 consists of four classes—ListNode (Fig. 19.3),
List (Fig. 19.3), EmptyListException (Fig. 19.4) and ListTest (Fig. 19.5). The
List and ListNode classes are placed in package com.deitel.jhtp4.ch19, so
they can be reused throughout this chapter. Encapsulated in each List object is a linked
list of ListNode objects. The ListNode class (lines 6–38 of Fig. 19.3) consists of
package-access members data and nextNode. ListNode member data can refer to
any Object. ListNode member nextNode stores a reference to the next ListNode
object in the linked list.

[Note: Many of the classes in this chapter are defined in the package
com.deitel.jhtp4.ch19. Each such class should be compiled with the -d com-
mand-line option to javac. When compiling the classes that are not in this package and
when running the programs, be sure to use the -classpath option to javac and java,
respectively.]

Chapter 19 Data Structures 1099

Fig. 19.2Fig. 19.2Fig. 19.2Fig. 19.2 A graphical representation of a linked list.

1 // Fig. 19.3: List.java
2 // Class ListNode and class List definitions
3 package com.deitel.jhtp4.ch19;
4
5 // class to represent one node in a list
6 class ListNode {
7
8 // package access members; List can access these directly
9 Object data;

10 ListNode nextNode;
11
12 // constructor to create a ListNode that refers to object
13 ListNode(Object object)
14 {
15 this(object, null);
16 }
17
18 // constructor to create ListNode that refers to Object
19 // and to next ListNode in List
20 ListNode(Object object, ListNode node)
21 {
22 data = object;
23 nextNode = node;
24 }
25
26 // return Object in this node
27 Object getObject()
28 {
29 return data;
30 }
31
32 // get next node
33 ListNode getNext()
34 {
35 return nextNode;
36 }
37
38 } // end class ListNode
39

Fig. 19.3Fig. 19.3Fig. 19.3Fig. 19.3 Definitions of class ListNode and class List (part 1 of 4).

H D Q

firstNode lastNode

...

1100 Data Structures Chapter 19

40 // class List definition
41 public class List {
42 private ListNode firstNode;
43 private ListNode lastNode;
44 private String name; // String like "list" used in printing
45
46 // construct an empty List with a name
47 public List(String string)
48 {
49 name = string;
50 firstNode = lastNode = null;
51 }
52
53 // construct empty List with "list" as the name
54 public List()
55 {
56 this("list");
57 }
58
59 // Insert Object at front of List. If List is empty,
60 // firstNode and lastNode will refer to same object.
61 // Otherwise, firstNode refers to new node.
62 public synchronized void insertAtFront(Object insertItem)
63 {
64 if (isEmpty())
65 firstNode = lastNode = new ListNode(insertItem);
66
67 else
68 firstNode = new ListNode(insertItem, firstNode);
69 }
70
71 // Insert Object at end of List. If List is empty,
72 // firstNode and lastNode will refer to same Object.
73 // Otherwise, lastNode's nextNode refers to new node.
74 public synchronized void insertAtBack(Object insertItem)
75 {
76 if (isEmpty())
77 firstNode = lastNode = new ListNode(insertItem);
78
79 else
80 lastNode = lastNode.nextNode =
81 new ListNode(insertItem);
82 }
83
84 // remove first node from List
85 public synchronized Object removeFromFront()
86 throws EmptyListException
87 {
88 Object removeItem = null;
89
90 // throw exception if List is empty
91 if (isEmpty())
92 throw new EmptyListException(name);

Fig. 19.3Fig. 19.3Fig. 19.3Fig. 19.3 Definitions of class ListNode and class List (part 2 of 4).

Chapter 19 Data Structures 1101

93
94 // retrieve data being removed
95 removeItem = firstNode.data;
96
97 // reset the firstNode and lastNode references
98 if (firstNode == lastNode)
99 firstNode = lastNode = null;
100
101 else
102 firstNode = firstNode.nextNode;
103
104 // return removed node data
105 return removeItem;
106 }
107
108 // Remove last node from List
109 public synchronized Object removeFromBack()
110 throws EmptyListException
111 {
112 Object removeItem = null;
113
114 // throw exception if List is empty
115 if (isEmpty())
116 throw new EmptyListException(name);
117
118 // retrieve data being removed
119 removeItem = lastNode.data;
120
121 // reset firstNode and lastNode references
122 if (firstNode == lastNode)
123 firstNode = lastNode = null;
124
125 else {
126
127 // locate new last node
128 ListNode current = firstNode;
129
130 // loop while current node does not refer to lastNode
131 while (current.nextNode != lastNode)
132 current = current.nextNode;
133
134 // current is new lastNode
135 lastNode = current;
136 current.nextNode = null;
137 }
138
139 // return removed node data
140 return removeItem;
141 }
142
143 // return true if List is empty
144 public synchronized boolean isEmpty()
145 {

Fig. 19.3Fig. 19.3Fig. 19.3Fig. 19.3 Definitions of class ListNode and class List (part 3 of 4).

1102 Data Structures Chapter 19

Class List contains private members firstNode (a reference to the first
ListNode in a List) and lastNode (a reference to the last ListNode in a List).
The constructors (lines 47–51 and 54–57) initialize both references to null. The most
important methods of class List are the synchronized methods insertAtFront
(lines 62–69), insertAtBack (lines 74–82), removeFromFront (lines 85–106) and
removeFromBack (lines 109–141). These methods are declared synchronized so
List objects can be multithread safe when used in a multithreaded program. If one thread
is modifying the contents of a List, no other thread can modify the same List object at
the same time. Method isEmpty (lines 144–147) is a predicate method that determines
whether the list is empty (i.e., the reference to the first node of the list is null). Predicate
methods typically test a condition and do not modify the object on which they are called. If
the list is empty, method isEmpty returns true; otherwise, it returns false. Method
print (lines 150–168) displays the list’s contents. Both isEmpty and print are also
synchronized methods.

146 return firstNode == null;
147 }
148
149 // output List contents
150 public synchronized void print()
151 {
152 if (isEmpty()) {
153 System.out.println("Empty " + name);
154 return;
155 }
156
157 System.out.print("The " + name + " is: ");
158
159 ListNode current = firstNode;
160
161 // while not at end of list, output current node's data
162 while (current != null) {
163 System.out.print(current.data.toString() + " ");
164 current = current.nextNode;
165 }
166
167 System.out.println("\n");
168 }
169
170 } // end class List

1 // Fig. 19.4: EmptyListException.java
2 // Class EmptyListException definition
3 package com.deitel.jhtp4.ch19;
4
5 public class EmptyListException extends RuntimeException {
6

Fig. 19.4Fig. 19.4Fig. 19.4Fig. 19.4 Definition of class EmptyListException (part 1 of 2).

Fig. 19.3Fig. 19.3Fig. 19.3Fig. 19.3 Definitions of class ListNode and class List (part 4 of 4).

Chapter 19 Data Structures 1103

7 // initialize an EmptyListException
8 public EmptyListException(String name)
9 {

10 super("The " + name + " is empty");
11 }
12
13 } // end class EmptyListException

1 // Fig. 19.5: ListTest.java
2 // Class ListTest
3
4 // Deitel packages
5 import com.deitel.jhtp4.ch19.List;
6 import com.deitel.jhtp4.ch19.EmptyListException;
7
8 public class ListTest {
9

10 // test class List
11 public static void main(String args[])
12 {
13 List list = new List(); // create the List container
14
15 // create objects to store in List
16 Boolean bool = Boolean.TRUE;
17 Character character = new Character('$');
18 Integer integer = new Integer(34567);
19 String string = "hello";
20
21 // use List insert methods
22 list.insertAtFront(bool);
23 list.print();
24 list.insertAtFront(character);
25 list.print();
26 list.insertAtBack(integer);
27 list.print();
28 list.insertAtBack(string);
29 list.print();
30
31 // use List remove methods
32 Object removedObject;
33
34 // remove objects from list; print after each removal
35 try {
36 removedObject = list.removeFromFront();
37 System.out.println(
38 removedObject.toString() + " removed");
39 list.print();
40

Fig. 19.5Fig. 19.5Fig. 19.5Fig. 19.5 Manipulating a linked list.

Fig. 19.4Fig. 19.4Fig. 19.4Fig. 19.4 Definition of class EmptyListException (part 2 of 2).

1104 Data Structures Chapter 19

Over the next several pages, we discuss each of the methods of class List (Fig. 19.3)
in detail. Method insertAtFront (lines 62–69 of Fig. 19.3) places a new node at the
front of the list. The method consists of several steps (Fig. 19.6 illustrates the operation):

1. Call isEmpty to determine whether the list is empty (line 64).

41 removedObject = list.removeFromFront();
42 System.out.println(
43 removedObject.toString() + " removed");
44 list.print();
45
46 removedObject = list.removeFromBack();
47 System.out.println(
48 removedObject.toString() + " removed");
49 list.print();
50
51 removedObject = list.removeFromBack();
52 System.out.println(
53 removedObject.toString() + " removed");
54 list.print();
55 }
56
57 // process exception if List is empty when attempt is
58 // made to remove an item
59 catch (EmptyListException emptyListException) {
60 emptyListException.printStackTrace();
61 }
62
63 } // end method main
64
65 } // end class ListTest

The list is: true

The list is: $ true

The list is: $ true 34567

The list is: $ true 34567 hello

$ removed
The list is: true 34567 hello

true removed
The list is: 34567 hello

hello removed
The list is: 34567

34567 removed
Empty list

Fig. 19.5Fig. 19.5Fig. 19.5Fig. 19.5 Manipulating a linked list.

Chapter 19 Data Structures 1105

2. If the list is empty, both firstNode and lastNode are set to the ListNode
allocated with new and initialized with insertItem (line 65). The ListNode
constructor at lines 13–16 calls the ListNode constructor at lines 20–24 to set
instance variable data to refer to the insertItem passed as an argument and
to set reference nextNode to null.

3. If the list is not empty, the new node is “threaded” (not to be confused with multi-
threading) or “linked” into the list by setting firstNode to a new ListNode ob-
ject and initializing that object with insertItem and firstNode (line 68).
When the ListNode constructor (lines 20–24) executes, it sets instance variable
data to refer to the insertItem passed as an argument and performs the inser-
tion by setting the nextNode reference to the ListNode passed as an argument.

In Fig. 19.6, part (a) shows the list and the new node during the insertAtFront
operation and before the program threads the new node into the list. The dotted arrows in
part (b) illustrate step 3 of the insertAtFront operation that enables the node con-
taining 12 to become the new list front.

Method insertAtBack (lines 74–82 of Fig. 19.3) places a new node at the back of
the list. The method consists of several steps (Fig. 19.7 illustrates the operation):

1. Call isEmpty to determine whether the list is empty (line 76).

2. If the list is empty, both firstNode and lastNode are set to the ListNode
allocated with new and initialized with insertItem (line 77). The ListNode
constructor at lines 13–16 calls the ListNode constructor at lines 20–24 to set
instance variable data to refer to the insertItem passed as an argument and
to set reference nextNode to null.

3. If the list is not empty, the new node is threaded into the list by setting LastNode
and lastNode.nextNode to the ListNode that was allocated with new and
initialized with insertItem (lines 80–81). When the ListNode constructor
(lines 13–16) executes, it sets instance variable data to refer to the insert-
Item passed as an argument and sets reference nextNode to null.

Fig. 19.6Fig. 19.6Fig. 19.6Fig. 19.6 The insertAtFront operation.

7 11

firstNode

12

new ListNode

(a)

7 11

firstNode

12

new ListNode

(b)

1106 Data Structures Chapter 19

In Fig. 19.7, part (a) shows the list and the new node during the insertAtBack
operation and before the program threads the new node into the list. The dotted arrows in
part (b) illustrate the steps of method insertAtBack that enable a new node to be added
to the end of a list that is not empty.

Method removeFromFront (lines 85–106 of Fig. 19.3) removes the front node of
the list and returns a reference to the removed data. The method throws an EmptyList-
Exception (lines 91–92) if the list is empty when the program calls this method. Other-
wise, the method returns a reference to the removed data. The method consists of several
steps (illustrated in Fig. 19.8):

1. Assign firstNode.data (the data being removed from the list) to reference
removeItem (line 95).

2. If the objects to which firstNode and lastNode refer are equal (line 98), the
list has only one element prior to the removal attempt. In this case, the method sets
firstNode and lastNode to null (line 99) to “dethread” (remove) the node
from the list (leaving the list empty).

3. If the list has more than one node prior to removal, then the method leaves refer-
ence lastNode as is and simply assigns firstNode.nextNode to reference
firstNode (line 102). Thus, firstNode references the node that was the sec-
ond node prior to the removeFromFront call.

4. Return the removeItem reference (line 105).

In Fig. 19.8, part (a) illustrates the list before the removal operation. Part (b) shows
actual reference manipulations.

Fig. 19.7Fig. 19.7Fig. 19.7Fig. 19.7 A graphical representation of the insertAtBack operation.

12 7 11

firstNode lastNode(a)

5

new ListNode

12 11

firstNode lastNode(b)

5

new ListNode

7

Chapter 19 Data Structures 1107

Method removeFromBack (lines 109–141 of Fig. 19.3) removes the last node of a
list and returns a reference to the removed data. The method throws an Empty-
ListException (lines 94 and 95) if the list is empty when the program calls this
method. The method consists of several steps (Fig. 19.9 illustrates the operation):

1. Assign lastNode.data (the data being removed from the list) to reference
removeItem (line 119).

2. If the objects to which firstNode and lastNode refer are equal (line 122),
the list has only one element prior to the removal attempt. In this case, the method
sets firstNode and lastNode to null (line 123) to dethread (remove) that
node from the list (leaving the list empty).

3. If the list has more than one node prior to removal, then create the ListNode ref-
erence current and assign it firstNode.

4. Now “walk the list” with current until it references the node before the last
node. The while loop (lines 131–132) assigns current.nextNode to cur-
rent as long as current.nextNode is not lastNode.

5. After locating the second-to-last node, assign current to lastNode (line 135)
to dethread the last node from the list.

6. Set the current.nextNode to null (line 136) to terminate the list at the cur-
rent node.

7. Return the removeItem reference (liner 140).

In Fig. 19.9, part (a) illustrates the list before the removal operation. Part (b) shows the ac-
tual reference manipulations.

Fig. 19.8Fig. 19.8Fig. 19.8Fig. 19.8 A graphical representation of the removeFromFront operation.

firstNode lastNode(a)

11

firstNode lastNode(b)

removeItem

12

12

7

7 5

5

11

12

1108 Data Structures Chapter 19

Method print (lines 150–168) first determines whether the list is empty (lines 152–
155). If so, print displays a message indicating that the list is empty and returns control
to the calling method. Otherwise, print outputs the data in the list. Line 159 creates
ListNode reference current and initializes it with firstNode. While current is
not null, there are more items in the list. therefore, line 163 outputs a String represen-
tation of current.data. Line 164 moves to the next node in the list by assigning the
value of current.nextNode to current. This printing algorithm is identical for
linked lists, stacks and queues.

19.5 Stacks
A stack is a constrained version of a linked list—new nodes can be added to a stack and
removed from a stack only at the top. For this reason, a stack is referred to as a last-in, first-
out (LIFO) data structure. The link member in the bottom (i.e., last) node of the stack is set
to null to indicate the bottom of the stack.

Common Programming Error 19.2
Not setting the link in the bottom node of a stack to null is a common logic error. 19.2

The primary methods used to manipulate a stack are push and pop. Method push
adds a new node to the top of the stack. Method pop removes a node from the top of the
stack and returns the data from the popped node.

Stacks have many interesting applications. For example, when a program calls a
method, the called method must know how to return to its caller, so the return address of
the calling method is pushed onto the program execution stack. If a series of method calls

Fig. 19.9Fig. 19.9Fig. 19.9Fig. 19.9 A graphical representation of the removeFromBack operation.

5

5

117

7

12

12

firstNode lastNode(a)

firstNode lastNode(b)

removeItem

current

11

Chapter 19 Data Structures 1109

occurs, the successive return addresses are pushed onto the stack in last-in, first-out order
so that each method can return to its caller. Stacks support recursive method calls in the
same manner as they do conventional nonrecursive method calls.

The program execution stack contains the memory for local variables on each invoca-
tion of a method during a program’s execution. When the method returns to its caller, the
memory for that method’s local variables is popped off the stack and those variables are no
longer known to the program.

Compilers use stacks to evaluate arithmetic expressions and generate machine lan-
guage code to process the expressions. The exercises in this chapter explore several appli-
cations of stacks, including using them to develop a complete working compiler. The
java.util package of the Java API contains class Stack for implementing and manip-
ulating stacks that can grow and shrink during program execution. We will discuss class
Stack in Chapter 20.

We take advantage of the close relationship between lists and stacks to implement a
stack class by reusing a list class. We demonstrate two different forms of reusability. First,
we implement the stack class by extending class List of Fig. 19.3. Then we implement an
identically performing stack class through composition by including a List object as a
private member of a stack class. The list, stack and queue data structures in this chapter
are implemented to store Object references to encourage further reusability. Thus, any
object type can be stored in a list, stack or queue.

The application of Fig. 19.10 and Fig. 19.11 creates a stack class by extending class
List of Fig. 19.3. We want the stack to have methods push, pop, isEmpty and print.
Essentially, these are the methods insertAtFront, removeFromFront, isEmpty
and print of class List. Of course, class List contains other methods (such as
insertAtBack and removeFromBack) that we would rather not make accessible
through the public interface to the stack class. It is important to remember that all
methods in the public interface of class List class also are public methods of the sub-
class StackInheritance (Fig. 19.10). When we implement the stack’s methods, we
have each StackInheritance method call the appropriate List method—method
push calls insertAtFront and method pop calls removeFromFront. Class
StackInheritance is defined as part of package com.deitel.jhtp4.ch19 for
reuse purposes. Note that StackInheritance does not import List, because both
classes are in the same package.

1 // Fig. 19.10: StackInheritance.java
2 // Derived from class List
3 package com.deitel.jhtp4.ch19;
4
5 public class StackInheritance extends List {
6
7 // construct stack
8 public StackInheritance()
9 {

10 super("stack");
11 }
12

Fig. 19.10Fig. 19.10Fig. 19.10Fig. 19.10 Class StackInheritance extends class List (part 1 of 2).

1110 Data Structures Chapter 19

Class StackInheritanceTest’s method main (Fig. 19.11) uses class Stack-
Inheritance to instantiate a stack of Objects called stack. The program pushes onto
the stack (lines 22, 24, 26 and 28) a Boolean object containing true, a Character
object containing $, an Integer object containing 34567 and a String object con-
taining hello, then popped off stack. Lines 37–42 pop the objects from the stack in an
infinite while loop. When there are no objects left to pop, an method pop throws an Emp-
tyListException, and the program displays the exception’s stack trace, which shows
the methods on the program execution stack at the time the exception occurred. Note that the
program uses method print (inherited from List) to output the contents of the stack.

13 // add object to stack
14 public synchronized void push(Object object)
15 {
16 insertAtFront(object);
17 }
18
19 // remove object from stack
20 public synchronized Object pop() throws EmptyListException
21 {
22 return removeFromFront();
23 }
24
25 } // end class StackInheritance

1 // Fig. 19.11: StackInheritanceTest.java
2 // Class StackInheritanceTest
3
4 // Deitel packages
5 import com.deitel.jhtp4.ch19.StackInheritance;
6 import com.deitel.jhtp4.ch19.EmptyListException;
7
8 public class StackInheritanceTest {
9

10 // test class StackInheritance
11 public static void main(String args[])
12 {
13 StackInheritance stack = new StackInheritance();
14
15 // create objects to store in the stack
16 Boolean bool = Boolean.TRUE;
17 Character character = new Character('$');
18 Integer integer = new Integer(34567);
19 String string = "hello";
20
21 // use push method
22 stack.push(bool);
23 stack.print();
24 stack.push(character);

Fig. 19.11Fig. 19.11Fig. 19.11Fig. 19.11 A simple stack program (part 1 of 2).

Fig. 19.10Fig. 19.10Fig. 19.10Fig. 19.10 Class StackInheritance extends class List (part 2 of 2).

Chapter 19 Data Structures 1111

25 stack.print();
26 stack.push(integer);
27 stack.print();
28 stack.push(string);
29 stack.print();
30
31 // remove items from stack
32 try {
33
34 // use pop method
35 Object removedObject = null;
36
37 while (true) {
38 removedObject = stack.pop();
39 System.out.println(removedObject.toString() +
40 " popped");
41 stack.print();
42 }
43 }
44
45 // catch exception if stack empty when item popped
46 catch (EmptyListException emptyListException) {
47 emptyListException.printStackTrace();
48 }
49
50 } // end method main
51
52 } // end class StackInheritanceTest

The stack is: true

The stack is: $ true

The stack is: 34567 $ true

The stack is: hello 34567 $ true

hello popped
The stack is: 34567 $ true

34567 popped
The stack is: $ true

$ popped
The stack is: true

true popped
Empty stack
com.deitel.jhtp4.ch19.EmptyListException: The stack is empty
 at com.deitel.jhtp4.ch19.List.removeFromFront(List.java:92)
 at com.deitel.jhtp4.ch19.StackInheritance.pop(
 StackInheritance.java:22)
 at StackInheritanceTest.main(StackInheritanceTest.java:38)

Fig. 19.11Fig. 19.11Fig. 19.11Fig. 19.11 A simple stack program (part 2 of 2).

1112 Data Structures Chapter 19

Another way to implement a stack class is by reusing a list class through composition.
The class in Fig. 19.12 uses a private object of class List (line 6) in the definition of
class StackComposition. Composition enables us to hide the methods of class List
that should not be in our stack’s public interface by providing public interface
methods only to the required List methods. This technique of implementing each stack
method as a call to a List method is called delegating—the stack method invoked dele-
gates the call to the appropriate List method. In particular, StackComposition del-
egates calls to List methods insertAtFront, removeFromFront, isEmpty and
print. In this example, we do not show class StackCompositionTest, because the
only difference in this example is that we change the type of the stack from Stack-
Inheritance to StackComposition. If you execute the application from the code
on the CD that accompanies this book, you will see that the output is identical.

1 // Fig. 19.12: StackComposition.java
2 // Class StackComposition definition with composed List object
3 package com.deitel.jhtp4.ch19;
4
5 public class StackComposition {
6 private List stackList;
7
8 // construct stack
9 public StackComposition()

10 {
11 stackList = new List("stack");
12 }
13
14 // add object to stack
15 public synchronized void push(Object object)
16 {
17 stackList.insertAtFront(object);
18 }
19
20 // remove object from stack
21 public synchronized Object pop() throws EmptyListException
22 {
23 return stackList.removeFromFront();
24 }
25
26 // determine if stack is empty
27 public synchronized boolean isEmpty()
28 {
29 return stackList.isEmpty();
30 }
31
32 // output stack contents
33 public synchronized void print()
34 {
35 stackList.print();
36 }
37
38 } // end class StackComposition

Fig. 19.12Fig. 19.12Fig. 19.12Fig. 19.12 A simple stack class using composition.

Chapter 19 Data Structures 1113

19.6 Queues
Another common data structure is the queue. A queue is similar to a checkout line in a su-
permarket—the cashier services the person at the beginning of the line first. Other custom-
ers enter the line only at the end and wait for service. Queue nodes are removed only from
the head (or front) of the queue and are inserted only at the tail (or end) of the queue. For
this reason, a queue is a first-in, first-out (FIFO) data structure. The insert and remove op-
erations are known as enqueue and dequeue.

Queues have many applications in computer systems. Most computers have only a single
processor, so only one application at a time can be serviced. Entries for the other applications
are placed in a queue. The entry at the front of the queue is the next to receive service. Each
entry gradually advances to the front of the queue as applications receive service.

Queues are also used to support print spooling. A multiuser environment may have
only a single printer. Many users may send print jobs to the printer. Even when the printer
is busy, other people may still send print jobs. These are “spooled” to disk (much as thread
is wound onto a spool) where they wait in a queue until the printer becomes available.

Information packets also wait in queues in computer networks. Each time a packet
arrives at a network node, it must be routed to the next node on the network along the path
to the packet’s final destination. The routing node routes one packet at a time, so additional
packets are enqueued until the router can route them.

A file server in a computer network handles file-access requests from many clients
throughout the network. Servers have a limited capacity to service requests from clients.
When that capacity is exceeded, client requests wait in queues.

The application of Fig. 19.13 and Fig. 19.14 creates a queue by extending class List
(Fig. 19.3). We want class QueueInheritance (Fig. 19.13) to have methods
enqueue and dequeue, isEmpty and print. Note that these are essentially the List
methods insertAtBack and removeFromFront. Of course, class List contains
other methods (i.e., insertAtFront and removeFromBack) that we would rather not
make accessible through the public interface of the queue. Remember that all methods
in the public interface of the List class are also public methods of the subclass
QueueInheritance. In the queue’s implementation, each method of class QueueIn-
heritance calls the appropriate List method—method enqueue calls insertAt-
Back and method dequeue calls removeFromFront. Class QueueInheritance
is defined in package com.deitel.jhtp4.ch19 for reuse purposes.

Common Programming Error 19.3
Not setting the link in the last node of a queue to null is a common logic error. 19.3

1 // Fig. 19.13: QueueInheritance.java
2 // Class QueueInheritance extends class List
3
4 // Deitel packages
5 package com.deitel.jhtp4.ch19;
6
7 public class QueueInheritance extends List {
8

Fig. 19.13Fig. 19.13Fig. 19.13Fig. 19.13 Class QueueInheritance extends class List (part 1 of 2).

1114 Data Structures Chapter 19

Class QueueInheritanceTest method main (Fig. 19.14) uses class QueueIn-
heritance to instantiate a queue of Objects called queue. Lines 22, 24, 26 and 28
enqueue a Boolean object containing true, a Character object containing $, an
Integer object containing 34567 and a String object containing hello. Lines 37–
42 use an infinite while loop to dequeue the objects in first-in, first-out order. When there
are no objects left to dequeue, method dequeue throws an EmptyListException, and
the program displays the exception’s stack trace.

9 // construct queue
10 public QueueInheritance()
11 {
12 super("queue");
13 }
14
15 // add object to queue
16 public synchronized void enqueue(Object object)
17 {
18 insertAtBack(object);
19 }
20
21 // remove object from queue
22 public synchronized Object dequeue() throws EmptyListException
23 {
24 return removeFromFront();
25 }
26
27 } // end class QueueInheritance

1 // Fig. 19.14: QueueInheritanceTest.java
2 // Class QueueInheritanceTest
3
4 // Deitel packages
5 import com.deitel.jhtp4.ch19.QueueInheritance;
6 import com.deitel.jhtp4.ch19.EmptyListException;
7
8 public class QueueInheritanceTest {
9

10 // test class QueueInheritance
11 public static void main(String args[])
12 {
13 QueueInheritance queue = new QueueInheritance();
14
15 // create objects to store in queue
16 Boolean bool = Boolean.TRUE;
17 Character character = new Character('$');
18 Integer integer = new Integer(34567);
19 String string = "hello";

Fig. 19.14Fig. 19.14Fig. 19.14Fig. 19.14 Processing a queue (part 1 of 3).

Fig. 19.13Fig. 19.13Fig. 19.13Fig. 19.13 Class QueueInheritance extends class List (part 2 of 2).

Chapter 19 Data Structures 1115

20
21 // use enqueue method
22 queue.enqueue(bool);
23 queue.print();
24 queue.enqueue(character);
25 queue.print();
26 queue.enqueue(integer);
27 queue.print();
28 queue.enqueue(string);
29 queue.print();
30
31 // remove objects from queue
32 try {
33
34 // use dequeue method
35 Object removedObject = null;
36
37 while (true) {
38 removedObject = queue.dequeue();
39 System.out.println(removedObject.toString() +
40 " dequeued");
41 queue.print();
42 }
43 }
44
45 // process exception if queue empty when item removed
46 catch (EmptyListException emptyListException) {
47 emptyListException.printStackTrace();
48 }
49
50 } // end method main
51
52 } // end class QueueInheritanceTest

The queue is: true

The queue is: true $

The queue is: true $ 34567

The queue is: true $ 34567 hello

true dequeued
The queue is: $ 34567 hello

$ dequeued
The queue is: 34567 hello

34567 dequeued
The queue is: hello

hello dequeued
Empty queue
 (continued on next page)

Fig. 19.14Fig. 19.14Fig. 19.14Fig. 19.14 Processing a queue (part 2 of 3).

1116 Data Structures Chapter 19

19.7 Trees
Linked lists, stacks and queues are linear data structures (i.e., sequences). A tree is a non-
linear, two-dimensional data structure with special properties. Tree nodes contain two or
more links. This section discusses binary trees (Fig. 19.15)—trees whose nodes all contain
two links (none, one or both of which may be null). The root node is the first node in a
tree. Each link in the root node refers to a child. The left child is the first node in the left
subtree, and the right child is the first node in the right subtree. The children of a specific
node are called siblings. A node with no children is called a leaf node. Computer scientists
normally draw trees from the root node down—exactly the opposite of the way most trees
grow in nature.

Common Programming Error 19.4
Not setting to null the links in leaf nodes of a tree is a common logic error. 19.4

In our binary tree example, we create a special binary tree called a binary search tree.
A binary search tree (with no duplicate node values) has the characteristic that the values
in any left subtree are less than the value in the subtree’s parent node, and the values in any
right subtree are greater than the value in the subtree’s parent node. Figure 19.16 illustrates
a binary search tree with 12 integer values. Note that the shape of the binary search tree that
corresponds to a set of data can vary, depending on the order in which the values are
inserted into the tree.

 (continued from previous page)
com.deitel.jhtp4.ch19.EmptyListException: The queue is empty
 at com.deitel.jhtp4.ch19.List.removeFromFront(List.java:92)
 at com.deitel.jhtp4.ch19.QueueInheritance.dequeue(
 QueueInheritance.java:24)
 at QueueInheritanceTest.main(QueueInheritanceTest.java:38)

Fig. 19.14Fig. 19.14Fig. 19.14Fig. 19.14 Processing a queue (part 3 of 3).

Fig. 19.15Fig. 19.15Fig. 19.15Fig. 19.15 A graphical representation of a binary tree.

B

A D

C

Chapter 19 Data Structures 1117

The application of Fig. 19.17 and Fig. 19.18 creates a binary search tree of integers
and traverses it (i.e., walks through all its nodes) three ways—using recursive inorder, pre-
order and postorder traversals. The program generates 10 random numbers and inserts
each into the tree. Class Tree is defined in package com.deitel.jhtp4.ch19 for
reuse purposes.

Fig. 19.16Fig. 19.16Fig. 19.16Fig. 19.16 A binary search tree containing 12 values.

1 // Fig. 19.17: Tree.java
2 // Definition of class TreeNode and class Tree.
3
4 // Deitel packages
5 package com.deitel.jhtp4.ch19;
6
7 // class TreeNode definition
8 class TreeNode {
9

10 // package access members
11 TreeNode leftNode;
12 int data;
13 TreeNode rightNode;
14
15 // initialize data and make this a leaf node
16 public TreeNode(int nodeData)
17 {
18 data = nodeData;
19 leftNode = rightNode = null; // node has no children
20 }
21
22 // insert TreeNode into Tree that contains nodes;
23 // ignore duplicate values
24 public synchronized void insert(int insertValue)
25 {
26 // insert in left subtree
27 if (insertValue < data) {
28
29 // insert new TreeNode
30 if (leftNode == null)
31 leftNode = new TreeNode(insertValue);
32

Fig. 19.17Fig. 19.17Fig. 19.17Fig. 19.17 Definitions of TreeNode and Tree for a binary search tree (part 1 of 4).

47

25 77

11 43 65 93

687 17 31 44

1118 Data Structures Chapter 19

33 // continue traversing left subtree
34 else
35 leftNode.insert(insertValue);
36 }
37
38 // insert in right subtree
39 else if (insertValue > data) {
40
41 // insert new TreeNode
42 if (rightNode == null)
43 rightNode = new TreeNode(insertValue);
44
45 // continue traversing right subtree
46 else
47 rightNode.insert(insertValue);
48 }
49
50 } // end method insert
51
52 } // end class TreeNode
53
54 // class Tree definition
55 public class Tree {
56 private TreeNode root;
57
58 // construct an empty Tree of integers
59 public Tree()
60 {
61 root = null;
62 }
63
64 // Insert a new node in the binary search tree.
65 // If the root node is null, create the root node here.
66 // Otherwise, call the insert method of class TreeNode.
67 public synchronized void insertNode(int insertValue)
68 {
69 if (root == null)
70 root = new TreeNode(insertValue);
71
72 else
73 root.insert(insertValue);
74 }
75
76 // begin preorder traversal
77 public synchronized void preorderTraversal()
78 {
79 preorderHelper(root);
80 }
81
82 // recursive method to perform preorder traversal
83 private void preorderHelper(TreeNode node)
84 {

Fig. 19.17Fig. 19.17Fig. 19.17Fig. 19.17 Definitions of TreeNode and Tree for a binary search tree (part 2 of 4).

Chapter 19 Data Structures 1119

85 if (node == null)
86 return;
87
88 // output node data
89 System.out.print(node.data + " ");
90
91 // traverse left subtree
92 preorderHelper(node.leftNode);
93
94 // traverse right subtree
95 preorderHelper(node.rightNode);
96 }
97
98 // begin inorder traversal
99 public synchronized void inorderTraversal()
100 {
101 inorderHelper(root);
102 }
103
104 // recursive method to perform inorder traversal
105 private void inorderHelper(TreeNode node)
106 {
107 if (node == null)
108 return;
109
110 // traverse left subtree
111 inorderHelper(node.leftNode);
112
113 // output node data
114 System.out.print(node.data + " ");
115
116 // traverse right subtree
117 inorderHelper(node.rightNode);
118 }
119
120 // begin postorder traversal
121 public synchronized void postorderTraversal()
122 {
123 postorderHelper(root);
124 }
125
126 // recursive method to perform postorder traversal
127 private void postorderHelper(TreeNode node)
128 {
129 if (node == null)
130 return;
131
132 // traverse left subtree
133 postorderHelper(node.leftNode);
134
135 // traverse right subtree
136 postorderHelper(node.rightNode);
137

Fig. 19.17Fig. 19.17Fig. 19.17Fig. 19.17 Definitions of TreeNode and Tree for a binary search tree (part 3 of 4).

1120 Data Structures Chapter 19

Let us walk through the binary tree program. Method main of class TreeTest
(Fig. 19.18) begins by instantiating an empty Tree object and storing it in reference tree
(line 11). The program randomly generates 10 integers, each of which is inserted into the
binary tree through a call to synchronized method insertNode (line 21). The pro-
gram then performs preorder, inorder and postorder traversals (these will be explained
shortly) of tree.

138 // output node data
139 System.out.print(node.data + " ");
140 }
141
142 } // end class Tree

1 // Fig. 19.18: TreeTest.java
2 // This program tests class Tree.
3 import com.deitel.jhtp4.ch19.Tree;
4
5 // Class TreeTest definition
6 public class TreeTest {
7
8 // test class Tree
9 public static void main(String args[])

10 {
11 Tree tree = new Tree();
12 int value;
13
14 System.out.println("Inserting the following values: ");
15
16 // insert 10 random integers from 0-99 in tree
17 for (int i = 1; i <= 10; i++) {
18 value = (int) (Math.random() * 100);
19 System.out.print(value + " ");
20
21 tree.insertNode(value);
22 }
23
24 // perform preorder traveral of tree
25 System.out.println ("\n\nPreorder traversal");
26 tree.preorderTraversal();
27
28 // perform inorder traveral of tree
29 System.out.println ("\n\nInorder traversal");
30 tree.inorderTraversal();
31
32 // perform postorder traveral of tree
33 System.out.println ("\n\nPostorder traversal");
34 tree.postorderTraversal();
35 System.out.println();
36 }

Fig. 19.18Fig. 19.18Fig. 19.18Fig. 19.18 Creating and traversing a binary tree (part 1 of 2).

Fig. 19.17Fig. 19.17Fig. 19.17Fig. 19.17 Definitions of TreeNode and Tree for a binary search tree (part 4 of 4).

Chapter 19 Data Structures 1121

Class Tree (lines 55–142 of Fig. 19.17) has as private data root—a reference to
the root node of the tree. The class contains public method insertNode (lines 67–74)
to insert a new node in the tree and public methods preorderTraversal (lines 77–
80), inorderTraversal (lines 99–102) and postorderTraversal (lines 121–
124) to begin traversals of the tree. Each of these methods calls a separate recursive utility
method to perform the traversal operations on the internal representation of the tree. The
Tree constructor (lines 59–62) initializes root to null to indicate that the tree is empty.

The Tree class’s synchronized method insertNode (lines 67–74) first deter-
mines if the tree is empty. If so, it allocates a new TreeNode, initializes the node with the
integer being inserted in the tree and assigns the new node to the root reference (line 70).
If the tree is not empty, insertNode calls TreeNode method insert (lines 24–52). This
method uses recursion to determine the location for the new node in the tree and inserts the
node at that location. A node can be inserted only as a leaf node in a binary search tree.

The TreeNode method insert compares the value to insert with the data value
in the root node. If the insert value is less than the root node data, the program determines
if the left subtree is empty (line 30). If so, line 31 allocates a new TreeNode, initializes it
with the integer being inserted and assigns the new node to reference leftNode. Other-
wise, line 35 recursively calls insert for the left subtree to insert the value into the left
subtree. If the insert value is greater than the root node data, the program determines if the
right subtree is empty (line 42). If so, line 43 allocates a new TreeNode, initializes it with
the integer being inserted and assigns the new node to reference rightNode. Otherwise,
line 47 recursively calls insert for the right subtree to insert the value in the right subtree.

Methods inorderTraversal, preorderTraversal and postorderTra-
versal call helper methods inorderHelper (lines 105–118), preorderHelper
(lines 83–96) and postorderHelper (lines 127–140), respectively, to traverse the tree
(Fig. 19.19) and print the node values. The purpose of the helper methods in class Tree is
to allow the programmer to start a traversal without the need to obtain a reference to the
root node first, then call the recursive method with that reference. Methods inorder-
Traversal, preorderTraversal and postorderTraversal simply take the
private root reference and pass it to the appropriate helper method to initiate a tra-
versal of the tree.

37
38 } // end class TreeTest

Inserting the following values:
39 69 94 47 50 72 55 41 97 73

Preorder traversal
39 69 47 41 50 55 94 72 73 97

Inorder traversal
39 41 47 50 55 69 72 73 94 97

Postorder traversal
41 55 50 47 73 72 97 94 69 39

Fig. 19.18Fig. 19.18Fig. 19.18Fig. 19.18 Creating and traversing a binary tree (part 2 of 2).

1122 Data Structures Chapter 19

Method inorderHelper (lines 105–118) defines the steps for an inorder traversal.
Those steps are as follows:

1. Traverse the left subtree with a call to inorderHelper (line 111).

2. Process the value in the node (line 114).

3. Traverse the right subtree with a call to inorderHelper (line 117).

The inorder traversal does not process the value in a node until the values in that node’s left
subtree are processed. The inorder traversal of the tree in Fig. 19.19 is

6 13 17 27 33 42 48

Note that the inorder traversal of a binary search tree prints the node values in
ascending order. The process of creating a binary search tree actually sorts the data—and
thus, this process is called the binary tree sort.

Method preorderHelper (lines 83–96) defines the steps for a preorder traversal.
Those steps are as follows:

1. Process the value in the node (line 89).

2. Traverse the left subtree with a call to preorderHelper (line 92).

3. Traverse the right subtree with a call to preorderHelper (line 95).

The preorder traversal processes the value in each node as the node is visited. After pro-
cessing the value in a given node, the preorder traversal processes the values in the left sub-
tree, then the values in the right subtree. The preorder traversal of the tree in Fig. 19.19 is

27 13 6 17 42 33 48

Method postorderHelper (lines 127–140) defines the steps for a postorder tra-
versal. Those steps are as follows:

1. Traverse the left subtree with a postorderHelper (line 133).

2. Traverse the right subtree with a postorderHelper (line 136).

3. Process the value in the node (line 139).

The postorder traversal processes the value in each node after the values of all that node’s
children are processed. The postorderTraversal of the tree in Fig. 19.19 is

6 17 13 33 48 42 27

The binary search tree facilitates duplicate elimination. While building a tree, the inser-
tion operation recognizes attempts to insert a duplicate value, because a duplicate follows

Fig. 19.19Fig. 19.19Fig. 19.19Fig. 19.19 A binary search tree.

27

13 42

6 17 33 48

Chapter 19 Data Structures 1123

the same “go left” or “go right” decisions on each comparison as the original value did. Thus,
the insertion operation eventually compares the duplicate with a node containing the same
value. At this point, the insertion operation might simply discard the duplicate value.

Searching a binary tree for a value that matches a key value is fast, especially for tightly
packed trees. In a tightly packed tree, each level contains about twice as many elements as
the previous level. Figure 19.19 is a tightly packed binary tree. A binary search tree with n
elements has a minimum of log2n levels. Thus, at most log2n comparisons are required
either to find a match or to determine that no match exists. Searching a (tightly packed)
1000-element binary search tree requires at most 10 comparisons, because 210 > 1000.
Searching a (tightly packed) 1,000,000-element binary search tree requires at most 20 com-
parisons, because 220 > 1,000,000.

The chapter exercises present algorithms for several other binary tree operations, such
as deleting an item from a binary tree, printing a binary tree in a two-dimensional tree
format and performing a level-order traversal of a binary tree. The level-order traversal of
a binary tree visits the nodes of the tree row-by-row, starting at the root node level. On each
level of the tree, a level-order traversal visits the nodes from left to right. Other binary tree
exercises include allowing a binary search tree to contain duplicate values, inserting string
values in a binary tree and determining how many levels are contained in a binary tree.

SUMMARY
• Dynamic data structures can grow and shrink at execution time.

• Linked lists are collections of data items “lined up in a row”—insertions and deletions can be made
anywhere in a linked list.

• Stacks are important in compilers and operating systems—insertions and deletions are made only
at one end of a stack, its top.

• Queues represent waiting lines; insertions are made at the back (also referred to as the tail) of a
queue and deletions are made from the front (also referred to as the head) of a queue.

• Binary trees facilitate high-speed searching and sorting of data, eliminating duplicate data items
efficiently, representing file system directories and compiling expressions into machine language.

• A self-referential class contains a reference that refers to another object of the same class type.
Self-referential objects can be linked together to form useful data structures such as lists, queues,
stacks and trees.

• Creating and maintaining dynamic data structures requires dynamic memory allocation—the abil-
ity for a program to obtain more memory space at execution time to hold new nodes and to release
space no longer needed.

• The limit for dynamic memory allocation can be as large as the available physical memory in the
computer or the amount of available disk space in a virtual-memory system. Often, the limits are
much smaller because the computer’s available memory must be shared among many users.

• Operator new takes as an operand the type of the object being dynamically allocated and returns
a reference to a newly created object of that type. If no memory is available, new throws an Out-
OfMemoryError.

• A linked list is a linear collection (i.e., a sequence) of self-referential class objects, called nodes,
connected by reference links.

• A linked list is accessed via a reference to the first node of the list. Each subsequent node is ac-
cessed via the link-reference member stored in the previous node.

1124 Data Structures Chapter 19

• By convention, the link reference in the last node of a list is set to null to mark the end of the list.

• A node can contain data of any type, including objects of other classes.

• Trees are nonlinear data structures.

• A linked list is appropriate when the number of data elements to be represented in the data struc-
ture is unpredictable. Linked lists are dynamic, so the length of a list can increase or decrease as
necessary.

• The size of a “conventional” Java array cannot be altered—the size is fixed at creation time.

• Linked lists can be maintained in sorted order simply by inserting each new element at the proper
point in the list.

• List nodes are normally not stored contiguously in memory. Rather, they are logically contiguous.

• Methods that manipulate the contents of a list should be declared synchronized so list objects
can be multithread safe when used in a multithreaded program. If one thread is modifying the con-
tents of a list, no other thread is allowed to modify the same list at the same time.

• A stack is a constrained version of a linked list—new nodes can be added to a stack and removed
from a stack only at the top. A stack is referred to as a last-in, first-out (LIFO) data structure.

• The primary methods used to manipulate a stack are push and pop. Method push adds a new
node to the top of the stack. Method pop removes a node from the top of the stack and returns the
data object from the popped node.

• Stacks have many interesting applications. When a method call is made, the called method must
know how to return to its caller, so the return address is pushed onto the program execution stack.
If a series of method calls occurs, the successive return values are pushed onto the stack in last-in,
first-out order so that each method can return to its caller.

• The program execution stack contains the space created for local variables on each invocation of
a method. When the method returns to its caller, the space for that method’s local variables is
popped off the stack, and those variables are no longer known to the program.

• Stacks are also used by compilers in the process of evaluating arithmetic expressions and generat-
ing machine language code to process the expressions.

• The technique of implementing each stack method as a call to a List method is called delegat-
ing—the stack method invoked delegates the call to the appropriate List method.

• A queue is a constrained version of a list.

• A queue is similar to a checkout line in a supermarket—the first person in line is serviced first, and
other customers enter the line only at the end and wait to be serviced.

• Queue nodes are removed only from the head of the queue and are inserted only at the tail of the
queue. For this reason, a queue is referred to as a first-in, first-out (FIFO) data structure.

• The insert and remove operations for a queue are known as enqueue and dequeue.

• Queues have many applications in computer systems. Most computers have only a single proces-
sor, so only one user at a time can be serviced. Entries for the other users are placed in a queue.
The entry at the front of the queue is the next to receive service. Each entry gradually advances to
the front of the queue as users receive service.

• Queues are also used to support print spooling. A multiuser environment might have only a single
printer. Many users may be generating outputs to be printed. If the printer is busy, other outputs
may still be generated. These are “spooled” to disk (much as thread is wound onto a spool) where
they wait in a queue until the printer becomes available.

• Information packets also wait in queues in computer networks. Each time a packet arrives at a net-
work node, it must be routed to the next node on the network along the path to the packet’s final

Chapter 19 Data Structures 1125

destination. The routing node routes one packet at a time, so additional packets are enqueued until
the router can route them.

• A file server in a computer network handles file-access requests from many clients throughout the
network. Servers have a limited capacity to service requests from clients. When that capacity is
exceeded, client requests wait in queues.

• A tree is a nonlinear, two-dimensional data structure.

• Tree nodes contain two or more links.

• A binary tree is a tree whose nodes all contain two links. The root node is the first node in a tree.

• Each link in the root node refers to a child. The left child is the first node in the left subtree, and
the right child is the first node in the right subtree.

• The children of a node are called siblings. A node with no children is called a leaf node.

• Computer scientists normally draw trees from the root node down.

• A binary search tree (with no duplicate node values) has the characteristic that the values in any
left subtree are less than the value in its parent node, and the values in any right subtree are greater
than the value in its parent node.

• A node can be inserted only as a leaf node in a binary search tree.

• An inorder traversal of a binary search tree processes the node values in ascending order.

• The process of creating a binary search tree actually sorts the data—and thus this process is called
the binary tree sort.

• In a preorder traversal, the value in each node is processed as the node is visited. After the value
in a given node is processed, the values in the left subtree are processed, then the values in the right
subtree are processed.

• In a postorder traversal, the value in each node is processed after the values of its children.

• The binary search tree facilitates duplicate elimination. As the tree is created, attempts to insert a
duplicate value are recognized because a duplicate follows the same “go left” or “go right” deci-
sions on each comparison as the original value did. Thus, the duplicate eventually is compared
with a node containing the same value. The duplicate value could simply be discarded at this point.

• Searching a binary tree for a value that matches a key value is also fast, especially for tightly
packed trees. In a tightly packed tree, each level contains about twice as many elements as the pre-
vious level. So a binary search tree with n elements has a minimum of log2n levels, and thus at
most log2n, comparisons would have to be made either to find a match or to determine that no
match exists. Searching a (tightly packed) 1000-element binary search tree requires at most 10
comparisons, because 210 > 1000. Searching a (tightly packed) 1,000,000-element binary search
tree requires at most 20 comparisons, because 220 > 1,000,000.

TERMINOLOGY
binary search tree enqueue
binary tree FIFO (first-in, first-out)
binary tree sort head of a queue
child node inorder traversal of a binary tree
children inserting a node
delegating leaf node
deleting a node left child
dequeue left subtree
duplicate elimination level-order traversal of a binary tree
dynamic data structures LIFO (last-in, first-out)

1126 Data Structures Chapter 19

SELF-REVIEW EXERCISES
19.1 Fill in the blanks in each of the following statements:

a) A self- class is used to form dynamic data structures that can grow and shrink
at execution time.

b) Operator dynamically allocates memory; this operator returns a reference to
the allocated memory.

c) A is a constrained version of a linked list in which nodes can be inserted and
deleted only from the start of the list; this data structure returns node values in last-in,
first-out order.

d) A method that does not alter a linked list, but simply looks at the list to determine whether
it is empty is referred to as a method.

e) A queue is referred to as a data structure because the first nodes inserted are
the first nodes removed.

f) The reference to the next node in a linked list is referred to as a .
g) Automatically reclaiming dynamically allocated memory in Java is called .
h) A is a constrained version of a linked list in which nodes can be inserted only

at the end of the list and deleted only from the start of the list.
i) A is a nonlinear, two-dimensional data structure that contains nodes with

two or more links.
j) A stack is referred to as a data structure because the last node inserted is the

first node removed.
k) The nodes of a tree contain two link members.
l) The first node of a tree is the node.
m) Each link in a tree node refers to a or of that node.
n) A tree node that has no children is called a node.
o) The four traversal algorithms we mentioned in the text for binary search trees are

, , and .

19.2 What are the differences between a linked list and a stack?

19.3 What are the differences between a stack and a queue?

19.4 Perhaps a more appropriate title for this chapter would have been “Reusable Data Struc-
tures.” Comment on how each of the following entities or concepts contributes to the reusability of
data structures:

a) classes
b) inheritance
c) composition

linear data structure queue
linked list recursive tree traversal algorithms
node right child
nonlinear data structure right subtree
null reference root node
OutOfMemoryError self-referential class
parent node stack
pop subtree
postorder traversal of a binary tree tail of a queue
predicate method top of a stack
preorder traversal of a binary tree traversal
program execution stack tree
push visiting a node

Chapter 19 Data Structures 1127

19.5 Manually provide the inorder, preorder and postorder traversals of the binary search tree of
Fig. 19.20.

ANSWERS TO SELF-REVIEW EXERCISES
19.1 a) referential. b) new. c) stack. d) predicate. e) first-in, first-out (FIFO). f) link.
g) garbage collection. h) queue. i) tree j) last-in, first-out (LIFO). k) binary. l) root. m) child or
subtree. n) leaf. o) inorder, preorder, postorder, level order.

19.2 It is possible to insert a node anywhere in a linked list and remove a node from anywhere in
a linked list. Nodes in a stack may only be inserted at the top of the stack and removed from the top
of a stack.

19.3 A queue is a FIFO data structure that has references to both its head and its tail so that nodes
may be inserted at the tail and deleted from the head. A stack is a LIFO data structure that has a single
reference to the top of the stack where both insertion and deletion of nodes are performed.

19.4 a) Classes allow us to instantiate as many data structure objects of a certain type (i.e., class)
as we wish.

b) Inheritance enables us to reuse code from a superclass in a subclass so that the derived
class data structure is also a base-class data structure.

c) Composition enables us to reuse code by making a class object data structure a member
of a composed class; if we make the class object a private member of the composed
class, then the class object’s public methods are not available through the composed ob-
ject’s interface.

19.5 The inorder traversal is

11 18 19 28 32 40 44 49 69 71 72 83 92 97 99

The preorder traversal is

49 28 18 11 19 40 32 44 83 71 69 72 97 92 99

The postorder traversal is

11 19 18 32 44 40 28 69 72 71 92 99 97 83 49

EXERCISES
19.6 Write a program that concatenates two linked-list objects of characters. Class ListCon-
catenate should include a method concatenate that takes references to both list objects as ar-
guments and concatenates the second list to the first list.

Fig. 19.20Fig. 19.20Fig. 19.20Fig. 19.20 A 15-node binary search tree.

49

28 83

18 40 71 97

11 19 32 44 69 72 92 99

1128 Data Structures Chapter 19

19.7 Write a program that merges two ordered-list objects of integers into a single ordered list ob-
ject of integers. Method merge of class ListMerge should receive references to each of the list
objects to be merged and should return a reference to the merged list object.

19.8 Write a program that inserts 25 random integers from 0 to 100 in order into a linked list object.
The program should calculate the sum of the elements and the floating-point average of the elements.

19.9 Write a program that creates a linked list object of 10 characters, then creates a second list
object containing a copy of the first list, but in reverse order.

19.10 Write a program that inputs a line of text and uses a stack object to print the words of the line
in reverse order.

19.11 Write a program that uses a stack to determine whether a string is a palindrome (i.e., the string
is spelled identically backward and forward). The program should ignore spaces and punctuation.

19.12 Stacks are used by compilers to help in the process of evaluating expressions and generating
machine language code. In this and the next exercise, we investigate how compilers evaluate arith-
metic expressions consisting only of constants, operators and parentheses.

Humans generally write expressions like 3 + 4 and 7 / 9 in which the operator (+ or / here) is
written between its operands—this is called infix notation. Computers “prefer” postfix notation, in
which the operator is written to the right of its two operands. The preceding infix expressions would
appear in postfix notation as 3 4 + and 7 9 /, respectively.

To evaluate a complex infix expression, a compiler would first convert the expression to postfix
notation and evaluate the postfix version of the expression. Each of these algorithms requires only a
single left-to-right pass of the expression. Each algorithm uses a stack object in support of its opera-
tion, and in each algorithm, the stack is used for a different purpose.

In this exercise, you will write a Java version of the infix-to-postfix conversion algorithm. In the
next exercise, you will write a Java version of the postfix expression evaluation algorithm. In a later
exercise, you will discover that code you write in this exercise can help you implement a complete
working compiler.

Write class InfixToPostfixConverter to convert an ordinary infix arithmetic expres-
sion (assume a valid expression is entered) with single-digit integers such as

(6 + 2) * 5 - 8 / 4

to a postfix expression. The postfix version of the preceding infix expression is (note that no paren-
thesis are needed)

6 2 + 5 * 8 4 / -

The program should read the expression into StringBuffer infix and use one of the stack
classes implemented in this chapter to help create the postfix expression in StringBuffer
postfix. The algorithm for creating a postfix expression is as follows:

a) Push a left parenthesis '(' on the stack.
b) Append a right parenthesis ')' to the end of infix.
c) While the stack is not empty, read infix from left to right and do the following:

If the current character in infix is a digit, append it to postfix.
If the current character in infix is a left parenthesis, push it onto the stack.
If the current character in infix is an operator:

Pop operators (if there are any) at the top of the stack while they have equal
or higher precedence than the current operator, and append the popped
operators to postfix.

Push the current character in infix onto the stack.

Chapter 19 Data Structures 1129

If the current character in infix is a right parenthesis:
Pop operators from the top of the stack and append them to postfix until

a left parenthesis is at the top of the stack.
Pop (and discard) the left parenthesis from the stack.

The following arithmetic operations are allowed in an expression:
+ addition
- subtraction
* multiplication
/ division
^ exponentiation
% modulus

The stack should be maintained with stack nodes that each contain an instance variable and a
reference to the next stack node. Some of the methods you may want to provide are as follows:

a) Method convertToPostfix, which converts the infix expression to postfix notation.
b) Method isOperator, which determines whether c is an operator.
c) Method precedence, which determines if the precedence of operator1 (from the

infix expression) is less than, equal to or greater than the precedence of operator2
(from the stack). The method returns true if operator1 has lower precedence than
operator2. Otherwise, false is returned.

d) Method stackTop (this should be added to the stack class), which returns the top value
of the stack without popping the stack.

19.13 Write class PostfixEvaluator, which evaluates a postfix expression (assume it is valid)
such as

6 2 + 5 * 8 4 / -

The program should read a postfix expression consisting of digits and operators into a String-
Buffer. Using modified versions of the stack methods implemented earlier in this chapter, the pro-
gram should scan the expression and evaluate it. The algorithm is as follows:

a) Append a right parenthesis (')') to the end of the postfix expression. When the right-
parenthesis character is encountered, no further processing is necessary.

b) When the right-parenthesis character has not been encountered, read the expression from
left to right.

If the current character is a digit do the following:
Push its integer value on the stack (the integer value of a digit character is its
value in the computer’s character set minus the value of '0' in Unicode).

Otherwise, if the current character is an operator:
Pop the two top elements of the stack into variables x and y.
Calculate y operator x.
Push the result of the calculation onto the stack.

c) When the right parenthesis is encountered in the expression, pop the top value of the
stack. This is the result of the postfix expression.

[Note: In b) above (based on the sample expression at the beginning of this exercises), if the operator
is '/', the top of the stack is 2 and the next element in the stack is 8, then pop 2 into x, pop 8 into
y, evaluate 8 / 2 and push the result, 4, back on the stack. This note also applies to operator '-'.]
The arithmetic operations allowed in an expression are:

+ addition
- subtraction
* multiplication
/ division

1130 Data Structures Chapter 19

^ exponentiation
% modulus

The stack should be maintained with one of the stack classes introduced in this chapter. You
may want to provide the following methods:

a) Method evaluatePostfixExpression, which evaluates the postfix expression.
b) Method calculate, which evaluates the expression op1 operator op2.
c) Method push, which pushes a value onto the stack.
d) Method pop, which pops a value off the stack.
e) Method isEmpty, which determines whether the stack is empty.
f) Method printStack, which prints the stack.

19.14 Modify the postfix evaluator program of Exercise 19.13 so that it can process integer oper-
ands larger than 9.

19.15 (Supermarket Simulation) Write a program that simulates a checkout line at a supermarket. The
line is a queue object. Customers (i.e., customer objects) arrive in random integer intervals of from 1 to
4 minutes. Also, each customer is serviced in random integer intervals of from 1 to 4 minutes. Obvious-
ly, the rates need to be balanced. If the average arrival rate is larger than the average service rate, the
queue will grow infinitely. Even with “balanced” rates, randomness can still cause long lines. Run the
supermarket simulation for a 12-hour day (720 minutes), using the following algorithm:

a) Choose a random integer between 1 and 4 to determine the minute at which the first cus-
tomer arrives.

b) At the first customer’s arrival time, do the following:
Determine customer’s service time (random integer from 1 to 4).
Begin servicing the customer.
Schedule the arrival time of the next customer (random integer 1 to 4 added to the current
time).

c) For each minute of the day, consider the following:
If the next customer arrives, proceed as follows:

Say so.
Enqueue the customer.
Schedule the arrival time of the next customer.

If service was completed for the last customer, do the following:
Say so.
Dequeue next customer to be serviced.
Determine customer’s service completion time (random integer from 1 to 4

added to the current time).

Now run your simulation for 720 minutes and answer each of the following:
a) What is the maximum number of customers in the queue at any time?
b) What is the longest wait any one customer experiences?
c) What happens if the arrival interval is changed from 1 to 4 minutes to 1 to 3 minutes?

19.16 Modify the program of Fig. 19.17 and Fig. 19.18 to allow the binary tree to contain duplicates.

19.17 Write a program based on the program of Fig. 19.17 and Fig. 19.18 that inputs a line of text,
tokenizes the sentence into separate words (you might want to use the StreamTokenizer class
from the java.io package), inserts the words in a binary search tree and prints the inorder, preorder
and post-order traversals of the tree.

19.18 In this chapter, we saw that duplicate elimination is straightforward when creating a binary
search tree. Describe how you would perform duplicate elimination when using only a single-sub-
scripted array. Compare the performance of array-based duplicate elimination with the performance
of binary-search-tree-based duplicate elimination.

Chapter 19 Data Structures 1131

19.19 Write a method depth that receives a binary tree and determines how many levels it has.

19.20 (Recursively Print a List Backwards) Write a method printListBackwards that recur-
sively outputs the items in a linked list object in reverse order. Write a test program that creates a sort-
ed list of integers and prints the list in reverse order.

19.21 (Recursively Search a List) Write a method searchList that recursively searches a linked
list object for a specified value. Method searchList should return a reference to the value if it is
found; otherwise, null should be returned. Use your method in a test program that creates a list of in-
tegers. The program should prompt the user for a value to locate in the list.

19.22 (Binary Tree Delete) In this exercise, we discuss deleting items from binary search trees. The
deletion algorithm is not as straightforward as the insertion algorithm. There are three cases that are
encountered when deleting an item—the item is contained in a leaf node (i.e., it has no children), the
item is contained in a node that has one child or the item is contained in a node that has two children.

If the item to be deleted is contained in a leaf node, the node is deleted and the reference in the
parent node is set to null.

If the item to be deleted is contained in a node with one child, the reference in the parent node
is set to reference the child node and the node containing the data item is deleted. This causes the
child node to take the place of the deleted node in the tree.

The last case is the most difficult. When a node with two children is deleted, another node in the
tree must take its place. However, the reference in the parent node cannot simply be assigned to ref-
erence one of the children of the node to be deleted. In most cases, the resulting binary search tree
would not adhere to the following characteristic of binary search trees (with no duplicate values):
The values in any left subtree are less than the value in the parent node, and the values in any right
subtree are greater than the value in the parent node.

Which node is used as a replacement node to maintain this characteristic? It is either the node
containing the largest value in the tree less than the value in the node being deleted, or the node con-
taining the smallest value in the tree greater than the value in the node being deleted. Let us consider
the node with the smaller value. In a binary search tree, the largest value less than a parent’s value is
located in the left subtree of the parent node and is guaranteed to be contained in the rightmost node
of the subtree. This node is located by walking down the left subtree to the right until the reference to
the right child of the current node is null. We are now referencing the replacement node, which is
either a leaf node or a node with one child to its left. If the replacement node is a leaf node, the steps
to perform the deletion are as follows:

a) Store the reference to the node to be deleted in a temporary reference variable.
b) Set the reference in the parent of the node being deleted to reference the replacement

node.
c) Set the reference in the parent of the replacement node to null.
d) Set the reference to the right subtree in the replacement node to reference the right subtree

of the node to be deleted.
e) Set the reference to the left subtree in the replacement node to reference the left subtree

of the node to be deleted.

The deletion steps for a replacement node with a left child are similar to those for a replacement
node with no children, but the algorithm also must move the child into the replacement node’s posi-
tion in the tree. If the replacement node is a node with a left child, the steps to perform the deletion
are as follows:

a) Store the reference to the node to be deleted in a temporary reference variable.
b) Set the reference in the parent of the node being deleted to reference the replacement node.
c) Set the reference in the parent of the replacement node reference to the left child of the

replacement node.

1132 Data Structures Chapter 19

d) Set the reference to the right subtree in the replacement node reference to the right subtree
of the node to be deleted.

e) Set the reference to the left subtree in the replacement node to reference the left subtree
of the node to be deleted.

Write method deleteNode, which takes as its argument the value to be deleted. Method
deleteNode should locate in the tree the node containing the value to be deleted and use the algo-
rithms discussed here to delete the node. If the value is not found in the tree, the method should print
a message that indicates whether the value is deleted. Modify the program of Fig. 19.17 and
Fig. 19.18 to use this method. After deleting an item, call the methods inorderTraversal,
preorderTraversal and postorderTraversal to confirm that the delete operation was
performed correctly.

19.23 (Binary Tree Search) Write method binaryTreeSearch, which attempts to locate a
specified value in a binary search tree object. The method should take as an argument a search key to
be located. If the node containing the search key is found, the method should return a reference to that
node; otherwise, the method should return a null reference.

19.24 (Level-Order Binary Tree Traversal) The program of Fig. 19.17 and Fig. 19.18 illustrated
three recursive methods of traversing a binary tree—inorder, preorder and postorder traversals. This
exercise presents the level-order traversal of a binary tree, in which the node values are printed level-
by-level, starting at the root node level. The nodes on each level are printed from left to right. The
level-order traversal is not a recursive algorithm. It uses a queue object to control the output of the
nodes. The algorithm is as follows:

a) Insert the root node in the queue.
b) While there are nodes left in the queue, do the following:

Get the next node in the queue.
Print the node’s value.
If the reference to the left child of the node is not null:

Insert the left child node in the queue.
If the reference to the right child of the node is not null:

Insert the right child node in the queue.

Write method levelOrder to perform a level-order traversal of a binary tree object. Modify
the program of Fig. 19.17 and Fig. 19.18 to use this method. [Note: You will also need to use queue-
processing methods of Fig. 19.13 in this program.]

19.25 (Printing Trees) Write a recursive method outputTree to display a binary tree object on
the screen. The method should output the tree row-by-row, with the top of the tree at the left of the
screen and the bottom of the tree toward the right of the screen. Each row is output vertically. For
example, the binary tree illustrated in Fig. 19.20 is output as shown in Fig. 19.21.

Note that the rightmost leaf node appears at the top of the output in the rightmost column and the
root node appears at the left of the output. Each column of output starts five spaces to the right of the
preceding column. Method outputTree should receive an argument totalSpaces representing
the number of spaces preceding the value to be output. (This variable should start at zero so the root
node is output at the left of the screen.) The method uses a modified inorder traversal to output the
tree—it starts at the rightmost node in the tree and works back to the left. The algorithm is as follows:

While the reference to the current node is not null, perform the following:
Recursively call outputTree with the right subtree of the current node and

totalSpaces + 5.
Use a for structure to count from 1 to totalSpaces and output spaces.
Output the value in the current node.
Set the reference to the current node to refer to the left subtree of the current node.
Increment totalSpaces by 5.

Chapter 19 Data Structures 1133

SPECIAL SECTION: BUILDING YOUR OWN COMPILER
In Exercise 7.42 and Exercise 7.43, we introduced Simpletron Machine Language (SML), and you
implemented a Simpletron computer simulator to execute programs written in SML. In this section,
we build a compiler that converts programs written in a high-level programming language to SML.
This section “ties” together the entire programming process. You will write programs in this new
high-level language, compile these programs on the compiler you build and run the programs on the
simulator you built in Exercise 7.43. You should make every effort to implement your compiler in an
object-oriented manner.

19.26 (The Simple Language) Before we begin building the compiler, we discuss a simple, yet pow-
erful high-level language similar to early versions of the popular language Basic. We call the lan-
guage Simple. Every Simple statement consists of a line number and a Simple instruction. Line
numbers must appear in ascending order. Each instruction begins with one of the following Simple
commands: rem, input, let, print, goto, if/goto or end (see Fig. 19.22). All commands
except end can be used repeatedly. Simple evaluates only integer expressions using the +, -, * and
/ operators. These operators have the same precedence as in Java. Parentheses can be used to change
the order of evaluation of an expression.

99
97

92
83

72
71

69
49

44
40

32
28

19
18

11

Fig. 19.21Fig. 19.21Fig. 19.21Fig. 19.21 Sample output of recursive method outputTree.

Command Example statement Description

rem 50 rem this is a remark Any text following the command rem is for
documentation purposes only and is ignored
by the compiler.

input 30 input x Display a question mark to prompt the user to
enter an integer. Read that integer from the
keyboard and store the integer in x.

let 80 let u = 4 * (j - 56) Assign u the value of 4 * (j - 56). Note that
an arbitrarily complex expression can appear
to the right of the equal sign.

Fig. 19.22Fig. 19.22Fig. 19.22Fig. 19.22 Simple commands (part 1 of 2).

1134 Data Structures Chapter 19

Our Simple compiler recognizes only lowercase letters. All characters in a Simple file should
be lowercase. (Uppercase letters result in a syntax error unless they appear in a rem statement, in
which case they are ignored.) A variable name is a single letter. Simple does not allow descriptive
variable names, so variables should be explained in remarks to indicate their use in a program. Sim-
ple uses only integer variables. Simple does not have variable declarations—merely mentioning a
variable name in a program causes the variable to be declared and initialized to zero. The syntax of
Simple does not allow string manipulation (reading a string, writing a string, comparing strings etc.).
If a string is encountered in a Simple program (after a command other than rem), the compiler gen-
erates a syntax error. The first version of our compiler assumes that Simple programs are entered
correctly. Exercise 19.29 asks the reader to modify the compiler to perform syntax error checking.

Simple uses the conditional if/goto and unconditional goto statements to alter the flow of
control during program execution. If the condition in the if/goto statement is true, control is trans-
ferred to a specific line of the program. The following relational and equality operators are valid in an
if/goto statement: <, >, <=, >=, == or !=. The precedence of these operators is the same as in Java.

Let us now consider several programs that demonstrate Simple’s features. The first program
(Fig. 19.23) reads two integers from the keyboard, stores the values in variables a and b and com-
putes and prints their sum (stored in variable c).

The program of Fig. 19.24 determines and prints the larger of two integers. The integers are
input from the keyboard and stored in s and t. The if/goto statement tests the condition s >= t.
If the condition is true, control is transferred to line 90 and s is output; otherwise, t is output and
control is transferred to the end statement in line 99, where the program terminates.

print 10 print w Display the value of w.

goto 70 goto 45 Transfer program control to line 45.

if/goto 35 if i == z goto 80 Compare i and z for equality and transfer
program control to line 80 if the condition is
true; otherwise, continue execution with the
next statement.

end 99 end Terminate program execution.

1 10 rem determine and print the sum of two integers
2 15 rem
3 20 rem input the two integers
4 30 input a
5 40 input b
6 45 rem
7 50 rem add integers and store result in c
8 60 let c = a + b
9 65 rem

10 70 rem print the result
11 80 print c
12 90 rem terminate program execution
13 99 end

Fig. 19.23Fig. 19.23Fig. 19.23Fig. 19.23 Simple program that determines the sum of two integers.

Command Example statement Description

Fig. 19.22Fig. 19.22Fig. 19.22Fig. 19.22 Simple commands (part 2 of 2).

Chapter 19 Data Structures 1135

Simple does not provide a repetition structure (such as Java’s for, while or do/while).
However, Simple can simulate each of Java's repetition structures by using the if/goto and goto
statements. Figure 19.25 uses a sentinel-controlled loop to calculate the squares of several integers.
Each integer is input from the keyboard and stored in variable j. If the value entered is the sentinel
value -9999, control is transferred to line 99, where the program terminates. Otherwise, k is
assigned the square of j, k is output to the screen and control is passed to line 20, where the next
integer is input.

Using the sample programs of Fig. 19.23–Fig. 19.25 as your guide, write a Simple program to
accomplish each of the following:

a) Input three integers, determine their average and print the result.
b) Use a sentinel-controlled loop to input 10 integers and compute and print their sum.
c) Use a counter-controlled loop to input 7 integers, some positive and some negative, and

compute and print their average.
d) Input a series of integers and determine and print the largest. The first integer input in-

dicates how many numbers should be processed.
e) Input 10 integers and print the smallest.
f) Calculate and print the sum of the even integers from 2 to 30.
g) Calculate and print the product of the odd integers from 1 to 9.

1 10 rem determine and print the larger of two integers
2 20 input s
3 30 input t
4 32 rem
5 35 rem test if s >= t
6 40 if s >= t goto 90
7 45 rem
8 50 rem t is greater than s, so print t
9 60 print t

10 70 goto 99
11 75 rem
12 80 rem s is greater than or equal to t, so print s
13 90 print s
14 99 end

Fig. 19.24Fig. 19.24Fig. 19.24Fig. 19.24 Simple program that finds the larger of two integers.

1 10 rem calculate the squares of several integers
2 20 input j
3 23 rem
4 25 rem test for sentinel value
5 30 if j == -9999 goto 99
6 33 rem
7 35 rem calculate square of j and assign result to k
8 40 let k = j * j
9 50 print k

10 53 rem
11 55 rem loop to get next j
12 60 goto 20
13 99 end

Fig. 19.25Fig. 19.25Fig. 19.25Fig. 19.25 Calculate the squares of several integers.

1136 Data Structures Chapter 19

19.27 (Building A Compiler; Prerequisite: Complete Exercise 7.42, Exercise 7.43, Exercise 19.12,
Exercise 19.13 and Exercise 19.26) Now that the Simple language has been presented
(Exercise 19.26), we discuss how to build a Simple compiler. First, we consider the process by which
a Simple program is converted to SML and executed by the Simpletron simulator (see Fig. 19.26). A
file containing a Simple program is read by the compiler and converted to SML code. The SML code
is output to a file on disk, in which SML instructions appear one per line. The SML file is then loaded
into the Simpletron simulator, and the results are sent to a file on disk and to the screen. Note that the
Simpletron program developed in Exercise 7.43 took its input from the keyboard. It must be modified
to read from a file so it can run the programs produced by our compiler.

The Simple compiler performs two passes of the Simple program to convert it to SML. The first
pass constructs a symbol table (object) in which every line number (object), variable name (object)
and constant (object) of the Simple program is stored with its type and corresponding location in the
final SML code (the symbol table is discussed in detail below). The first pass also produces the
corresponding SML instruction object(s) for each of the Simple statements (object, etc.). If the Sim-
ple program contains statements that transfer control to a line later in the program, the first pass
results in an SML program containing some “unfinished” instructions. The second pass of the com-
piler locates and completes the unfinished instructions and outputs the SML program to a file.

First Pass

The compiler begins by reading one statement of the Simple program into memory. The line must be
separated into its individual tokens (i.e., “pieces” of a statement) for processing and compilation.
(The StreamTokenizer class from the java.io package can be used.) Recall that every state-
ment begins with a line number followed by a command. As the compiler breaks a statement into
tokens, if the token is a line number, a variable or a constant, it is placed in the symbol table. A line
number is placed in the symbol table only if it is the first token in a statement. The symbolTable
object is an array of tableEntry objects representing each symbol in the program. There is no
restriction on the number of symbols that can appear in the program. Therefore, the symbolTable
for a particular program could be large. Make the symbolTable a 100-element array for now. You
can increase or decrease its size once the program is working.

Each tableEntry object contains three members. Member symbol is an integer containing
the Unicode representation of a variable (remember that variable names are single characters), a line
number or a constant. Member type is one of the following characters indicating the symbol’s type:
'C' for constant, 'L' for line number or 'V' for variable. Member location contains the Sim-
pletron memory location (00 to 99) to which the symbol refers. Simpletron memory is an array of
100 integers in which SML instructions and data are stored. For a line number, the location is the
element in the Simpletron memory array at which the SML instructions for the Simple statement
begin. For a variable or constant, the location is the element in the Simpletron memory array in
which the variable or constant is stored. Variables and constants are allocated from the end of Sim-
pletron’s memory backwards. The first variable or constant is stored at location 99, the next at loca-
tion 98, etc.

The symbol table plays an integral part in converting Simple programs to SML. We learned in
Chapter 7 that an SML instruction is a four-digit integer comprised of two parts—the operation code
and the operand. The operation code is determined by commands in Simple. For example, the sim-
ple command input corresponds to SML operation code 10 (read), and the Simple command
print corresponds to SML operation code 11 (write). The operand is a memory location contain-
ing the data on which the operation code performs its task (e.g., operation code 10 reads a value
from the keyboard and stores it in the memory location specified by the operand). The compiler
searches symbolTable to determine the Simpletron memory location for each symbol, so the cor-
responding location can be used to complete the SML instructions.

Chapter 19 Data Structures 1137

The compilation of each Simple statement is based on its command. For example, after the line
number in a rem statement is inserted in the symbol table, the remainder of the statement is ignored
by the compiler because a remark is for documentation purposes only. The input, print, goto
and end statements correspond to the SML read, write, branch (to a specific location) and halt
instructions. Statements containing these Simple commands are converted directly to SML. (Note: A
goto statement may contain an unresolved reference if the specified line number refers to a state-
ment further into the Simple program file; this is sometimes called a forward reference.)

When a goto statement is compiled with an unresolved reference, the SML instruction must be
flagged to indicate that the second pass of the compiler must complete the instruction. The flags are
stored in a 100-element array flags of type int in which each element is initialized to -1. If the
memory location to which a line number in the Simple program refers is not yet known (i.e., it is not in
the symbol table), the line number is stored in array flags in the element with the same subscript as
the incomplete instruction. The operand of the incomplete instruction is set to 00 temporarily. For
example, an unconditional branch instruction (making a forward reference) is left as +4000 until the
second pass of the compiler. The second pass of the compiler will be described shortly.

Compilation of if/goto and let statements is more complicated than other statements—they
are the only statements that produce more than one SML instruction. For an if/goto statement, the
compiler produces code to test the condition and to branch to another line if necessary. The result of the
branch could be an unresolved reference. Each of the relational and equality operators can be simulated
by using SML’s branch zero and branch negative instructions (or possibly a combination of both).

For a let statement, the compiler produces code to evaluate an arbitrarily complex arithmetic
expression consisting of integer variables and/or constants. Expressions should separate each oper-
and and operator with spaces. Exercise 19.12 and Exercise 19.13 presented the infix-to-postfix
conversion algorithm and the postfix evaluation algorithm used by compilers to evaluate expres-
sions. Before proceeding with your compiler, you should complete each of these exercises. When a
compiler encounters an expression, it converts the expression from infix notation to postfix notation,
then evaluates the postfix expression.

How is it that the compiler produces the machine language to evaluate an expression containing
variables? The postfix evaluation algorithm contains a “hook” where the compiler can generate SML
instructions rather than actually evaluating the expression. To enable this “hook” in the compiler, the
postfix evaluation algorithm must be modified to search the symbol table for each symbol it encoun-
ters (and possibly insert it), determine the symbol’s corresponding memory location and push the
memory location on the stack (instead of the symbol). When an operator is encountered in the postfix
expression, the two memory locations at the top of the stack are popped, and machine language for
effecting the operation is produced by using the memory locations as operands. The result of each
subexpression is stored in a temporary location in memory and pushed back onto the stack so the

Fig. 19.26Fig. 19.26Fig. 19.26Fig. 19.26 Writing, compiling and executing a Simple language program.

SML filecompiler

output to
screen

Simple file

output to
disk

Simpletron
Simulator

1138 Data Structures Chapter 19

evaluation of the postfix expression can continue. When postfix evaluation is complete, the memory
location containing the result is the only location left on the stack. This is popped, and SML instruc-
tions are generated to assign the result to the variable at the left of the let statement.

Second Pass

The second pass of the compiler performs two tasks: Resolve any unresolved references and output
the SML code to a file. Resolution of references occurs as follows:

a) Search the flags array for an unresolved reference (i.e., an element with a value other
than -1).

b) Locate the object in array symbolTable containing the symbol stored in the flags
array (be sure that the type of the symbol is 'L' for line number).

c) Insert the memory location from member location into the instruction with the un-
resolved reference (remember that an instruction containing an unresolved reference has
operand 00).

d) Repeat steps (a), (b) and (c) until the end of the flags array is reached.

After the resolution process is complete, the entire array containing the SML code is output to a disk
file with one SML instruction per line. This file can be read by the Simpletron for execution (after
the simulator is modified to read its input from a file). Compiling your first Simple program into an
SML file and executing that file should give you a real sense of personal accomplishment.

A Complete Example

The following example illustrates complete conversion of a Simple program to SML as it will be
performed by the Simple compiler. Consider a Simple program that inputs an integer and sums the
values from 1 to that integer. The program and the SML instructions produced by the first pass of the
Simple compiler are illustrated in Fig. 19.27. The symbol table constructed by the first pass is shown
in Fig. 19.28. .

Simple program
SML location
and instruction Description

5 rem sum 1 to x none rem ignored

10 input x 00 +1099 read x into location 99

15 rem check y == x none rem ignored

20 if y == x goto 60 01 +2098 load y (98) into accumulator

02 +3199 sub x (99) from accumulator

03 +4200 branch zero to unresolved location

25 rem increment y none rem ignored

30 let y = y + 1 04 +2098 load y into accumulator

05 +3097 add 1 (97) to accumulator

06 +2196 store in temporary location 96

07 +2096 load from temporary location 96

08 +2198 store accumulator in y

35 rem add y to total none rem ignored

Fig. 19.27Fig. 19.27Fig. 19.27Fig. 19.27 SML instructions produced after the compiler’s first pass (part 1 of 2).

Chapter 19 Data Structures 1139

Most Simple statements convert directly to single SML instructions. The exceptions in this pro-
gram are remarks, the if/goto statement in line 20 and the let statements. Remarks do not trans-
late into machine language. However, the line number for a remark is placed in the symbol table in

40 let t = t + y 09 +2095 load t (95) into accumulator

10 +3098 add y to accumulator

11 +2194 store in temporary location 94

12 +2094 load from temporary location 94

13 +2195 store accumulator in t

45 rem loop y none rem ignored

50 goto 20 14 +4001 branch to location 01

55 rem output result none rem ignored

60 print t 15 +1195 output t to screen

99 end 16 +4300 terminate execution

Symbol Type Location

5 L 00

10 L 00

'x' V 99

15 L 01

20 L 01

'y' V 98

25 L 04

30 L 04

1 C 97

35 L 09

40 L 09

't' V 95

45 L 14

50 L 14

55 L 15

60 L 15

99 L 16

Fig. 19.28Fig. 19.28Fig. 19.28Fig. 19.28 Symbol table for program of Fig. 19.27.

Simple program
SML location
and instruction Description

Fig. 19.27Fig. 19.27Fig. 19.27Fig. 19.27 SML instructions produced after the compiler’s first pass (part 2 of 2).

1140 Data Structures Chapter 19

case the line number is referenced in a goto statement or an if/goto statement. Line 20 of the pro-
gram specifies that, if the condition y == x is true, program control is transferred to line 60. Since
line 60 appears later in the program, the first pass of the compiler has not as yet placed 60 in the sym-
bol table. (Statement line numbers are placed in the symbol table only when they appear as the first
token in a statement.) Therefore, it is not possible at this time to determine the operand of the SML
branch zero instruction at location 03 in the array of SML instructions. The compiler places 60 in
location 03 of the flags array to indicate that the second pass completes this instruction.

We must keep track of the next instruction location in the SML array because there is not a one-
to-one correspondence between Simple statements and SML instructions. For example, the if/goto
statement of line 20 compiles into three SML instructions. Each time an instruction is produced, we
must increment the instruction counter to the next location in the SML array. Note that the size of
Simpletron’s memory could present a problem for Simple programs with many statements, variables
and constants. It is conceivable that the compiler will run out of memory. To test for this case, your
program should contain a data counter to keep track of the location at which the next variable or con-
stant will be stored in the SML array. If the value of the instruction counter is larger than the value of
the data counter, the SML array is full. In this case, the compilation process should terminate, and the
compiler should print an error message indicating that it ran out of memory during compilation. This
serves to emphasize that, although the programmer is freed from the burdens of managing memory by
the compiler, the compiler itself must carefully determine the placement of instructions and data in
memory and must check for such errors as memory being exhausted during the compilation process.

A Step-by-Step View of the Compilation Process

Let us now walk through the compilation process for the Simple program in Fig. 19.27. The com-
piler reads the first line of the program

5 rem sum 1 to x

into memory. The first token in the statement (the line number) is determined using the Stream-
Tokenizer class (see Chapter 10 for a discussion of Java’s string manipulation methods). The
token returned by the StreamTokenizer is converted to an integer by using static method
Integer.parseInt(), so the symbol 5 can be located in the symbol table. If the symbol is not
found, it is inserted in the symbol table.

We are at the beginning of the program and this is the first line, and no symbols are in the table
yet. Therefore, 5 is inserted into the symbol table as type L (line number) and assigned the first loca-
tion in SML array (00). Although this line is a remark, a space in the symbol table is still allocated
for the line number (in case it is referenced by a goto or an if/goto). No SML instruction is gen-
erated for a rem statement, so the instruction counter is not incremented.
The statement

10 input x

is tokenized next. The line number 10 is placed in the symbol table as type L and assigned the first
location in the SML array (00 because a remark began the program, so the instruction counter is cur-
rently 00). The command input indicates that the next token is a variable (only a variable can
appear in an input statement). input corresponds directly to an SML operation code; therefore,
the compiler simply has to determine the location of x in the SML array. Symbol x is not found in
the symbol table. So, it is inserted into the symbol table as the Unicode representation of x, given
type V and assigned location 99 in the SML array (data storage begins at 99 and is allocated back-
wards). SML code can now be generated for this statement. Operation code 10 (the SML read oper-
ation code) is multiplied by 100, and the location of x (as determined in the symbol table) is added to
complete the instruction. The instruction is then stored in the SML array at location 00. The instruc-
tion counter is incremented by one, because a single SML instruction was produced.

Chapter 19 Data Structures 1141

The statement

15 rem check y == x

is tokenized next. The symbol table is searched for line number 15 (which is not found). The line
number is inserted as type L and assigned the next location in the array, 01. (Remember that rem
statements do not produce code, so the instruction counter is not incremented.)

The statement

20 if y == x goto 60

is tokenized next. Line number 20 is inserted in the symbol table and given type L at the next
location in the SML array 01. The command if indicates that a condition is to be evaluated. The
variable y is not found in the symbol table, so it is inserted and given the type V and the SML loca-
tion 98. Next, SML instructions are generated to evaluate the condition. There is no direct equiva-
lent in SML for the if/goto; it must be simulated by performing a calculation using x and y and
branching according to the result. If y is equal to x, the result of subtracting x from y is zero, so the
branch zero instruction can be used with the result of the calculation to simulate the if/goto state-
ment. The first step requires that y be loaded (from SML location 98) into the accumulator. This
produces the instruction 01 +2098. Next, x is subtracted from the accumulator. This produces the
instruction 02 +3199. The value in the accumulator may be zero, positive or negative. The operator
is ==, so we want to branch zero. First, the symbol table is searched for the branch location (60 in
this case), which is not found. So, 60 is placed in the flags array at location 03, and the instruc-
tion 03 +4200 is generated. (We cannot add the branch location because we have not yet assigned a
location to line 60 in the SML array.) The instruction counter is incremented to 04.

The compiler proceeds to the statement

25 rem increment y

The line number 25 is inserted in the symbol table as type L and assigned SML location 04. The
instruction counter is not incremented.

When the statement

30 let y = y + 1

is tokenized, the line number 30 is inserted in the symbol table as type L and assigned SML location
04. Command let indicates that the line is an assignment statement. First, all the symbols on the
line are inserted in the symbol table (if they are not already there). The integer 1 is added to the sym-
bol table as type C and assigned SML location 97. Next, the right side of the assignment is converted
from infix to postfix notation. Then the postfix expression (y 1 +) is evaluated. Symbol y is located
in the symbol table, and its corresponding memory location is pushed onto the stack. Symbol 1 is
also located in the symbol table, and its corresponding memory location is pushed onto the stack.
When the operator + is encountered, the postfix evaluator pops the stack into the right operand of the
operator and pops the stack again into the left operand of the operator, then produces the SML
instructions

04 +2098 (load y)
05 +3097 (add 1)

The result of the expression is stored in a temporary location in memory (96) with instruction

06 +2196 (store temporary)

and the temporary location is pushed onto the stack. Now that the expression has been evaluated, the
result must be stored in y (i.e., the variable on the left side of =). So, the temporary location is loaded
into the accumulator and the accumulator is stored in y with the instructions

1142 Data Structures Chapter 19

07 +2096 (load temporary)
08 +2198 (store y)

The reader will immediately notice that SML instructions appear to be redundant. We will discuss
this issue shortly.

When the statement

35 rem add y to total

is tokenized, line number 35 is inserted in the symbol table as type L and assigned location 09.

The statement

40 let t = t + y

is similar to line 30. The variable t is inserted in the symbol table as type V and assigned SML
location 95. The instructions follow the same logic and format as line 30, and the instructions 09
+2095, 10 +3098, 11 +2194, 12 +2094 and 13 +2195 are generated. Note that the result of t
+ y is assigned to temporary location 94 before being assigned to t (95). Once again, the reader
will note that the instructions in memory locations 11 and 12 appear to be redundant. Again, we
will discuss this shortly.

The statement

45 rem loop y

is a remark, so line 45 is added to the symbol table as type L and assigned SML location 14.

The statement

50 goto 20

transfers control to line 20. Line number 50 is inserted in the symbol table as type L and assigned
SML location 14. The equivalent of goto in SML is the unconditional branch (40) instruction that
transfers control to a specific SML location. The compiler searches the symbol table for line 20 and
finds that it corresponds to SML location 01. The operation code (40) is multiplied by 100, and
location 01 is added to it to produce the instruction 14 +4001.

The statement

55 rem output result

is a remark, so line 55 is inserted in the symbol table as type L and assigned SML location 15.

The statement

60 print t

is an output statement. Line number 60 is inserted in the symbol table as type L and assigned SML
location 15. The equivalent of print in SML is operation code 11 (write). The location of t is
determined from the symbol table and added to the result of the operation code multiplied by 100.

The statement

99 end

is the final line of the program. Line number 99 is stored in the symbol table as type L and assigned
SML location 16. The end command produces the SML instruction +4300 (43 is halt in SML),
which is written as the final instruction in the SML memory array.

This completes the first pass of the compiler. We now consider the second pass. The flags
array is searched for values other than -1. Location 03 contains 60, so the compiler knows that
instruction 03 is incomplete. The compiler completes the instruction by searching the symbol

Chapter 19 Data Structures 1143

table for 60, determining its location and adding the location to the incomplete instruction. In this
case, the search determines that line 60 corresponds to SML location 15, so the completed
instruction 03 +4215 is produced, replacing 03 +4200. The Simple program has now been
compiled successfully.

To build the compiler, you will have to perform each of the following tasks:
a) Modify the Simpletron simulator program you wrote in Exercise 7.43 to take its input

from a file specified by the user (see Chapter 16). The simulator should output its results
to a disk file in the same format as the screen output. Convert the simulator to be an ob-
ject-oriented program. In particular, make each part of the hardware an object. Arrange
the instruction types into a class hierarchy using inheritance. Then execute the program
polymorphically simply by telling each instruction to execute itself with an exe-
cuteInstruction message.

b) Modify the infix-to-postfix evaluation algorithm of Exercise 19.12 to process multidigit
integer operands and single-letter variable name operands. (Hint: Class StreamTo-
kenizer can be used to locate each constant and variable in an expression, and con-
stants can be converted from strings to integers by using Integer class method
parseInt.) [Note: The data representation of the postfix expression must be altered to
support variable names and integer constants.]

c) Modify the postfix evaluation algorithm to process multidigit integer operands and vari-
able name operands. Also, the algorithm should now implement the “hook” discussed
earlier so that SML instructions are produced rather than directly evaluating the expres-
sion. (Hint: Class StreamTokenizer can be used to locate each constant and variable
in an expression, and constants can be converted from strings to integers by using In-
teger class method parseInt.) [Note: The data representation of the postfix expres-
sion must be altered to support variable names and integer constants.]

d) Build the compiler. Incorporate parts b) and c) for evaluating expressions in let state-
ments. Your program should contain a method that performs the first pass of the compiler
and a method that performs the second pass of the compiler. Both methods can call other
methods to accomplish their tasks. Make your compiler as object oriented as possible.

19.28 (Optimizing the Simple Compiler) When a program is compiled and converted into SML, a
set of instructions is generated. Certain combinations of instructions often repeat themselves, usually
in triplets called productions. A production normally consists of three instructions, such as load, add
and store. For example, Fig. 19.29 illustrates five of the SML instructions that were produced in the
compilation of the program in Fig. 19.27. The first three instructions are the production that adds 1
to y. Note that instructions 06 and 07 store the accumulator value in temporary location 96, then
load the value back into the accumulator so instruction 08 can store the value in location 98. Often
a production is followed by a load instruction for the same location that was just stored. This code can
be optimized by eliminating the store instruction and the subsequent load instruction that operate on
the same memory location, thus enabling the Simpletron to execute the program faster. Figure 19.30
illustrates the optimized SML for the program of Fig. 19.27. Note that there are four fewer instruc-
tions in the optimized code—a memory-space savings of 25%.

1 04 +2098 (load)
2 05 +3097 (add)
3 06 +2196 (store)
4 07 +2096 (load)
5 08 +2198 (store)

Fig. 19.29Fig. 19.29Fig. 19.29Fig. 19.29 Unoptimized code from the program of Fig. 19.25.

1144 Data Structures Chapter 19

19.29 (Modifications to the Simple Compiler) Perform the following modifications to the Simple
compiler. Some of these modifications might also require modifications to the Simpletron simulator
program written in Exercise 7.43.

a) Allow the modulus operator (%) to be used in let statements. Simpletron Machine Lan-
guage must be modified to include a modulus instruction.

b) Allow exponentiation in a let statement using ^ as the exponentiation operator. Sim-
pletron Machine Language must be modified to include an exponentiation instruction.

c) Allow the compiler to recognize uppercase and lowercase letters in Simple statements
(e.g., 'A' is equivalent to 'a'). No modifications to the Simpletron simulator are re-
quired.

d) Allow input statements to read values for multiple variables such as input x, y. No
modifications to the Simpletron simulator are required to perform this enhancement to
the Simple compiler.

e) Allow the compiler to output multiple values from a single print statement, such as
print a, b, c. No modifications to the Simpletron simulator are required to perform
this enhancement.

f) Add syntax-checking capabilities to the compiler so error messages are output when syn-
tax errors are encountered in a Simple program. No modifications to the Simpletron sim-
ulator are required.

Simple program
SML location
and instruction Description

5 rem sum 1 to x none rem ignored

10 input x 00 +1099 read x into location 99

15 rem check y == x none rem ignored

20 if y == x goto 60 01 +2098 load y (98) into accumulator

02 +3199 sub x (99) from accumulator

03 +4211 branch to location 11 if zero

25 rem increment y none rem ignored

30 let y = y + 1 04 +2098 load y into accumulator

05 +3097 add 1 (97) to accumulator

06 +2198 store accumulator in y (98)

35 rem add y to total none rem ignored

40 let t = t + y 07 +2096 load t from location (96)

08 +3098 add y (98) accumulator

09 +2196 store accumulator in t (96)

45 rem loop y none rem ignored

50 goto 20 10 +4001 branch to location 01

55 rem output result none rem ignored

60 print t 11 +1196 output t (96) to screen

99 end 12 +4300 terminate execution

Fig. 19.30Fig. 19.30Fig. 19.30Fig. 19.30 Optimized code for the program of Fig. 19.27.

Chapter 19 Data Structures 1145

g) Allow arrays of integers. No modifications to the Simpletron simulator are required to
perform this enhancement.

h) Allow subroutines specified by the Simple commands gosub and return. Command
gosub passes program control to a subroutine and command return passes control
back to the statement after the gosub. This is similar to a method call in Java. The same
subroutine can be called from many gosub commands distributed throughout a pro-
gram. No modifications to the Simpletron simulator are required.

i) Allow repetition structures of the form

for x = 2 to 10 step 2
Simple statements

next

This for statement loops from 2 to 10 with an increment of 2. The next line marks the
end of the body of the for line. No modifications to the Simpletron simulator are required.

j) Allow repetition structures of the form

for x = 2 to 10
Simple statements

next

This for statement loops from 2 to 10 with a default increment of 1. No modifications
to the Simpletron simulator are required.

k) Allow the compiler to process string input and output. This requires the Simpletron sim-
ulator to be modified to process and store string values. [Hint: Each Simpletron word
(i.e., memory location) can be divided into two groups, each holding a two-digit integer.
Each two-digit integer represents the Unicode decimal equivalent of a character. Add a
machine-language instruction that will print a string beginning at a certain Simpletron
memory location. The first half of the Simpletron word at that location is a count of the
number of characters in the string (i.e., the length of the string). Each succeeding half
word contains one Unicode character expressed as two decimal digits. The machine lan-
guage instruction checks the length and prints the string by translating each two-digit
number into its equivalent character.]

l) Allow the compiler to process floating-point values in addition to integers. The Sim-
pletron Simulator must also be modified to process floating-point values.

19.30 (A Simple Interpreter) An interpreter is a program that reads a high-level language program
statement, determines the operation to be performed by the statement and executes the operation im-
mediately. The high-level language program is not converted into machine language first. Interpreters
execute more slowly than compilers do, because each statement encountered in the program being
interpreted must first be deciphered at execution time. If statements are contained in a loop, the state-
ments are deciphered each time they are encountered in the loop. Early versions of the Basic program-
ming language were implemented as interpreters. Most Java programs are run interpretively.

Write an interpreter for the Simple language discussed in Exercise 19.26. The program should
use the infix-to-postfix converter developed in Exercise 19.12 and the postfix evaluator developed in
Exercise 19.13 to evaluate expressions in a let statement. The same restrictions placed on the Sim-
ple language in Exercise 19.26 should be adhered to in this program. Test the interpreter with the
Simple programs written in Exercise 19.26. Compare the results of running these programs in the
interpreter with the results of compiling the Simple programs and running them in the Simpletron
simulator built in Exercise 7.43.

19.31 (Insert/Delete Anywhere in a Linked List) Our linked-list class allowed insertions and dele-
tions at only the front and the back of the linked list. These capabilities were convenient for us when
we used inheritance or composition to produce a stack class and a queue class with a minimal amount

1146 Data Structures Chapter 19

of code simply by reusing the list class. Linked lists are normally more general than those we provid-
ed. Modify the linked-list class we developed in this chapter to handle insertions and deletions any-
where in the list.

19.32 (Lists and Queues without Tail References) Our implementation of a linked list (Fig. 19.3)
used both a firstNode and a lastNode. The lastNode was useful for the insertAtBack
and removeFromBack methods of the List class. The insertAtBack method corresponds to
the enqueue method of the Queue class.

Rewrite the List class so that it does not use a lastNode. Thus, any operations on the tail of
a list must begin searching the list from the front. Does this affect our implementation of the Queue
class (Fig. 19.13)?

19.33 (Performance of Binary Tree Sorting and Searching) One problem with the binary tree sort
is that the order in which the data is inserted affects the shape of the tree—for the same collection of
data, different orderings can yield binary trees of dramatically different shapes. The performance of
the binary tree sorting and searching algorithms is sensitive to the shape of the binary tree. What shape
would a binary tree have if its data were inserted in increasing order? in decreasing order? What shape
should the tree have to achieve maximal searching performance?

19.34 (Indexed Lists) As presented in the text, linked lists must be searched sequentially. For large
lists, this can result in poor performance. A common technique for improving list-searching perfor-
mance is to create and maintain an index to the list. An index is a set of references to key places in
the list. For example, an application that searches a large list of names could improve performance by
creating an index with 26 entries—one for each letter of the alphabet. A search operation for a last
name beginning with ‘Y’ would then first search the index to determine where the ‘Y’ entries begin,
then “jump into” the list at that point and search linearly until the desired name is found. This would
be much faster than searching the linked list from the beginning. Use the List class of Fig. 19.3 as
the basis of an IndexedList class.

Write a program that demonstrates the operation of indexed lists. Be sure to include methods
insertInIndexedList, searchIndexedList and deleteFromIndexedList.

20
Java Utilities Package

and
Bit Manipulation

Objectives
• To understand containers, such as classes Vector

and Stack, and the Enumeration interface.
• To be able to create Hashtable objects and

persistent hash tables called Properties objects.
• To understand random number generation with

instances of class Random.
• To use bit manipulation and BitSet objects.
Nothing can have value without being an object of utility.
Karl Marx

I’ve been in Who’s Who, and I know what’s what, but this is
the first time I ever made the dictionary.
Mae West

O! many a shaft at sent
Finds mark the archer little meant!
Sir Walter Scott

There was the Door to which I found no Key;
There was the Veil through which I might not see.
Edward FitzGerald, The Rubáiyát of Omar Khayyám, st. 32

“It's a poor sort of memory that only works backwards,” the
Queen remarked.
Lewis Carroll [Charles Lutwidge Dodgson]

Not by age but by capacity is wisdom acquired.
Titus Maccius Plautus, Trinummus, act II, sc. ii, l.88

1148 Java Utilities Package and Bit Manipulation Chapter 20

20.1 Introduction
This chapter discusses several utility classes and interfaces in package java.util, in-
cluding class Vector, interface Enumeration, class Stack, class Dictionary,
class Hashtable, class Properties, class Random and class BitSet.

Programs use class Vector to create array-like objects that can grow and shrink
dynamically as a program’s data storage requirements change. We consider interface Enu-
meration, which enables a program to iterate through the elements of a container such
as a Vector.

Class Stack offers conventional stack operations push and pop, as well as others
we did not consider in Chapter 19.

Class Dictionary is an abstract class that provides a framework for storing
keyed data in tables and retrieving that data. The chapter explains the theory of “hashing,”
a technique for rapidly storing and retrieving information from tables, and demonstrates the
construction and manipulation of hash tables with Java’s Hashtable class. Also, the
chapter considers class Properties, which provides support for persistent hash tables—
hash tables that can be written to a file with an output stream and read from a file with an
input stream.

Class Random provides a richer collection of random number capabilities than is
available with static method random of class Math.

The chapter presents an extensive discussion of bit manipulation operators, followed
by a discussion of class BitSet that enables the creation of bit-array-like objects for set-
ting and getting individual bit values.

Chapter 21, Collections, introduces a framework for manipulating groups of objects
called collections. Objects of type Vector, Stack and Hashtable are collections.

20.2 Vector Class and Enumeration Interface
In most programming languages, including Java, conventional arrays are fixed in size—
they cannot grow or shrink in response to an application’s changing storage requirements.
Java class Vector provides the capabilities of array-like data structures that can resize
themselves dynamically.

Outline

20.1 Introduction
20.2 Vector Class and Enumeration Interface
20.3 Stack Class
20.4 Dictionary Class
20.5 Hashtable Class
20.6 Properties Class
20.7 Random Class
20.8 Bit Manipulation and the Bitwise Operators
20.9 BitSet Class

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 20 Java Utilities Package and Bit Manipulation 1149

At any time, the Vector contains a certain number of elements less than or equal to
its capacity. The capacity is the space that has been reserved for the Vector’s elements.
If a Vector requires additional capacity, it grows by a capacity increment that you specify
or by a default assumed by the system. If you do not specify a capacity increment, the
system will double the size of the Vector each time additional capacity is needed.

Performance Tip 20.1
Inserting additional elements into a Vector whose current size is less than its capacity is a
relatively fast operation. 20.1

Performance Tip 20.2
It is a relatively slow operation to insert an element into a Vector that needs to grow larger
to accommodate the new element. 20.2

Performance Tip 20.3
The default capacity increment doubles the size of the Vector. This may seem a waste of
storage, but it is actually an efficient way for many Vectors to grow quickly to be “about
the right size.” This is much more efficient time-wise than growing the Vector each time
by only as much space as it takes to hold a single element. This disadvantage is that the Vec-
tor might occupy more space than it requires. 20.3

Performance Tip 20.4
If storage is at a premium, use Vector method trimToSize to trim a Vector’s capacity
to the Vector’s exact size. This optimizes a Vector’s use of storage. However, adding an-
other element to the Vector will force the Vector to grow dynamically—trimming leaves
no room for growth. 20.4

Vectors store references to Objects. Thus, a program can store references to any
objects in a Vector. To store values of primitive data types in Vectors, use the type-
wrapper classes (e.g., Integer, Long, Float) from package java.lang to create
objects containing the primitive data type values.

Figure 20.1 demonstrates class Vector and several of its methods. The program pro-
vides a JButton that enables the user to test each of the methods. The user can type a
String into the provided JTextField, and then press a button to see what the method
does. Each operation displays a message in a JLabel to indicate the results of the operation.

1 // Fig. 20.1: VectorTest.java
2 // Testing the Vector class of the java.util package
3
4 // Java core packages
5 import java.util.*;
6 import java.awt.*;
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class VectorTest extends JFrame {
13 private JLabel statusLabel;

Fig. 20.1Fig. 20.1Fig. 20.1Fig. 20.1 Demonstrating class Vector of package java.util (part 1 of 6).

1150 Java Utilities Package and Bit Manipulation Chapter 20

14 private Vector vector;
15 private JTextField inputField;
16
17 // set up GUI to test Vector methods
18 public VectorTest()
19 {
20 super("Vector Example");
21
22 Container container = getContentPane();
23 container.setLayout(new FlowLayout());
24
25 statusLabel = new JLabel();
26 vector = new Vector(1);
27
28 container.add(new JLabel("Enter a string"));
29
30 inputField = new JTextField(10);
31 container.add(inputField);
32
33 // button to add element to vector
34 JButton addButton = new JButton("Add");
35
36 addButton.addActionListener(
37
38 new ActionListener() {
39
40 public void actionPerformed(ActionEvent event)
41 {
42 // add an element to vector
43 vector.addElement(inputField.getText());
44 statusLabel.setText("Added to end: " +
45 inputField.getText());
46 inputField.setText("");
47 }
48 }
49); // end call to addActionListener
50
51 container.add(addButton);
52
53 // button to remove element from vector
54 JButton removeButton = new JButton("Remove");
55
56 removeButton.addActionListener(
57
58 new ActionListener() {
59
60 public void actionPerformed(ActionEvent event)
61 {
62 // remove element from vector
63 if (vector.removeElement(inputField.getText()))
64 statusLabel.setText("Removed: " +
65 inputField.getText());

Fig. 20.1Fig. 20.1Fig. 20.1Fig. 20.1 Demonstrating class Vector of package java.util (part 2 of 6).

Chapter 20 Java Utilities Package and Bit Manipulation 1151

66 else
67 statusLabel.setText(inputField.getText() +
68 " not in vector");
69 }
70 }
71); // end call to addActionListener
72
73 container.add(removeButton);
74
75 // button to get first element of vector
76 JButton firstButton = new JButton("First");
77
78 firstButton.addActionListener(
79
80 new ActionListener() {
81
82 public void actionPerformed(ActionEvent event)
83 {
84 // return first element of vector
85 try {
86 statusLabel.setText(
87 "First element: " + vector.firstElement());
88 }
89
90 // catch exception if Vector empty
91 catch (NoSuchElementException exception) {
92 statusLabel.setText(exception.toString());
93 }
94 }
95 }
96); // end call to addActionListener
97
98 container.add(firstButton);
99
100 // button to get last element of vector
101 JButton lastButton = new JButton("Last");
102
103 lastButton.addActionListener(
104
105 new ActionListener() {
106
107 public void actionPerformed(ActionEvent event)
108 {
109 // return last element of vector
110 try {
111 statusLabel.setText(
112 "Last element: " + vector.lastElement());
113 }
114
115 // catch exception if Vector empty
116 catch (NoSuchElementException exception) {
117 statusLabel.setText(exception.toString());
118 }

Fig. 20.1Fig. 20.1Fig. 20.1Fig. 20.1 Demonstrating class Vector of package java.util (part 3 of 6).

1152 Java Utilities Package and Bit Manipulation Chapter 20

119 }
120 }
121); // end call to addActionListener
122
123 container.add(lastButton);
124
125 // button to determine whether vector is empty
126 JButton emptyButton = new JButton("Is Empty?");
127
128 emptyButton.addActionListener(
129
130 new ActionListener() {
131
132 public void actionPerformed(ActionEvent event)
133 {
134 // determine if Vector is empty
135 statusLabel.setText(vector.isEmpty() ?
136 "Vector is empty" : "Vector is not empty");
137 }
138 }
139); // end call to addActionListener
140
141 container.add(emptyButton);
142
143 // button to determine whether vector contains search key
144 JButton containsButton = new JButton("Contains");
145
146 containsButton.addActionListener(
147
148 new ActionListener() {
149
150 public void actionPerformed(ActionEvent event)
151 {
152 String searchKey = inputField.getText();
153
154 // determine if Vector contains searchKey
155 if (vector.contains(searchKey))
156 statusLabel.setText(
157 "Vector contains " + searchKey);
158 else
159 statusLabel.setText(
160 "Vector does not contain " + searchKey);
161 }
162 }
163); // end call to addActionListener
164
165 container.add(containsButton);
166
167 // button to determine location of value in vector
168 JButton locationButton = new JButton("Location");
169
170 locationButton.addActionListener(
171

Fig. 20.1Fig. 20.1Fig. 20.1Fig. 20.1 Demonstrating class Vector of package java.util (part 4 of 6).

Chapter 20 Java Utilities Package and Bit Manipulation 1153

172 new ActionListener() {
173
174 public void actionPerformed(ActionEvent event)
175 {
176 // get location of an object in Vector
177 statusLabel.setText("Element is at location " +
178 vector.indexOf(inputField.getText()));
179 }
180 }
181); // end call to addActionListener
182
183 container.add(locationButton);
184
185 // button to trim vector size
186 JButton trimButton = new JButton("Trim");
187
188 trimButton.addActionListener(
189
190 new ActionListener() {
191
192 public void actionPerformed(ActionEvent event)
193 {
194 // remove unoccupied elements to save memory
195 vector.trimToSize();
196 statusLabel.setText("Vector trimmed to size");
197 }
198 }
199);
200
201 container.add(trimButton);
202
203 // button to display vector size and capacity
204 JButton statsButton = new JButton("Statistics");
205
206 statsButton.addActionListener(
207
208 new ActionListener() {
209
210 public void actionPerformed(ActionEvent event)
211 {
212 // get size and capacity of Vector
213 statusLabel.setText("Size = " + vector.size() +
214 "; capacity = " + vector.capacity());
215 }
216 }
217); // end call to addActionListener
218
219 container.add(statsButton);
220
221 // button to display vector contents
222 JButton displayButton = new JButton("Display");
223
224 displayButton.addActionListener(

Fig. 20.1Fig. 20.1Fig. 20.1Fig. 20.1 Demonstrating class Vector of package java.util (part 5 of 6).

1154 Java Utilities Package and Bit Manipulation Chapter 20

The application’s constructor creates a Vector (line 26) with an initial capacity of one
element. This Vector will double in size each time it needs to grow to accommodate more
elements. Class Vector provides three other constructors. The no-argument constructor cre-
ates an empty Vector with an initial capacity of 10 elements. The constructor that takes two

225
226 new ActionListener() {
227
228 public void actionPerformed(ActionEvent event)
229 {
230 // use Enumeration to output Vector contents
231 Enumeration enum = vector.elements();
232 StringBuffer buf = new StringBuffer();
233
234 while (enum.hasMoreElements())
235 buf.append(enum.nextElement()).append(" ");
236
237 JOptionPane.showMessageDialog(null,
238 buf.toString(), "Display",
239 JOptionPane.PLAIN_MESSAGE);
240 }
241 }
242); // end call to addActionListener
243
244 container.add(displayButton);
245 container.add(statusLabel);
246
247 setSize(300, 200);
248 setVisible(true);
249
250 } // end VectorTest constructor
251
252 // execute application
253 public static void main(String args[])
254 {
255 VectorTest application = new VectorTest();
256
257 application.setDefaultCloseOperation(
258 JFrame.EXIT_ON_CLOSE);
259 }
260
261 } // end class VectorTest

Fig. 20.1Fig. 20.1Fig. 20.1Fig. 20.1 Demonstrating class Vector of package java.util (part 6 of 6).

Chapter 20 Java Utilities Package and Bit Manipulation 1155

arguments creates a Vector with an initial capacity specified by the first argument and a
capacity increment specified by the second argument. Each time the Vector needs to grow,
it will add space for the specified number of elements in the capacity increment. The con-
structor that takes a Collection allows creates a copy of a collection’s elements and stores
them in the Vector. In Chapter 21, we discuss Collections.

Line 43 calls Vector method addElement to add its argument to the end of the
Vector. If necessary, the Vector increases its capacity to accommodate the new ele-
ment. Class Vector also provides method insertElementAt to insert an element at a
specified position in the Vector and method setElementAt to set the element at a spe-
cific position in the Vector. Method insertElementAt makes room for the new ele-
ment by shifting elements. Method setElementAt replaces the element at the specified
position with its argument.

Line 63 calls Vector method removeElement to remove the first occurrence of
its argument from the Vector. The method returns true if it finds the element in the
Vector; otherwise, the method returns false. If the element is removed, all elements
after that element in the Vector shift one position toward the beginning of the Vector
to fill in the position of the removed element. Class Vector also provides method
removeAllElements to remove every element from the Vector and method
removeElementAt to remove the element at a specified index.

Line 87 calls Vector method firstElement to return a reference to the first ele-
ment in the Vector. This method throws a NoSuchElementException if there are
no elements currently in the Vector. Line 112 calls Vector method lastElement to
return a reference to the last element in the Vector. This method throws a NoSuchEle-
mentException if there are no elements currently in the Vector.

Line 135 calls Vector method isEmpty to determine whether the Vector is
empty. The method returns true if there are no elements in the Vector; otherwise, the
method returns false.

Line 155 calls Vector method contains to determine whether the Vector con-
tains the searchKey specified as an argument. Method contains returns true if
searchKey is in the Vector; otherwise, the method returns false. Method con-
tains uses Object method equals to determine whether the searchKey is equal to
one of the Vector’s elements. Many classes override method equals to perform the
comparisons in a manner specific to those classes. For example, class String defines
equals to compare the individual characters in the two Strings being compared. If
method equals is not overridden, the original version from class Object is used. This
version performs comparisons using operator == to determine whether two references refer
to the same object in memory.

Line 178 calls Vector method indexOf to determine the index of the first location
in the Vector containing the argument. The method returns –1 if the argument is not
found in the Vector. An overloaded version of this method takes a second argument spec-
ifying the index in the Vector at which the search should begin.

Performance Tip 20.5
Vector methods contains and indexOf perform linear searches of a Vector’s con-
tents, which are inefficient for large Vectors. If a program frequently searches for elements
in a collection, consider using a Hashtable (see Section 20.5) or one of the Java Collec-
tion API’s Map implementations (see Chapter 21). 20.5

1156 Java Utilities Package and Bit Manipulation Chapter 20

Line 195 calls Vector method trimToSize to reduce the capacity of the Vector
to the current number of elements in the Vector (i.e., the Vector’s current size).

Lines 213–214 use Vector methods size and capacity to determine the number
of elements currently in the Vector and the number of elements that can be stored in the
Vector without allocating more memory, respectively.

Line 231 calls Vector method elements to return an Enumeration that enables
the program to iterate through the Vector’s elements. An Enumeration provides two
methods—hasMoreElements and nextElement. In line 234, method has-
MoreElements returns true if there are more elements in the Vector. In line 235,
method nextElement returns a reference to the next element in the Vector. If there are
no more elements, method nextElement throws a NoSuchElementException.

For complete information on class Vector and its other methods, see the online Java
API documentation.

20.3 Stack Class
In Chapter 19, Data Structures, we learned how to build such fundamental data structures
as linked lists, stacks, queues and trees. In a world of software reuse, instead of building
data structures as we need them, often we can take advantage of existing data structures. In
this section, we investigate class Stack in the Java utilities package (java.util).

In Section 20.2, we discussed class Vector, which implements a dynamically resiz-
able array. Class Stack extends class Vector to implement a stack data structure. As
does Vector, class Stack stores references to Objects. To store primitive data types,
use the appropriate type-wrapper class to create an object containing the primitive value
(Boolean, Byte, Character, Short, Integer, Long, Float or Double).
Figure 20.2 provides a GUI that enables the user to test each of the Stack methods.

1 // Fig. 20.2: StackTest.java
2 // Testing the Stack class of the java.util package
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.util.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class StackTest extends JFrame {
13 private JLabel statusLabel;
14 private JTextField inputField;
15 private Stack stack;
16
17 // create GUI to manipulate a Stack
18 public StackTest()
19 {
20 super("Stacks");
21

Fig. 20.2Fig. 20.2Fig. 20.2Fig. 20.2 Demonstrating class Stack of package java.util (part 1 of 5).

Chapter 20 Java Utilities Package and Bit Manipulation 1157

22 Container container = getContentPane();
23
24 statusLabel = new JLabel();
25 stack = new Stack();
26
27 container.setLayout(new FlowLayout());
28 container.add(new JLabel("Enter a string"));
29 inputField = new JTextField(10);
30 container.add(inputField);
31
32 // button to place object on stack
33 JButton pushButton = new JButton("Push");
34
35 pushButton.addActionListener(
36
37 new ActionListener() {
38
39 public void actionPerformed(ActionEvent event)
40 {
41 // put object on Stack
42 statusLabel.setText("Pushed: " +
43 stack.push(inputField.getText()));
44 }
45 }
46);
47
48 container.add(pushButton);
49
50 // button to remove top object on stack
51 JButton popButton = new JButton("Pop");
52
53 popButton.addActionListener(
54
55 new ActionListener() {
56
57 public void actionPerformed(ActionEvent event)
58 {
59 // remove element from Stack
60 try {
61 statusLabel.setText("Popped: " + stack.pop());
62 }
63
64 // process exception if Stack empty
65 catch (EmptyStackException exception) {
66 statusLabel.setText(exception.toString());
67 }
68 }
69 }
70);
71
72 container.add(popButton);
73

Fig. 20.2Fig. 20.2Fig. 20.2Fig. 20.2 Demonstrating class Stack of package java.util (part 2 of 5).

1158 Java Utilities Package and Bit Manipulation Chapter 20

74 // button to look at top element of stack
75 JButton peekButton = new JButton("Peek");
76
77 peekButton.addActionListener(
78
79 new ActionListener() {
80
81 public void actionPerformed(ActionEvent event)
82 {
83 // look at top object on Stack
84 try {
85 statusLabel.setText("Top: " + stack.peek());
86 }
87
88 // process exception if Stack empty
89 catch (EmptyStackException exception) {
90 statusLabel.setText(exception.toString());
91 }
92 }
93 }
94);
95
96 container.add(peekButton);
97
98 // button to determine whether stack is empty
99 JButton emptyButton = new JButton("Is Empty?");
100
101 emptyButton.addActionListener(
102
103 new ActionListener() {
104
105 public void actionPerformed(ActionEvent event)
106 {
107 // determine if Stack is empty
108 statusLabel.setText(stack.empty() ?
109 "Stack is empty" : "Stack is not empty");
110 }
111 }
112);
113
114 container.add(emptyButton);
115
116 // button to determine whether search key is in stack
117 JButton searchButton = new JButton("Search");
118
119 searchButton.addActionListener(
120
121 new ActionListener() {
122
123 public void actionPerformed(ActionEvent event)
124 {
125 // search Stack for specified object
126 String searchKey = inputField.getText();

Fig. 20.2Fig. 20.2Fig. 20.2Fig. 20.2 Demonstrating class Stack of package java.util (part 3 of 5).

Chapter 20 Java Utilities Package and Bit Manipulation 1159

127 int result = stack.search(searchKey);
128
129 if (result == -1)
130 statusLabel.setText(searchKey + " not found");
131 else
132 statusLabel.setText(searchKey +
133 " found at element " + result);
134 }
135 }
136);
137
138 container.add(searchButton);
139
140 // button to display stack contents
141 JButton displayButton = new JButton("Display");
142
143 displayButton.addActionListener(
144
145 new ActionListener() {
146
147 public void actionPerformed(ActionEvent event)
148 {
149 // output Stack contents
150 Enumeration enumeration = stack.elements();
151 StringBuffer buffer = new StringBuffer();
152
153 while (enumeration.hasMoreElements())
154 buffer.append(
155 enumeration.nextElement()).append(" ");
156
157 JOptionPane.showMessageDialog(null,
158 buffer.toString(), "Display",
159 JOptionPane.PLAIN_MESSAGE);
160 }
161 }
162);
163
164 container.add(displayButton);
165 container.add(statusLabel);
166
167 setSize(675, 100);
168 setVisible(true);
169 }
170
171 // execute application
172 public static void main(String args[])
173 {
174 StackTest application = new StackTest();
175
176 application.setDefaultCloseOperation(
177 JFrame.EXIT_ON_CLOSE);
178 }
179

Fig. 20.2Fig. 20.2Fig. 20.2Fig. 20.2 Demonstrating class Stack of package java.util (part 4 of 5).

1160 Java Utilities Package and Bit Manipulation Chapter 20

Line 25 creates an empty Stack. Line 43 calls Stack method push to add its argu-
ment to the top of the stack. The method returns an Object reference to its argument.

Line 61 calls Stack method pop to remove the top element of the stack. The method
returns an Object reference to the removed element. If there are no elements in the
Stack, method pop throws an EmptyStackException.

Line 85 calls Stack method peek to view the top element of the stack without
removing the element. Method peek returns an Object reference to the element.

Line 108 calls Stack method empty to determine whether the stack is empty. If it is
empty, the method returns true; otherwise, the method returns false.

Line 127 calls Stack method search to determine whether its argument is in the
stack. If so, the method returns the position of the element in the stack. Note that the top
element is position 1. If the element is not in the stack, –1 is returned.

The entire public interface of class Vector is actually part of class Stack, because
Stack inherits from Vector. To prove this, our example provides a button to display the
contents of the stack. This button invokes method elements to get an Enumeration of
the stack; it then uses the Enumeration to walk through the stack elements.

Testing and Debugging Tip 20.1
Stack extends Vector, so the user may perform operations on Stack objects that are or-
dinarily not allowed on conventional stack data structures. This could "corrupt" the elements
of the Stack and destroy the integrity of the Stack. 20.1

20.4 Dictionary Class
A Dictionary maps keys to values. When searching a Dictionary for a value, the pro-
gram provides a key and the Dictionary returns the corresponding value. Dictionary
is an abstract class. In particular, it is the superclass of class Hashtable, which we dis-
cuss in Section 20.5. Class Dictionary provides the public interface methods required
to maintain a table of key–value pairs where the keys help store and retrieve the values in the
table. Each key in the table is unique. The data structure is similar to a dictionary of words
and definitions—the word is the key that is used to look up the definition (i.e., the value).

Dictionary method size returns the number of key–value pairs in a Dictio-
nary object. Method isEmpty returns true if a Dictionary is empty, and false
otherwise. Method keys returns an Enumeration that a program can use to iterate
through a Dictionary’s keys. Method elements returns an Enumeration that a
program can use to iterate through a Dictionary’s values. Method get returns the
object that corresponds to a given key value. Method put puts an object associated with a
given key into the table. Method remove removes an element corresponding to a given
key and returns a reference to it.

180 } // end class StackTest

Fig. 20.2Fig. 20.2Fig. 20.2Fig. 20.2 Demonstrating class Stack of package java.util (part 5 of 5).

Chapter 20 Java Utilities Package and Bit Manipulation 1161

20.5 Hashtable Class
Object-oriented programming languages facilitate creating new data types. When a pro-
gram creates objects of new or existing types, the program then needs to manage those
objects efficiently. This includes storing and retrieving objects. Storing and retrieving in-
formation with arrays is efficient if some aspect of your data directly matches the key val-
ue and if those keys are unique and tightly packed. If you have 100 employees with 9-
digit Social Security numbers and you want to store and retrieve employee data by using
the Social Security number as a key, it would nominally require an array with
999,999,999 elements, because there are 999,999,999 unique 9-digit numbers. This is im-
practical for virtually all applications that use Social Security numbers as keys. If the pro-
gram could have an array that large, the program could get high performance for both
storing and retrieving employee records by simply using the Social Security number as
the array index.

There are numerous applications that have this problem, namely, that either the keys
are of the wrong type (i.e., not nonnegative integers), or they may be of the right type, but
sparsely spread over a huge range.

What is needed is a high-speed scheme for converting keys such as Social Security
numbers, inventory part numbers and the like into unique array subscripts. Then, when an
application needs to store something, the scheme could convert the application key rapidly
into a subscript and the record of information could be stored at that slot in the array.
Retrieval is accomplished the same way: Once the application has a key for which it wants
to retrieve the data record, the application simply applies the conversion to the key—this
produces the array subscript where the data is stored and the data is retrieved.

The scheme we describe here is the basis of a technique called hashing. Why the
name? When we convert a key into an array subscript, we literally scramble the bits,
forming a kind of “mishmashed” number. The number actually has no real significance
beyond its usefulness in storing and retrieving this particular number data record.

A glitch in the scheme occurs when collisions occur (i.e., when two different keys
“hash into” the same cell (or element) in the array). We cannot store two different data
records in the same space, so we need to find an alternative home for all records beyond the
first that hash to a particular array subscript. There are many schemes for doing this. One
is to “hash again” (i.e., to reapply the hashing transformation to the key to provide a next
candidate cell in the array). The hashing process is designed to distribute the values
throughout the table, so the assumption is that with just a few hashes an available cell will
be found.

Another scheme uses one hash to locate the first candidate cell. If that cell is occupied,
successive cells are searched linearly until an available cell is found. Retrieval works the
same way: The key is hashed once to determine the initial location to check to see whether
it contains the desired data. If it does, the search is finished. If it does not, successive cells
are searched linearly until the desired data is found.

The most popular solution to hash table collisions is to have each cell of the table be a
hash “bucket,” typically a linked list of all the key–value pairs that hash to that cell. This is
the solution that Java’s Hashtable class (from package java.util) implements.

One factor that affects the performance of hashing schemes is called the load factor.
This is the ratio of the number of occupied cells in the hash table to the size of the hash
table. The closer this ratio gets to 1.0, the greater the chance of collisions.

1162 Java Utilities Package and Bit Manipulation Chapter 20

Performance Tip 20.6
The load factor in a hash table is a classic example of a space–time trade-off: By increasing
the load factor, we get better memory utilization, but the program runs slower, due to in-
creased hashing collisions. By decreasing the load factor, we get better program speed, be-
cause of reduced hashing collisions, but we get poorer memory utilization, because a larger
portion of the hash table remains empty. 20.6

The complexity of programming hash tables properly is too much for most casual pro-
grammers. Computer science students study hashing schemes thoroughly in courses called
“Data Structures” or “Algorithms.” Recognizing the value of hashing to most program-
mers, Java provides class Hashtable and some related features to enable programmers
to use hashing without having to implement the messy details.

Actually, the preceding sentence is profoundly important in our study of object-ori-
ented programming. As discussed in earlier chapters, classes encapsulate and hide com-
plexity (i.e., implementation details) and offer user-friendly interfaces. Crafting classes to
do this properly is one of the most valued skills in the field of object-oriented programming.

Figure 20.3 provides a GUI that enables you to test several Hashtable methods.
Line 25 creates an empty Hashtable with a default capacity of 101 elements and a
default load factor of .75. When the number of occupied slots in the Hashtable becomes
more than the capacity times the load factor, the table grows larger. Class Hashtable also
provides a constructor that takes one argument specifying the capacity and a constructor
that takes two arguments, specifying the capacity and load factor, respectively.

1 // Fig. 20.3: HashtableTest.java
2 // Demonstrates class Hashtable of the java.util package.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.util.*;
8
9 // Java extensions packages

10 import javax.swing.*;
11
12 public class HashtableTest extends JFrame {
13 private JLabel statusLabel;
14 private Hashtable table;
15 private JTextArea displayArea;
16 private JTextField lastNameField;
17 private JTextField firstNameField;
18
19 // set up GUI to demonstrate Hashtable features
20 public HashtableTest()
21 {
22 super("Hashtable Example");
23
24 statusLabel = new JLabel();
25 table = new Hashtable();
26 displayArea = new JTextArea(4, 20);

Fig. 20.3Fig. 20.3Fig. 20.3Fig. 20.3 Demonstrating class Hashtable (part 1 of 6).

Chapter 20 Java Utilities Package and Bit Manipulation 1163

27 displayArea.setEditable(false);
28
29 JPanel northSubPanel = new JPanel();
30
31 northSubPanel.add(new JLabel("First name"));
32 firstNameField = new JTextField(8);
33 northSubPanel.add(firstNameField);
34
35 northSubPanel.add(new JLabel("Last name (key)"));
36 lastNameField = new JTextField(8);
37 northSubPanel.add(lastNameField);
38
39 JPanel northPanel = new JPanel();
40 northPanel.setLayout(new BorderLayout());
41 northPanel.add(northSubPanel, BorderLayout.NORTH);
42 northPanel.add(statusLabel, BorderLayout.SOUTH);
43
44 JPanel southPanel = new JPanel();
45 southPanel.setLayout(new GridLayout(2, 5));
46 JButton putButton = new JButton("Put");
47
48 putButton.addActionListener(
49
50 new ActionListener() {
51
52 // add new key/value pair to hash table
53 public void actionPerformed(ActionEvent event)
54 {
55 Employee employee = new Employee(
56 firstNameField.getText(),
57 lastNameField.getText());
58
59 Object value =
60 table.put(lastNameField.getText(), employee);
61
62 // first time this key was added
63 if (value == null)
64 statusLabel.setText(
65 "Put: " + employee.toString());
66
67 // replaced previous value for this key
68 else
69 statusLabel.setText(
70 "Put: " + employee.toString() +
71 "; Replaced: " + value.toString());
72 }
73 }
74);
75
76 southPanel.add(putButton);
77
78 // button to get value for specific key
79 JButton getButton = new JButton("Get");

Fig. 20.3Fig. 20.3Fig. 20.3Fig. 20.3 Demonstrating class Hashtable (part 2 of 6).

1164 Java Utilities Package and Bit Manipulation Chapter 20

80
81 getButton.addActionListener(
82
83 new ActionListener() {
84
85 // get value for specific key
86 public void actionPerformed(ActionEvent event)
87 {
88 Object value = table.get(lastNameField.getText());
89
90 // value found for key
91 if (value != null)
92 statusLabel.setText(
93 "Get: " + value.toString());
94
95 // value not found for key
96 else
97 statusLabel.setText(
98 "Get: " + lastNameField.getText() +
99 " not in table");
100 }
101 }
102);
103
104 southPanel.add(getButton);
105
106 // button to remove key/value pair from table
107 JButton removeButton = new JButton("Remove");
108
109 removeButton.addActionListener(
110
111 new ActionListener() {
112
113 // remove key/value pair
114 public void actionPerformed(ActionEvent event)
115 {
116 Object value =
117 table.remove(lastNameField.getText());
118
119 // key found
120 if (value != null)
121 statusLabel.setText("Remove: " +
122 value.toString());
123
124 // key not found
125 else
126 statusLabel.setText("Remove: " +
127 lastNameField.getText() + " not in table");
128 }
129 }
130);
131
132 southPanel.add(removeButton);

Fig. 20.3Fig. 20.3Fig. 20.3Fig. 20.3 Demonstrating class Hashtable (part 3 of 6).

Chapter 20 Java Utilities Package and Bit Manipulation 1165

133
134 // button to detetmine whether hash table is empty
135 JButton emptyButton = new JButton("Empty");
136
137 emptyButton.addActionListener(
138
139 new ActionListener() {
140
141 // determine whether hash table is empty
142 public void actionPerformed(ActionEvent event)
143 {
144 statusLabel.setText("Empty: " + table.isEmpty());
145 }
146 }
147);
148
149 southPanel.add(emptyButton);
150
151 // button to determine whether hash table contains key
152 JButton containsKeyButton = new JButton("Contains key");
153
154 containsKeyButton.addActionListener(
155
156 new ActionListener() {
157
158 // determine whether hash table contains key
159 public void actionPerformed(ActionEvent event)
160 {
161 statusLabel.setText("Contains key: " +
162 table.containsKey(lastNameField.getText()));
163 }
164 }
165);
166
167 southPanel.add(containsKeyButton);
168
169 // button to clear all hash table contents
170 JButton clearButton = new JButton("Clear table");
171
172 clearButton.addActionListener(
173
174 new ActionListener() {
175
176 // clear hash table contents
177 public void actionPerformed(ActionEvent event)
178 {
179 table.clear();
180 statusLabel.setText("Clear: Table is now empty");
181 }
182 }
183);
184
185 southPanel.add(clearButton);

Fig. 20.3Fig. 20.3Fig. 20.3Fig. 20.3 Demonstrating class Hashtable (part 4 of 6).

1166 Java Utilities Package and Bit Manipulation Chapter 20

186
187 // button to display hash table elements
188 JButton listElementsButton = new JButton("List objects");
189
190 listElementsButton.addActionListener(
191
192 new ActionListener() {
193
194 // display hash table elements
195 public void actionPerformed(ActionEvent event)
196 {
197 StringBuffer buffer = new StringBuffer();
198
199 for (Enumeration enumeration = table.elements();
200 enumeration.hasMoreElements();)
201 buffer.append(
202 enumeration.nextElement()).append('\n');
203
204 displayArea.setText(buffer.toString());
205 }
206 }
207);
208
209 southPanel.add(listElementsButton);
210
211 // button to display hash table keys
212 JButton listKeysButton = new JButton("List keys");
213
214 listKeysButton.addActionListener(
215
216 new ActionListener() {
217
218 // display hash table KEYS
219 public void actionPerformed(ActionEvent event)
220 {
221 StringBuffer buffer = new StringBuffer();
222
223 for (Enumeration enumeration = table.keys();
224 enumeration.hasMoreElements();)
225 buffer.append(
226 enumeration.nextElement()).append('\n');
227
228 JOptionPane.showMessageDialog(null,
229 buffer.toString(), "Display",
230 JOptionPane.PLAIN_MESSAGE);
231 }
232 }
233);
234
235 southPanel.add(listKeysButton);
236
237 Container container = getContentPane();
238 container.add(northPanel, BorderLayout.NORTH);

Fig. 20.3Fig. 20.3Fig. 20.3Fig. 20.3 Demonstrating class Hashtable (part 5 of 6).

Chapter 20 Java Utilities Package and Bit Manipulation 1167

239 container.add(new JScrollPane(displayArea),
240 BorderLayout.CENTER);
241 container.add(southPanel, BorderLayout.SOUTH);
242
243 setSize(540, 300);
244 setVisible(true);
245 }
246
247 // execute application
248 public static void main(String args[])
249 {
250 HashtableTest application = new HashtableTest();
251
252 application.setDefaultCloseOperation(
253 JFrame.EXIT_ON_CLOSE);
254 }
255
256 } // end class HashtableTest
257
258 // Employee class to represent first and last name
259 class Employee {
260 private String first, last;
261
262 // initialize an Employee
263 public Employee(String firstName, String lastName)
264 {
265 first = firstName;
266 last = lastName;
267 }
268
269 // convert Employee to String representation
270 public String toString()
271 {
272 return first + " " + last;
273 }
274
275 } // end class Employee

Fig. 20.3Fig. 20.3Fig. 20.3Fig. 20.3 Demonstrating class Hashtable (part 6 of 6).

1168 Java Utilities Package and Bit Manipulation Chapter 20

Lines 59–60 call Hashtable method put to add a key (the first argument) and a
value (the second argument) into the Hashtable. Method put returns null if key has
not been inserted in the Hashtable previously. Otherwise, method put returns the orig-
inal value for that key in the Hashtable; this helps the program manage cases in which
it intends to replace the value stored for a given key. If either the key or the value is null,
a NullPointerException occurs.

Line 88 calls Hashtable method get to locate the value associated with the key
specified as an argument. If the key is present in the table, get returns an Object refer-
ence to the corresponding value; otherwise, the method returns null.

Lines 116–117 call Hashtable method remove to remove a key–value pair from
the table. The method returns a reference to the removed Object. If there is no value
mapped to the specified key, the method returns null.

Line 144 calls Hashtable method isEmpty, which returns true if the Hash-
table is empty; otherwise it returns false.

Line 162 calls Hashtable method containsKey to determine whether the key
specified as an argument is in the Hashtable (i.e., a value is associated with that key). If
so, the method returns true; otherwise, the method returns false. Class Hashtable
also provides method contains to determine whether the Object specified as its argu-
ment is in the Hashtable.

Line 179 calls Hashtable method clear to empty the Hashtable contents. Line
199 calls Hashtable method elements to obtain an Enumeration of the values in
the Hashtable. Line 223 calls Hashtable method keys to obtain an Enumeration
of the keys in the Hashtable.

For more information on class Hashtable and its methods, see the online Java API
documentation.

20.6 Properties Class
A Properties object is a persistent Hashtable object that normally stores key–value
pairs of Strings—assuming that you use methods setProperty and getProperty
to manipulate the table rather than Hashtable methods put and get. By persistent, we
mean that the Hashtable object can be written to an output stream and directed to a file,
and read back in through an input stream. In fact, most objects in Java can now be output
and input with Java’s object serialization (see Chapter 16). The Properties class ex-
tends class Hashtable, so Properties objects have the methods we discussed in
Fig. 20.3. The keys and values in a Properties object must be of type String. Class
Properties provides some additional methods that are demonstrated in Fig. 20.4.

1 // Fig. 20.4: PropertiesTest.java
2 // Demonstrates class Properties of the java.util package.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.io.*;
8 import java.util.*;

Fig. 20.4Fig. 20.4Fig. 20.4Fig. 20.4 Demonstrating class Properties (part 1 of 6).

Chapter 20 Java Utilities Package and Bit Manipulation 1169

9
10 // Java extension packages
11 import javax.swing.*;
12
13 public class PropertiesTest extends JFrame {
14 private JLabel statusLabel;
15 private Properties table;
16 private JTextArea displayArea;
17 private JTextField valueField, nameField;
18
19 // set up GUI to test Properties table
20 public PropertiesTest()
21 {
22 super("Properties Test");
23
24 // create Properties table
25 table = new Properties();
26
27 Container container = getContentPane();
28
29 // set up NORTH of window's BorderLayout
30 JPanel northSubPanel = new JPanel();
31
32 northSubPanel.add(new JLabel("Property value"));
33 valueField = new JTextField(10);
34 northSubPanel.add(valueField);
35
36 northSubPanel.add(new JLabel("Property name (key)"));
37 nameField = new JTextField(10);
38 northSubPanel.add(nameField);
39
40 JPanel northPanel = new JPanel();
41 northPanel.setLayout(new BorderLayout());
42 northPanel.add(northSubPanel, BorderLayout.NORTH);
43
44 statusLabel = new JLabel();
45 northPanel.add(statusLabel, BorderLayout.SOUTH);
46
47 container.add(northPanel, BorderLayout.NORTH);
48
49 // set up CENTER of window's BorderLayout
50 displayArea = new JTextArea(4, 35);
51 container.add(new JScrollPane(displayArea),
52 BorderLayout.CENTER);
53
54 // set up SOUTH of window's BorderLayout
55 JPanel southPanel = new JPanel();
56 southPanel.setLayout(new GridLayout(1, 5));
57
58 // button to put a name/value pair in Properties table
59 JButton putButton = new JButton("Put");
60

Fig. 20.4Fig. 20.4Fig. 20.4Fig. 20.4 Demonstrating class Properties (part 2 of 6).

1170 Java Utilities Package and Bit Manipulation Chapter 20

61 putButton.addActionListener(
62
63 new ActionListener() {
64
65 // put name/value pair in Properties table
66 public void actionPerformed(ActionEvent event)
67 {
68 Object value = table.setProperty(
69 nameField.getText(), valueField.getText());
70
71 if (value == null)
72 showstatus("Put: " + nameField.getText() +
73 " " + valueField.getText());
74
75 else
76 showstatus("Put: " + nameField.getText() +
77 " " + valueField.getText() +
78 "; Replaced: " + value.toString());
79
80 listProperties();
81 }
82 }
83); // end call to addActionListener
84
85 southPanel.add(putButton);
86
87 // button to empty contents of Properties table
88 JButton clearButton = new JButton("Clear");
89
90 clearButton.addActionListener(
91
92 new ActionListener() {
93
94 // use method clear to empty table
95 public void actionPerformed(ActionEvent event)
96 {
97 table.clear();
98 showstatus("Table in memory cleared");
99 listProperties();
100 }
101 }
102); // end call to addActionListener
103
104 southPanel.add(clearButton);
105
106 // button to get value of a property
107 JButton getPropertyButton = new JButton("Get property");
108
109 getPropertyButton.addActionListener(
110
111 new ActionListener() {
112

Fig. 20.4Fig. 20.4Fig. 20.4Fig. 20.4 Demonstrating class Properties (part 3 of 6).

Chapter 20 Java Utilities Package and Bit Manipulation 1171

113 // use method getProperty to obtain a property value
114 public void actionPerformed(ActionEvent event)
115 {
116 Object value = table.getProperty(
117 nameField.getText());
118
119 if (value != null)
120 showstatus("Get property: " +
121 nameField.getText() + " " +
122 value.toString());
123
124 else
125 showstatus("Get: " + nameField.getText() +
126 " not in table");
127
128 listProperties();
129 }
130 }
131); // end call to addActionListener
132
133 southPanel.add(getPropertyButton);
134
135 // button to contents of Properties table to file
136 JButton saveButton = new JButton("Save");
137
138 saveButton.addActionListener(
139
140 new ActionListener() {
141
142 // use method save to place contents in file
143 public void actionPerformed(ActionEvent event)
144 {
145 // save contents of table
146 try {
147 FileOutputStream output =
148 new FileOutputStream("props.dat");
149
150 table.store(output, "Sample Properties");
151 output.close();
152
153 listProperties();
154 }
155
156 // process problems with file output
157 catch(IOException ioException) {
158 ioException.printStackTrace();
159 }
160 }
161 }
162); // end call to addActionListener
163
164 southPanel.add(saveButton);
165

Fig. 20.4Fig. 20.4Fig. 20.4Fig. 20.4 Demonstrating class Properties (part 4 of 6).

1172 Java Utilities Package and Bit Manipulation Chapter 20

166 // button to load contents of Properties table from file
167 JButton loadButton = new JButton("Load");
168
169 loadButton.addActionListener(
170
171 new ActionListener() {
172
173 // use method load to read contents from file
174 public void actionPerformed(ActionEvent event)
175 {
176 // load contents of table
177 try {
178 FileInputStream input =
179 new FileInputStream("props.dat");
180
181 table.load(input);
182 input.close();
183 listProperties();
184 }
185
186 // process problems with file input
187 catch(IOException ioException) {
188 ioException.printStackTrace();
189 }
190 }
191 }
192); // end call to addActionListener
193
194 southPanel.add(loadButton);
195
196 container.add(southPanel, BorderLayout.SOUTH);
197
198 setSize(550, 225);
199 setVisible(true);
200 }
201
202 // output property values
203 public void listProperties()
204 {
205 StringBuffer buffer = new StringBuffer();
206 String name, value;
207
208 Enumeration enumeration = table.propertyNames();
209
210 while (enumeration.hasMoreElements()) {
211 name = enumeration.nextElement().toString();
212 value = table.getProperty(name);
213
214 buffer.append(name).append('\t');
215 buffer.append(value).append('\n');
216 }
217
218 displayArea.setText(buffer.toString());

Fig. 20.4Fig. 20.4Fig. 20.4Fig. 20.4 Demonstrating class Properties (part 5 of 6).

Chapter 20 Java Utilities Package and Bit Manipulation 1173

Line 25 uses the no-argument constructor to create an empty Properties table with
no default properties. Class Properties also provides an overloaded constructor that
receives a reference to a Properties object containing default property values.

Lines 68–69 call Properties method setProperty to store a value for the spec-
ified key. If the key does not exist in the table, setProperty returns null; otherwise,
it returns the previous value for that key.

Lines 116–117 call Properties method getProperty to locate the value asso-
ciated with the specified key. If the key is not found in this Properties object, get-
Property uses the one in the default Properties object (if there is one). The process
continues recursively until there are no more default Properties objects (remember that
every Properties object can be initialized with a default Properties object), at
which point getProperty returns null. An overloaded version of this method receives
two arguments, the second of which is the default value to return if getProperty cannot
locate the key.

Line 150 calls Properties method store to save the contents of the Proper-
ties object to the OutputStream object specified as the first argument (in this case, a
FileOutputStream). The String argument is a description of the Properties
object. Class Properties also provides method list, which takes a PrintStream
argument. This method is useful for displaying the set of properties.

219 } // end method ListProperties
220
221 // display String in statusLabel label
222 public void showstatus(String s)
223 {
224 statusLabel.setText(s);
225 }
226
227 // execute application
228 public static void main(String args[])
229 {
230 PropertiesTest application = new PropertiesTest();
231
232 application.setDefaultCloseOperation(
233 JFrame.EXIT_ON_CLOSE);
234 }
235
236 } // end class PropertiesTest

Fig. 20.4Fig. 20.4Fig. 20.4Fig. 20.4 Demonstrating class Properties (part 6 of 6).

1174 Java Utilities Package and Bit Manipulation Chapter 20

Testing and Debugging Tip 20.2
Use Properties method list to display the contents of a Properties object for
debugging purposes. 20.2

Line 181 calls Properties method load to restore the contents of the Proper-
ties object from the InputStream specified as the first argument (in this case, a
FileInputStream).

Line 208 calls Properties method propertyNames to obtain an Enumera-
tion of the property names. The value of each property can be determined by using
method getProperty.

20.7 Random Class
We discussed random-number generation in Chapter 6, Methods, where we used Math
class method random. Java provides extensive additional random number generation ca-
pabilities in class Random. We briefly walk through the API calls here.

A new random-number generator can be created by using

Random r = new Random();

This form uses the computer’s current time to seed its random-number generator differently
during each constructor call and thus generates different sequences of random numbers for
each Random object.

To create a pseudorandom-number generator with “repeatability,” use

Random r = new Random(seedValue);

The seedValue argument (type long) is used in the random number calculation to
“seed” the random number generator. If the same seedValue is used every time, the
Random object produces the same sequence of random numbers.

Testing and Debugging Tip 20.3
While a program is under development, use the form Random(seedValue) that produces
a repeatable sequence of random numbers. If a bug occurs, fix the bug and test with the same
seedValue; this allows you to reconstruct the exact same sequence of random numbers
that caused the bug. Once the bugs have been removed, use the form Random(), which gen-
erates a new sequence of random numbers each time the program is run. 20.3

The call

r.setSeed(seedValue);

resets r’s seed value at any time.
The calls

r.nextInt()
r.nextLong()

generate uniformly distributed random integers. You can use Math.abs to take the abso-
lute value of the number produced by nextInt, thus giving a number in the range from
zero through approximately 2 billion. Then use the % operator to scale the number. For ex-
ample, to roll a six-sided die, if you scale with a 6, you will get a number in the range from

Chapter 20 Java Utilities Package and Bit Manipulation 1175

0 through 5. Then simply shift this value by adding 1 to produce a number in the range from
1 through 6. The expression is as follows:

Math.abs(r.nextInt()) % 6 + 1

The calls

r.nextFloat()
r.nextDouble()

generate uniformly distributed values in the range 0.0 <= x < 1.0.
The call

r.nextGaussian()

generates a double value with a probability density of a Gaussian (i.e., “normal”) distri-
bution (mean of 0.0 and standard deviation of 1.0).

20.8 Bit Manipulation and the Bitwise Operators
Java provides extensive bit-manipulation capabilities for programmers who need to get
down to the so-called “bits-and-bytes” level. Operating systems, test equipment software,
networking software and many other kinds of software require that the programmer com-
municate “directly with the hardware.” In this section and the next, we discuss Java’s bit-
manipulation capabilities. We introduce Java’s bitwise operators, and we demonstrate their
use in live-code examples.

Computers represent all data internally as sequences of bits. Each bit can assume the
value 0 or the value 1. On most systems, a sequence of 8 bits forms a byte—the standard
storage unit for a variable of type byte. Other data types are stored in larger numbers of
bytes. The bitwise operators can manipulate the bits of integral operands (i.e., those having
type byte, char, short, int and long).

Note that the bitwise operator discussions in this section show the binary representa-
tions of the integer operands. For a detailed explanation of the binary (also called base 2)
number system, see Appendix E, Number Systems.

The bitwise operators are bitwise AND (&), bitwise inclusive OR (|), bitwise exclusive
OR (^), left shift (<<), right shift with sign extension (>>), right shift with zero extension
(>>>) and complement (~). The bitwise AND, bitwise inclusive OR and bitwise exclusive
OR operators compare their two operands bit by bit. The bitwise AND operator sets each
bit in the result to 1 if the corresponding bit in both operands is 1. The bitwise inclusive OR
operator sets each bit in the result to 1 if the corresponding bit in either (or both) operand(s)
is 1. The bitwise exclusive OR operator sets each bit in the result to 1 if the corresponding
bit in exactly one operand is 1. The left shift operator shifts the bits of its left operand to the
left by the number of bits specified in its right operand. The right shift operator with sign
extension shifts the bits in its left operand to the right by the number of bits specified in its
right operand—if the left operand is negative, 1s are shifted in from the left; otherwise, 0s
are shifted in from the left. The right shift operator with zero extension shifts the bits in its
left operand to the right by the number of bits specified in its right operand—0s are shifted
in from the left. The bitwise complement operator sets all 0 bits in its operand to 1 in the
result and sets all 1 bits to 0 in the result. Detailed discussions of each bitwise operator
appear in the following examples. The bitwise operators are summarized in Fig. 20.5.

1176 Java Utilities Package and Bit Manipulation Chapter 20

When using the bitwise operators, it is useful to display values in their binary repre-
sentation to illustrate the effects of these operators. The application of Fig. 20.6 allows the
user to enter an integer into a JTextField and press Enter. Method actionPer-
formed (lines 32–36) reads the String from the JTextField, converts it to an integer
and invokes method getBits (lines 55–80) to obtain a String representation of the
integer in bits. The result is displayed in the output JTextField. The integer is displayed
in its binary representation in groups of eight bits each. Method getBits uses the bitwise
AND operator to combine variable value with variable displayMask. Often, the bit-
wise AND operator is used with an operand called a mask—an integer value with specific
bits set to 1. Masks are used to hide some bits in a value while selecting other bits. In get-
Bits, mask variable displayMask is assigned the value 1 << 31 or

10000000 00000000 00000000 00000000

The left shift operator shifts the value 1 from the low-order (rightmost) bit to the high-order
(leftmost) bit in displayMask and fills in 0 bits from the right.

Operator Name Description

& bitwise AND The bits in the result are set to 1 if the corresponding bits in
the two operands are both 1.

| bitwise inclusive OR The bits in the result are set to 1 if at least one of the cor-
responding bits in the two operands is 1.

^ bitwise exclusive OR The bits in the result are set to 1 if exactly one of the corre-
sponding bits in the two operands is 1.

<< left shift Shifts the bits of the first operand left by the number of bits
specified by the second operand; fill from the right with 0
bits.

>> right shift with sign
extension

Shifts the bits of the first operand right by the number of bits
specified by the second operand. If the first operand is nega-
tive, 1s are shifted in from the left; otherwise, 0s are shifted
in from the left.

>>> right shift with zero
extension

Shifts the bits of the first operand right by the number of bits
specified by the second operand; 0s are shifted in from the
left.

~ one’s complement All 0 bits are set to 1 and all 1 bits are set to 0.

Fig. 20.5Fig. 20.5Fig. 20.5Fig. 20.5 The bitwise operators .

1 // Fig. 20.6: PrintBits.java
2 // Printing an unsigned integer in bits
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;

Fig. 20.6Fig. 20.6Fig. 20.6Fig. 20.6 Printing the bits in an integer (part 1 of 3).

Chapter 20 Java Utilities Package and Bit Manipulation 1177

7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class PrintBits extends JFrame {
12 private JTextField outputField;
13
14 // set up GUI
15 public PrintBits()
16 {
17 super("Printing bit representations for numbers");
18
19 Container container = getContentPane();
20 container.setLayout(new FlowLayout());
21
22 container.add(new JLabel("Enter an integer "));
23
24 // textfield to read value from user
25 JTextField inputField = new JTextField(10);
26
27 inputField.addActionListener(
28
29 new ActionListener() {
30
31 // read integer and get bitwise representation
32 public void actionPerformed(ActionEvent event)
33 {
34 int value = Integer.parseInt(
35 event.getActionCommand());
36 outputField.setText(getBits(value));
37 }
38 }
39);
40
41 container.add(inputField);
42
43 container.add(new JLabel("The integer in bits is"));
44
45 // textfield to display integer in bitwise form
46 outputField = new JTextField(33);
47 outputField.setEditable(false);
48 container.add(outputField);
49
50 setSize(720, 70);
51 setVisible(true);
52 }
53
54 // display bit representation of specified int value
55 private String getBits(int value)
56 {
57 // create int value with 1 in leftmost bit and 0s elsewhere
58 int displayMask = 1 << 31;
59

Fig. 20.6Fig. 20.6Fig. 20.6Fig. 20.6 Printing the bits in an integer (part 2 of 3).

1178 Java Utilities Package and Bit Manipulation Chapter 20

Lines 68–69 append a 1 or a 0 to a StringBuffer for the current leftmost bit of
variable value. Assume that value contains 4000000000 (11101110 01101011
00101000 00000000). When value and displayMask are combined using &, all
the bits except the high-order (leftmost) bit in variable value are “masked off” (hidden),
because any bit “ANDed” with 0 yields 0. If the leftmost bit is 1, value & display-
Mask evaluates to a nonzero value and 1 is appended; otherwise, 0 is appended. Then vari-

60 // buffer to build output
61 StringBuffer buffer = new StringBuffer(35);
62
63 // for each bit append 0 or 1 to buffer
64 for (int bit = 1; bit <= 32; bit++) {
65
66 // use displayMask to isolate bit and determine whether
67 // bit has value of 0 or 1
68 buffer.append(
69 (value & displayMask) == 0 ? '0' : '1');
70
71 // shift value one position to left
72 value <<= 1;
73
74 // append space to buffer every 8 bits
75 if (bit % 8 == 0)
76 buffer.append(' ');
77 }
78
79 return buffer.toString();
80 }
81
82 // execute application
83 public static void main(String args[])
84 {
85 PrintBits application = new PrintBits();
86
87 application.setDefaultCloseOperation(
88 JFrame.EXIT_ON_CLOSE);
89 }
90
91 } // end class PrintBits

Fig. 20.6Fig. 20.6Fig. 20.6Fig. 20.6 Printing the bits in an integer (part 3 of 3).

Chapter 20 Java Utilities Package and Bit Manipulation 1179

able value is left shifted one bit by the expression value <<= 1 (this is equivalent to
value = value << 1). These steps are repeated for each bit in variable value. At the
end of method getBits, the StringBuffer is converted to a String in line 79 and
returned from the method. Figure 20.7 summarizes the results of combining two bits with
the bitwise AND (&) operator.

Common Programming Error 20.1
Using the logical AND operator (&&) for the bitwise AND operator (&) is a common pro-
gramming error. 20.1

Figure 20.8 demonstrates the bitwise AND operator, the bitwise inclusive OR oper-
ator, the bitwise exclusive OR operator and the bitwise complement operator. The program
uses method getBits (lines 163–188) to get a String representation of the integer
values. The program allows the user to enter values into JTextFields (for the binary
operators, two values must be entered), and then to press the button representing the oper-
ation they would like to test. The program displays the result of each operation in both
integer and bitwise representations.

The first output window for Fig. 20.8 shows the results of combining the value 65535
and the value 1 with the bitwise AND operator (&). All the bits except the low-order bit in
the value 65535 are “masked off” (hidden) by “ANDing” with the value 1.

Bit 1 Bit 2 Bit 1 & Bit 2

0 0 0

1 0 0

0 1 0

1 1 1

Fig. 20.7Fig. 20.7Fig. 20.7Fig. 20.7 Results of combining two bits with the bitwise AND operator (&).

1 // Fig. 20.8: MiscBitOps.java
2 // Using the bitwise AND, bitwise inclusive OR, bitwise
3 // exclusive OR, and bitwise complement operators.
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class MiscBitOps extends JFrame {
13 private JTextField input1Field, input2Field,
14 bits1Field, bits2Field, bits3Field, resultField;

Fig. 20.8Fig. 20.8Fig. 20.8Fig. 20.8 Demonstrating the bitwise AND, bitwise inclusive OR, bitwise exclusive OR
and bitwise complement operators (part 1 of 6).

1180 Java Utilities Package and Bit Manipulation Chapter 20

15 private int value1, value2;
16
17 // set up GUI
18 public MiscBitOps()
19 {
20 super("Bitwise operators");
21
22 JPanel inputPanel = new JPanel();
23 inputPanel.setLayout(new GridLayout(4, 2));
24
25 inputPanel.add(new JLabel("Enter 2 ints"));
26 inputPanel.add(new JLabel(""));
27
28 inputPanel.add(new JLabel("Value 1"));
29 input1Field = new JTextField(8);
30 inputPanel.add(input1Field);
31
32 inputPanel.add(new JLabel("Value 2"));
33 input2Field = new JTextField(8);
34 inputPanel.add(input2Field);
35
36 inputPanel.add(new JLabel("Result"));
37 resultField = new JTextField(8);
38 resultField.setEditable(false);
39 inputPanel.add(resultField);
40
41 JPanel bitsPanel = new JPanel();
42 bitsPanel.setLayout(new GridLayout(4, 1));
43 bitsPanel.add(new JLabel("Bit representations"));
44
45 bits1Field = new JTextField(33);
46 bits1Field.setEditable(false);
47 bitsPanel.add(bits1Field);
48
49 bits2Field = new JTextField(33);
50 bits2Field.setEditable(false);
51 bitsPanel.add(bits2Field);
52
53 bits3Field = new JTextField(33);
54 bits3Field.setEditable(false);
55 bitsPanel.add(bits3Field);
56
57 JPanel buttonPanel = new JPanel();
58
59 // button to perform bitwise AND
60 JButton andButton = new JButton("AND");
61
62 andButton.addActionListener(
63
64 new ActionListener() {
65

Fig. 20.8Fig. 20.8Fig. 20.8Fig. 20.8 Demonstrating the bitwise AND, bitwise inclusive OR, bitwise exclusive OR
and bitwise complement operators (part 2 of 6).

Chapter 20 Java Utilities Package and Bit Manipulation 1181

66 // perform bitwise AND and display results
67 public void actionPerformed(ActionEvent event)
68 {
69 setFields();
70 resultField.setText(
71 Integer.toString(value1 & value2));
72 bits3Field.setText(getBits(value1 & value2));
73 }
74 }
75);
76
77 buttonPanel.add(andButton);
78
79 // button to perform bitwise inclusive OR
80 JButton inclusiveOrButton = new JButton("Inclusive OR");
81
82 inclusiveOrButton.addActionListener(
83
84 new ActionListener() {
85
86 // perform bitwise inclusive OR and display results
87 public void actionPerformed(ActionEvent event)
88 {
89 setFields();
90 resultField.setText(
91 Integer.toString(value1 | value2));
92 bits3Field.setText(getBits(value1 | value2));
93 }
94 }
95);
96
97 buttonPanel.add(inclusiveOrButton);
98
99 // button to perform bitwise exclusive OR
100 JButton exclusiveOrButton = new JButton("Exclusive OR");
101
102 exclusiveOrButton.addActionListener(
103
104 new ActionListener() {
105
106 // perform bitwise exclusive OR and display results
107 public void actionPerformed(ActionEvent event)
108 {
109 setFields();
110 resultField.setText(
111 Integer.toString(value1 ^ value2));
112 bits3Field.setText(getBits(value1 ^ value2));
113 }
114 }
115);
116
117 buttonPanel.add(exclusiveOrButton);

Fig. 20.8Fig. 20.8Fig. 20.8Fig. 20.8 Demonstrating the bitwise AND, bitwise inclusive OR, bitwise exclusive OR
and bitwise complement operators (part 3 of 6).

1182 Java Utilities Package and Bit Manipulation Chapter 20

118
119 // button to perform bitwise complement
120 JButton complementButton = new JButton("Complement");
121
122 complementButton.addActionListener(
123
124 new ActionListener() {
125
126 // perform bitwise complement and display results
127 public void actionPerformed(ActionEvent event)
128 {
129 input2Field.setText("");
130 bits2Field.setText("");
131
132 int value = Integer.parseInt(input1Field.getText());
133
134 resultField.setText(Integer.toString(~value));
135 bits1Field.setText(getBits(value));
136 bits3Field.setText(getBits(~value));
137 }
138 }
139);
140
141 buttonPanel.add(complementButton);
142
143 Container container = getContentPane();
144 container.add(inputPanel, BorderLayout.WEST);
145 container.add(bitsPanel, BorderLayout.EAST);
146 container.add(buttonPanel, BorderLayout.SOUTH);
147
148 setSize(600, 150);
149 setVisible(true);
150 }
151
152 // display numbers and their bit form
153 private void setFields()
154 {
155 value1 = Integer.parseInt(input1Field.getText());
156 value2 = Integer.parseInt(input2Field.getText());
157
158 bits1Field.setText(getBits(value1));
159 bits2Field.setText(getBits(value2));
160 }
161
162 // display bit representation of specified int value
163 private String getBits(int value)
164 {
165 // create int value with 1 in leftmost bit and 0s elsewhere
166 int displayMask = 1 << 31;
167
168 // buffer to build output
169 StringBuffer buffer = new StringBuffer(35);

Fig. 20.8Fig. 20.8Fig. 20.8Fig. 20.8 Demonstrating the bitwise AND, bitwise inclusive OR, bitwise exclusive OR
and bitwise complement operators (part 4 of 6).

Chapter 20 Java Utilities Package and Bit Manipulation 1183

170
171 // for each bit append 0 or 1 to buffer
172 for (int bit = 1; bit <= 32; bit++) {
173
174 // use displayMask to isolate bit and determine whether
175 // bit has value of 0 or 1
176 buffer.append(
177 (value & displayMask) == 0 ? '0' : '1');
178
179 // shift value one position to left
180 value <<= 1;
181
182 // append space to buffer every 8 bits
183 if (bit % 8 == 0)
184 buffer.append(' ');
185 }
186
187 return buffer.toString();
188 }
189
190 // execute application
191 public static void main(String args[])
192 {
193 MiscBitOps application = new MiscBitOps();
194
195 application.setDefaultCloseOperation(
196 JFrame.EXIT_ON_CLOSE);
197 }
198
199 } // end class MiscBitOps

Fig. 20.8Fig. 20.8Fig. 20.8Fig. 20.8 Demonstrating the bitwise AND, bitwise inclusive OR, bitwise exclusive OR
and bitwise complement operators (part 5 of 6).

1184 Java Utilities Package and Bit Manipulation Chapter 20

The bitwise inclusive OR operator sets specific bits to 1 in an operand. The second
output window for Fig. 20.8 shows the results of combining the value 15 and the value 241
by using the bitwise OR operator—the result is 255. Figure 20.9 summarizes the results of
combining two bits with the bitwise inclusive OR operator.

Common Programming Error 20.2
Using the logical OR operator (||) for the bitwise OR operator (|) is a common program-
ming error. 20.2

The bitwise exclusive OR operator (^) sets each bit in the result to 1 if exactly one of
the corresponding bits in its two operands is 1. The third output of Fig. 20.8 shows the
results of combining the value 139 and the value 199 by using the exclusive OR oper-
ator—the result is 76. Figure 20.10 summarizes the results of combining two bits with the
bitwise exclusive OR operator.

Fig. 20.8Fig. 20.8Fig. 20.8Fig. 20.8 Demonstrating the bitwise AND, bitwise inclusive OR, bitwise exclusive OR
and bitwise complement operators (part 6 of 6).

Bit 1 Bit 2 Bit 1 | Bit 2

0 0 0

1 0 1

0 1 1

1 1 1

Fig. 20.9Fig. 20.9Fig. 20.9Fig. 20.9 Results of combining two bits with the bitwise inclusive OR operator (|).

Chapter 20 Java Utilities Package and Bit Manipulation 1185

The bitwise complement operator (~) sets all 1 bits in its operand to 0 in the result and
sets all 0 bits to 1 in the result—otherwise referred to as “taking the one's complement of
the value.” The fourth output window for Fig. 20.8 shows the results of taking the one’s
complement of the value 21845. The result is -21846.

The program of Fig. 20.11 demonstrates the left shift operator (<<), the right shift
operator with sign extension (>>) and the right shift operator with zero extension (>>>).
Method getBits (lines 113–138) obtains a String containing the bit representation of
the integer values. The program allows the user to enter an integer into a JTextField
and press Enter to display the bit representation of the integer in a second JTextField.
The the user can press a button representing a shift operation to perform a 1-bit shift and
view the results of the shift in both integer and bitwise representation.

Bit 1 Bit 2 Bit 1 ^ Bit 2

0 0 0

1 0 1

0 1 1

1 1 0

Fig. 20.10Fig. 20.10Fig. 20.10Fig. 20.10 Results of combining two bits with the bitwise exclusive OR operator (^).

1 // Fig. 20.11: BitShift.java
2 // Using the bitwise shift operators.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7
8 // Java extension packages
9 import javax.swing.*;

10
11 public class BitShift extends JFrame {
12 private JTextField bitsField;
13 private JTextField valueField;
14
15 // set up GUI
16 public BitShift()
17 {
18 super("Shifting bits");
19
20 Container container = getContentPane();
21 container.setLayout(new FlowLayout());
22
23 container.add(new JLabel("Integer to shift "));
24
25 // textfield for user to input integer
26 valueField = new JTextField(12);

Fig. 20.11Fig. 20.11Fig. 20.11Fig. 20.11 Demonstrating the bitwise shift operators (part 1 of 5).

1186 Java Utilities Package and Bit Manipulation Chapter 20

27 container.add(valueField);
28
29 valueField.addActionListener(
30
31 new ActionListener() {
32
33 // read value and display its bitwise representation
34 public void actionPerformed(ActionEvent event)
35 {
36 int value = Integer.parseInt(valueField.getText());
37 bitsField.setText(getBits(value));
38 }
39 }
40);
41
42 // textfield to display bitwise representation of an integer
43 bitsField = new JTextField(33);
44 bitsField.setEditable(false);
45 container.add(bitsField);
46
47 // button to shift bits left by one position
48 JButton leftButton = new JButton("<<");
49
50 leftButton.addActionListener(
51
52 new ActionListener() {
53
54 // left shift one position and display new value
55 public void actionPerformed(ActionEvent event)
56 {
57 int value = Integer.parseInt(valueField.getText());
58 value <<= 1;
59 valueField.setText(Integer.toString(value));
60 bitsField.setText(getBits(value));
61 }
62 }
63);
64
65 container.add(leftButton);
66
67 // button to right shift value one position with sign extension
68 JButton rightSignButton = new JButton(">>");
69
70 rightSignButton.addActionListener(
71
72 new ActionListener() {
73
74 // right shift one position and display new value
75 public void actionPerformed(ActionEvent event)
76 {
77 int value = Integer.parseInt(valueField.getText());
78 value >>= 1;
79 valueField.setText(Integer.toString(value));

Fig. 20.11Fig. 20.11Fig. 20.11Fig. 20.11 Demonstrating the bitwise shift operators (part 2 of 5).

Chapter 20 Java Utilities Package and Bit Manipulation 1187

80 bitsField.setText(getBits(value));
81 }
82 }
83);
84
85 container.add(rightSignButton);
86
87 // button to right shift value one position with zero extension
88 JButton rightZeroButton = new JButton(">>>");
89
90 rightZeroButton.addActionListener(
91
92 new ActionListener() {
93
94 // right shift one position and display new value
95 public void actionPerformed(ActionEvent event)
96 {
97 int value = Integer.parseInt(valueField.getText());
98 value >>>= 1;
99 valueField.setText(Integer.toString(value));
100
101 bitsField.setText(getBits(value));
102 }
103 }
104);
105
106 container.add(rightZeroButton);
107
108 setSize(400, 120);
109 setVisible(true);
110 }
111
112 // display bit representation of specified int value
113 private String getBits(int value)
114 {
115 // create int value with 1 in leftmost bit and 0s elsewhere
116 int displayMask = 1 << 31;
117
118 // buffer to build output
119 StringBuffer buffer = new StringBuffer(35);
120
121 // for each bit append 0 or 1 to buffer
122 for (int bit = 1; bit <= 32; bit++) {
123
124 // use displayMask to isolate bit and determine whether
125 // bit has value of 0 or 1
126 buffer.append(
127 (value & displayMask) == 0 ? '0' : '1');
128
129 // shift value one position to left
130 value <<= 1;
131

Fig. 20.11Fig. 20.11Fig. 20.11Fig. 20.11 Demonstrating the bitwise shift operators (part 3 of 5).

1188 Java Utilities Package and Bit Manipulation Chapter 20

132 // append space to buffer every 8 bits
133 if (bit % 8 == 0)
134 buffer.append(' ');
135 }
136
137 return buffer.toString();
138 }
139
140 // execute application
141 public static void main(String args[])
142 {
143 BitShift application = new BitShift();
144
145 application.setDefaultCloseOperation(
146 JFrame.EXIT_ON_CLOSE);
147 }
148
149 } // end class BitShift

Fig. 20.11Fig. 20.11Fig. 20.11Fig. 20.11 Demonstrating the bitwise shift operators (part 4 of 5).

Chapter 20 Java Utilities Package and Bit Manipulation 1189

The left shift operator (<<) shifts the bits of its left operand to the left by the number
of bits specified in its right operand (performed at line 58 in the program). Bits vacated to
the right are replaced with 0s; 1s shifted off the left are lost. The first four output windows
of Fig. 20.11 demonstrate the left shift operator. Starting with the value 1, the left shift
button was pressed twice, resulting in the values 2 and 4, respectively. The fourth output
window shows the result of value1 being shifted 31 times. Note that the result is a nega-
tive value. That is because a 1 in the high-order bit is used to indicate a negative value in
an integer.

The right shift operator with sign extension (>>) shifts the bits of its left operand to the
right by the number of bits specified in its right operand (performed at line 78 in the pro-
gram). Performing a right shift causes the vacated bits at the left to be replaced by 0s if the
number is positive or 1s if the number is negative. Any 1s shifted off the right are lost. The
fifth and sixth output windows show the results of right shifting (with sign extension) the
value in the fourth output window two times.

The right shift operator with zero extension (>>>) shifts the bits of its left operand to
the right by the number of bits specified in its right operand (performed at line 98 in the
program). Performing a right shift causes the vacated bits at the left to be replaced by 0s.
Any 1s shifted off the right are lost. The eighth and ninth output windows show the results
of right shifting (with zero extension) the value in the seventh output window two times.

Each bitwise operator (except the bitwise complement operator) has a corresponding
assignment operator. These bitwise assignment operators are shown in Fig. 20.12.

Fig. 20.11Fig. 20.11Fig. 20.11Fig. 20.11 Demonstrating the bitwise shift operators (part 5 of 5).

1190 Java Utilities Package and Bit Manipulation Chapter 20

20.9 BitSet Class
Class BitSet makes it easy to create and manipulate bit sets. Bit sets are useful for rep-
resenting a set of boolean flags. BitSets are dynamically resizable. More bits can be
added as needed, and a BitSet object will grow to accommodate the additional bits. The
statement

BitSet b = new BitSet();

creates a BitSet that initially is empty. Also, a program can specify the size of a BitSet
with the statement

BitSet b = new BitSet(size);

which creates a BitSet with size bits.
The statement

b.set(bitNumber);

sets bit bitNumber “on.” This makes the underlying value of that bit 1. Note that bit num-
bers are zero based, like Vectors. The statement

b.clear(bitNumber);

sets bit bitNumber “off.” This makes the underlying value of that bit 0. The statement

b.get(bitNumber);

gets the value of bit bitNumber. The result is returned as true if the bit is on, false
if the bit is off.

The statement

b.and(b1);

performs a bit-by-bit logical AND between BitSets b and b1. The result is stored in b.
Bitwise logical OR and bitwise logical XOR are performed by the statements

b.or(b1);
b.xor(b2);

Bitwise assignment operators

&= Bitwise AND assignment operator.

|= Bitwise inclusive OR assignment operator.

^= Bitwise exclusive OR assignment operator.

<<= Left shift assignment operator.

>>= Right shift with sign extension assignment operator.

>>>= Right shift with zero extension assignment operator.

Fig. 20.12Fig. 20.12Fig. 20.12Fig. 20.12 The bitwise assignment operators.

Chapter 20 Java Utilities Package and Bit Manipulation 1191

The expression

b.size()

returns the size of the BitSet. The expression

b.equals(b1)

compares the two BitSets for equality. The expression

b.toString()

creates a String representation of the BitSet contents. This is helpful for debugging.
Figure 20.13 revisits the Sieve of Eratosthenes for finding prime numbers, which we dis-

cussed in Exercise 7.27. This example uses a BitSet rather than an array to implement the
algorithm. The program displays all the prime numbers from 2 to 1023 in a JTextArea and
provides a JTextField in which the user can type any number from 2 to 1023 to determine
whether that number is prime (in which case a message is displayed in a JLabel).

1 // Fig. 20.13: BitSetTest.java
2 // Using a BitSet to demonstrate the Sieve of Eratosthenes.
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.util.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class BitSetTest extends JFrame {
13 private BitSet sieve;
14 private JLabel statusLabel;
15 private JTextField inputField;
16
17 // set up GUI
18 public BitSetTest()
19 {
20 super("BitSets");
21
22 sieve = new BitSet(1024);
23
24 Container container = getContentPane();
25
26 statusLabel = new JLabel("");
27 container.add(statusLabel, BorderLayout.SOUTH);
28
29 JPanel inputPanel = new JPanel();
30
31 inputPanel.add(new JLabel(
32 "Enter a value from 2 to 1023"));

Fig. 20.13Fig. 20.13Fig. 20.13Fig. 20.13 Demonstrating the Sieve of Eratosthenes using a BitSet (part 1 of 3).

1192 Java Utilities Package and Bit Manipulation Chapter 20

33
34 // textfield for user to input a value from 2 to 1023
35 inputField = new JTextField(10);
36
37 inputField.addActionListener(
38
39 new ActionListener() {
40
41 // determine whether value is prime number
42 public void actionPerformed(ActionEvent event)
43 {
44 int value = Integer.parseInt(inputField.getText());
45
46 if (sieve.get(value))
47 statusLabel.setText(
48 value + " is a prime number");
49
50 else
51 statusLabel.setText(value +
52 " is not a prime number");
53 }
54 }
55);
56
57 inputPanel.add(inputField);
58 container.add(inputPanel, BorderLayout.NORTH);
59
60 JTextArea primesArea = new JTextArea();
61
62 container.add(new JScrollPane(primesArea),
63 BorderLayout.CENTER);
64
65 // set all bits from 1 to 1023
66 int size = sieve.size();
67
68 for (int i = 2; i < size; i++)
69 sieve.set(i);
70
71 // perform Sieve of Eratosthenes
72 int finalBit = (int) Math.sqrt(sieve.size());
73
74 for (int i = 2; i < finalBit; i++)
75
76 if (sieve.get(i))
77
78 for (int j = 2 * i; j < size; j += i)
79 sieve.clear(j);
80
81 // display prime numbers from 1 to 1023
82 int counter = 0;
83

Fig. 20.13Fig. 20.13Fig. 20.13Fig. 20.13 Demonstrating the Sieve of Eratosthenes using a BitSet (part 2 of 3).

Chapter 20 Java Utilities Package and Bit Manipulation 1193

Line 22 creates a BitSet of 1024 bits. We ignore the bit at index 0 in this program.
Lines 68–69 set all the bits in the BitSet to on with BitSet method set. Lines 72–79
determine all the prime numbers from 2 to 1023. The integer finalBit specifies when
the algorithm is complete. The basic algorithm is that a number is prime if it has no divisors
other than 1 and itself. Starting with the number 2, once we know a number is prime, we
can eliminate all multiples of that number. The number 2 is only divisible by 1 and itself,
so it is prime. Therefore, we can eliminate 4, 6, 8 and so on. Elimination of a value consists

84 for (int i = 2; i < size; i++)
85
86 if (sieve.get(i)) {
87 primesArea.append(String.valueOf(i));
88 primesArea.append(++counter % 7 == 0 ? "\n" : "\t");
89 }
90
91 setSize(600, 450);
92 setVisible(true);
93 }
94
95 // execute application
96 public static void main(String args[])
97 {
98 BitSetTest application = new BitSetTest();
99
100 application.setDefaultCloseOperation(
101 JFrame.EXIT_ON_CLOSE);
102 }
103
104 } // end class BitSetTest

Fig. 20.13Fig. 20.13Fig. 20.13Fig. 20.13 Demonstrating the Sieve of Eratosthenes using a BitSet (part 3 of 3).

1194 Java Utilities Package and Bit Manipulation Chapter 20

of setting its bit to off with BitSet method clear. The number 3 is divisible by 1 and
itself. Therefore, we can eliminate all multiples of 3 (keep in mind that all even numbers
have already been eliminated). After the list of primes is displayed, the user can type a value
from 2 to 1023 in the textfield and press enter to determine whether the number is prime.
Method actionPerformed (lines 42–53) uses BitSet method get (line 46) to deter-
mine whether the bit for the number the user entered is set. If so, lines 47–48 display a mes-
sage indicating that the number is prime. Otherwise, lines 51–52 display a message
indicating that the number is not prime.

SUMMARY
• Class Vector manages dynamically resizable arrays. At any time the Vector contains a certain

number of elements which is less than or equal to its capacity. The capacity is the space that has
been reserved for the array.

• If a Vector needs to grow, it grows by an increment that you specify or by a default assumed by
the system. If you do not specify a capacity increment, the system automatically doubles the size
of the Vector each time additional capacity is required.

• Vectors store references to Objects. To store values of primitive data types in Vectors, use
the type-wrapper classes (Byte, Short, Integer, Long, Float, Double, Boolean and
Character) to create objects containing the primitive data type values.

• Class Vector provides three constructors. The no-argument constructor creates an empty Vec-
tor. The constructor that takes one argument creates a Vector with an initial capacity specified
by the argument. The constructor that takes two arguments creates a Vector with an initial ca-
pacity specified by the first argument and a capacity increment specified by the second argument.

• Vector method addElement adds its argument to the end of the Vector. Method in-
sertElementAt inserts an element at the specified position. Method setElementAt sets the
element at a specific position.

• Vector method removeElement removes the first occurrence of its argument. Method re-
moveAllElements removes every element from the Vector. Method removeElementAt
removes the element at the specified index.

• Vector method firstElement returns a reference to the first element. Method lastEle-
ment returns a reference to the last element.

• Vector method isEmpty determines whether the Vector is empty.

• Vector method contains determines whether the Vector contains the searchKey speci-
fied as an argument.

• Vector method indexOf gets the index of the first location of its argument. The method returns
–1 if the argument is not found in the Vector.

• Vector method trimToSize cuts the capacity of the Vector to the Vector’s size. Methods
size and capacity determine the number of elements currently in the Vector and the num-
ber of elements that can be stored in the Vector without allocating more memory, respectively.

• Vector method elements returns a reference to an Enumeration containing the elements
of the Vector.

• Enumeration method hasMoreElements determines whether there are more elements.
Method nextElement returns a reference to the next element.

• Class Stack extends class Vector. Stack method push adds its argument to the top of the
stack. Method pop removes the top element of the stack. Method peek returns an Object ref-

Chapter 20 Java Utilities Package and Bit Manipulation 1195

erence to the top element of the stack without removing the element. Stack method empty de-
termines whether the stack is empty.

• A Dictionary transforms keys to values.

• Hashing is a high-speed scheme for converting keys into unique array subscripts for storage and
retrieval of information.The load factor is the ratio of the number of occupied cells in a hash table
to the size of the hash table. The closer this ratio gets to 1.0, the greater the chance of collisions.

• The no-argument Hashtable constructor creates a Hashtable with a default capacity of 101
elements and a default load factor of .75. The Hashtable constructor that takes one argument
specifies the initial capacity; the constructor that takes two arguments specifies the initial capacity
and load factor, respectively.

• Hashtable method put adds a key and a value into a Hashtable. Method get locates the
value associated with the specified key. Method remove deletes the value associated with the
specified key. Method isEmpty determines whether the table is empty.

• Hashtable method containsKey determines whether the key specified as an argument is in
the Hashtable (i.e., a value is associated with that key). Method contains determines wheth-
er the Object specified as its argument is in the Hashtable. Method clear empties the
Hashtable. Method elements obtains an Enumeration of the values. Method keys ob-
tains an Enumeration of the keys.

• A Properties object is a persistent Hashtable object. Class Properties extends Hash-
table. Keys and values in a Properties object must be Strings.

• The Properties no-argument constructor creates an empty Properties table with no de-
fault properties. There is also an overloaded constructor that is passed a reference to a default
Properties object containing default property values.

• Properties method getProperty locates the value of the key specified as an argument.
Method store saves the contents of the Properties object to the OutputStream object
specified as the first argument. Method load restores the contents of the Properties object
from the InputStream object specified as the argument. Method propertyNames obtains an
Enumeration of the property names.

• Java provides extensive random-number generation capabilities in class Random. Class Ran-
dom’s no-argument constructor uses the time to seed its random-number generator differently
each time it is called. To create a pseudorandom-number generator with repeatability, use the
Random constructor that takes a seed argument.

• Random method setSeed sets the seed. Methods nextInt and nextLong generate uniform-
ly distributed random integers. Methods nextFloat and nextDouble generate uniformly dis-
tributed values in the range 0.0 <= x < 1.0.

• The bitwise AND (&) operator sets each bit in the result to 1 if the corresponding bit in both oper-
ands is 1.

• The bitwise inclusive OR (|) operator sets each bit in the result to 1 if the corresponding bit in
either (or both) operand(s) is 1.

• The bitwise exclusive OR (^) operator sets each bit in the result to 1 if the corresponding bit in
exactly one operand is 1.

• The left shift (<<) operator shifts the bits of its left operand to the left by the number of bits spec-
ified in its right operand.

• The right shift operator with sign extension (>>) shifts the bits in its left operand to the right by
the number of bits specified in its right operand—if the left operand is negative, 1s are shifted in
from the left; otherwise, 0s are shifted in from the left.

1196 Java Utilities Package and Bit Manipulation Chapter 20

• The right shift operator with zero extension (>>>) shifts the bits in its left operand to the right by
the number of bits specified in its right operand—0s are shifted in from the left.

• The bitwise complement (~) operator sets all 0 bits in its operand to 1 in the result and sets all 1
bits to 0 in the result.

• Each bitwise operator (except complement) has a corresponding assignment operator.

• The no-argument BitSet constructor creates an empty BitSet. The one-argument BitSet
constructor creates a BitSet with the number of bits specified by its argument.

• BitSet method set sets the specified bit “on.” Method clear sets the specified bit “off.”
Method get returns true if the bit is on, false if the bit is off.

• BitSet method and performs a bit-by-bit logical AND between BitSets. The result is stored
in the BitSet that invoked the method. Similarly, bitwise logical OR and bitwise logical XOR
are performed by methods or and xor.

• BitSet method size returns the size of a BitSet. Method toString converts a BitSet to
a String.

TERMINOLOGY
addElement method of class Vector elements method of class Dictionary
and method of class BitSet elements method of class Vector
bit set EmptyStackException class
BitSet class enumerate successive elements
bitwise assignment operators
 &= (bitwise AND)
 ^= (bitwise exclusive OR)
 |= (bitwise inclusive OR)
 <<= (left shift)
 >>= (right shift)
 >>>= (right shift with zero extension)

Enumeration interface
equals method of class Object
firstElement method of class Vector
get method of class BitSet
get method of class Dictionary
getProperty method of class Properties
hashCode method of class Object

bitwise manipulation operators
 & bitwise AND
 ^ bitwise exclusive OR
 | bitwise inclusive OR
 ~ one’s complement
 << left shift
 >> right shift
 >>> right shift with zero extension

hashing
Hashtable class
hasMoreElements method (Enumeration)
indexOf method of class Vector
initial capacity of a Vector
insertElementAt method of class Vector
isEmpty method of class Dictionary
isEmpty method of class Vector

capacity increment of a Vector iterate through container elements
capacity method of class Vector java.util package
capacity of a Vector key in a Dictionary
clear method of class BitSet key/value pair
clear method of class Hashtable keys method of class Dictionary
clone method of class BitSet lastElement method of class Vector
collision in hashing list method of class Properties
contains method of class Vector load factor in hashing
containsKey method of class Hashtable load method of class Properties
defaults nextDouble method of class Random
Dictionary class nextElement method of Enumeration
dynamically resizable array nextFloat method of class Random
elementAt method of class Vector nextInt method of class Random

Chapter 20 Java Utilities Package and Bit Manipulation 1197

SELF-REVIEW EXERCISES
20.1 Fill in the blanks in each of the following statements:

a) Java class provides the capabilities of array-like data structures that can re-
size themselves dynamically.

b) If you do not specify a capacity increment, the system will the size of the
Vector each time additional capacity is needed.

c) If storage is at a premium, use the method of the Vector class to trim a
Vector to its exact size.

20.2 State whether each of the following is true or false. If false, explain why.
a) Values of primitive data types may be stored directly in a Vector.
b) With hashing, as the load factor increases, the chance of collisions decreases.

20.3 Under what circumstances is an EmptyStackException thrown?

20.4 Fill in the blanks in each of the following statements:
a) Bits in the result of an expression using operator are set to 1 if the corre-

sponding bits in each operand are set to 1. Otherwise, the bits are set to zero.
b) Bits in the result of an expression using operator are set to 1 if at least one

of the corresponding bits in either operand is set to 1. Otherwise, the bits are set to zero.
c) Bits in the result of an expression using operator are set to 1 if exactly one

of the corresponding bits in either operand is set to 1. Otherwise, the bits are set to zero.
d) The bitwise AND operator (&) is often used to bits, that is, to select certain

bits from a bit string while zeroing others.
e) The operator is used to shift the bits of a value to the left.
f) The operator shifts the bits of a value to the right with sign extension, and

the operator shifts the bits of a value to the right with zero extension.

ANSWERS TO SELF-REVIEW EXERCISES
20.1 a) Vector. b) double. c) trimToSize.

20.2 a) False; a Vector stores only Objects. A program must use the type-wrapper classes
(Byte, Short, Integer, Long, Float, Double, Boolean and Character) from package
java.lang to create Objects containing the primitive data type values. b) False; as the load fac-

nextLong method of class Random removeElementAt method of class Vector
NoSuchElementException class search method of class Stack
NullPointerException seed of a random-number generator
or method of class BitSet set method of class BitSet
peek method of class Stack setElementAt method of class Vector
persistent hash table setSeed method of class Random
pop method of class Stack setSize method of class Vector
Properties class size method of class Dictionary
propertyNames method of Properties size method of class Vector
pseudorandom numbers Stack class
push method of class Stack store method of class Properties
put method of class Dictionary trimToSize method of class Vector
Random class Vector class
remove method of class Dictionary white-space characters
removeAllElements method of Vector xor method of class BitSet
removeElement method of class Vector

1198 Java Utilities Package and Bit Manipulation Chapter 20

tor increases, there are fewer available slots relative to the total number of slots, so the chance of se-
lecting an occupied slot (a collision) with a hashing operation increases.

20.3 When a program calls pop or peek on an empty Stack object, an EmptyStackExcep-
tion occurs.

20.4 a) bitwise AND (&). b) bitwise inclusive OR (|). c) bitwise exclusive OR (^). d) mask.
e) left shift operator (<<). f) right shift operator with sign extension (>>), right shift operator with
zero extension (>>>).

EXERCISES
20.5 Define each of the following terms in the context of hashing:

a) key
b) collision
c) hashing transformation
d) load factor
e) space–time trade-off
f) Hashtable class
g) capacity of a Hashtable

20.6 Explain briefly the operation of each of the following methods of class Vector:
a) addElement
b) insertElementAt
c) setElementAt
d) removeElement
e) removeAllElements
f) removeElementAt
g) firstElement
h) lastElement
i) isEmpty
j) contains
k) indexOf
l) trimToSize
m) size
n) capacity

20.7 Explain why inserting additional elements into a Vector object whose current size is less
than its capacity is a relatively fast operation and why inserting additional elements into a Vector
object whose current size is at capacity is a relatively slow operation.

20.8 In the text, we state that the default capacity increment of doubling the size of a Vector
might seem wasteful of storage, but it is actually an efficient way for Vectors to grow quickly to be
“about the right size.” Explain this statement. Explain the pros and cons of this doubling algorithm.
What can a program do when it determines that the doubling is wasting space?

20.9 Explain the use of the Enumeration interface with objects of class Vector.

20.10 By extending class Vector, Java’s designers were able to create class Stack quickly.
What are the negative aspects of this use of inheritance, particularly for class Stack?

20.11 Explain briefly the operation of each of the following methods of class Hashtable:
a) put
b) get
c) remove
d) isEmpty

Chapter 20 Java Utilities Package and Bit Manipulation 1199

e) containsKey
f) contains
g) clear
h) elements
i) keys

20.12 Explain how to use the Random class to create pseudorandom numbers with the repeatability
required for debugging purposes.

20.13 Use a Hashtable to create a reusable class for choosing one of the 13 predefined colors in
class Color. The name of the color should be used as keys and the predefined Color objects should
be used as values. Place this class in a package that can be imported into any Java program. Use your
new class in an application that allows the user to select a color and draw a shape in that color.

20.14 Modify your solution to Exercise 13.18—the polymorphic painting program—to store every
shape the user draws in a Vector of MyShape objects. For the purpose of this exercise, create your
own Vector subclass called ShapeVector that manipulates only MyShape objects. Provide the
following capabilities in your program:

a) Allow the user of the program to remove any number of shapes from the Vector by
clicking an Undo button.

b) Allow the user to select any shape on the screen and move it to a new location. This requires
the addition of a new method to the MyShape hierarchy. The method’s first line should be

public boolean isInside()

This method should be overridden for each subclass of MyShape to determine whether
the coordinates where the user pressed the mouse button are inside the shape.

c) Allow the user to select any shape on the screen and change its color.
d) Allow the user to select any shape on the screen that can be filled or unfilled and change

its fill state.

20.15 What does it mean when we state that a Properties object is a “persistent” Hashtable
object? Explain the operation of each of the following methods of the Properties class:

a) load
b) store
c) getProperty
d) propertyNames
e) list

20.16 Why might you want to use objects of class BitSet? Explain the operation of each of the
following methods of class BitSet:

a) set
b) clear
c) get
d) and
e) or
f) xor
g) size
h) equals
i) clone
j) toString
k) hashCode

20.17 Write a program that right shifts an integer variable 4 bits with sign extension and then right
shifts the same integer variable 4 bits with zero extension. The program should print the integer in

1200 Java Utilities Package and Bit Manipulation Chapter 20

bits before and after each shift operation. Run your program once with a positive integer and once
with a negative integer.

20.18 Show how shifting an integer left by 1 can be used to simulate multiplication by 2 and how
shifting an integer right by 2 can be used to simulate division by 2. Be careful to consider issues re-
lated to the sign of an integer.

20.19 Write a program that reverses the order of the bits in an integer value. The program should
input the value from the user and call method reverseBits to print the bits in reverse order. Print
the value in bits both before and after the bits are reversed to confirm that the bits are reversed prop-
erly. You might want to implement both a recursive and an iterative solution.

20.20 Modify your solution to Exercise 19.10 to use class Stack.

20.21 Modify your solution to Exercise 19.12 to use class Stack.

20.22 Modify your solution to Exercise 19.13 to use class Stack.

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

21
Collections

Objectives
• To understand what collections are.
• To understand Java 2’s new array capabilities.
• To use the collections framework implementations.
• To be able to use collections framework algorithms to

manipulate various collections.
• To be able to use the collections framework interfaces

to program polymorphically.
• To be able to use iterators to walk through the

elements of a collection.
• To understand synchronization wrappers and

modifiability wrappers.
I think this is the most extraordinary collection of talent, of
human knowledge, that has ever been gathered together at
the White House—with the possible exception of when
Thomas Jefferson dines alone.
John F. Kennedy

The shapes a bright container can contain!
Theodore Roethke

Journey over all the universe in a map.
Miguel de Cervantes

It is an immutable law in business that words are words,
explanations are explanations, promises are promises — but
only performance is reality.
Harold S. Green

1202 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

21.1 Introduction
In Chapter 19, we discussed how to create and manipulate data structures. The discussion
was “low level,” in the sense that we painstakingly created each element of each data struc-
ture dynamically with new and modified the data structures by directly manipulating their
elements and references to their elements. In this chapter, we consider the Java collections
framework, which gives the programmer access to prepackaged data structures, as well as
algorithms for manipulating those data structures.

With collections, instead of creating data structures, the programmer simply uses
existing data structures, without concern for how the data structures are implemented. This
methodology is a marvelous example of code reuse. Programmers can code faster and can
expect excellent performance, maximizing execution speed and minimizing memory con-
sumption. We will discuss the interfaces of the collections framework, the implementation
classes, the algorithms that process them and the iterators that “walk” through them.

Some examples of collections are the cards you hold in a card game, your favorite
songs stored in your computer and the real-estate records in your local registry of deeds
(which map book numbers and page numbers to property owners). Java 2 provides an entire
collections framework, whereas earlier versions of Java provided just a few collection
classes, such as Hashtable, Stack and Vector (see Chapter 20), as well as built-in
array capabilities. If you know C++, you will be familiar with its collections framework,

Outline

21.1 Introduction
21.2 Collections Overview
21.3 Class Arrays
21.4 Interface Collection and Class Collections
21.5 Lists
21.6 Algorithms

21.6.1 Algorithm sort
21.6.2 Algorithm shuffle
21.6.3 Algorithms reverse, fill, copy, max and min
21.6.4 Algorithm binarySearch

21.7 Sets
21.8 Maps
21.9 Synchronization Wrappers
21.10 Unmodifiable Wrappers
21.11 Abstract Implementations
21.12 (Optional) Discovering Design Patterns: Design Patterns Used in

Package java.util

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Chapter 21 Collections 1203

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

which is called the Standard Template Library (STL). (See Chapter 20 of C++ How to Pro-
gram, Third Edition, by H. M. Deitel and P. J. Deitel, ©2001, Prentice Hall).

The Java collections framework provides ready-to-go, reusable componentry; you do
not need to write your own collection classes. The collections are standardized so applica-
tions can share them easily, without having to be concerned with the details of their imple-
mentation. These collections are written for broad reuse. They are tuned for rapid execution
as well as efficient use of memory. The collections framework encourages further reus-
ability. As new data structures and algorithms are developed that fit this framework, a large
base of programmers already will be familiar with the interfaces and algorithms imple-
mented by those data structures.

21.2 Collections Overview
A collection is a data structure—actually, an object—that can hold other objects. The col-
lection interfaces define the operations that a program can perform on each type of collec-
tion. The collection implementations execute the operations in particular ways, some more
appropriate than others for specific kinds of applications. Thecollection implementations
are carefully constructed for rapid execution and efficient use of memory. Collections en-
courage software reuse by providing convenient functionality.

The collections framework provides interfaces that define the operations to be per-
formed generically on various types of collections. Some of the interfaces are Collec-
tion, Set, List and Map. Several implementations of these interfaces are provided
within the framework. Programmers may also provide implementations specific to their
own requirements.

The collections framework includes a number of other features that minimize the
amount of coding programmers need to do to create and manipulate collections.

The classes and interfaces that comprise the collections framework are members of
package java.util. In the next section, we begin our discussion by examining the capa-
bilities that have been added for array manipulation.

21.3 Class Arrays
We begin our discussion of the collections framework by looking at class Arrays, which
provides static methods for manipulating arrays. In Chapter 7, our discussion of array
manipulation was “low level,” in the sense that we wrote the actual code to sort and search
arrays. Class Arrays provides “high-level” methods, such as binarySearch for
searching a sorted array, equals for comparing arrays, fill for placing values into an
array and sort for sorting an array. These methods are overloaded for primitive-type ar-
rays and Object arrays. Figure 21.1 demonstrates the use of these methods.

1 // Fig. 21.1: UsingArrays.java
2 // Using Java arrays.
3
4 // Java core packages
5 import java.util.*;

Fig. 21.1Fig. 21.1Fig. 21.1Fig. 21.1 Using methods of class Arrays (part 1 of 3).

1204 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

6
7 public class UsingArrays {
8 private int intValues[] = { 1, 2, 3, 4, 5, 6 };
9 private double doubleValues[] = { 8.4, 9.3, 0.2, 7.9, 3.4 };

10 private int filledInt[], intValuesCopy[];
11
12 // initialize arrays
13 public UsingArrays()
14 {
15 filledInt = new int[10];
16 intValuesCopy = new int[intValues.length];
17
18 Arrays.fill(filledInt, 7); // fill with 7s
19
20 Arrays.sort(doubleValues); // sort doubleValues
21
22 System.arraycopy(intValues, 0, intValuesCopy,
23 0, intValues.length);
24 }
25
26 // output values in each array
27 public void printArrays()
28 {
29 System.out.print("doubleValues: ");
30
31 for (int count = 0; count < doubleValues.length; count++)
32 System.out.print(doubleValues[count] + " ");
33
34 System.out.print("\nintValues: ");
35
36 for (int count = 0; count < intValues.length; count++)
37 System.out.print(intValues[count] + " ");
38
39 System.out.print("\nfilledInt: ");
40
41 for (int count = 0; count < filledInt.length; count++)
42 System.out.print(filledInt[count] + " ");
43
44 System.out.print("\nintValuesCopy: ");
45
46 for (int count = 0; count < intValuesCopy.length; count++)
47 System.out.print(intValuesCopy[count] + " ");
48
49 System.out.println();
50 }
51
52 // find value in array intValues
53 public int searchForInt(int value)
54 {
55 return Arrays.binarySearch(intValues, value);
56 }
57

Fig. 21.1Fig. 21.1Fig. 21.1Fig. 21.1 Using methods of class Arrays (part 2 of 3).

Chapter 21 Collections 1205

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Line 18 calls Arrays static method fill to populate all 10 elements of array
filledInt with 7s. Overloaded versions of fill allow the programmer to populate a
specific range of elements with the same value.

Line 20 sorts the elements of array doubleValues. Overloaded versions of sort
allow the programmer to sort a specific range of elements. Arrays static method
sort orders the array’s elements in ascending order by default. We discuss how to sort in
descending order later in the chapter.

58 // compare array contents
59 public void printEquality()
60 {
61 boolean b = Arrays.equals(intValues, intValuesCopy);
62
63 System.out.println("intValues " + (b ? "==" : "!=")
64 + " intValuesCopy");
65
66 b = Arrays.equals(intValues, filledInt);
67
68 System.out.println("intValues " + (b ? "==" : "!=")
69 + " filledInt");
70 }
71
72 // execute application
73 public static void main(String args[])
74 {
75 UsingArrays usingArrays = new UsingArrays();
76
77 usingArrays.printArrays();
78 usingArrays.printEquality();
79
80 int location = usingArrays.searchForInt(5);
81 System.out.println((location >= 0 ?
82 "Found 5 at element " + location : "5 not found") +
83 " in intValues");
84
85 location = usingArrays.searchForInt(8763);
86 System.out.println((location >= 0 ?
87 "Found 8763 at element " + location :
88 "8763 not found") + " in intValues");
89 }
90
91 } // end class UsingArrays

doubleValues: 0.2 3.4 7.9 8.4 9.3
intValues: 1 2 3 4 5 6
filledInt: 7 7 7 7 7 7 7 7 7 7
intValuesCopy: 1 2 3 4 5 6
intValues == intValuesCopy
intValues != filledInt
Found 5 at element 4 in intValues
8763 not found in intValues

Fig. 21.1Fig. 21.1Fig. 21.1Fig. 21.1 Using methods of class Arrays (part 3 of 3).

1206 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Lines 22–23 copy array intValues into array intValuesCopy. The first argument
(intValues) passed to System static method arraycopy is the array from which
elements are copied. The second argument (0) is the array (i.e., intValues) subscript that
specifies the starting point in the range of elements to copy. This value can be any valid array
subscript. The third argument (intValuesCopy) specifies the array that stores the copy.
The fourth argument (0) specifies the subscript in the destination array (i.e., intValues-
Copy) where the first copied element is stored. The last argument (intValues.length)
specifies the number of source-array (i.e., intValues) elements to copy.

Line 55 calls Arrays static method binarySearch to perform a binary search
on intValues, using value as the key. If value is found, binarySearch returns
the subscript location where value was found. If value is not found, binarySearch
returns a negative value. The negative value returned is based on the search key’s insertion
point—the index where the key would be inserted in the binary search tree if this were an
insert operation. After binarySearch determines the insertion point, it changes the
insertion point’s sign to negative and subtracts 1 to obtain the return value. For example,
in Fig. 21.1, the insertion point for the value 8763 is the element with subscript 6 in the
array. Method binarySearch changes the insertion point to –6 and subtracts 1 from it,
then returns the value –7. This return value is useful for adding elements to a sorted array.

Common Programming Error 21.1
Passing an unsorted array to binarySearch is a logic error. The value returned by
binarySearch is undefined. 21.1

Lines 61 and 66 call method equals to determine whether the elements of two arrays
are equivalent. If they are equal, method equals returns true; otherwise, it returns false.

One of the most important features of the collection framework is the ability to manip-
ulate the elements of one collection type through a different collection type, regardless of
the collection’s internal implementation. The public set of methods through which col-
lections are manipulated is called a view.

Class Arrays provides static method asList for viewing an array as a List
collection type (a type that encapsulates behavior similar to that of the linked lists created
in Chapter 19; we will say more about Lists later in the chapter). A List view allows
the programmer to manipulate the array programmatically as if it were a List by calling
List methods. Any modifications made through the List view change the array, and any
modifications made to the array change the List view. Figure 21.2 demonstrates method
asList.

1 // Fig. 21.2: UsingAsList.java
2 // Using method asList
3
4 // Java core packages
5 import java.util.*;
6
7 public class UsingAsList {
8 private String values[] = { "red", "white", "blue" };
9 private List list;

10

Fig. 21.2Fig. 21.2Fig. 21.2Fig. 21.2 Using static method asList (part 1 of 2).

Chapter 21 Collections 1207

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Line 9 declares a List reference called list. Line 14 uses static Arrays
method asList to obtain a fixed-size List view of array values.

Performance Tip 21.1
Arrays.asList creates a fixed-size List that operates faster than any of the provided
List implementations. 21.1

Common Programming Error 21.2
A List created with Arrays.asList is fixed in size; calling methods add or remove
throws an UnsupportedOperationException. 21.2

Line 15 calls List method set to change the contents of List element 1 to
"green". Because the program views the array as a List, line 15 changes array element
values[1] from "white" to "green". Any changes made to the List view are
made to the underlying array object.

11 // initialize List and set value at location 1
12 public UsingAsList()
13 {
14 list = Arrays.asList(values); // get List
15 list.set(1, "green"); // change a value
16 }
17
18 // output List and array
19 public void printElements()
20 {
21 System.out.print("List elements : ");
22
23 for (int count = 0; count < list.size(); count++)
24 System.out.print(list.get(count) + " ");
25
26 System.out.print("\nArray elements: ");
27
28 for (int count = 0; count < values.length; count++)
29 System.out.print(values[count] + " ");
30
31 System.out.println();
32 }
33
34 // execute application
35 public static void main(String args[])
36 {
37 new UsingAsList().printElements();
38 }
39
40 } // end class UsingAsList

List elements : red green blue
Array elements: red green blue

Fig. 21.2Fig. 21.2Fig. 21.2Fig. 21.2 Using static method asList (part 2 of 2).

1208 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Software Engineering Observation 21.1
With the collections framework, there are many methods that apply to Lists and Collec-
tions that you would like to be able to use for arrays. Arrays.asList allows you to pass
an array into a List or Collection parameter. 21.1

Line 23 calls List method size to get the number of items in the List. Line 24
calls List method get to retrieve an individual item from the List. Notice that the value
returned by size is equal to the number of elements in array values and that the items
returned by get are the elements of array values.

21.4 Interface Collection and Class Collections
Interface Collection is the root interface in the collections hierarchy from which inter-
faces Set (a collection that does not contain duplicates—discussed in Section 21.7) and
List are derived. Interface Collection contains bulk operations (i.e., operations per-
formed on the entire collection) for adding, clearing, comparing and retaining objects (also
called elements) in the collection. Collections can also be converted to arrays. In addi-
tion, interface Collection provides a method that returns an Iterator. Iterators
are similar to the Enumerations introduced in Chapter 20. The primary difference be-
tween an Iterator and an Enumeration is that Iterators can remove elements
from a collection, whereas Enumerations cannot. Other methods of interface Collec-
tion enable a program to determine a collection’s size, a collection’s hash code and
whether a collection is empty.

Software Engineering Observation 21.2
Collection is used commonly as a method parameter type to allow polymorphic process-
ing of all objects that implement interface Collection. 21.2

Software Engineering Observation 21.3
Most collection implementations provide a constructor that takes a Collection argu-
ment, thereby allowing one collection type to be treated as another collection type. 21.3

Class Collections provides static methods that manipulate collections poly-
morphically. These methods implement algorithms for searching, sorting, and so on. You
will learn more about these algorithms in Section 21.6. Other Collections methods
include wrapper methods that return new collections. We discuss wrapper methods in
Section 21.9 and Section 21.10.

21.5 Lists
A List is an ordered Collection that can contain duplicate elements. A List is some-
times called a sequence. Like arrays, Lists are zero based (i.e., the first element’s index
is zero). In addition to the interface methods inherited from Collection, List provides
methods for manipulating elements via their indices, manipulating a specified range of el-
ements, searching the elements and getting a ListIterator to access the elements.

Interface List is implemented by classes ArrayList, LinkedList and
Vector. Class ArrayList is a resizable-array implementation of a List. Class
ArrayList’s behavior and capabilities are similar to those of the Vector class, intro-
duced in Chapter 20. A LinkedList is a linked-list implementation of a List.

Chapter 21 Collections 1209

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Performance Tip 21.2
ArrayLists behave like unsynchronized Vectors and therefore execute faster than
Vectors, because ArrayLists are not thread safe. 21.2

Software Engineering Observation 21.4
LinkedLists can be used to create stacks, queues, trees and deques (double-ended
queues). 21.4

Figure 21.3 uses an ArrayList to demonstrate some of the capabilities of Collec-
tion interfaces. The program places Strings and Colors in an ArrayList and uses
an Iterator to remove the Strings from the ArrayList collection.

1 // Fig. 21.3: CollectionTest.java
2 // Using the Collection interface
3
4 // Java core packages
5 import java.awt.Color;
6 import java.util.*;
7
8 public class CollectionTest {
9 private String colors[] = { "red", "white", "blue" };

10
11 // create ArrayList, add objects to it and manipulate it
12 public CollectionTest()
13 {
14 ArrayList list = new ArrayList();
15
16 // add objects to list
17 list.add(Color.magenta); // add a color object
18
19 for (int count = 0; count < colors.length; count++)
20 list.add(colors[count]);
21
22 list.add(Color.cyan); // add a color object
23
24 // output list contents
25 System.out.println("\nArrayList: ");
26
27 for (int count = 0; count < list.size(); count++)
28 System.out.print(list.get(count) + " ");
29
30 // remove all String objects
31 removeStrings(list);
32
33 // output list contents
34 System.out.println("\n\nArrayList after calling" +
35 " removeStrings: ");
36
37 for (int count = 0; count < list.size(); count++)
38 System.out.print(list.get(count) + " ");
39 }

Fig. 21.3Fig. 21.3Fig. 21.3Fig. 21.3 Using an ArrayList to demonstrate interface Collection (part 1 of 2).

1210 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Line 14 creates reference list and initializes it with an instance of an ArrayList.
Lines 17–22 populate list with Color and String objects. Lines 25–28 output each
element of list. Line 27 calls List method size to get the number of ArrayList ele-
ments. Line 28 uses List method get to retrieve individual element values. Line 31 calls
programmer-defined method removeStrings (defined on lines 42–52), passing list
to it as an argument. Method removeStrings deletes Strings from a collection. Lines
34–38 print the elements of list after removeStrings removes the String objects
from the list. Notice that the output in Fig. 21.3 contains only Colors.

Method removeStrings declares one parameter of type Collection that allows
any Collection to be passed as an argument to this method. The method accesses the
elements of the Collection via an Iterator. Line 45 calls method iterator to get
an Iterator for the Collection. The while loop condition on line 48 calls
Iterator method hasNext to determine if the Collection contains any more ele-
ments. Method hasNext returns true if another element exists and false otherwise.

The if condition at line 50 calls Iterator method next to obtain a reference to
the next element, then uses instanceof to determine whether the object is a String.
If so, line 51 calls Iterator method remove to remove the String from the Col-
lection.

40
41 // remove String objects from Collection
42 public void removeStrings(Collection collection)
43 {
44 // get iterator
45 Iterator iterator = collection.iterator();
46
47 // loop while collection has items
48 while (iterator.hasNext())
49
50 if (iterator.next() instanceof String)
51 iterator.remove(); // remove String object
52 }
53
54 // execute application
55 public static void main(String args[])
56 {
57 new CollectionTest();
58 }
59
60 } // end class CollectionTest

ArrayList:
java.awt.Color[r=255,g=0,b=255] red white blue java.awt.Color
[r=0,g=255,b=255]

ArrayList after calling removeStrings:
java.awt.Color[r=255,g=0,b=255] java.awt.Color[r=0,g=255,b=255]

Fig. 21.3Fig. 21.3Fig. 21.3Fig. 21.3 Using an ArrayList to demonstrate interface Collection (part 2 of 2).

Chapter 21 Collections 1211

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Common Programming Error 21.3
When iterating through a collection with an Iterator, use Iterator method remove
to delete an element from the collection. Using the collection’s remove method will result
in a ConcurrentModificationException. 21.3

Figure 21.4 demonstrates operations on LinkedLists. The program creates two
LinkedLists that each contain Strings. The elements of one List are added to the
other. Then, all the Strings are converted to uppercase, and a range of elements is deleted.

1 // Fig. 21.4: ListTest.java
2 // Using LinkLists
3
4 // Java core packages
5 import java.util.*;
6
7 public class ListTest {
8 private String colors[] = { "black", "yellow", "green",
9 "blue", "violet", "silver" };

10 private String colors2[] = { "gold", "white", "brown",
11 "blue", "gray", "silver" };
12
13 // set up and manipulate LinkedList objects
14 public ListTest()
15 {
16 LinkedList link = new LinkedList();
17 LinkedList link2 = new LinkedList();
18
19 // add elements to each list
20 for (int count = 0; count < colors.length; count++) {
21 link.add(colors[count]);
22 link2.add(colors2[count]);
23 }
24
25 link.addAll(link2); // concatenate lists
26 link2 = null; // release resources
27
28 printList(link);
29
30 uppercaseStrings(link);
31
32 printList(link);
33
34 System.out.print("\nDeleting elements 4 to 6...");
35 removeItems(link, 4, 7);
36
37 printList(link);
38 }
39
40 // output List contents
41 public void printList(List list)
42 {
43 System.out.println("\nlist: ");

Fig. 21.4Fig. 21.4Fig. 21.4Fig. 21.4 Using Lists and ListIterators (part 1 of 2).

1212 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Lines 16–17 create LinkedLists link and link2, respectively. Lines 20–23 call
method add to append elements from arrays colors and colors2 to the end of
LinkedLists link and link2, respectively.

Line 25 calls method addAll to append all elements of link2 to the end of link.
Line 26 sets link2 to null, so LinkedList can be garbage collected. Line 28 calls
programmer-defined method printList (lines 41–49) to output the link’s contents.

44
45 for (int count = 0; count < list.size(); count++)
46 System.out.print(list.get(count) + " ");
47
48 System.out.println();
49 }
50
51 // locate String objects and convert to uppercase
52 public void uppercaseStrings(List list)
53 {
54 ListIterator iterator = list.listIterator();
55
56 while (iterator.hasNext()) {
57 Object object = iterator.next(); // get item
58
59 if (object instanceof String) // check for String
60 iterator.set(
61 ((String) object).toUpperCase());
62 }
63 }
64
65 // obtain sublist and use clear method to delete sublist items
66 public void removeItems(List list, int start, int end)
67 {
68 list.subList(start, end).clear(); // remove items
69 }
70
71 // execute application
72 public static void main(String args[])
73 {
74 new ListTest();
75 }
76
77 } // end class ListTest

list:
black yellow green blue violet silver gold white brown blue gray silver

list:
BLACK YELLOW GREEN BLUE VIOLET SILVER GOLD WHITE BROWN BLUE GRAY SILVER

Deleting elements 4 to 6...
list:
BLACK YELLOW GREEN BLUE WHITE BROWN BLUE GRAY SILVER

Fig. 21.4Fig. 21.4Fig. 21.4Fig. 21.4 Using Lists and ListIterators (part 2 of 2).

Chapter 21 Collections 1213

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Line 30 calls programmer-defined method uppercaseStrings (lines 52–63) to con-
vert the String elements to uppercase; then line 32 calls printList to display the
modified Strings. Line 34 calls programmer-defined method removeItems (lines 66–
69) to remove the elements at positions 4 through 6 of the list.

Method uppercaseStrings (lines 52–63) changes lowercase String elements
in the List passed to it to uppercase Strings. Line 54 calls method listIterator
to get a bidirectional iterator (i.e., an iterator that can traverse a List backward or for-
ward) for the List. The while condition calls method hasNext to determine whether
the List contains another element. Line 57 gets the next Object from the List and
assigns it to object. The if condition tests object to determine whether it is an
instanceof class String. If so, lines 60–61 cast object to a String, call method
toUpperCase to get an uppercase version of the String and call method set to
replace the current String to which iterator refers with the String returned by
method toUpperCase.

Programmer-defined method removeItems (lines 66–69) removes a range of items
from the list. Line 68 calls method subList to obtain a portion of the List called a sub-
list. The sublist is simply a view into the List on which subList is called. Method
subList takes two arguments—the beginning index for the sublist and the ending index
for the sublist. Note that the ending index is not part of the range of the sublist. In this
example, we pass 4 for the beginning index and 7 for the ending index to subList. The
sublist returned is the elements with indices 4 through 6. Next, the program calls method
clear on the sublist to remove the elements of the sublist from the List. Any changes
made to a sublist are made to the original List.

Figure 21.5 uses method toArray to get an array from a collection (i.e.,
LinkedList). The program adds a series of Strings to a LinkedList and calls
method toArray to get an array from the LinkedList.

1 // Fig. 21.5: UsingToArray.java
2 // Using method toArray
3
4 // Java core packages
5 import java.util.*;
6
7 public class UsingToArray {
8
9 // create LinkedList, add elements and convert to array

10 public UsingToArray()
11 {
12 LinkedList links;
13 String colors[] = { "black", "blue", "yellow" };
14
15 links = new LinkedList(Arrays.asList(colors));
16
17 links.addLast("red"); // add as last item
18 links.add("pink"); // add to the end
19 links.add(3, "green"); // add at 3rd index
20 links.addFirst("cyan"); // add as first item
21

Fig. 21.5Fig. 21.5Fig. 21.5Fig. 21.5 Using method toArray (part 1 of 2).

1214 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Line 15 constructs a LinkedList containing the elements of array colors and
assigns the LinkedList to links. Line 17 calls method addLast to add "red" to the
end of links. Lines 18–19 call method add to add "pink" as the last element and
"green" as the element at index 3 (i.e., the fourth element). Line 20 calls addFirst to
add "cyan" as the new first item in the LinkedList. [Note: When "cyan" is added as
the first element, "green" becomes the fifith element in the LinkedList.]

Lines 23–24 call method toArray to get a String array from links. The array is a
copy of the list elements—modifying the contents of the array does not modify the
LinkedList. The array passed to method toArray is of the same data type as that
returned by toArray. If the number of elements in the array is greater than the number of
elements in the LinkedList,toArray copies the list elements into its array argument and
returns that array. If the LinkedList has more elements than the number of elements in the
array passed to toArray, toArray allocates a new array of the same type it receives as an
argument, copies the list elements into the new array and returns the new array.

Common Programming Error 21.4
Passing an array that contains data to toArray can create logic errors. If the number of
elements in the array is smaller than the number of elements in the Object calling to-
Array, new memory is allocated to store the Object’s elements—without preserving the
array’s elements. If the number of elements in the array is greater than the number of ele-
ments in the Object, the elements of the array (starting at subscript 0) are overwritten with
the Object’s elements. Array elements that are not overwritten retain their values. 21.4

22 // get LinkedList elements as an array
23 colors = (String []) links.toArray(
24 new String[links.size()]);
25
26 System.out.println("colors: ");
27
28 for (int count = 0; count < colors.length; count++)
29 System.out.println(colors[count]);
30 }
31
32 // execute application
33 public static void main(String args[])
34 {
35 new UsingToArray();
36 }
37
38 } // end class UsingToArray

colors:
cyan
black
blue
yellow
green
red
pink

Fig. 21.5Fig. 21.5Fig. 21.5Fig. 21.5 Using method toArray (part 2 of 2).

Chapter 21 Collections 1215

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

21.6 Algorithms
The collections framework provides a variety of high-performance algorithms for manipu-
lating collection elements. These algorithms are implemented as static methods. Algo-
rithms sort, binarySearch, reverse, shuffle, fill and copy operate on
Lists. Algorithms min and max operate on Collections.

Algorithm reverse reverses the elements of a List, fill sets every List element
to refer to a specified Object and copy copies references from one List into another.

Software Engineering Observation 21.5
The collections framework algorithms are polymorphic. That is, each algorithm can operate
on objects that offer given interfaces without concern to the underlying implementations. 21.5

21.6.1 Algorithm sort
Algorithm sort sorts the elements of a List. The order is determined by the natural order
of the elements’ type. The sort call may specify as a second argument a Comparator
object that specifies how to determine the ordering of the elements.

Algorithm sort uses a stable sort (i.e., a sort that does not reorder equivalent ele-
ments while sorting). The sort algorithm is fast. For readers who have studied some com-
plexity theory in data structures or algorithms courses, this sort runs in n log(n) time.
(Readers not familiar with complexity theory, may rest assured that this algorithm is
extremely fast .

Software Engineering Observation 21.6
The Java API documentation sometimes provides implementation details. For example,
sort is implemented as a modified merge sort. Avoid writing code that is dependent on im-
plementation details, because they can change. 21.6

Figure 21.6 uses algorithm sort to order the elements of an ArrayList into
ascending order (line 21).

1 // Fig. 21.6: Sort1.java
2 // Using algorithm sort
3
4 // Java core packages
5 import java.util.*;
6
7 public class Sort1 {
8 private static String suits[] =
9 { "Hearts", "Diamonds", "Clubs", "Spades" };

10
11 // display array elements
12 public void printElements()
13 {
14 // create ArrayList
15 ArrayList list = new ArrayList(Arrays.asList(suits));
16
17 // output list
18 System.out.println("Unsorted array elements:\n" + list);

Fig. 21.6Fig. 21.6Fig. 21.6Fig. 21.6 Using algorithm sort (part 1 of 2).

1216 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Figure 21.7 sorts the same Strings used in Fig. 21.6 into descending order. The
example introduces the Comparator object, for sorting a Collection’s elements in a
different order.

19
20 // sort ArrayList
21 Collections.sort(list);
22
23 // output list
24 System.out.println("Sorted array elements:\n" + list);
25 }
26
27 // execute application
28 public static void main(String args[])
29 {
30 new Sort1().printElements();
31 }
32
33 } // end class Sort1

Unsorted array elements:
[Hearts, Diamonds, Clubs, Spades]
Sorted array elements:
[Clubs, Diamonds, Hearts, Spades]

1 // Fig. 21.7: Sort2.java
2 // Using a Comparator object with algorithm sort
3
4 // Java core packages
5 import java.util.*;
6
7 public class Sort2 {
8 private static String suits[] =
9 { "Hearts", "Diamonds", "Clubs", "Spades" };

10
11 // output List elements
12 public void printElements()
13 {
14 // create List
15 List list = Arrays.asList(suits);
16
17 // output List elements
18 System.out.println("Unsorted array elements:\n" + list);
19
20 // sort in descending order using a comparator
21 Collections.sort(list, Collections.reverseOrder());
22

Fig. 21.7Fig. 21.7Fig. 21.7Fig. 21.7 Using a Comparator object in sort (part 1 of 2).

Fig. 21.6Fig. 21.6Fig. 21.6Fig. 21.6 Using algorithm sort (part 2 of 2).

Chapter 21 Collections 1217

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Line 21 calls Collections’s method sort to order the List view of the array into
descending order. The static Collections method reverseOrder returns a
Comparator object that represents the collection’s reverse order. For sorting a List
view of a String array, the reverse order is a lexicographical comparison—the compar-
ator compares the Unicode values that represent each element—in descending order.

21.6.2 Algorithm shuffle

Algorithm shuffle randomly orders a List’s elements. In Chapter 10, we presented a
card shuffling and dealing simulation where we used a loop to shuffle a deck of cards. In
Fig. 21.8, we use algorithm shuffle to shuffle the deck of cards. Much of the code is the
same as in Fig. 10.19. The shuffling of the deck occurs on line 63, which calls static
Collections method shuffle to shuffle the array through the array’s List view.

23 // output List elements
24 System.out.println("Sorted list elements:\n" + list);
25 }
26
27 // execute application
28 public static void main(String args[])
29 {
30 new Sort2().printElements();
31 }
32
33 } // end class Sort2

Unsorted array elements:
[Hearts, Diamonds, Clubs, Spades]
Sorted list elements:
[Spades, Hearts, Diamonds, Clubs]

1 // Fig. 21.8: Cards.java
2 // Using algorithm shuffle
3
4 // Java core packages
5 import java.util.*;
6
7 // class to represent a Card in a deck of cards
8 class Card {
9 private String face;

10 private String suit;
11
12 // initialize a Card
13 public Card(String initialface, String initialSuit)
14 {
15 face = initialface;
16 suit = initialSuit;
17 }

Fig. 21.8Fig. 21.8Fig. 21.8Fig. 21.8 Card shuffling and dealing example (part 1 of 3).

Fig. 21.7Fig. 21.7Fig. 21.7Fig. 21.7 Using a Comparator object in sort (part 2 of 2).

1218 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

18
19 // return face of Card
20 public String getFace()
21 {
22 return face;
23 }
24
25 // return suit of Card
26 public String getSuit()
27 {
28 return suit;
29 }
30
31 // return String representation of Card
32 public String toString()
33 {
34 StringBuffer buffer =
35 new StringBuffer(face + " of " + suit);
36
37 buffer.setLength(20);
38
39 return buffer.toString();
40 }
41
42 } // end class Card
43
44 // class Cards definition
45 public class Cards {
46 private static String suits[] =
47 { "Hearts", "Clubs", "Diamonds", "Spades" };
48 private static String faces[] = { "Ace", "Deuce", "Three",
49 "Four", "Five", "Six", "Seven", "Eight", "Nine", "Ten",
50 "Jack", "Queen", "King" };
51 private List list;
52
53 // set up deck of Cards and shuffle
54 public Cards()
55 {
56 Card deck[] = new Card[52];
57
58 for (int count = 0; count < deck.length; count++)
59 deck[count] = new Card(faces[count % 13],
60 suits[count / 13]);
61
62 list = Arrays.asList(deck); // get List
63 Collections.shuffle(list); // shuffle deck
64 }
65
66 // output deck
67 public void printCards()
68 {
69 int half = list.size() / 2 - 1;
70

Fig. 21.8Fig. 21.8Fig. 21.8Fig. 21.8 Card shuffling and dealing example (part 2 of 3).

Chapter 21 Collections 1219

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

21.6.3 Algorithms reverse, fill, copy, max and min

Class Collections provides algorithms for reversing, filling and copying Lists. Al-
gorithm reverse reverses the order of the elements in a List, and algorithm fill over-
writes elements in a List with a specified value. The fill operation is useful for
reinitializing a List. Algorithm copy takes two arguments: A destination List and a
source List. Each source List element is copied to the destination List. The destina-
tion List must be at least as long as the source List: otherwise, an IndexOutOf-
BoundsException is thrown. If the destination List is longer, the elements not
overwritten are unchanged.

71 for (int i = 0, j = half; i <= half; i++, j++)
72 System.out.println(
73 list.get(i).toString() + list.get(j));
74 }
75
76 // execute application
77 public static void main(String args[])
78 {
79 new Cards().printCards();
80 }
81
82 } // end class Cards

King of Diamonds Ten of Spades
Deuce of Hearts Five of Spades
King of Clubs Five of Clubs
Jack of Diamonds Jack of Spades
King of Spades Ten of Clubs
Six of Clubs Three of Clubs
Seven of Clubs Jack of Clubs
Seven of Hearts Six of Spades
Eight of Hearts Six of Diamonds
King of Hearts Nine of Diamonds
Ace of Hearts Four of Hearts
Jack of Hearts Queen of Diamonds
Queen of Clubs Six of Hearts
Seven of Diamonds Ace of Spades
Three of Spades Deuce of Spades
Seven of Spades Five of Diamonds
Ten of Hearts Queen of Hearts
Ten of Diamonds Eight of Clubs
Nine of Spades Three of Diamonds
Four of Spades Ace of Clubs
Four of Clubs Four of Diamonds
Nine of Clubs Three of Hearts
Eight of Diamonds Deuce of Diamonds
Deuce of Clubs Nine of Hearts
Eight of Spades Five of Hearts
Ten of Spades Queen of Spades

Fig. 21.8Fig. 21.8Fig. 21.8Fig. 21.8 Card shuffling and dealing example (part 3 of 3).

1220 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Each of the algorithms we have seen so far operates on Lists. Algorithms min and
max each operate on Collections.

Algorithm min returns the smallest element in a List (remember a List is a Col-
lection) and algorithm max returns the largest element in a List. Both of these algo-
rithms can be called with a Comparator object as a second argument. Figure 21.9
demonstrates the use of algorithms reverse, fill, copy, min and max.

1 // Fig. 21.9: Algorithms1.java
2 // Using algorithms reverse, fill, copy, min and max
3
4 // Java core packages
5 import java.util.*;
6
7 public class Algorithms1 {
8 private String letters[] = { "P", "C", "M" }, lettersCopy[];
9 private List list, copyList;

10
11 // create a List and manipulate it with algorithms from
12 // class Collections
13 public Algorithms1()
14 {
15 list = Arrays.asList(letters); // get List
16 lettersCopy = new String[3];
17 copyList = Arrays.asList(lettersCopy);
18
19 System.out.println("Printing initial statistics: ");
20 printStatistics(list);
21
22 Collections.reverse(list); // reverse order
23 System.out.println("\nPrinting statistics after " +
24 "calling reverse: ");
25 printStatistics(list);
26
27 Collections.copy(copyList, list); // copy List
28 System.out.println("\nPrinting statistics after " +
29 "copying: ");
30 printStatistics(copyList);
31
32 System.out.println("\nPrinting statistics after " +
33 "calling fill: ");
34 Collections.fill(list, "R");
35 printStatistics(list);
36 }
37
38 // output List information
39 private void printStatistics(List listRef)
40 {
41 System.out.print("The list is: ");
42
43 for (int k = 0; k < listRef.size(); k++)
44 System.out.print(listRef.get(k) + " ");
45

Fig. 21.9Fig. 21.9Fig. 21.9Fig. 21.9 Using algorithms reverse, fill, copy, max and min (part 1 of 2).

Chapter 21 Collections 1221

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Line 22 calls Collections method reverse to reverse the order of list.
Method reverse takes one List argument. (list is a List view of String array
letters.) Array letters now has its elements in reverse order.

Line 27 copies the elements of list into copyList with Collections method
copy. Changes to copyList do not change letters—this is a separate List that is
not a List view for letters. Method copy requires two List arguments.

Line 34 calls Collections method fill to place the String "R" in each ele-
ment of list. Because list is a List view of letters, this operation changes each
element in letters to "R". Method fill requires a List for the first argument and an
Object for the second argument.

Lines 46 and 48, call Collection methods max and min to find the largest element
and the smallest element, respectively, in list.

21.6.4 Algorithm binarySearch

Earlier in this text, we studied the high-speed binary search algorithm. This algorithm is
built right into the Java collections framework. The binarySearch algorithm locates an
Object in a List (i.e., LinkedList, Vector or ArrayList) If the Object is
found, the index (position relative to 0) of that Object is returned. If the Object is not
found, binarySearch returns a negative value. Algorithm binarySearch deter-
mines this negative value by first calculating the insertion point and changing the insertion
point’s sign to negative. Finally, binarySearch subtracts one from the insertion point
to obtain the return value.

46 System.out.print("\nMax: " + Collections.max(listRef));
47 System.out.println(
48 " Min: " + Collections.min(listRef));
49 }
50
51 // execute application
52 public static void main(String args[])
53 {
54 new Algorithms1();
55 }
56
57 } // end class Algorithms1

Printing initial statistics:
The list is: P C M
Max: P Min: C
Printing statistics after calling reverse:
The list is: M C P
Max: P Min: C
Printing statistics after copying:
The list is: M C P
Max: P Min: C
Printing statistics after calling fill:
The list is: R R R
Max: R Min: R

Fig. 21.9Fig. 21.9Fig. 21.9Fig. 21.9 Using algorithms reverse, fill, copy, max and min (part 2 of 2).

1222 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Figure 21.10 uses the binarySearch algorithm to search for a series of Strings
in an ArrayList.

1 // Fig. 21.10: BinarySearchTest.java
2 // Using algorithm binarySearch
3
4 // Java core packages
5 import java.util.*;
6
7 public class BinarySearchTest {
8 private String colors[] = { "red", "white", "blue", "black",
9 "yellow", "purple", "tan", "pink" };

10 private ArrayList list; // ArrayList reference
11
12 // create, sort and output list
13 public BinarySearchTest()
14 {
15 list = new ArrayList(Arrays.asList(colors));
16 Collections.sort(list); // sort the ArrayList
17 System.out.println("Sorted ArrayList: " + list);
18 }
19
20 // search list for various values
21 public void printSearchResults()
22 {
23 printSearchResultsHelper(colors[3]); // first item
24 printSearchResultsHelper(colors[0]); // middle item
25 printSearchResultsHelper(colors[7]); // last item
26 printSearchResultsHelper("aardvark"); // below lowest
27 printSearchResultsHelper("goat"); // does not exist
28 printSearchResultsHelper("zebra"); // does not exist
29 }
30
31 // helper method to perform searches
32 private void printSearchResultsHelper(String key)
33 {
34 int result = 0;
35
36 System.out.println("\nSearching for: " + key);
37 result = Collections.binarySearch(list, key);
38 System.out.println(
39 (result >= 0 ? "Found at index " + result :
40 "Not Found (" + result + ")"));
41 }
42
43 // execute application
44 public static void main(String args[])
45 {
46 new BinarySearchTest().printSearchResults();
47 }
48
49 } // end class BinarySearchTest

Fig. 21.10Fig. 21.10Fig. 21.10Fig. 21.10 Using algorithm binarySearch (part 1 of 2).

Chapter 21 Collections 1223

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Line 16 calls Collections method sort to sort list into ascending order. Line
37 calls Collections method binarySearch to search list for the specified key.
Method binarySearch takes a List as the first argument and an Object as the
second argument. An overloaded version of binarySearch takes a Comparator
object as its third argument, to specify how binarySearch should compare elements.

If the search key is found, method binarySearch returns the List index of the ele-
ment containing the search key. When a search key is found in the List, the value returned
by binarySearch is greater than or equal to zero. If the search key is not found, method
binarySearch returns a negative number.

Software Engineering Observation 21.7
Java does not guarantee which item will be found first when a binarySearch is per-
formed on a List containing multiple elements equivalent to the search key. 21.7

21.7 Sets
A Set is a Collection that contains unique elements (i.e., no duplicate elements). The
collections framework contains two Set implementations: —HashSet and TreeSet.
HashSet stores its elements in a hash table, and TreeSet stores its elements in a tree.
Figure 21.11 uses a HashSet to remove duplicate Strings from an ArrayList.

Programmer-defined method printNonDuplicates (lines 23–35) takes a Col-
lection argument. Line 26 constructs a HashSet from the Collection received as
an argument to printNonDuplicates. When the HashSet is constructed, it removes
any duplicates in the Collection. By definition, Sets do not contain any duplicates.
Line 27 gets an Iterator for the HashSet. The while loop (lines 31–32) calls Iter-
ator methods hasNext and next to access the HashSet elements.

Interface SortedSet extends Set and maintains its elements in sorted order (i.e.,
the elements’ natural order or an order specified by a Comparator). Class TreeSet
implements SortedSet.

Sorted ArrayList: black blue pink purple red tan white yellow
Searching for: black
Found at index 0

Searching for: red
Found at index 4

Searching for: pink
Found at index 2

Searching for: aardvark
Not Found (-1)

Searching for: goat
Not Found (-3)

Searching for: zebra
Not Found (-9)

Fig. 21.10Fig. 21.10Fig. 21.10Fig. 21.10 Using algorithm binarySearch (part 2 of 2).

1224 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

1 // Fig. 21.11: SetTest.java
2 // Using a HashSet to remove duplicates
3
4 // Java core packages
5 import java.util.*;
6
7 public class SetTest {
8 private String colors[] = { "red", "white", "blue",
9 "green", "gray", "orange", "tan", "white", "cyan",

10 "peach", "gray", "orange" };
11
12 // create and output ArrayList
13 public SetTest()
14 {
15 ArrayList list;
16
17 list = new ArrayList(Arrays.asList(colors));
18 System.out.println("ArrayList: " + list);
19 printNonDuplicates(list);
20 }
21
22 // create set from array to eliminate duplicates
23 public void printNonDuplicates(Collection collection)
24 {
25 // create a HashSet and obtain its iterator
26 HashSet set = new HashSet(collection);
27 Iterator iterator = set.iterator();
28
29 System.out.println("\nNonduplicates are: ");
30
31 while (iterator.hasNext())
32 System.out.print(iterator.next() + " ");
33
34 System.out.println();
35 }
36
37 // execute application
38 public static void main(String args[])
39 {
40 new SetTest();
41 }
42
43 } // end class SetTest

ArrayList: [red, white, blue, green, gray, orange, tan, white, cyan,
peach, gray, orange]

Nonduplicates are:
orange cyan green tan white blue peach red gray

Fig. 21.11Fig. 21.11Fig. 21.11Fig. 21.11 Using a HashSet to remove duplicates.

Chapter 21 Collections 1225

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

The program of Fig. 21.12 places Strings into a TreeSet. The Strings are sorted
automatically when they are added to the TreeSet. Also, range-view methods (i.e., methods
that enable a program to view a portion of a collection) are demonstrated in this example.

1 // Fig. 21.12: SortedSetTest.java
2 // Using TreeSet and SortedSet
3
4 // Java core packages
5 import java.util.*;
6
7 public class SortedSetTest {
8 private static String names[] = { "yellow", "green", "black",
9 "tan", "grey", "white", "orange", "red", "green" };

10
11 // create a sorted set with TreeSet, then manipulate it
12 public SortedSetTest()
13 {
14 TreeSet tree = new TreeSet(Arrays.asList(names));
15
16 System.out.println("set: ");
17 printSet(tree);
18
19 // get headSet based upon "orange"
20 System.out.print("\nheadSet (\"orange\"): ");
21 printSet(tree.headSet("orange"));
22
23 // get tailSet based upon "orange"
24 System.out.print("tailSet (\"orange\"): ");
25 printSet(tree.tailSet("orange"));
26
27 // get first and last elements
28 System.out.println("first: " + tree.first());
29 System.out.println("last : " + tree.last());
30 }
31
32 // output set
33 public void printSet(SortedSet set)
34 {
35 Iterator iterator = set.iterator();
36
37 while (iterator.hasNext())
38 System.out.print(iterator.next() + " ");
39
40 System.out.println();
41 }
42
43 // execute application
44 public static void main(String args[])
45 {
46 new SortedSetTest();
47 }

Fig. 21.12Fig. 21.12Fig. 21.12Fig. 21.12 Using SortedSets and TreeSets.

1226 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Line 14 constructs a TreeSet object containing the elements of names and assigns
a reference to this object to tree. Line 21 calls method headSet to get a subset of the
TreeSet less than "orange". Any changes made to the subset are made to the
TreeSet (i.e., the subset returned is a view of the TreeSet). Line 25 calls method
tailSet to get a subset greater than or equal to "orange". Like headSet, any
changes made through the tailSet view are made to the TreeSet. Lines 28–29 call
methods first and last to get the smallest and largest elements, respectively.

Programmer-defined method printSet (lines 33–41) takes a SortedSet (e.g., a
TreeSet) as an argument and prints it. Line 35 gets an Iterator for the Set. The body
of the while loop prints each element of the SortedSet.

21.8 Maps
Maps associate keys to values and cannot contain duplicate keys (i.e., each key can map to
only one value; this type of mapping is called one-to-one mapping). Maps differ from Sets
in that Maps contain keys and values, whereas Sets contain only keys. Classes HashMap
and TreeMap implement the Map interface. HashMaps store elements in HashTables,
and TreeMaps store elements in trees. Interface SortedMap extends Map and maintains
its keys in sorted order (i.e., the elements’ natural order or an order, specified by a Com-
parator). Class TreeMap implements SortedMap.

Figure 21.13 uses a HashMap to count the number of Strings that begin with a
given letter. [Note: Unlike class Hashtable, class HashMap allows a null key and
null values].

48
49 } // end class SortedSetTest

set:
black green grey orange red tan white yellow

headSet ("orange"): black green grey
tailSet ("orange"): orange red tan white yellow
first: black
last : yellow

1 // Fig. 21.13: MapTest.java
2 // Using a HashMap to store the number of words that
3 // begin with a given letter
4
5 // Java core packages
6 import java.util.*;
7
8 public class MapTest {
9 private static String names[] = { "one", "two", "three",

10 "four", "five", "six", "seven", "two", "ten", "four" };

Fig. 21.13Fig. 21.13Fig. 21.13Fig. 21.13 Using HashMaps and Maps (part 1 of 2).

Fig. 21.12Fig. 21.12Fig. 21.12Fig. 21.12 Using SortedSets and TreeSets.

Chapter 21 Collections 1227

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Line 15 constructs HashMap map. The for loop on lines 18–32 uses map to store the
number of words in array names that begin with a given letter. Lines 19–20 call method
get to retrieve a Character (the first letter of a String in names) from the

11
12 // build a HashMap and output contents
13 public MapTest()
14 {
15 HashMap map = new HashMap();
16 Integer i;
17
18 for (int count = 0; count < names.length; count++) {
19 i = (Integer) map.get(
20 new Character(names[count].charAt(0)));
21
22 // if key is not in map then give it value one
23 // otherwise increment its value by 1
24 if (i == null)
25 map.put(
26 new Character(names[count].charAt(0)),
27 new Integer(1));
28 else
29 map.put(
30 new Character(names[count].charAt(0)),
31 new Integer(i.intValue() + 1));
32 }
33
34 System.out.println(
35 "\nnumber of words beginning with each letter: ");
36 printMap(map);
37 }
38
39 // output map contents
40 public void printMap(Map mapRef)
41 {
42 System.out.println(mapRef.toString());
43 System.out.println("size: " + mapRef.size());
44 System.out.println("isEmpty: " + mapRef.isEmpty());
45 }
46
47 // execute application
48 public static void main(String args[])
49 {
50 new MapTest();
51 }
52
53 } // end class MapTest

number of words beginning with each letter:
{t=4, s=2, o=1, f=3}
size: 4
isEmpty: false

Fig. 21.13Fig. 21.13Fig. 21.13Fig. 21.13 Using HashMaps and Maps (part 2 of 2).

1228 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

HashMap. If the HashMap does not contain a mapping for the Character, get returns
null. If the HashMap does contain the mapping for the Character, its mapping value
is returned as an Object. The returned value is cast to Integer and assigned to i.

If i is null, the Character is not in the HashMap, and lines 25–27 call method
put to write an Integer containing 1 to the HashMap. The Integer value stored in
the HashMap is the number of words beginning with that Character.

If the Character is in the HashMap, lines 29–31 increment the Integer counter
by one and write the updated counter to the HashMap. A HashMap cannot contain dupli-
cates, so put replaces the previous Integer object with the new one.

Programmer-defined method printMap takes one Map argument and prints it, using
method toString. Lines 43–44 call methods size and isEmpty to get the number of
values in the Map and a boolean indicating whether the Map is empty, respectively.

21.9 Synchronization Wrappers
In Chapter 15, we discussed multithreading. The built-in collections are unsynchronized.
Concurrent access to a Collection by multiple threads could cause indeterminate re-
sults or fatal errors. To prevent potential threading problems, synchronization wrappers are
used around collection classes that might be accessed by multiple threads. A wrapper class
receives method calls, adds some functionality for thread safety and delegates the calls to
the wrapped class.

The Collections API provides a set of public static methods for converting
collections to synchronized versions. Method headers for the synchronization wrappers are
listed in Fig. 21.14.

21.10 Unmodifiable Wrappers
The Collections API provides a set of public static methods for converting col-
lections to unmodifiable versions (called unmodifiable wrappers) of those collections.
Method headers for these methods are listed in Fig. 21.15. Unmodifiable wrappers throw
UnsupportedOperationExceptions if attempts are made to modify the collection.

Software Engineering Observation 21.8
When creating an unmodifiable wrapper, not holding a reference to the backing collection
ensures nonmodifiability. 21.8

public static method header

Collection synchronizedCollection(Collection c)

List synchronizedList(List aList)

Set synchronizedSet(Set s)

SortedSet synchronizedSortedSet(SortedSet s)

Map synchronizedMap(Map m)

SortedMap synchronizedSortedMap(SortedMap m)

Fig. 21.14Fig. 21.14Fig. 21.14Fig. 21.14 Synchronization wrapper methods.

Chapter 21 Collections 1229

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Software Engineering Observation 21.9
You can use an unmodifiable wrapper to create a collection that offers read-only access to
others, while allowing read–write access to yourself. You do this simply by giving others a
reference to the unmodifiable wrapper while you also retain a reference to the wrapped col-
lection itself. 21.9

21.11 Abstract Implementations
The collections framework provides various abstract implementations (i.e., “bare bones”
implementations of collection interfaces from which the programmer can quickly “flesh
out” complete customized implementations). These abstract implementations are a thin
Collection implementation called an AbstractCollection, a thin List imple-
mentation with random-access backing called an AbstractList, a thin Map implemen-
tation called an AbstractMap, a thin List implementation with sequential-access
backing called an AbstractSequentialList and a thin Set implementation called
an AbstractSet.

To write a custom implementation, begin by selecting as a base the abstract-implemen-
tation class that best meets your needs. Next, implement each of the class’s abstract
methods. Then, if your collection is to be modifiable, override any concrete methods that
prevent modification.

21.12 (Optional) Discovering Design Patterns: Design Patterns
Used in Package java.util
In this section, we use the material on data structures and collections discussed in Chapters
19, 20 and 21 to identify classes from package java.util that use design patterns. This
section concludes our treatment of design patterns.

21.12.1 Creational Design Patterns

We conclude the discussion of creational design patterns by discussing the Prototype de-
sign pattern.

Prototype
Sometimes, a system must make a copy of an object but will not know that object’s class
until run time. For example, consider the drawing program design of Exercise 9.28—class-

public static method header

Collection unmodifiableCollection(Collection c)

List unmodifiableList(List aList)

Set unmodifiableSet(Set s)

SortedSet unmodifiableSortedSet(SortedSet s)

Map unmodifiableMap(Map m)

SortedMap unmodifiableSortedMap(SortedMap m)

Fig. 21.15Fig. 21.15Fig. 21.15Fig. 21.15 Unmodifiable wrapper methods.

1230 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

es MyLine, MyOval and MyRect represent “shape” classes that extend abstract super-
class MyShape. We could modify this exercise to allow the user to create, copy and paste
new instances of class MyLine into the program. The Prototype design pattern allows an
object—called a prototype—to return a copy of that prototype to a requesting object—
called a client. Every prototype must belong to a class that implements a common interface
that allows the prototype to clone itself. For example, the Java API provides method
clone from class java.lang.Object and interface java.lang.Cloneable—
any object from a class implementing Cloneable can use method clone to copy itself.
Specifically, method clone creates a copy of an object, then returns a reference to that ob-
ject. If we designate class MyLine as the prototype for Exercise 9.28, then class MyLine
must implement interface Cloneable. To create a new line in our drawing, we clone the
MyLine prototype. To copy a preexisting line, we clone that object. Method clone also
is useful in methods that return a reference to an object, but the developer does not want
that object to be altered through that reference—method clone returns a reference to the
copy of the object instead of returning that object’s reference. For more information of in-
terface Cloneable, visit

www.java.sun.com/j2se/1.3/docs/api/java/lang/Cloneable.html

21.12.2 Behavioral Design Patterns

We conclude the discussion of behavioral design patterns by discussing the Iterator design
pattern.

Iterator
Designers use data structures such as arrays, linked lists and hash tables, to organize data
in a program. The Iterator design pattern allows objects to access individual objects from
any data structure without knowing the data structure’s behavior (such as traversing the
structure or removing an element from that structure) or how that data structure stores ob-
jects. Instructions for traversing the data structure and accessing its elements are stored in
a separate object called an iterator. Each data structure can create an iterator—each iterator
implements methods of a common interface to traverse the data structure and access its da-
ta. An object can traverse two differently structured data structures—such as a linked list
and a hash table—in the same manner, because both data structures contain an iterator ob-
ject that belongs to a class implementing a common interface. Java provides interface It-
erator from package java.util, which we discussed in Section 21.5—class
CollectionTest (Fig 21.3) uses an Iterator object.

21.12.3 Conclusion

In our optional “Discovering Design Patterns” sections, we have introduced the impor-
tance, usefulness and prevalence of design patterns. We have mentioned that in their book
Design Patterns, Elements of Reusable Object-Oriented Software, the “gang of four” de-
scribed 23 design patterns that provide proven strategies for building systems. Each pattern
belongs to one of three pattern categories: creational, which address issues related to object
creation; structural, which provide ways to organize classes and objects in a system; and
behavioral, which offer strategies to model how objects collaborate with one another in a
system.

Chapter 21 Collections 1231

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

Of the 23 design patterns, we discussed 18 of the more popular ones used by the Java
community. In Sections 9.24, 13.18, 15.13, 17.11 and 21.12, we divided the discussion
according to how certain Java packages—such as package java.awt, javax.swing,
java.io, java.net and java.util—use these design patterns. We also discussed
patterns not described by the “gang of four,” such as concurrency patterns, which are useful
in multithreaded systems, and architectural patterns, which help designers assign function-
ality to various subsystems in a system. We have motivated each pattern—that is, explained
why that pattern is important and how it may be used. When appropriate, we supplied sev-
eral examples in the form of real-world analogies (e.g., the adapter in the Adapter design
pattern is similar to an adapter for a plug on an electrical device). We also gave examples
of how Java packages take advantage of design patterns (e.g., Swing GUI components use
the Observer design pattern to collaborate with their listeners to respond to user interac-
tions). We also provided examples of how certain programs in Java How to Program,
Fourth edition used design patterns (e.g., the elevator-simulation case study in our optional
“Thinking About Objects” sections uses the State design pattern to represent a Person
object’s location in the simulation).

We hope that you view our “Discovering Design Patterns” sections as a beginning to fur-
ther study of design patterns. If you have not done so already, we recommend that you visit
the many URLs we have provided in Section 9.24.5, Internet and World-Wide-Web
Resources. We recommend that you then read the gang-of-four book. This information will
help you build better systems using the collective wisdom of the object-technology industry.

If you have studied the optional sections in this book, you have been introduced to
more substantial Java systems. If you have read our optional “Thinking About Objects”
Sections, you have immersed yourself in a substantial design and Java implementation
experience learning a disciplined approach to object-oriented design with the UML. If you
have read our optional “Discovering Design Patterns” Sections, you have raised your
awareness of the more advanced topic of design patterns.

We hope you continue your study of design patterns, and we would be most grateful if
you would send your comments, criticisms and suggestions for improvement of Java How
to Program to deitel@deitel.com. Good luck!

SUMMARY
• The Java collections framework gives the programmer access to prepackaged data structures, as

well as algorithms for manipulating those data structures.

• Java 2 provides an entire collections framework, whereas earlier versions of Java provided just a
few collection classes, like HashTable and Vector, as well as built-in array capabilities.

• A collection is a data structure; actually, it is an object that can hold other objects. The collection
interfaces define the operations that can be performed on each type of collection.

• The collections framework includes a number of other features that minimize the amount of work
programmers need to do to create and manipulate collections. This structure is an effective imple-
mentation of the notion of reuse.

• The classes and interfaces that compose the collections framework are members of the
java.util package.

• Class Arrays provides static methods for manipulating arrays. Class Arrays methods in-
clude binarySearch for searching a sorted array, equals for comparing arrays, fill for
placing items in an array, sort for sorting an array and asList.

1232 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

• Class Arrays provides method asList for getting a “List view” of the array. A List view
allows the programmer to programmatically manipulate the array as if it were a List. This allows
the programmer to treat an array as a collection. Any modifications made through the List view
change the array, and any modifications to the array change the List view.

• Method size gets the number of items in a List, and method get gets an individual List el-
ement.

• Interface Collection is the root interface in the collections hierarchy from which interfaces
Set and List are derived. Interface Collection contains bulk operations for adding, clearing,
comparing and retaining objects in the collection.

• Interface Collection provides a method iterator for getting an Iterator.

• Class Collections provides static methods for manipulating collections. Many of the
methods are implementations of polymorphic algorithms for searching, sorting and so on.

• A List is an ordered Collection that can contain duplicate elements. A List is sometimes
called a sequence.

• Interface List is implemented by classes ArrayList, LinkedList and Vector. Class Ar-
rayList is a resizable-array implementation of a List. ArrayList behavior and capabilities
are similar to those of class Vector. A LinkedList is a linked-list implementation of a List.

• Iterator method hasNext determines whether a Collection contains another element.
Method hasNext returns true if another element exists, false otherwise. Method next re-
turns the next object in the Collection and advances the Iterator.

• Method subList gets a portion of a List, called a sublist. Any changes made to a sublist are
also made to the List (i.e., the sublist is a “list view” of its corresponding List elements).

• Method clear removes elements from a List.

• Method toArray returns the contents of a collection as an array.

• Algorithms sort, binarySearch, reverse, shuffle, fill and copy operate on Lists.
Algorithms min and max operate on Collections. Algorithm reverse reverses the ele-
ments of a List, fill sets every List element to a specified Object and copy copies ele-
ments from one List into another List. Algorithm sort sorts the elements of a List.

• Algorithms min and max find the smallest item and the largest item in a Collection.

• The Comparator object provides a means of sorting a Collection’s elements in an order
other than the Collection’s natural order.

• Method reverseOrder returns a Comparator object that represents the reverse order for a
collection.

• Algorithm shuffle randomly orders the elements of a List.

• Algorithm binarySearch locates an Object in a List.

• A Set is a Collection that contains no duplicate elements. The collections framework con-
tains two Set implementations: HashSet and TreeSet. HashSet stores its elements in a hash
table; TreeSet stores its elements in a tree.

• Interface SortedSet extends Set and maintains its elements in sorted order. Class TreeSet
implements SortedSet.

• Method headSet gets a subset of a TreeSet less than a specified element. Any changes made
to the subset are made to the TreeSet. Method tailSet gets a subset greater than or equal to
a specified element. Any changes made through the tailSet view are made to the TreeSet.

• Maps map keys to values and cannot contain duplicate keys. Maps differ from Sets in that Maps
contain both keys and the values, whereas Sets contain only keys. Classes HashMap and

Chapter 21 Collections 1233

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

TreeMap implement the Map interface. HashMaps store elements in a HashTable, and
TreeMaps store elements in a tree.

• Interface SortedMap extends Map and maintains its elements in sorted order. Class TreeMap
implements SortedMap.

• The built-in collections are unsynchronized. Concurrent access to a Collection by indepen-
dent threads could cause indeterminate results. To prevent this, synchronization wrappers are used
around classes that might be accessed by multiple threads.

• The Collections API provides a set of public static methods for converting collections
to unmodifiable versions. Unmodifiable wrappers throw UnsupportedOperation-
Exceptions if attempts are made to modify the collection.

• The collections framework provides various abstract implementations (i.e., “bare bones” imple-
mentations of collection interfaces from which the programmer can quickly “flesh out” complete
customized implementations).

TERMINOLOGY
AbstractCollection class hasNext method
AbstractList class implementation classes
AbstractMap class insert an element into a collection
AbstractSequentialList class interface
AbstractSet class isEmpty method
add method iterator
addFirst method Iterator interface
addLast method key
algorithms lexicographical comparison
ArrayList LinkedList class
arrays List interface
arrays as collections ListIterator
Arrays.asList map
bidirectional iterator Map collection interface
binarySearch algorithm mapping keys to values
clear method mappings
Collection interface maps as collections
collections max algorithm
Collections class min algorithm
collections framework modifiable collections
collections placed in arrays natural ordering
Comparator object next method
copy algorithm one-to-one mapping
data structures ordered collection
delete an element from a collection ordering
deque queue
double-ended queue (deque) range-view methods
duplicate elements reverse algorithm
Enumeration interface reverseOrder method
fill algorithm sequence
HashMap class Set interface
HashSet class shuffle algorithm
Hashtable class size method
hashtable implementation sort a List

1234 Collections Chapter 21

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

SELF-REVIEW EXERCISES
21.1 Fill in the blanks in each of the following statements:

a) Objects in a collection are called .
b) An element in a List can be accessed by using the element’s .
c) Lists are sometimes called .
d) You can use a/an to create a collection that offers only read-only access to

others while allowing read–write access to yourself.
e) can be used to create stacks, queues, trees and deques (double-ended

queues).

21.2 State whether each of the following is true or false. If false, explain why.
a) A Set can contain duplicates.
b) A Map can contain duplicate keys.
c) A LinkedList can contain duplicates.
d) Collections is an interface.
e) Iterators can remove elements, while Enumerations cannot.

ANSWERS TO SELF-REVIEW EXERCISES
21.1 a) elements. b) index. c) sequences. d) unmodifiable wrapper. e) LinkedLists.

21.2 a) False. A Set cannot contain duplicate values.
b) False. A Map cannot contain duplicate keys.
c) True.
d) False. Collections is a class, and Collection is an interface.
e) True.

EXERCISES
21.3 Define each of the following terms:

a) Collection
b) Collections
c) Comparator
d) List

21.4 Briefly answer the following questions:
a) What is the primary difference between a Set and a Map?
b) Can a double-subscripted array be passed to Arrays method asList? If yes, how

would an individual element be accessed?
c) What must you do before adding a primitive data type (e.g., double) to a collection?

21.5 Explain briefly the operation of each of the following Iterator-related methods:
a) iterator
b) hasNext
c) next

sort algorithm TreeSet class
SortedMap collection interface unmodifiable collections
SortedSet collection interface Vector class
stable sort view
synchronization wrappers view an array as a List
TreeMap class wrapper class

Chapter 21 Collections 1235

© Copyright 1992–2002 by Deitel & Associates, Inc. All Rights Reserved. 7/12/01

21.6 State whether each of the following is true or false. If false, explain why.
a) Elements in a Collection must be sorted in ascending order before performing a

binarySearch.
b) Method first gets the first element in a TreeSet.
c) A List created with Arrays.asList is resizable.
d) Class Arrays provides static method sort for sorting array elements.

21.7 Rewrite method printList of Fig. 21.4 to use a ListIterator.

21.8 Rewrite lines 16–23 in Fig. 21.4 to be more concise by using the asList method and the
LinkedList constructor that takes a Collection argument.

21.9 Write a program that reads in a series of first names and stores them in a LinkedList. Do
not store duplicate names. Allow the user to search for a first name.

21.10 Modify the program of Fig. 21.13 to count the number of occurrences of all letters (e.g., five
occurrences of "o" in the example). Display the results.

21.11 Write a program that determines and prints the number of duplicate words in a sentence.
Treat uppercase and lowercase letters the same. Ignore punctuation.

21.12 Rewrite your solution to Exercise 19.8 to use a LinkedList collection.

21.13 Rewrite your solution to Exercise 19.9 to use a LinkedList collection.

21.14 Write a program that takes a whole-number input from a user and determines if it is prime.
If the number is prime, add it to a JTextArea. If the number is not prime, display the prime factors
of the number in a JLabel. Remember that a prime number’s factors are only 1 and the prime num-
ber itself. Every number that is not prime has a unique prime factorization. For example, consider the
number 54. The factors of 54 are 2, 3, 3 and 3. When the values are multiplied together, the result is
54. For the number 54, the prime factors output should be 2 and 3. Use Sets as part of your solution.

21.15 Rewrite your solution to Exercise 22.21 to use a LinkedList.

21.16 Write a program that tokenizes (using class StreamTokenizer) a line of text input by the
user and places each token in a tree. Print the elements of the sorted tree.

22
Java Media Framework
and Java Sound (on CD)

Objectives
• To understand the capabilities of the Java Media

Framework (JMF).
• To understand the capabilities of the Java Sound API.
• To be able to play audio and video media with JMF.
• To be able to stream media over a network.
• To be able to capture, format and save media.
• To be able to play sounds with the Java Sound API.
• To be able to play, record, and synthesize MIDI with

the Java Sound API.
TV gives everyone an image, but radio gives birth to a
million images in a million brains.
Peggy Noonan

Noise proves nothing. Often a hen who has merely laid an
egg cackles as if she had laid an asteroid.
Mark Twain, Following the Equator

A wide screen just makes a bad film twice as bad.
Samuel Goldwyn

Isn’t life a series of images that change as they repeat
themselves?
Andy Warhol

Chapter 22 Java Media Framework and Java Sound (on CD) 1237

22.1 Introduction
This chapter continues our multimedia discussions of Chapter 18 by introducing some of
Java’s multimedia APIs that enable programmers to enhance applications with video and
audio features. In recent years, the digital multimedia sector of the computer industry has
experienced tremendous growth, as evidenced by the enormous quantity of multimedia
content available on the Internet. Web sites have been transformed from text-based HTML
pages to multimedia-intensive experiences. Advances in hardware and software technolo-
gies have allowed developers to integrate multimedia into the simplest applications. At the
high end of multimedia applications, the video game industry has used multimedia pro-
gramming to take advantage of the latest hardware technologies, such as 3D video cards
that create virtual reality experiences for users.

Acknowledging that Java applications should support digital video and audio capabil-
ities, Sun Microsystems, Intel and Silicon Graphics worked together to produce a multi-
media API known as the Java Media Framework (JMF). The JMF API is one of several
multimedia APIs in Java. Using the JMF API, programmers can create Java applications
that play, edit, stream and capture many popular media types. The first half of this chapter
discusses the JMF API.

IBM and Sun developed the latest JMF specification—version 2.0. Sun provides a ref-
erence implementation—JMF 2.1.1—of the JMF specification which supports media file
types such as Microsoft Audio/Video Interleave (.avi), Macromedia Flash 2 movies
(.swf), Future Splash (.spl), MPEG Layer 3 Audio (.mp3), Musical Instrument Digital
Interface (MIDI;.mid), MPEG-1 videos (.mpeg, .mpg), QuickTime (.mov), Sun Audio
(.au), Wave audio (.wav), AIFF (.aiff) and GSM (.gsm) files. The JMF also supports
media from capture devices such as microphones and digital cameras.

Outline

22.1 Introduction
22.2 Playing Media
22.3 Formatting and Saving Captured Media
22.4 RTP Streaming
22.5 Java Sound
22.6 Playing Sampled Audio
22.7 Musical Instrument Digital Interface (MIDI)

22.7.1 MIDI Playback
22.7.2 MIDI Recording
22.7.3 MIDI Synthesis

22.8 Internet and World Wide Web Resources
22.9 (Optional Case Study) Thinking About Objects: Animation and

Sound in the View

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1238 Java Media Framework and Java Sound (on CD) Chapter 22

In addition to the sample media clips provided with this chapter’s examples on the CD,
many Web sites offer an abundant supply of free-for-download audio and video clips. You
can download media clips from these sites (and many others on the Internet) and use them to
test the examples in this chapter. We present a list of sites here to get you started. Free Audio
Clips (www.freeaudioclips.com) is an excellent site for various types of audio files.
The 13 Even site (www.13-even.com/media.html) provides audio and video clips in
many formats for your personal use. If you are looking for MIDI audio files for use in Section
22.7, check out the free MIDI clips at www.freestuffgalore.commidi.asp. Funny
Video Clips (www.video-clips.co.uk) offers entertaining material. Microsoft’s
downloads site (msdn.microsoft.com/downloads) contains a multimedia section
providing audio clips and other media.

Currently, JMF is available as an extension package separate from the Java 2 Software
Development Kit. The CD that accompanies this book contains JMF 2.1.1. The most recent
JMF implementation can be downloaded from the official JMF Web site:

java.sun.com/products/java-media/jmf

The JMF Web site provides versions of the JMF that take advantage of the performance
features of the platform on which the JMF is running. For example, the JMF Windows Per-
formance Pack provides extensive media and device support for Java programs running on
Microsoft Windows platforms (Windows 95/98/NT 4.0/2000). JMF’s official Web site also
provides continually updated support, information and resources for JMF programmers.

Portability Tip 22.1
Writing programs using JMF’s Windows Performance Pack reduces the portability of those
programs to other operating systems. 22.1

The rest of this chapter discusses the Java Sound API and its extensive sound-pro-
cessing capabilities. Internally, the JMF uses Java Sound for its audio functions. In Sections
22.5 through 22.7, we will demonstrate sampled audio playback and MIDI functionalities
using Java Sound, a standard extension of the Java 2 Software Development Kit.

22.2 Playing Media
The JMF is commonly used to playback media clips in Java applications. Many applica-
tions such as financial managers, encyclopedias and games use multimedia to illustrate ap-
plication features, present educational content and entertain users.

The JMF offers several mechanisms for playing media, the simplest of which is via
objects that implement interface Player. Interface Player (package javax.media)
extends Controller, which is a handler for JMF-supported media.

The following steps are needed to play a media clip:

1. Specify the media source.

2. Create a Player for the media.

3. Obtain the output media and Player controls.

4. Display the media and controls.

Class SimplePlayer (Fig. 22.1) is a simple Java media player program that dem-
onstrates several common features of popular media players. The SimplePlayer demo

Chapter 22 Java Media Framework and Java Sound (on CD) 1239

can play most JMF-supported media files with the possible exception of the latest versions
of the formats. This application permits users to access files on the local computer that con-
tain supported media types by clicking the Open File button. Clicking the Open Loca-
tion button and specifying a media URL allows the user to access media from a media
source, such as a capture device, a Web server, or a streaming source. A capture device
(discussed in Section 22.3) reads media from audio and video devices such as microphones,
CD players and cameras. A Real-Time Transport Protocol (RTP) stream is a stream of
bytes sent over a network from a streaming server. An application buffers and plays the
streaming media on the client computer.

1 // Fig. 22.1: SimplePlayer.java
2 // Opens and plays a media file from
3 // local computer, public URL, or an RTP session
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8 import java.io.*;
9 import java.net.*;

10
11 // Java extension packages
12 import javax.swing.*;
13 import javax.media.*;
14
15 public class SimplePlayer extends JFrame {
16
17 // Java media player
18 private Player player;
19
20 // visual content component
21 private Component visualMedia;
22
23 // controls component for media
24 private Component mediaControl;
25
26 // main container
27 private Container container;
28
29 // media file and media locations
30 private File mediaFile;
31 private URL fileURL;
32
33 // constructor for SimplePlayer
34 public SimplePlayer()
35 {
36 super("Simple Java Media Player");
37
38 container = getContentPane();
39
40 // panel containing buttons
41 JPanel buttonPanel = new JPanel();

Fig. 22.1Fig. 22.1Fig. 22.1Fig. 22.1 Playing media with interface Player (part 1 of 8).

1240 Java Media Framework and Java Sound (on CD) Chapter 22

42 container.add(buttonPanel, BorderLayout.NORTH);
43
44 // opening file from directory button
45 JButton openFile = new JButton("Open File");
46 buttonPanel.add(openFile);
47
48 // register an ActionListener for openFile events
49 openFile.addActionListener(
50
51 // anonymous inner class to handle openFile events
52 new ActionListener() {
53
54 // open and create player for file
55 public void actionPerformed(ActionEvent event)
56 {
57 mediaFile = getFile();
58
59 if (mediaFile != null) {
60
61 // obtain URL from file
62 try {
63 fileURL = mediaFile.toURL();
64 }
65
66 // file path unresolvable
67 catch (MalformedURLException badURL) {
68 badURL.printStackTrace();
69 showErrorMessage("Bad URL");
70 }
71
72 makePlayer(fileURL.toString());
73
74 }
75
76 } // end actionPerformed
77
78 } // end ActionListener
79
80); // end call to method addActionListener
81
82 // URL opening button
83 JButton openURL = new JButton("Open Locator");
84 buttonPanel.add(openURL);
85
86 // register an ActionListener for openURL events
87 openURL.addActionListener(
88
89 // anonymous inner class to handle openURL events
90 new ActionListener() {
91
92 // open and create player for media locator
93 public void actionPerformed(ActionEvent event)
94 {

Fig. 22.1Fig. 22.1Fig. 22.1Fig. 22.1 Playing media with interface Player (part 2 of 8).

Chapter 22 Java Media Framework and Java Sound (on CD) 1241

95 String addressName = getMediaLocation();
96
97 if (addressName != null)
98 makePlayer(addressName);
99 }
100
101 } // end ActionListener
102
103); // end call to method addActionListener
104
105 // turn on lightweight rendering on players to enable
106 // better compatibility with lightweight GUI components
107 Manager.setHint(Manager.LIGHTWEIGHT_RENDERER,
108 Boolean.TRUE);
109
110 } // end SimplePlayer constructor
111
112 // utility method for pop-up error messages
113 public void showErrorMessage(String error)
114 {
115 JOptionPane.showMessageDialog(this, error, "Error",
116 JOptionPane.ERROR_MESSAGE);
117 }
118
119 // get file from computer
120 public File getFile()
121 {
122 JFileChooser fileChooser = new JFileChooser();
123
124 fileChooser.setFileSelectionMode(
125 JFileChooser.FILES_ONLY);
126
127 int result = fileChooser.showOpenDialog(this);
128
129 if (result == JFileChooser.CANCEL_OPTION)
130 return null;
131
132 else
133 return fileChooser.getSelectedFile();
134 }
135
136 // get media location from user input
137 public String getMediaLocation()
138 {
139 String input = JOptionPane.showInputDialog(
140 this, "Enter URL");
141
142 // if user presses OK with no input
143 if (input != null && input.length() == 0)
144 return null;
145
146 return input;
147 }

Fig. 22.1Fig. 22.1Fig. 22.1Fig. 22.1 Playing media with interface Player (part 3 of 8).

1242 Java Media Framework and Java Sound (on CD) Chapter 22

148
149 // create player using media's location
150 public void makePlayer(String mediaLocation)
151 {
152 // reset player and window if previous player exists
153 if (player != null)
154 removePlayerComponents();
155
156 // location of media source
157 MediaLocator mediaLocator =
158 new MediaLocator(mediaLocation);
159
160 if (mediaLocator == null) {
161 showErrorMessage("Error opening file");
162 return;
163 }
164
165 // create a player from MediaLocator
166 try {
167 player = Manager.createPlayer(mediaLocator);
168
169 // register ControllerListener to handle Player events
170 player.addControllerListener(
171 new PlayerEventHandler());
172
173 // call realize to enable rendering of player's media
174 player.realize();
175 }
176
177 // no player exists or format is unsupported
178 catch (NoPlayerException noPlayerException) {
179 noPlayerException.printStackTrace();
180 }
181
182 // file input error
183 catch (IOException ioException) {
184 ioException.printStackTrace();
185 }
186
187 } // end makePlayer method
188
189 // return player to system resources and
190 // reset media and controls
191 public void removePlayerComponents()
192 {
193 // remove previous video component if there is one
194 if (visualMedia != null)
195 container.remove(visualMedia);
196
197 // remove previous media control if there is one
198 if (mediaControl != null)
199 container.remove(mediaControl);
200

Fig. 22.1Fig. 22.1Fig. 22.1Fig. 22.1 Playing media with interface Player (part 4 of 8).

Chapter 22 Java Media Framework and Java Sound (on CD) 1243

201 // stop player and return allocated resources
202 player.close();
203 }
204
205 // obtain visual media and player controls
206 public void getMediaComponents()
207 {
208 // get visual component from player
209 visualMedia = player.getVisualComponent();
210
211 // add visual component if present
212 if (visualMedia != null)
213 container.add(visualMedia, BorderLayout.CENTER);
214
215 // get player control GUI
216 mediaControl = player.getControlPanelComponent();
217
218 // add controls component if present
219 if (mediaControl != null)
220 container.add(mediaControl, BorderLayout.SOUTH);
221
222 } // end method getMediaComponents
223
224 // handler for player's ControllerEvents
225 private class PlayerEventHandler extends ControllerAdapter {
226
227 // prefetch media feed once player is realized
228 public void realizeComplete(
229 RealizeCompleteEvent realizeDoneEvent)
230 {
231 player.prefetch();
232 }
233
234 // player can start showing media after prefetching
235 public void prefetchComplete(
236 PrefetchCompleteEvent prefetchDoneEvent)
237 {
238 getMediaComponents();
239
240 // ensure valid layout of frame
241 validate();
242
243 // start playing media
244 player.start();
245
246 } // end prefetchComplete method
247
248 // if end of media, reset to beginning, stop play
249 public void endOfMedia(EndOfMediaEvent mediaEndEvent)
250 {
251 player.setMediaTime(new Time(0));
252 player.stop();
253 }

Fig. 22.1Fig. 22.1Fig. 22.1Fig. 22.1 Playing media with interface Player (part 5 of 8).

1244 Java Media Framework and Java Sound (on CD) Chapter 22

254
255 } // end PlayerEventHandler inner class
256
257 // execute application
258 public static void main(String args[])
259 {
260 SimplePlayer testPlayer = new SimplePlayer();
261
262 testPlayer.setSize(300, 300);
263 testPlayer.setLocation(300, 300);
264 testPlayer.setDefaultCloseOperation(EXIT_ON_CLOSE);
265 testPlayer.setVisible(true);
266 }
267
268 } // end class SimplePlayer

Fig. 22.1Fig. 22.1Fig. 22.1Fig. 22.1 Playing media with interface Player (part 6 of 8).

Chapter 22 Java Media Framework and Java Sound (on CD) 1245

Fig. 22.1Fig. 22.1Fig. 22.1Fig. 22.1 Playing media with interface Player (part 7 of 8).

1246 Java Media Framework and Java Sound (on CD) Chapter 22

A media clip must be processed before it is played. To process a media clip the pro-
gram must access a media source, create a Controller for that source and output the
media. Prior to output, users may perform optional formatting such as changing an AVI
video to a QuickTime video. Although JMF hides low-level media processing (e.g.
checking for file compatibility) from the programmer, both programmers and users can
configure how a Player presents media. Section 22.3 and Section 22.4 reveal that cap-
turing and streaming media follow the same guidelines. Section 22.8 lists several Web sites
that have JMF-supported media contents.

Figure 22.1 introduces some key objects for playing media. The JMF extension
package javax.media—imported in line 13—contains interface Player and other
classes and interfaces needed for events. Line 18 declares a Player object to play media
clips. Lines 30–31 declare the location of these clips as File and URL references.

Lines 21 and 24 declare Component objects for the video display and for holding the
controls. Component mediaControl enables users to play, pause and stop the media
clip. Component visualMedia displays the video portion of a media clip (if the media
clip is a video). The JMF provides lightweight video renderers that are compatible with light-
weight Swing components (See Chapter 13). Lines 107–108 in SimplePlayer’s con-
structor specify that the Player should draw its GUI components and video portion (if there

Fig. 22.1Fig. 22.1Fig. 22.1Fig. 22.1 Playing media with interface Player (part 8 of 8).

Chapter 22 Java Media Framework and Java Sound (on CD) 1247

is one) using lightweight renderers so that the media player will look like other GUIs with
Swing components. By default, Player’s video components are heavyweight components,
which may not display correctly when mixed with lightweight Swing GUI components.

Before playing the media, SimplePlayer displays an initial GUI consisting of two
buttons, Open File and Open Locator, that enable users to specify the media location.
The event handlers for these two buttons (lines 52–78 and lines 90–101) perform similar
functions. Each button prompts users for a media resource such as an audio or video clip,
then creates a Player for the specified media. When the user clicks Open File, line 57
calls method getFile (lines 120–134) to prompt users to select a media file from the local
computer. Line 63 calls the File method toURL to obtain a URL representation of the
selected file’s name and location. Line 72 calls SimplePlayer method makePlayer
(lines 150–187) to create a Player for the user-selected media. When users click Open
Locator, line 95 invokes method getMediaLocation (lines 137–147), prompting
users to input a String giving the media location. Line 98 calls SimplePlayer method
makePlayer to create a Player for the media at the specified location.

Method makePlayer (lines 150–187) makes the necessary preparations to create a
Player of media clips. The String argument indicates the media’s location. Lines 153–
154 invoke SimplePlayer method removePlayerComponents (lines 191–203) to
remove the previous Player’s visual component and GUI controls from the frame before
creating a new Player. Line 202 invokes Player method close to stop all player
activity and to release system resources held by the previous Player.

Method makePlayer requires a pointer to the source from which the media is
retrieved, which is accomplished by instantiating a new MediaLocator for the value
given by the String argument (lines 157–158). A MediaLocator specifies the loca-
tion of a media source, much like a URL typically specifies the location of a Web page. A
MediaLocator can access media from capture devices and RTP sessions as well as from
file locations. The MediaLocator constructor requires the media’s location as a
String, so all URLs must be converted to Strings as in line 72.

Method makePlayer instantiates a new Player with a call to Manager method
createPlayer. Class Manager provides static methods that enable programs to
access most JMF resources. Method createPlayer opens the specified media source and
determines the appropriate Player for the media source. Method createPlayer throws
a NoPlayerException if an appropriate Player cannot be found for the media clip. An
IOException is thrown if there are problems connecting to the media source.

ControllerListeners listen for the ControllerEvents that Players gen-
erate to track the progress of a Player in the media-handling process. Lines 170–171 reg-
ister an instance of inner class PlayerEventHandler (lines 225–255) to listen for
certain events that player generates. Class PlayerEventHandler extends class
ControllerAdapter, which provides empty implementations of methods from inter-
face ControllerListener. Class ControllerAdapter facilitates implementing
ControllerListener for classes that need to handle only a few Controller-
Event types.

Players confirm their progress while the processing media based on their state tran-
sitions. Line 174 invokes Player method realize to confirm all resources necessary
to play media are available. Method realize places the Player in the Realizing state
to indicate that it is connecting to and interacting with its media sources. When a Player

1248 Java Media Framework and Java Sound (on CD) Chapter 22

completes realizing, it generates a RealizeCompleteEvent—a type of Control-
lerEvent that occurs when a Player completes its transition to state Realized. This
state indicates that the Player has completed all preparations needed to start processing
the media. The program invokes method realizeComplete (lines 228–232) when
Player generates a RealizeCompleteEvent.

Most media players have a buffering feature, which stores a portion of downloaded
media locally so that users do not have to wait for an entire clip to download before playing
it, as reading media data can take a long time. By invoking Player method prefetch,
line 231 transitions the player to the Prefetching state. When a Player prefetches a
media clip, the Player obtains exclusive control over certain system resources needed to
play the clip. The Player also begins buffering media data to reduce the delay before the
media clip plays.

When the Player completes prefetching, it transitions to state Prefetched and is
ready to play media. During this transition, the Player generates a ControllerEvent
of type PrefetchCompleteEvent to indicate that it is ready to display media. The
Player invokes PlayerEventHandler method prefetchComplete (lines 235–
246), which displays the Player’s GUI in the frame. After obtaining the hardware
resources, the program can get the media components it requires. Line 238 invokes method
getMediaComponents (lines 206–222) to obtain the GUI’s controls and the media’s
visual component (if the media is a video clip) and attach them to the application window’s
content pane. Player method getVisualComponent (line 209) obtains the visual
component of the video clip. Similarly, line 216 invokes Player method getControl-
PanelComponent to return the GUI’s controls. The GUI (Fig. 22.1) typically provides
the following controls:

1. A positioning slider to jump to certain points in the media clip.

2. A pause button.

3. A volume button that provides volume control by right clicking and a mute func-
tion by left clicking.

4. A media properties button that provides detailed media information by right click-
ing and frame rate control by left clicking.

Look-and-Feel Observation 22.1
Invoking Player method getVisualComponent yields null for audio files, because
there is no visual component to display. 22.1

Look-and-Feel Observation 22.2
Invoking Player method getControlPanelComponent yields different sets of GUI
controls depending on the media type. For example, media content streamed directly from a
live conference does not have a progress bar because the length of the media is not pre-de-
termined. 22.2

After validating the new frame layout (line 241), line 244 invokes Player method
start (line 239) to start playing the media clip.

Software Engineering Observation 22.1
If the Player has not prefetched or realized the media, invoking Player method start
prefetches and realizes the media. 22.1

Chapter 22 Java Media Framework and Java Sound (on CD) 1249

Performance Tip 22.1
Starting the Player takes less time if the Player has already prefetched the media before
invoking start. 22.1

When the media clip ends, the Player generates a ControllerEvent of type
EndOfMediaEvent. Most media players “rewind” the media clip after reaching the end
so users can see or hear it again from the beginning. Method endOfMedia (lines 249–
253) handles the EndOfMediaEvent and resets the media clip to its beginning position
by invoking Player method setMediaTime with a new Time (package
javax.media) of 0 (line 251). Method setMediaTime sets the position of the media
to a specific time location in the media, and is useful for “jumping” to a different part of the
media. Line 252 invokes Player method stop, which ends media processing and places
the Player in state Stopped. Invoking method start on a Stopped Player that has not
been closed resumes media playback.

Often, it is desirable to configure the media before presentation. In the next section, we
discuss interface Processor, which has more configuration capabilities than interface
Player. Processors enable a program to format media and to save it to a file.

22.3 Formatting and Saving Captured Media
The Java Media Framework supports playing and saving media from capture devices such
as microphones and video cameras. This type of media is known as captured media. Cap-
ture devices convert analog media into digitized media. For example, a program that cap-
tures an analog voice from a microphone attached to computer can create a digitized file
from a that recording.

The JMF can access video capture devices that use Video for Windows drivers. Also,
JMF supports audio capture devices that use the Windows Direct Sound Interface or the
Java Sound Interface. The Video for Windows driver provides interfaces that enable Win-
dows applications to access and process media from video devices. Similarly, Direct Sound
and Java Sound are interfaces that enable applications to access sound devices such as hard-
ware sound cards. The Solaris Performance Pack provides support for Java Sound and Sun
Video capture devices on the Solaris platform. For a complete list of devices supported by
JMF, visit JMF’s official Web site.

The SimplePlayer application presented in Fig. 22.1 allowed users to play media
from a capture device. A locator string specifies the location of a capture device that the
SimplePlayer demo accesses. For example, to test the SimplePlayer’s capturing
capabilities, plug a microphone into a sound card’s microphone input jack. Typing the locator
string javasound:// in the Open Location input dialog specifies that media should be
input from the Java Sound-enabled capture device. The locator string initializes the Media-
Locator that the Player needs for the audio material captured from the microphone.

 Although SimplePlayer provides access to capture devices, it does not format the
media or save captured data. Figure 22.2 presents a program that accomplishes these two
new tasks. Class CapturePlayer provides more control over media properties via class
DataSource (package javax.media.protocol). Class DataSource provides
the connection to the media source, then abstracts that connection to allow users to manip-
ulate it. This program uses a DataSource to format the input and output media. The
DataSource passes the formatted output media to a Controller, which will format it

1250 Java Media Framework and Java Sound (on CD) Chapter 22

further so that it can be saved to a file. The Controller that handles media is a Pro-
cessor, which extends interface Player. Finally, an object that implements interface
DataSink saves the captured, formatted media. The Processor object handles the
flow of data from the DataSource to the DataSink object.

JMF and Java Sound use media sources extensively, so programmers must understand
the arrangement of data in the media. The header on a media source specifies the media
format and other essential information needed to play the media. The media content usually
consists of tracks of data, similar to tracks of music on a CD. Media sources may have one
or more tracks that contain a variety of data. For example, a movie clip may contain one
track for video, one track for audio, and a third track for closed-captioning data for the
hearing-impaired.

1 // Fig. 22.2: CapturePlayer.java
2 // Presents and saves captured media
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.io.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.swing.*;
12 import javax.swing.event.*;
13 import javax.media.*;
14 import javax.media.protocol.*;
15 import javax.media.format.*;
16 import javax.media.control.*;
17 import javax.media.datasink.*;
18
19 public class CapturePlayer extends JFrame {
20
21 // capture and save button
22 private JButton captureButton;
23
24 // component for save capture GUI
25 private Component saveProgress;
26
27 // formats of device's media, user-chosen format
28 private Format formats[], selectedFormat;
29
30 // controls of device's media formats
31 private FormatControl formatControls[];
32
33 // specification information of device
34 private CaptureDeviceInfo deviceInfo;
35
36 // vector containing all devices' information
37 private Vector deviceList;
38

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Formatting and saving media from capture devices (part 1 of 9).

Chapter 22 Java Media Framework and Java Sound (on CD) 1251

39 // input and output data sources
40 private DataSource inSource, outSource;
41
42 // file writer for captured media
43 private DataSink dataSink;
44
45 // processor to render and save captured media
46 private Processor processor;
47
48 // constructor for CapturePlayer
49 public CapturePlayer()
50 {
51 super("Capture Player");
52
53 // panel containing buttons
54 JPanel buttonPanel = new JPanel();
55 getContentPane().add(buttonPanel);
56
57 // button for accessing and initializing capture devices
58 captureButton = new JButton("Capture and Save File");
59 buttonPanel.add(captureButton, BorderLayout.CENTER);
60
61 // register an ActionListener for captureButton events
62 captureButton.addActionListener(new CaptureHandler());
63
64 // turn on light rendering to enable compatibility
65 // with lightweight GUI components
66 Manager.setHint(Manager.LIGHTWEIGHT_RENDERER,
67 Boolean.TRUE);
68
69 // register a WindowListener to frame events
70 addWindowListener(
71
72 // anonymous inner class to handle WindowEvents
73 new WindowAdapter() {
74
75 // dispose processor
76 public void windowClosing(
77 WindowEvent windowEvent)
78 {
79 if (processor != null)
80 processor.close();
81 }
82
83 } // end WindowAdapter
84
85); // end call to method addWindowListener
86
87 } // end constructor
88
89 // action handler class for setting up device
90 private class CaptureHandler implements ActionListener {
91

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Formatting and saving media from capture devices (part 2 of 9).

1252 Java Media Framework and Java Sound (on CD) Chapter 22

92 // initialize and configure capture device
93 public void actionPerformed(ActionEvent actionEvent)
94 {
95 // put available devices' information into vector
96 deviceList =
97 CaptureDeviceManager.getDeviceList(null);
98
99 // if no devices found, display error message
100 if ((deviceList == null) ||
101 (deviceList.size() == 0)) {
102
103 showErrorMessage("No capture devices found!");
104
105 return;
106 }
107
108 // array of device names
109 String deviceNames[] = new String[deviceList.size()];
110
111 // store all device names into array of
112 // string for display purposes
113 for (int i = 0; i < deviceList.size(); i++){
114
115 deviceInfo =
116 (CaptureDeviceInfo) deviceList.elementAt(i);
117
118 deviceNames[i] = deviceInfo.getName();
119 }
120
121 // get vector index of selected device
122 int selectDeviceIndex =
123 getSelectedDeviceIndex(deviceNames);
124
125 if (selectDeviceIndex == -1)
126 return;
127
128 // get device information of selected device
129 deviceInfo = (CaptureDeviceInfo)
130 deviceList.elementAt(selectDeviceIndex);
131
132 formats = deviceInfo.getFormats();
133
134 // if previous capture device opened, disconnect it
135 if (inSource != null)
136 inSource.disconnect();
137
138 // obtain device and set its format
139 try {
140
141 // create data source from MediaLocator of device
142 inSource = Manager.createDataSource(
143 deviceInfo.getLocator());
144

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Formatting and saving media from capture devices (part 3 of 9).

Chapter 22 Java Media Framework and Java Sound (on CD) 1253

145 // get format setting controls for device
146 formatControls = ((CaptureDevice)
147 inSource).getFormatControls();
148
149 // get user's desired device format setting
150 selectedFormat = getSelectedFormat(formats);
151
152 if (selectedFormat == null)
153 return;
154
155 setDeviceFormat(selectedFormat);
156
157 captureSaveFile();
158
159 } // end try
160
161 // unable to find DataSource from MediaLocator
162 catch (NoDataSourceException noDataException) {
163 noDataException.printStackTrace();
164 }
165
166 // device connection error
167 catch (IOException ioException) {
168 ioException.printStackTrace();
169 }
170
171 } // end method actionPerformed
172
173 } // end inner class CaptureHandler
174
175 // set output format of device-captured media
176 public void setDeviceFormat(Format currentFormat)
177 {
178 // set desired format through all format controls
179 for (int i = 0; i < formatControls.length; i++) {
180
181 // make sure format control is configurable
182 if (formatControls[i].isEnabled()) {
183
184 formatControls[i].setFormat(currentFormat);
185
186 System.out.println (
187 "Presentation output format currently set as " +
188 formatControls[i].getFormat());
189 }
190
191 } // end for loop
192 }
193
194 // get selected device vector index
195 public int getSelectedDeviceIndex(String[] names)
196 {

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Formatting and saving media from capture devices (part 4 of 9).

1254 Java Media Framework and Java Sound (on CD) Chapter 22

197 // get device name from dialog box of device choices
198 String name = (String) JOptionPane.showInputDialog(
199 this, "Select a device:", "Device Selection",
200 JOptionPane.QUESTION_MESSAGE,
201 null, names, names[0]);
202
203 // if format selected, get index of name in array names
204 if (name != null)
205 return Arrays.binarySearch(names, name);
206
207 // else return bad selection value
208 else
209 return -1;
210 }
211
212 // return user-selected format for device
213 public Format getSelectedFormat(Format[] showFormats)
214 {
215 return (Format) JOptionPane.showInputDialog(this,
216 "Select a format: ", "Format Selection",
217 JOptionPane.QUESTION_MESSAGE,
218 null, showFormats, null);
219 }
220
221 // pop up error messages
222 public void showErrorMessage(String error)
223 {
224 JOptionPane.showMessageDialog(this, error, "Error",
225 JOptionPane.ERROR_MESSAGE);
226 }
227
228 // get desired file for saved captured media
229 public File getSaveFile()
230 {
231 JFileChooser fileChooser = new JFileChooser();
232
233 fileChooser.setFileSelectionMode(
234 JFileChooser.FILES_ONLY);
235 int result = fileChooser.showSaveDialog(this);
236
237 if (result == JFileChooser.CANCEL_OPTION)
238 return null;
239
240 else
241 return fileChooser.getSelectedFile();
242 }
243
244 // show saving monitor of captured media
245 public void showSaveMonitor()
246 {

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Formatting and saving media from capture devices (part 5 of 9).

Chapter 22 Java Media Framework and Java Sound (on CD) 1255

247 // show saving monitor dialog
248 int result = JOptionPane.showConfirmDialog(this,
249 saveProgress, "Save capture in progress...",
250 JOptionPane.DEFAULT_OPTION,
251 JOptionPane.INFORMATION_MESSAGE);
252
253 // terminate saving if user presses "OK" or closes dialog
254 if ((result == JOptionPane.OK_OPTION) ||
255 (result == JOptionPane.CLOSED_OPTION)) {
256
257 processor.stop();
258 processor.close();
259
260 System.out.println ("Capture closed.");
261 }
262 }
263
264 // process captured media and save to file
265 public void captureSaveFile()
266 {
267 // array of desired saving formats supported by tracks
268 Format outFormats[] = new Format[1];
269
270 outFormats[0] = selectedFormat;
271
272 // file output format
273 FileTypeDescriptor outFileType =
274 new FileTypeDescriptor(FileTypeDescriptor.QUICKTIME);
275
276 // set up and start processor and monitor capture
277 try {
278
279 // create processor from processor model
280 // of specific data source, track output formats,
281 // and file output format
282 processor = Manager.createRealizedProcessor(
283 new ProcessorModel(inSource, outFormats,
284 outFileType));
285
286 // try to make a data writer for media output
287 if (!makeDataWriter())
288 return;
289
290 // call start on processor to start captured feed
291 processor.start();
292
293 // get monitor control for capturing and encoding
294 MonitorControl monitorControl =
295 (MonitorControl) processor.getControl(
296 "javax.media.control.MonitorControl");
297
298 // get GUI component of monitoring control
299 saveProgress = monitorControl.getControlComponent();

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Formatting and saving media from capture devices (part 6 of 9).

1256 Java Media Framework and Java Sound (on CD) Chapter 22

300
301 showSaveMonitor();
302
303 } // end try
304
305 // no processor could be found for specific
306 // data source
307 catch (NoProcessorException processorException) {
308 processorException.printStackTrace();
309 }
310
311 // unable to realize through
312 // createRealizedProcessor method
313 catch (CannotRealizeException realizeException) {
314 realizeException.printStackTrace();
315 }
316
317 // device connection error
318 catch (IOException ioException) {
319 ioException.printStackTrace();
320 }
321
322 } // end method captureSaveFile
323
324 // method initializing media file writer
325 public boolean makeDataWriter()
326 {
327 File saveFile = getSaveFile();
328
329 if (saveFile == null)
330 return false;
331
332 // get output data source from processor
333 outSource = processor.getDataOutput();
334
335 if (outSource == null) {
336 showErrorMessage("No output from processor!");
337 return false;
338 }
339
340 // start data writing process
341 try {
342
343 // create new MediaLocator from saveFile URL
344 MediaLocator saveLocator =
345 new MediaLocator (saveFile.toURL());
346
347 // create DataSink from output data source
348 // and user-specified save destination file
349 dataSink = Manager.createDataSink(
350 outSource, saveLocator);
351

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Formatting and saving media from capture devices (part 7 of 9).

Chapter 22 Java Media Framework and Java Sound (on CD) 1257

352 // register a DataSinkListener for DataSinkEvents
353 dataSink.addDataSinkListener(
354
355 // anonymous inner class to handle DataSinkEvents
356 new DataSinkListener () {
357
358 // if end of media, close data writer
359 public void dataSinkUpdate(
360 DataSinkEvent dataEvent)
361 {
362 // if capturing stopped, close DataSink
363 if (dataEvent instanceof EndOfStreamEvent)
364 dataSink.close();
365 }
366
367 } // end DataSinkListener
368
369); // end call to method addDataSinkListener
370
371 // start saving
372 dataSink.open();
373 dataSink.start();
374
375 } // end try
376
377 // DataSink could not be found for specific
378 // save file and data source
379 catch (NoDataSinkException noDataSinkException) {
380 noDataSinkException.printStackTrace();
381 return false;
382 }
383
384 // violation while accessing MediaLocator
385 // destination
386 catch (SecurityException securityException) {
387 securityException.printStackTrace();
388 return false;
389 }
390
391 // problem opening and starting DataSink
392 catch (IOException ioException) {
393 ioException.printStackTrace();
394 return false;
395 }
396
397 return true;
398
399 } // end method makeDataWriter
400
401 // main method
402 public static void main(String args[])
403 {
404 CapturePlayer testPlayer = new CapturePlayer();

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Formatting and saving media from capture devices (part 8 of 9).

1258 Java Media Framework and Java Sound (on CD) Chapter 22

405
406 testPlayer.setSize(200, 70);
407 testPlayer.setLocation(300, 300);
408 testPlayer.setDefaultCloseOperation(EXIT_ON_CLOSE);
409 testPlayer.setVisible(true);
410 }
411
412 } // end class CapturePlayer

Fig. 22.2Fig. 22.2Fig. 22.2Fig. 22.2 Formatting and saving media from capture devices (part 9 of 9).

Chapter 22 Java Media Framework and Java Sound (on CD) 1259

Class CapturePlayer (Fig. 22.2) illustrates capturing, setting media formats and
saving media from capture devices supported by JMF. The simplest test of the program
uses a microphone for audio input. Initially, the GUI has only one button, which users click
to begin the configuration process. Users then select a capture device from a pull-down
menu dialog. The next dialog box has options for the format of the capture device and file
output. The third dialog box asks users to save the media to a specific file. The final dialog
box provides a volume control and the option of monitoring the data. Monitoring allows
users to hear or see the media as it is captured and saved without modifying it in any way.
Many media capture technologies offer monitoring capabilities. For example, many video
recorders have a screen attachment to let users see what the camera is capturing without
looking through the viewfinder. In a recording studio producers can listen to live music
being recorded through headphones in another room. Monitoring data is different from
playing data in that it does not make any changes to the format of the media or affect the
data being sent to the Processor.

In the CapturePlayer program, lines 14–16 import the JMF Java extension packages
javax.media.protocol, javax.media.format and javax.media.con-
trol, which contain classes and interfaces for media control and device formatting. Line 17
imports the JMF package javax.media.datasink, which contains classes for output-
ting formatted media. The program uses the classes and interfaces provided by these packages
to obtain the desired capture device information, set the format of the capture device, create
a Processor to handle the captured media data, create a DataSink to write the media
data to a file and monitor the saving process.

CapturePlayer is capable of setting the media format. JMF provides class Format
to describe the attributes of a media format, such as the sampling rate (which controls the
quality of the sound) or whether the media should be in stereo or mono format. Each media
format is encoded differently and can be played only with a media handler that supports its
particular format. Line 28 declares an array of the Formats that the capture device supports
and a Format reference for the user-selected format (selectedFormat).

After obtaining the Format objects, the program needs access to the formatting con-
trols of the capture device. Line 31 declares an array to hold the FormatControls which
will set the capture-device format. Class CapturePlayer sets the desired Format for
the media source through the device’s FormatControls (line 31). The CaptureDe-
viceInfo reference deviceInfo (line 34) stores the capture device information,
which will be placed in a Vector containing all of the device’s information.

Class DataSource connects programs to media data sources, such as capture
devices. The SimplePlayer of Figure 22.1 accessed a DataSource object by
invoking Manager method createPlayer, passing in a MediaLocator. However,
class CapturePlayer accesses the DataSource directly. Line 40 declares two
DataSources—inSource connects to the capture device’s media and outSource
connects to the output data source to which the captured media will be saved.

An object that implements interface Processor provides the primary function that
controls and processes the flow of media data in class CapturePlayer (line 46). The
class also creates an object that implements interface DataSink to write the captured data
to a file (line 43).

Clicking the Capture and Save File button configures the capture device by
invoking method actionPerformed (lines 93–171) in private inner class Cap-

1260 Java Media Framework and Java Sound (on CD) Chapter 22

tureHandler (lines 90–173). An instance of inner class CaptureHandler is regis-
tered to listen for ActionEvents from captureButton (line 62). The program
provides users with a list of available capture devices when lines 96–97 invoke Capture-
DeviceManager static method getDeviceList. Method getDeviceList
obtains all of the computer’s available devices that support the specified Format. Speci-
fying null as the Format parameter returns a complete list of available devices. Class
CaptureDeviceManager enables a program to access this list of devices.

Lines 109–119 copy the names of all capture devices into a String array (device-
Names) for display purposes. Lines 122-123 invoke CapturePlayer method get-
SelectedDeviceIndex (lines 195–210) to show a selector dialog with a list of all the
device names stored in array deviceNames. The method call to showInputDialog
(lines 198–201) has a different parameter list than earlier examples. The first four parameters
are the dialog’s parent component, message, title, and message type, as earlier chapters use.
The final three, which are new, specify the icon (in this case, null), the list of values pre-
sented to the user (deviceNames), and the default selection (the first element of device-
Names). Once users select a device, the dialog returns the string, which is used to return the
integer index of the selected name in deviceNames. This String helps determine the par-
allel element in the deviceList. This element, which is an instance of CaptureDevi-
ceInfo, creates and configures a new device from which the desired media can be recorded.

A CaptureDeviceInfo object encapsulates the information that the program needs
to access and configure a capture device, such as location and format preferences. Calling
methods getLocator (line 143) and getFormats (line 132) access these pieces of infor-
mation. Lines 129–130 access the new CaptureDeviceInfo that the user specified in the
deviceList. Next, lines 135–136 call inSource’s disconnect method to disengage
any previously opened capture devices before connecting the new device.

Lines 142–143 invoke Manager method createDataSource to obtain the
DataSource object that connects to the capture device’s media source, passing in the
capture device’s MediaLocator object as an argument. CaptureDeviceInfo
method getLocator returns the capture device’s MediaLocator. Method create-
DataSource in turn invokes DataSource method connect which establishes a con-
nection with the capture device. Method createDataSource throws a
NoDataSourceException if it cannot locate a DataSource for the capture device.
An IOException occurs if there is an error opening the device.

Before capturing the media, the program needs to format the DataSource as speci-
fied by the user in the Format Selection dialog. Lines 146–147 use CaptureDevice
method getFormatControls to obtain an array of FormatControls for Data-
Source inSource. An object that implements interface FormatControl specifies
the format of the DataSource. DataSource objects can represent media sources other
than capture devices, so for this example the cast operator in line 146 manipulates object
inSource as a CaptureDevice and accesses capture device methods such as get-
FormatControls. Line 150 invokes method getSelectedFormat (lines 213–219)
to display an input dialog from which users can select one of the available formats. Lines
176–192 call the method setDeviceFormat to set the media output format for the
device to the user-selected Format. Each capture device can have several FormatCon-
trols, so setDeviceFormat uses FormatControl method setFormat to specify
the format for each FormatControl object.

Chapter 22 Java Media Framework and Java Sound (on CD) 1261

Formatting the DataSource completes the configuration of the capture device. A
Processor (object inSource) converts the data to the file format in which it will be
saved. The Processor works as a connector between the outSource and method
captureSaveFile since DataSource inSource does not play or save the media,
it only serves to configure the capture device. Line 157 invokes method captureSave-
File (lines 265–322) to perform the steps needed to save the captured media in a recog-
nizable file format.

To create a Processor, this program first creates a ProcessorModel, a template
for the Processor. The ProcessorModel determines the attributes of a Processor
through a collection of information which includes a DataSource or MediaLocator,
the desired formats for the media tracks which the Processor will handle, and a Con-
tentDescriptor indicating the output content type. Line 268 creates a new Format
array (outFormats) that represents the possible formats for each track in the media. Line
270 sets the default format to the first element of the array. To save the captured output to
a file, the Processor must first convert the data it receives to a file-enabled format. A
new QuickTime FileTypeDescriptor (package javax.media.format) is cre-
ated to store a description of the content type of the Processor’s output and store it in
outFileType (lines 273–274). Lines 282–284 use the DataSource inSource, the
array outFormats, and the file type outFileType to instantiate a new Processor-
Model (lines 283–284).

Generally, Processors need to be configured before they can process media, but the
one in this application does not since lines 282–284 invoke Manager method createRe-
alizedProcessor. This method creates a configured, realized Processor based on the
ProcessorModel object passed in as an argument. Method createRealizedPro-
cessor throws a NoProcessorException if the program cannot locate a Processor
for the media or if JMF does not support the media type. The method throws a CannotRe-
alizeException if the Processor cannot be realized. This may occur if another pro-
gram is already using the media, thus blocking communication with the media source.

Common Programming Error 22.1
Be careful when specifying track formats. Incompatible formats for specific output file types
prevent the program from realizing the Processor. 22.1

Software Engineering Observation 22.2
Recall that the Processor transitions through several states before being realized. Man-
ager method createProcessor allows a program to provide more customized config-
uration before a Processor is realized. 22.2

Performance Tip 22.2
When method createRealizedProcessor configures the Processor, the method
blocks until the Processor is realized. This may prevent other parts of the program from
executing. In some cases, using a ControllerListener to respond to Controller-
Events may enable a program to operate more efficiently. When the Processor is real-
ized, the listener is notified so the program can begin processing the media. 22.2

Having obtained media data in a file format from the Processor, the program can
make a “data writer” to write the media output to a file. An object that implements interface
DataSink enables media data to be output to a specific location—most commonly a file.

1262 Java Media Framework and Java Sound (on CD) Chapter 22

Line 287 invokes method makeDataWriter (lines 325–399) to create a DataSink
object that can save the file. Manager method createDataSink requires the Data-
Source of the Processor and the MediaLocator for the new file as arguments.
Within makeDataWriter, lines 229–242 invokes method getSaveFile to prompt
users to specify the name and location of the file to which the media should be saved. The
File object saveFile stores the information. Processor method getDataOutput
(line 333) returns the DataSource from which it received the media. Lines 344–345
create a new MediaLocator for saveFile. Using this MediaLocator and the
DataSource, lines 349–350 create a DataSink object which writes the output media
from the DataSource to the file in which the data will be saved, as specified by the
MediaLocator. Method createDataSink throws a NoDataSinkException if it
cannot create a DataSink that can read data from the DataSource and output the data
to the location specified by the MediaLocator. This failure may occur as a result of
invalid media or an invalid MediaLocator.

The program needs to know when to stop outputting data, so lines 353–369 register a
DataSinkListener to listen for DataSinkEvents. DataSinkListener method
dataSinkUpdate (lines 359–365) is called when each DataSinkEvent occurs. If the
DataSinkEvent is an EndOfStreamEvent, indicating that the Processor has
been closed because the capture stream connection has closed, line 364 closes the Data-
Sink. Invoking DataSink method close stops the data transfer. A closed DataSink
cannot be used again.

Common Programming Error 22.2
The media file output with a DataSink will be corrupted if the DataSink is not closed
properly. 22.2

Software Engineering Observation 22.3
Captured media may not yield an EndOfMediaEvent if the media’s endpoint cannot be
determined. 22.3

After setting up the DataSink and registering its listener, line 372 calls DataSink
method open to connect the DataSink to the destination that the MediaLocator spec-
ifies. Method open throws a SecurityException if the DataSink attempts to write
to a destination for which the program does not have write permission, such as a read-only
file.

Line 373 calls DataSink method start to initiate data transfer. At this point, the
program returns from method makeDataWriter back to method captureSaveFile
(lines 265–322). Although the DataSink prepares itself to receive the transfer and indi-
cates that it is ready by calling start, the transfer does not actually take place until the
Processor’s start method is called. The invocation of Processor method start
begins the flow of data from the capture device, formats the data and transfers that data to
the DataSink. The DataSink writes the media to a file, which completes the process
performed by class CapturePlayer.

While Processor encodes the data and the DataSink saves it to a file, Capture-
Player monitors the process. Monitoring provides a method of overseeing data as the
capture device collects it. Lines 294–296 obtain an object that implements interface Mon-
itorControl (package javax.media.control) from the Processor by calling
method getControl. Line 299 calls MonitorControl method getControlCom-

Chapter 22 Java Media Framework and Java Sound (on CD) 1263

ponent to obtain the GUI component that displays the monitored media. MonitorCon-
trols typically have a checkbox to enable or disable displaying media. Also, audio
devices have a volume control and video devices have a control for setting the preview
frame rate. Line 301 invokes method showSaveMonitor (lines 245–261) to display the
monitoring GUI in a dialog box. To terminate capturing, users can press the OK button or
close the dialog box (lines 254–261). For some video capture devices, the Processor
needs to be in a Stopped state to enable monitoring of the saving and capturing process.

Thus far, we have discussed JMF’s capabilities to access, present and save media con-
tent. Our final JMF example demonstrates how to send media between computers using
JMF’s streaming capabilities.

22.4 RTP Streaming
Streaming media refers to media that is transferred from a server to a client in a continuous
stream of bytes. The client can begin playing the media while still downloading the media
from the server. Audio and video media files are often many megabytes in size. Live events,
such as concerts or football game broadcasts, may have indeterminable sizes. Users could
wait until a recording of a concert or game is posted, then download the entire recording.
However, at today’s Internet connection speeds, downloading such a broadcast could take
days and typically users prefer to listen to live broadcasts as they occur. Streaming media
enables client applications to play media over the Internet or over a network without down-
loading the entire media file at once.

In a streaming media application, the client typically connects to a server that sends a
stream of bytes containing the media back to the client. The client application buffers (i.e.
stores locally) a portion of the media, which the client begins playing after a certain portion
has been received. The client continually buffers additional media, providing users with an
uninterrupted clip, as long as network traffic does not prevent the client application from
buffering additional bytes. With buffering, users experience the media within seconds of
when the streaming begins, even though all of the material has not been received.

Performance Tip 22.3
Streaming media to a client enables the client to experience the media faster than if the client
must wait for an entire media file to download. 22.3

Demand for real-time, robust multimedia is rising dramatically as the speed of Internet
connections increase. Broadband Internet access, which provides high-speed network con-
nections to the Internet for so many home users, is becoming more popular, though the
number of users remains relatively small compared to the total number of Internet users.
With faster connections, streaming media can provide a better multimedia experience.
Users with slower connections can still experience the multimedia, though with lesser
quality. The wide range of applications that use streaming media is growing. Applications
that stream video clips to clients have expanded to provide real-time broadcast feeds. Thou-
sands of radio stations stream music continuously over the Internet. Client applications
such as RealPlayer have focused on streaming media content with live radio broadcasts.
Applications are not limited to audio and video server-to-client streaming. For example,
teleconferencing and video conferencing applications increase efficiency in everyday busi-
ness by reducing the need for business people to travel great distances to attend meetings.

1264 Java Media Framework and Java Sound (on CD) Chapter 22

JMF provides a streaming media package that enables Java applications to send and
receive streams of media in some of the formats discussed earlier in this chapter. For a com-
plete list of formats, see the official JMF Web site:

java.sun.com/products/java-media/jmf/2.1.1/formats.html

 JMF uses the industry-standard Real-Time Transport Protocol (RTP) to control media
transmission. RTP is designed specifically to transmit real-time media data.

The two mechanisms for streaming RTP-supported media are passing it through a
DataSink and buffering it. The easier mechanism to use is a DataSink, which writes
the contents of a stream to a host destination (i.e., a client computer), via the same tech-
niques shown in Fig. 22.2 to save captured media to a file. In this case, however, the desti-
nation MediaLocator’s URL would be specified in the following format:

rtp://host:port/contentType

where host is the IP address or host name of the server, port is the port number on which
the server is streaming the media and contentType is either audio or video.

Using a DataSink as specified allows only one stream to be sent at a time. To send
multiple streams (e.g., as a karaoke video with separate tracks for video and audio would)
to multiple hosts, a server application must use RTP session managers. An RTPManager
(package javax.media.rtp) provides more control over the streaming process, per-
mitting specification of buffer sizes, error checking and streaming reports on the propaga-
tion delay (the time it takes for the data to reach its destination).

The program in Fig. 22.3 and Fig. 22.4 demonstrates streaming using the RTP session
manager. This example supports sending multiple streams in parallel, so separate clients
must be opened for each stream. This example does not show a client that can receive the
RTP stream. The program in Fig. 22.1 (SimplePlayer) can test the RTP server by spec-
ifying an RTP session address

rtp://127.0.0.1:4000/audio

as the location SimplePlayer should open to begin playing audio. To execute the
streaming media server on a different computer, replace 127.0.0.1 with either the IP ad-
dress or host name of the server computer.

1 // Fig. 22.3: RTPServer.java
2 // Provides configuration and sending capabilities
3 // for RTP-supported media files
4
5 // Java core packages
6 import java.io.*;
7 import java.net.*;
8
9 // Java extension packages

10 import javax.media.*;
11 import javax.media.protocol.*;
12 import javax.media.control.*;
13 import javax.media.rtp.*;
14 import javax.media.format.*;

Fig. 22.3Fig. 22.3Fig. 22.3Fig. 22.3 Serving streaming media with RTP session managers (part 1 of 7).

Chapter 22 Java Media Framework and Java Sound (on CD) 1265

15
16 public class RTPServer {
17
18 // IP address, file or medialocator name, port number
19 private String ipAddress, fileName;
20 private int port;
21
22 // processor controlling data flow
23 private Processor processor;
24
25 // data output from processor to be sent
26 private DataSource outSource;
27
28 // media tracks' configurable controls
29 private TrackControl tracks[];
30
31 // RTP session manager
32 private RTPManager rtpManager[];
33
34 // constructor for RTPServer
35 public RTPServer(String locator, String ip, int portNumber)
36 {
37 fileName = locator;
38 port = portNumber;
39 ipAddress = ip;
40 }
41
42 // initialize and set up processor
43 // return true if successful, false if not
44 public boolean beginSession()
45 {
46 // get MediaLocator from specific location
47 MediaLocator mediaLocator = new MediaLocator(fileName);
48
49 if (mediaLocator == null) {
50 System.err.println(
51 "No MediaLocator found for " + fileName);
52
53 return false;
54 }
55
56 // create processor from MediaLocator
57 try {
58 processor = Manager.createProcessor(mediaLocator);
59
60 // register a ControllerListener for processor
61 // to listen for state and transition events
62 processor.addControllerListener(
63 new ProcessorEventHandler());
64
65 System.out.println("Processor configuring...");
66

Fig. 22.3Fig. 22.3Fig. 22.3Fig. 22.3 Serving streaming media with RTP session managers (part 2 of 7).

1266 Java Media Framework and Java Sound (on CD) Chapter 22

67 // configure processor before setting it up
68 processor.configure();
69 }
70
71 // source connection error
72 catch (IOException ioException) {
73 ioException.printStackTrace();
74 return false;
75 }
76
77 // exception thrown when no processor could
78 // be found for specific data source
79 catch (NoProcessorException noProcessorException) {
80 noProcessorException.printStackTrace();
81 return false;
82 }
83
84 return true;
85
86 } // end method beginSession
87
88 // ControllerListener handler for processor
89 private class ProcessorEventHandler
90 extends ControllerAdapter {
91
92 // set output format and realize
93 // configured processor
94 public void configureComplete(
95 ConfigureCompleteEvent configureCompleteEvent)
96 {
97 System.out.println("\nProcessor configured.");
98
99 setOutputFormat();
100
101 System.out.println("\nRealizing Processor...\n");
102
103 processor.realize();
104 }
105
106 // start sending when processor is realized
107 public void realizeComplete(
108 RealizeCompleteEvent realizeCompleteEvent)
109 {
110 System.out.println(
111 "\nInitialization successful for " + fileName);
112
113 if (transmitMedia() == true)
114 System.out.println("\nTransmission setup OK");
115
116 else
117 System.out.println("\nTransmission failed.");
118 }
119

Fig. 22.3Fig. 22.3Fig. 22.3Fig. 22.3 Serving streaming media with RTP session managers (part 3 of 7).

Chapter 22 Java Media Framework and Java Sound (on CD) 1267

120 // stop RTP session when there is no media to send
121 public void endOfMedia(EndOfMediaEvent mediaEndEvent)
122 {
123 stopTransmission();
124 System.out.println ("Transmission completed.");
125 }
126
127 } // end inner class ProcessorEventHandler
128
129 // set output format of all tracks in media
130 public void setOutputFormat()
131 {
132 // set output content type to RTP capable format
133 processor.setContentDescriptor(
134 new ContentDescriptor(ContentDescriptor.RAW_RTP));
135
136 // get all track controls of processor
137 tracks = processor.getTrackControls();
138
139 // supported RTP formats of a track
140 Format rtpFormats[];
141
142 // set each track to first supported RTP format
143 // found in that track
144 for (int i = 0; i < tracks.length; i++) {
145
146 System.out.println("\nTrack #" +
147 (i + 1) + " supports ");
148
149 if (tracks[i].isEnabled()) {
150
151 rtpFormats = tracks[i].getSupportedFormats();
152
153 // if supported formats of track exist,
154 // display all supported RTP formats and set
155 // track format to be first supported format
156 if (rtpFormats.length > 0) {
157
158 for (int j = 0; j < rtpFormats.length; j++)
159 System.out.println(rtpFormats[j]);
160
161 tracks[i].setFormat(rtpFormats[0]);
162
163 System.out.println ("Track format set to " +
164 tracks[i].getFormat());
165 }
166
167 else
168 System.err.println (
169 "No supported RTP formats for track!");
170
171 } // end if
172

Fig. 22.3Fig. 22.3Fig. 22.3Fig. 22.3 Serving streaming media with RTP session managers (part 4 of 7).

1268 Java Media Framework and Java Sound (on CD) Chapter 22

173 } // end for loop
174
175 } // end method setOutputFormat
176
177 // send media with boolean success value
178 public boolean transmitMedia()
179 {
180 outSource = processor.getDataOutput();
181
182 if (outSource == null) {
183 System.out.println ("No data source from media!");
184
185 return false;
186 }
187
188 // rtp stream managers for each track
189 rtpManager = new RTPManager[tracks.length];
190
191 // destination and local RTP session addresses
192 SessionAddress localAddress, remoteAddress;
193
194 // RTP stream being sent
195 SendStream sendStream;
196
197 // IP address
198 InetAddress ip;
199
200 // initialize transmission addresses and send out media
201 try {
202
203 // transmit every track in media
204 for (int i = 0; i < tracks.length; i++) {
205
206 // instantiate a RTPManager
207 rtpManager[i] = RTPManager.newInstance();
208
209 // add 2 to specify next control port number;
210 // (RTP Session Manager uses 2 ports)
211 port += (2 * i);
212
213 // get IP address of host from ipAddress string
214 ip = InetAddress.getByName(ipAddress);
215
216 // encapsulate pair of IP addresses for control and
217 // data with 2 ports into local session address
218 localAddress = new SessionAddress(
219 ip.getLocalHost(), port);
220
221 // get remoteAddress session address
222 remoteAddress = new SessionAddress(ip, port);
223
224 // initialize the session
225 rtpManager[i].initialize(localAddress);

Fig. 22.3Fig. 22.3Fig. 22.3Fig. 22.3 Serving streaming media with RTP session managers (part 5 of 7).

Chapter 22 Java Media Framework and Java Sound (on CD) 1269

226
227 // open RTP session for destination
228 rtpManager[i].addTarget(remoteAddress);
229
230 System.out.println("\nStarted RTP session: "
231 + ipAddress + " " + port);
232
233 // create send stream in RTP session
234 sendStream =
235 rtpManager[i].createSendStream(outSource, i);
236
237 // start sending the stream
238 sendStream.start();
239
240 System.out.println("Transmitting Track #" +
241 (i + 1) + " ... ");
242
243 } // end for loop
244
245 // start media feed
246 processor.start();
247
248 } // end try
249
250 // unknown local or unresolvable remote address
251 catch (InvalidSessionAddressException addressError) {
252 addressError.printStackTrace();
253 return false;
254 }
255
256 // DataSource connection error
257 catch (IOException ioException) {
258 ioException.printStackTrace();
259 return false;
260 }
261
262 // format not set or invalid format set on stream source
263 catch (UnsupportedFormatException formatException) {
264 formatException.printStackTrace();
265 return false;
266 }
267
268 // transmission initialized successfully
269 return true;
270
271 } // end method transmitMedia
272
273 // stop transmission and close resources
274 public void stopTransmission()
275 {
276 if (processor != null) {
277

Fig. 22.3Fig. 22.3Fig. 22.3Fig. 22.3 Serving streaming media with RTP session managers (part 6 of 7).

1270 Java Media Framework and Java Sound (on CD) Chapter 22

Class RTPServer’s purpose is to stream media content. As in previous examples, the
RTPServer (Fig. 22.3) sets up the media, processes and formats it, then outputs it. Con-
trollerEvents and the various states of the streaming process drive this process. Pro-
cessing of the media has three distinct parts—Processor initialization, Format
configuration and data transmission. The code in this example contains numerous confir-
mation messages displayed to the command prompt and an emphasis on error checking. A
problem during streaming will most likely end the entire process and it will need to be
restarted.

To test RTPServer, class RTPServerTest (Fig. 22.4) creates a new RTPServer
object and passes its constructor (lines 35–40) three arguments—a String representing
the media’s location, a String representing the IP address of the client and a port number
for streaming content. These arguments contain the information class RTPServer needs
to obtain the media and set up the streaming process. Following the general approach out-
lined in SimplePlayer (Fig. 22.1) and CapturePlayer (Fig. 22.2), class RTPS-
erver obtains a media source, configures the source through a type of Controller and
outputs the data to a specified destination.

RTPServerTest calls RTPServer method beginSession (lines 44–86) to set
up the Processor that controls the data flow. Line 47 creates a MediaLocator and
initializes it with the media location stored in fileName. Line 58 creates a Processor
for the data specified by that MediaLocator.

278 // stop processor
279 processor.stop();
280
281 // dispose processor
282 processor.close();
283
284 if (rtpManager != null)
285
286 // close destination targets
287 // and dispose RTP managers
288 for (int i = 0; i < rtpManager.length; i++) {
289
290 // close streams to all destinations
291 // with a reason for termination
292 rtpManager[i].removeTargets(
293 "Session stopped.");
294
295 // release RTP session resources
296 rtpManager[i].dispose();
297 }
298
299 } // end if
300
301 System.out.println ("Transmission stopped.");
302
303 } // end method stopTransmission
304
305 } // end class RTPServer

Fig. 22.3Fig. 22.3Fig. 22.3Fig. 22.3 Serving streaming media with RTP session managers (part 7 of 7).

Chapter 22 Java Media Framework and Java Sound (on CD) 1271

Unlike the program in Fig. 22.2, this Processor is not preconfigured by a Man-
ager. Until class RTPServer configures and realizes the Processor, the media
cannot be formatted. Lines 62–63 register a ProcessorEventHandler to react to the
processor’s ControllerEvents. The methods of class ProcessorEvent-
Handler (lines 89–127) control the media setup as the Processor changes states. Line
68 invokes Processor method configure to place the Processor in the Config-
uring state. Configuration is when the Processor inquires of the system and the media
the format information needed to program the Processor to perform the correct task. A
ConfigureCompleteEvent occurs when the Processor completes configuration.
The ProcessorEventHandler method configureComplete (lines 94–104)
responds to this transition. Method configureComplete calls method setOutput-
Format (lines 130–175) then realizes the Processor (line 103). When line 99 invokes
method setOutputFormat, it sets each media track to an RTP streaming media format.
Lines 133–134 in method setOutputFormat specify the output content-type by calling
Processor method setContentDescriptor. The method takes as an argument a
ContentDescriptor initialized with constant ContentDescriptor.RAW_RTP.
The RTP output content-type restricts the Processor to only support RTP-enabled
media track formats. The Processor’s output content-type should be set before the
media tracks are configured.

Once the Processor is configured, the media track formats need to be set. Line 137
invokes Processor method getTrackControls to obtain an array that contains the
corresponding TrackControl object (package javax.media.control) for each
media track. For each enabled TrackControl, lines 144–173 obtain an array of all sup-
ported RTP media Formats (line 151), then set the first supported RTP format as the pre-
ferred RTP-streaming media format for that track (line 161). When method
setOutputFormat returns, line 103 in method configureComplete realizes the
Processor.

As with any controller realization, the Processor can output media as soon as it has
finished realizing itself. When the Processor enters the Realized state, the Proces-
sorEventHandler invokes method realizeComplete (lines 107–118). Line 113
invokes method transmitMedia (lines 178–271) which creates the structures needed to
transmit the media to the Processor. This method obtains the DataSource from the
Processor (line 180), then declares an array of RTPManagers that are able to start and
control an RTP session (line 189). RTPManagers use a pair of SessionAddress
objects with identical IP addresses, but different port numbers—one for stream control and
one for streaming media data. An RTPManager receives each IP address and port number
as a SessionAddress object. Line 192 declares the SessionAddress objects used
in the streaming process. An object that implements interface SendStream (line 195)
performs the RTP streaming.

Software Engineering Observation 22.4
For videos that have multiple tracks, each SendStream must have its own RTPManager
managing its session. Each Track has its own SendStream. 22.4

The try block (lines 201–248) of method transmitMedia sends out each track of
the media as an RTP stream. First, managers must be created for the sessions. Line 207
invokes RTPManager method newInstance to instantiate an RTPManager for each

1272 Java Media Framework and Java Sound (on CD) Chapter 22

track stream. Line 211 assigns the port number to be two more than the previous port
number, because the each track uses one port number for the stream control and one to actu-
ally stream the data. Lines 218–219 instantiate a new local session address where the
stream is located (i.e., the RTP address that clients use to obtain the media stream) with the
local IP address and a port number as parameters. Line 219 invokes InetAddress
method getLocalHost to get the local IP address. Line 222 instantiates the client’s ses-
sion address, which the RTPManager uses as the stream’s target destination. When line
225 calls RTPManager method initialize, the method directs the local streaming
session to use the local session address. Using object remoteAddress as a parameter,
line 228 calls RTPManager method addTarget to open the destination session at the
specified address. To stream media to multiple clients, call RTPManager method add-
Target for each destination address. Method addTarget must be called after the ses-
sion is initialized and before any of the streams are created on the session.

The program can now create the streams on the session and start sending data. The
streams are created in the current RTP session with the DataSource outSource
(obtained at line 180) and the source stream index (i.e. media track index) in lines 234–235.
Invoking method start on the SendStream (line 238) and on the Processor (line
246) starts transmission of the media streams, which may cause exceptions. An Invalid-
SessionAddressException occurs when the specified session address is invalid. An
UnsupportedFormatException occurs when an unsupported media format is spec-
ified or if the DataSource’s Format has not been set. An IOException occurs if the
application encounters networking problems. During the streaming process, RTPMan-
agers can be used with related classes in package javax.media.rtp and package
javax.media.rtp.event controls the streaming process and send reports to the
application.

The program should close connections and stop streaming transmission when it
reaches the end of the streaming media or when the program terminates. When the Pro-
cessor encounters the end of the media, it generates an EndOfMediaEvent. In
response, the program calls method endOfMedia (lines 121–125). Line 123 invokes
method stopTransmission (lines 274–303) to stop and close the Processor (lines
279–282). After calling stopTransmission, streaming cannot resume because it dis-
poses of the Processor and the RTP session resources. Lines 288–297 invoke RTPMan-
ager method removeTargets (lines 292–293) to close streaming to all destinations.
RTPManager method dispose (line 296) is also invoked, releasing the resources held
by the RTP sessions. The class RTPServerTest (Fig. 22.4), explicitly invokes method
stopTransmission when users terminates the server application (line 40).

1 // Fig. 22.4: RTPServerTest.java
2 // Test class for RTPServer
3
4 // Java core packages
5 import java.awt.event.*;
6 import java.io.*;
7 import java.net.*;
8

Fig. 22.4Fig. 22.4Fig. 22.4Fig. 22.4 Application to test class RTPServer from Fig. 22.3 (part 1 of 6).

Chapter 22 Java Media Framework and Java Sound (on CD) 1273

9 // Java extension packages
10 import javax.swing.*;
11
12 public class RTPServerTest extends JFrame {
13
14 // object handling RTP streaming
15 private RTPServer rtpServer;
16
17 // media sources and destination locations
18 private int port;
19 private String ip, mediaLocation;
20 private File mediaFile;
21
22 // GUI buttons
23 private JButton transmitFileButton, transmitUrlButton;
24
25 // constructor for RTPServerTest
26 public RTPServerTest()
27 {
28 super("RTP Server Test");
29
30 // register a WindowListener for frame events
31 addWindowListener(
32
33 // anonymous inner class to handle WindowEvents
34 new WindowAdapter() {
35
36 public void windowClosing(
37 WindowEvent windowEvent)
38 {
39 if (rtpServer != null)
40 rtpServer.stopTransmission();
41 }
42
43 } // end WindowAdpater
44
45); // end call to method addWindowListener
46
47 // panel containing button GUI
48 JPanel buttonPanel = new JPanel();
49 getContentPane().add(buttonPanel);
50
51 // transmit file button GUI
52 transmitFileButton = new JButton("Transmit File");
53 buttonPanel.add(transmitFileButton);
54
55 // register ActionListener for transmitFileButton events
56 transmitFileButton.addActionListener(
57 new ButtonHandler());
58
59 // transmit URL button GUI
60 transmitUrlButton = new JButton("Transmit Media");
61 buttonPanel.add(transmitUrlButton);

Fig. 22.4Fig. 22.4Fig. 22.4Fig. 22.4 Application to test class RTPServer from Fig. 22.3 (part 2 of 6).

1274 Java Media Framework and Java Sound (on CD) Chapter 22

62
63 // register ActionListener for transmitURLButton events
64 transmitUrlButton.addActionListener(
65 new ButtonHandler());
66
67 } // end constructor
68
69 // inner class handles transmission button events
70 private class ButtonHandler implements ActionListener {
71
72 // open and try to send file to user-input destination
73 public void actionPerformed(ActionEvent actionEvent)
74 {
75 // if transmitFileButton invoked, get file URL string
76 if (actionEvent.getSource() == transmitFileButton) {
77
78 mediaFile = getFile();
79
80 if (mediaFile != null)
81
82 // obtain URL string from file
83 try {
84 mediaLocation = mediaFile.toURL().toString();
85 }
86
87 // file path unresolvable
88 catch (MalformedURLException badURL) {
89 badURL.printStackTrace();
90 }
91
92 else
93 return;
94
95 } // end if
96
97 // else transmitMediaButton invoked, get location
98 else
99 mediaLocation = getMediaLocation();
100
101 if (mediaLocation == null)
102 return;
103
104 // get IP address
105 ip = getIP();
106
107 if (ip == null)
108 return;
109
110 // get port number
111 port = getPort();
112

Fig. 22.4Fig. 22.4Fig. 22.4Fig. 22.4 Application to test class RTPServer from Fig. 22.3 (part 3 of 6).

Chapter 22 Java Media Framework and Java Sound (on CD) 1275

113 // check for valid positive port number and input
114 if (port <= 0) {
115
116 if (port != -999)
117 System.err.println("Invalid port number!");
118
119 return;
120 }
121
122 // instantiate new RTP streaming server
123 rtpServer = new RTPServer(mediaLocation, ip, port);
124
125 rtpServer.beginSession();
126
127 } // end method actionPeformed
128
129 } // end inner class ButtonHandler
130
131 // get file from computer
132 public File getFile()
133 {
134 JFileChooser fileChooser = new JFileChooser();
135
136 fileChooser.setFileSelectionMode(
137 JFileChooser.FILES_ONLY);
138
139 int result = fileChooser.showOpenDialog(this);
140
141 if (result == JFileChooser.CANCEL_OPTION)
142 return null;
143
144 else
145 return fileChooser.getSelectedFile();
146 }
147
148 // get media location from user
149 public String getMediaLocation()
150 {
151 String input = JOptionPane.showInputDialog(
152 this, "Enter MediaLocator");
153
154 // if user presses OK with no input
155 if (input != null && input.length() == 0) {
156 System.err.println("No input!");
157 return null;
158 }
159
160 return input;
161 }
162
163 // method getting IP string from user
164 public String getIP()
165 {

Fig. 22.4Fig. 22.4Fig. 22.4Fig. 22.4 Application to test class RTPServer from Fig. 22.3 (part 4 of 6).

1276 Java Media Framework and Java Sound (on CD) Chapter 22

166 String input = JOptionPane.showInputDialog(
167 this, "Enter IP Address: ");
168
169 // if user presses OK with no input
170 if (input != null && input.length() == 0) {
171 System.err.println("No input!");
172 return null;
173 }
174
175 return input;
176 }
177
178 // get port number
179 public int getPort()
180 {
181 String input = JOptionPane.showInputDialog(
182 this, "Enter Port Number: ");
183
184 // return flag value if user clicks OK with no input
185 if (input != null && input.length() == 0) {
186 System.err.println("No input!");
187 return -999;
188 }
189
190 // return flag value if user clicked CANCEL
191 if (input == null)
192 return -999;
193
194 // else return input
195 return Integer.parseInt(input);
196
197 } // end method getPort
198
199 // execute application
200 public static void main(String args[])
201 {
202 RTPServerTest serverTest = new RTPServerTest();
203
204 serverTest.setSize(250, 70);
205 serverTest.setLocation(300, 300);
206 serverTest.setDefaultCloseOperation(EXIT_ON_CLOSE);
207 serverTest.setVisible(true);
208 }
209
210 } // end class RTPServerTest

Fig. 22.4Fig. 22.4Fig. 22.4Fig. 22.4 Application to test class RTPServer from Fig. 22.3 (part 5 of 6).

Chapter 22 Java Media Framework and Java Sound (on CD) 1277

22.5 Java Sound
Many of today’s computer programs capture users’ attention with audio features. Even basic
applets and applications can enhance users’ experiences with simple sounds or music clips.
With sound programming interfaces, developers can create applications that play sounds in
response to user interactions. For example, in many applications, when an error occurs and a
dialog box appears on the screen, the dialog is often accompanied by a sound. Users thus re-
ceive both audio and visual indications that a problem has occurred. As another example,
game programmers use extensive audio capabilities to enhance players’ experiences.

Fig. 22.4Fig. 22.4Fig. 22.4Fig. 22.4 Application to test class RTPServer from Fig. 22.3 (part 6 of 6).

1278 Java Media Framework and Java Sound (on CD) Chapter 22

The Java Sound API is a simpler way to incorporate audio media into applications than
the Java Media Framework. The Java Sound API is bundled with Java 2 Software Devel-
opment Kit version 1.3. The API consists of four packages—javax.sound.midi,
javax.sound.midi.spi, javax.sound.sampled and javax.sound.sam-
pled.spi. The next two sections focus on packages javax.sound.midi and
javax.sound.sampled, which provide classes and interfaces for accessing, manipu-
lating and playing Musical Instrumental Data Interface (MIDI) and sampled audio. The
packages ending in .spi provide developers with the tools to add Java Sound support for
additional audio formats that are beyond the scope of this book.

 The Java Sound API provides access to the Java Sound Engine which creates digitized
audio and captures media from the supported sound devices discussed in Section 22.3. Java
Sound requires a sound card to play audio. A program using Java Sound will throw an excep-
tion if it accesses audio system resources on a computer that does not have a sound card.

22.6 Playing Sampled Audio
This section introduces the features of package javax.sound.sampled for playing
sampled audio file formats, which include Sun Audio (.au), Windows Waveform (.wav)
and Macintosh Audio Interchange File Format (.aiff). The program in Fig. 22.5 and
Fig. 22.6 shows how audio is played using these file formats.

When processing audio data, a line provides the path through which audio flows in a
system. One example of a line is a pair of headphones connected to a CD player.

Class ClipPlayer (Fig. 22.5) is an example of how lines can be used. It contains an
object that implements interface Clip, which in turn extends interface DataLine. A
Clip is a line that processes an entire audio file rather than reading continuously from an
audio stream. DataLines enhance Lines by providing additional methods (such as
start and stop) for controlling the flow of data, and Clips enhance DataLines by
providing methods for opening Clips and methods for precise control over playing and
looping the audio.

1 // Fig. 22.5: ClipPlayer.java
2 // Plays sound clip files of type WAV, AU, AIFF
3
4 // Java core packages
5 import java.io.*;
6
7 // Java extension packages
8 import javax.sound.sampled.*;
9

10 public class ClipPlayer implements LineListener {
11
12 // audio input stream
13 private AudioInputStream soundStream;
14
15 // audio sample clip line
16 private Clip clip;
17

Fig. 22.5Fig. 22.5Fig. 22.5Fig. 22.5 ClipPlayer plays an audio file (part 1 of 4).

Chapter 22 Java Media Framework and Java Sound (on CD) 1279

18 // Audio clip file
19 private File soundFile;
20
21 // boolean indicating replay of audio
22 private boolean replay = false;
23
24 // constructor for ClipPlayer
25 public ClipPlayer(File audioFile)
26 {
27 soundFile = audioFile;
28 }
29
30 // open music file, returning true if successful
31 public boolean openFile()
32 {
33 // get audio stream from file
34 try {
35 soundStream =
36 AudioSystem.getAudioInputStream(soundFile);
37 }
38
39 // audio file not supported by JavaSound
40 catch (UnsupportedAudioFileException audioException) {
41 audioException.printStackTrace();
42 return false;
43 }
44
45 // I/O error attempting to get stream
46 catch (IOException ioException) {
47 ioException.printStackTrace();
48 return false;
49 }
50
51 // invoke loadClip, returning true if load successful
52 return loadClip();
53
54 } // end method openFile
55
56 // load sound clip
57 public boolean loadClip ()
58 {
59 // get clip line for file
60 try {
61
62 // get audio format of sound file
63 AudioFormat audioFormat = soundStream.getFormat();
64
65 // define line information based on line type,
66 // encoding and frame sizes of audio file
67 DataLine.Info dataLineInfo = new DataLine.Info(
68 Clip.class, AudioSystem.getTargetFormats(
69 AudioFormat.Encoding.PCM_SIGNED, audioFormat),

Fig. 22.5Fig. 22.5Fig. 22.5Fig. 22.5 ClipPlayer plays an audio file (part 2 of 4).

1280 Java Media Framework and Java Sound (on CD) Chapter 22

70 audioFormat.getFrameSize(),
71 audioFormat.getFrameSize() * 2);
72
73 // make sure sound system supports data line
74 if (!AudioSystem.isLineSupported(dataLineInfo)) {
75
76 System.err.println("Unsupported Clip File!");
77 return false;
78 }
79
80 // get clip line resource
81 clip = (Clip) AudioSystem.getLine(dataLineInfo);
82
83 // listen to clip line for events
84 clip.addLineListener(this);
85
86 // open audio clip and get required system resources
87 clip.open(soundStream);
88
89 } // end try
90
91 // line resource unavailable
92 catch (LineUnavailableException noLineException) {
93 noLineException.printStackTrace();
94 return false;
95 }
96
97 // I/O error during interpretation of audio data
98 catch (IOException ioException) {
99 ioException.printStackTrace();
100 return false;
101 }
102
103 // clip file loaded successfully
104 return true;
105
106 } // end method loadClip
107
108 // start playback of audio clip
109 public void play()
110 {
111 clip.start();
112 }
113
114 // line event listener method to stop or replay at clip end
115 public void update(LineEvent lineEvent)
116 {
117 // if clip reaches end, close clip
118 if (lineEvent.getType() == LineEvent.Type.STOP &&
119 !replay)
120 close();
121

Fig. 22.5Fig. 22.5Fig. 22.5Fig. 22.5 ClipPlayer plays an audio file (part 3 of 4).

Chapter 22 Java Media Framework and Java Sound (on CD) 1281

All Lines generate LineEvents, which can be handled by LineListeners.
LineEvents occur when starting, stopping, playing and closing a Line object. Although
a Line stops playback automatically when it reaches the end of an audio file, class Clip-
Player implements interface LineListener (line 10) and can close the Clip perma-
nently or replay the Clip (discussed shortly). LineListeners are useful for tasks that
must be synchronized with the LineEvent states of a line.

The Clip reads audio data from an AudioInputStream (a subclass of Input-
Stream), which provides access to the stream’s data content. This example loads clips of
the audio data before attempting to play it, and therefore is able to determine the length of
the clip in frames. Each frame represents data at a specific time interval in the audio file.
To play sampled audio files using Java Sound, a program must obtain an AudioInput-
Stream from an audio file, obtain a formatted Clip line, load the AudioInput-
Stream into the Clip line and start the data flow in the Clip line.

To play back sampled audio, the audio stream must be obtained from an audio file.
ClipPlayer method openFile (lines 31–54) obtains audio from soundFile (initial-
ized in the ClipPlayer constructor at lines 25–28). Lines 35–36 call AudioSystem
static method getAudioInputStream to obtain an AudioInputStream for
soundFile. Class AudioSystem facilitates access to many of the resources needed to
play and manipulate sound files. Method getAudioInputStream throws an Unsup-

122 // if replay set, replay forever
123 else
124
125 if (lineEvent.getType() == LineEvent.Type.STOP &&
126 replay) {
127
128 System.out.println("replay");
129
130 // replay clip forever
131 clip.loop(Clip.LOOP_CONTINUOUSLY);
132 }
133 }
134
135 // set replay of clip
136 public void setReplay(boolean value)
137 {
138 replay = value;
139 }
140
141 // stop and close clip, returning system resources
142 public void close()
143 {
144 if (clip != null) {
145 clip.stop();
146 clip.close();
147 }
148 }
149
150 } // end class ClipPlayer

Fig. 22.5Fig. 22.5Fig. 22.5Fig. 22.5 ClipPlayer plays an audio file (part 4 of 4).

1282 Java Media Framework and Java Sound (on CD) Chapter 22

portedAudioFileException if the specified sound file is a non-audio file or if it
contains a format that is not supported by Java Sound.

Next the program must provide a line through which audio data can be processed. Line
52 invokes method loadClip (lines 57–106) to open a Clip line and load the audio
stream for playback. Line 81 invokes AudioSystem static method getLine to
obtain a Clip line for audio playback. Method getLine requires a Line.Info object
as an argument, to specify the attributes of the line that the AudioSystem should return.
The line must be able to process audio clips of all supported sampled audio formats, so the
DataLine.Info object must specify a Clip data line and a general encoding format. A
buffer range should also be specified so the program can determine the best buffer size. The
DataLine.Info constructor receives four arguments. The first two are the format (of
type AudioFormat.Encoding) into which the program should convert the audio data
and the AudioFormat of the audio source. The AudioFormat sets the format sup-
ported by the line, according to the audio format of the stream. Line 63 obtains the Audio-
Format of the AudioInputStream, which contains format specifications that the
underlying system uses to translate the data into sounds. Lines 68–69 call AudioSystem
method getTargetFormats to obtain an array of the supported AudioFormats. The
third argument of the DataLine.Info constructor, which specifies the minimum buffer
size, is set to the number of bytes in each frame of the audio stream. Line 70 invokes
AudioFormat method getFrameSize to obtain the size of each frame in the audio
stream. The maximum buffer size should be equivalent to two frames of the audio stream
(line 71). Using the DataLine.Info object, line 74 checks if the underlying audio
system supports the specified line. If it does, line 81 obtains the line from the audio system.

When an audio clip starts playing and when it finishes, the program needs to be alerted.
Line 84 registers a LineListener for the Clip’s LineEvents. If a LineEvent
occurs, the program calls LineListener method update (lines 115–133) to process it.
The four LineEvent types, as defined in class LineEvent.Type, are OPEN, CLOSE,
START and STOP. When the event type is LineEvent.Type.STOP and variable
replay is false, line 120 calls ClipPlayer’s close method (lines 142–148) to stop
audio playback and close the Clip. All audio resources obtained previously by the Clip
are released when audio playback stops. When the event type is
LineEvent.Type.STOP and variable replay is true, line 131 calls Clip method
loop with parameter Clip.LOOP_CONTINUOUSLY, causing the Clip to loop until the
user terminates the application. Invoking method stop of interface Clip stops data
activity in the Line. Invoking method start resumes data activity.

Once the program finishes validating the Clip, line 87 calls Clip method open with
the AudioInputStream soundStream as an argument. The Clip obtains the system
resources required for audio playback. AudioSystem method getLine and Clip
method open throw LineUnavailableExceptions if another application is using
the requested audio resource. Clip method open also throws an IOException if the
Clip cannot read the specified AudioInputStream. When the test program (Fig. 22.6)
calls ClipPlayer method play (lines 109–112), the Clip method start begins
audio playback.

Class ClipPlayerTest (Fig. 22.6) enables users to specify an audio file to play by
clicking the Open Audio Clip button. When users click the button, method action-
Performed (lines 37–58) prompts an audio file name and location (line 39) and creates

Chapter 22 Java Media Framework and Java Sound (on CD) 1283

a ClipPlayer for the specified audio file (line 44). Line 47 invokes ClipPlayer
method openFile, which returns true if the ClipPlayer can open the audio file. If
so, line 50 calls ClipPlayer method play to play the audio and line 53 calls Clip-
Player method setReplay to indicate that the audio should not loop continuously.

Performance Tip 22.4
Large audio files take a long time to load, depending on the speed of the computer. An alter-
native playback form is to buffer the audio by loading a portion of the data to begin playback
and continuing to load the remainder as the audio plays. This is similar to the streaming ca-
pability provided by JMF. 22.4

1 // Fig. 22.6: ClipPlayerTest.java
2 // Test file for ClipPlayer
3
4 // Java core packages
5 import java.awt.*;
6 import java.awt.event.*;
7 import java.io.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class ClipPlayerTest extends JFrame {
13
14 // object to play audio clips
15 private ClipPlayer clipPlayer;
16
17 // constructor for ClipPlayerTest
18 public ClipPlayerTest()
19 {
20 super("Clip Player");
21
22 // panel containing buttons
23 JPanel buttonPanel = new JPanel();
24 getContentPane().add(buttonPanel);
25
26 // open file button
27 JButton openFile = new JButton("Open Audio Clip");
28 buttonPanel.add(openFile, BorderLayout.CENTER);
29
30 // register ActionListener for openFile events
31 openFile.addActionListener(
32
33 // inner anonymous class to handle openFile ActionEvent
34 new ActionListener() {
35
36 // try to open and play an audio clip file
37 public void actionPerformed(ActionEvent event)
38 {
39 File mediaFile = getFile();
40

Fig. 22.6Fig. 22.6Fig. 22.6Fig. 22.6 ClipPlayerTest enables the user to specify the name and location of
the audio to play with ClipPlayer (part 1 of 3).

1284 Java Media Framework and Java Sound (on CD) Chapter 22

41 if (mediaFile != null) {
42
43 // instantiate new clip player with mediaFile
44 clipPlayer = new ClipPlayer(mediaFile);
45
46 // if clip player opened correctly
47 if (clipPlayer.openFile() == true) {
48
49 // play loaded clip
50 clipPlayer.play();
51
52 // no replay
53 clipPlayer.setReplay(false);
54 }
55
56 } // end if mediaFile
57
58 } // end actionPerformed
59
60 } // end ActionListener
61
62); // end call to addActionListener
63
64 } // end constructor
65
66 // get file from computer
67 public File getFile()
68 {
69 JFileChooser fileChooser = new JFileChooser();
70
71 fileChooser.setFileSelectionMode(
72 JFileChooser.FILES_ONLY);
73 int result = fileChooser.showOpenDialog(this);
74
75 if (result == JFileChooser.CANCEL_OPTION)
76 return null;
77
78 else
79 return fileChooser.getSelectedFile();
80 }
81
82 // execute application
83 public static void main(String args[])
84 {
85 ClipPlayerTest test = new ClipPlayerTest();
86
87 test.setSize(150, 70);
88 test.setLocation(300, 300);
89 test.setDefaultCloseOperation(EXIT_ON_CLOSE);
90 test.setVisible(true);
91 }
92

Fig. 22.6Fig. 22.6Fig. 22.6Fig. 22.6 ClipPlayerTest enables the user to specify the name and location of
the audio to play with ClipPlayer (part 2 of 3).

Chapter 22 Java Media Framework and Java Sound (on CD) 1285

22.7 Musical Instrument Digital Interface (MIDI)
The Musical Instrument Digital Interface (MIDI) is a standard format for electronic music.
MIDI music can be created through a digital instrument, such as an electronic keyboard, or
through software. The MIDI interface allows musicians to create synthesized digital music
that reproduces the actual music. Then they can share their musical creations with music
enthusiasts around the world. A MIDI synthesizer is a device that can produce MIDI sounds
and music.

Programs can easily manipulate MIDI data. Like other types of audio, MIDI data has
a well-defined format that MIDI players can interpret, play and use to create new MIDI
data. The Complete Detailed MIDI 1.0 specification provides detailed information on MIDI
files. Visit the official MIDI Web site at www.midi.org for information on MIDI and
its specification. Java Sound’s MIDI packages (javax.sound.midi and
javax.sound.midi.spi) allow developers to access MIDI data.

Interpretation of MIDI data varies between synthesizers, so a file may sound quite dif-
ferent when played on synthesizers other than the one on which it was created. Synthesizers
support varying types and numbers of instrumental sounds and different numbers of simul-
taneous sounds. Usually hardware-based synthesizers are capable of producing higher-
quality synthesized music than software-based synthesizers.

Many Web sites and games use MIDI for music playback, as it enables developers to
entertain users with lengthy, digitized music files that do not require a lot of memory. In com-
parison, sampled audio files can grow to be quite large. Package javax.sound.midi
enables programs to manipulate, play and synthesize MIDI. Java Sound supports MIDI files
with mid and rmf (Rich Music Format or RMF) extensions.

The example presented in Sections 22.7.1 through 22.7.4 covers MIDI synthesis, play-
back, recording and saving. Class MidiDemo (Fig. 22.10) is the main application class that
utilizes classes MidiData (Fig. 22.7), MidiRecord (Fig. 22.8) and MidiSynthe-
sizer (Fig. 22.9). Class MidiSynthesizer provides resources for generating sounds

93 } // end class ClipPlayerTest

Fig. 22.6Fig. 22.6Fig. 22.6Fig. 22.6 ClipPlayerTest enables the user to specify the name and location of
the audio to play with ClipPlayer (part 3 of 3).

1286 Java Media Framework and Java Sound (on CD) Chapter 22

and transmitting them to other MIDI devices, such as recorders. Class MidiData handles
MIDI playback, track initialization and event information. Class MidiRecord provides
MIDI recording capabilities. Class MidiDemo ties the other classes together with an inter-
active GUI that includes a simulated piano keyboard, play and record buttons, and a control
panel for configuring MIDI options. Class MidiDemo also uses MIDI event-synchroniza-
tion to play a MIDI file and highlight the appropriate piano keys, simulating someone
playing the keyboard.

An integral part of this MIDI example is its GUI, which allows users to play musical
notes on a simulated piano keyboard (see screen capture in Fig. 22.10). When the mouse
hovers over a piano key, the program plays the corresponding note. In this section, we refer
to this as user synthesis. The Play MIDI button in the GUI allows the user to select a MIDI
file to play. The Record button records the notes played on the piano (user synthesis).
Users can save the recorded MIDI to a file using the Save MIDI button and play back the
recorded MIDI using the PlayBack button. Users can click the Piano Player button to
open a MIDI file, then play that file back through a synthesizer. The program signifies syn-
chronization of notes and piano keys by highlighting the key that corresponds to the note
number. This playback and synchronization ability is called the “piano player.” While the
“piano player” is running, users can synthesize additional notes, and record both the old
audio material and the new user-synthesized notes by clicking the Record button. The
JComboBox in the upper-left corner of the GUI enables users to select an instrument for
synthesis. Additional GUI components include a volume control for user-synthesized notes
and a tempo control for controlling the speed of the “piano player.”

Testing and Debugging Tip 22.1
Testing the MIDI file playback functions requires a sound card and an audio file in MIDI
format. 22.1

22.7.1 MIDI Playback

This section discusses how to play MIDI files and how to access and interpret MIDI file
contents. Class MidiData (Fig. 22.7) contains methods that load a MIDI file for play-
back. The class also provides the MIDI track information required by the “piano player”
feature. A MIDI sequencer is used to play and manipulate the audio data. Often, MIDI data
is referred to as a sequence, because the musical data in a MIDI file is composed of a se-
quence of events. The steps performed in MIDI playback are accessing a sequencer, load-
ing a MIDI sequence or file into that sequencer and starting the sequencer.

1 // Fig. 22.7: MidiData.java
2 // Contains MIDI sequence information
3 // with accessor methods and MIDI playback methods
4
5 // Java core package
6 import java.io.*;
7
8 // Java extension package
9 import javax.sound.midi.*;

10

Fig. 22.7Fig. 22.7Fig. 22.7Fig. 22.7 MidiData loads MIDI files for playback (part 1 of 5).

Chapter 22 Java Media Framework and Java Sound (on CD) 1287

11 public class MidiData {
12
13 // MIDI track data
14 private Track track;
15
16 // player for MIDI sequences
17 private Sequencer sequencer;
18
19 // MIDI sequence
20 private Sequence sequence;
21
22 // MIDI events containing time and MidiMessages
23 private MidiEvent currentEvent, nextEvent;
24
25 // MIDI message usually containing sounding messages
26 private ShortMessage noteMessage;
27
28 // short, meta, or sysex MIDI messages
29 private MidiMessage message;
30
31 // index of MIDI event in track, command in MIDI message
32 private int eventIndex = 0, command;
33
34 // method to play MIDI sequence via sequencer
35 public void play()
36 {
37 // initiate default sequencer
38 try {
39
40 // get sequencer from MidiSystem
41 sequencer = MidiSystem.getSequencer();
42
43 // open sequencer resources
44 sequencer.open();
45
46 // load MIDI into sequencer
47 sequencer.setSequence(sequence);
48
49 // play sequence
50 sequencer.start();
51 }
52
53 // MIDI resource availability error
54 catch (MidiUnavailableException noMidiException) {
55 noMidiException.printStackTrace();
56 }
57
58 // corrupted MIDI or invalid MIDI file encountered
59 catch (InvalidMidiDataException badMidiException) {
60 badMidiException.printStackTrace();
61
62 }
63

Fig. 22.7Fig. 22.7Fig. 22.7Fig. 22.7 MidiData loads MIDI files for playback (part 2 of 5).

1288 Java Media Framework and Java Sound (on CD) Chapter 22

64 } // end method play
65
66 // method returning adjusted tempo/resolution of MIDI
67 public int getResolution()
68 {
69 return 500 / sequence.getResolution();
70 }
71
72 // obtain MIDI and prepare track in MIDI to be accessed
73 public boolean initialize(File file)
74 {
75 // get valid MIDI from file into sequence
76 try {
77 sequence = MidiSystem.getSequence(file);
78 }
79
80 // unreadable MIDI file or unsupported MIDI
81 catch (InvalidMidiDataException badMIDI) {
82 badMIDI.printStackTrace();
83 return false;
84 }
85
86 // I/O error generated during file reading
87 catch (IOException ioException) {
88 ioException.printStackTrace();
89 return false;
90 }
91
92 return true;
93
94 } // end method initialize
95
96 // prepare longest track to be read and get first MIDI event
97 public boolean initializeTrack()
98 {
99 // get all tracks from sequence
100 Track tracks[] = sequence.getTracks();
101
102 if (tracks.length == 0) {
103 System.err.println("No tracks in MIDI sequence!");
104
105 return false;
106 }
107
108 track = tracks[0];
109
110 // find longest track
111 for (int i = 0; i < tracks.length; i++)
112
113 if (tracks[i].size() > track.size())
114 track = tracks[i];
115

Fig. 22.7Fig. 22.7Fig. 22.7Fig. 22.7 MidiData loads MIDI files for playback (part 3 of 5).

Chapter 22 Java Media Framework and Java Sound (on CD) 1289

116 // set current MIDI event to first event in track
117 currentEvent = track.get(eventIndex);
118
119 // get MIDI message from event
120 message = currentEvent.getMessage();
121
122 // track initialization successful
123 return true;
124
125 } // end method initializeTrack
126
127 // move to next event in track
128 public void goNextEvent()
129 {
130 eventIndex++;
131 currentEvent = track.get(eventIndex);
132 message = currentEvent.getMessage();
133 }
134
135 // get time interval between events
136 public int getEventDelay()
137 {
138 // first event's time interval is its duration
139 if (eventIndex == 0)
140 return (int) currentEvent.getTick();
141
142 // time difference between current and next event
143 return (int) (track.get(eventIndex + 1).getTick() -
144 currentEvent.getTick());
145 }
146
147 // return if track has ended
148 public boolean isTrackEnd()
149 {
150 // if eventIndex is less than track's number of events
151 if (eventIndex + 1 < track.size())
152 return false;
153
154 return true;
155 }
156
157 // get current ShortMessage command from event
158 public int getEventCommand()
159 {
160 if (message instanceof ShortMessage) {
161
162 // obtain MidiMessage for accessing purposes
163 noteMessage = (ShortMessage) message;
164 return noteMessage.getCommand();
165 }
166
167 return -1;
168 }

Fig. 22.7Fig. 22.7Fig. 22.7Fig. 22.7 MidiData loads MIDI files for playback (part 4 of 5).

1290 Java Media Framework and Java Sound (on CD) Chapter 22

To play a MIDI file with a sequence, a program must obtain the MIDI sequence and
check for compatibility issues. MidiData method initialize (lines 73–94) obtains a
Sequence of MIDI data from a file with MidiSystem method getSequence (line
77). A Sequence contains MIDI tracks, which, in turn, contain MIDI events. Each event
encapsulates a MIDI message of instructions for the MIDI devices. Individual tracks of a
MIDI sequence are analogous to tracks on a CD. However, while CD tracks are played in
order, MIDI tracks are played in parallel. A MIDI track is a recorded sequence of data.
MIDIs usually contain multiple tracks. Method getSequence can also obtain a MIDI
sequence from a URL or an InputStream. Method getSequence throws an
InvalidMidiDataException if the MIDI system detects an incompatible MIDI file.

Portability Tip 22.2
Because of incompatible file parsers in different operating systems, sequencers may not be
able to play RMF files. 22.2

After obtaining a valid MIDI sequence, the program must obtain a sequencer and load
the sequence into the sequencer. Method play (lines 35–64) in class MidiData calls
MidiSystem method getSequencer (line 41) to obtain a Sequencer to play the
Sequence. Interface Sequencer, which extends interface MidiDevice (the super-
interface for all MIDI devices), provides the standard sequencer device to play MIDI data.
If another program is using the same Sequencer object, method getSequencer
throws a MidiUnavailableException. Line 44 calls Sequencer method open
to prepare to play a Sequence. Sequencer method setSequence (line 47) loads a
MIDI Sequence into the Sequencer and throws an InvalidMidiException if
the Sequencer detects an unrecognizable MIDI sequence. Line 50 begins playing the
MIDI sequence by calling the Sequencer’s start method.

In addition to MIDI playback methods, class MidiData also provides methods that
enable a program to access the events and messages of a MIDI sequence. As we shall see,
class MidiDemo (Figure 22.10) uses class MidiData to access the data in a MIDI file for
synchronizing the highlighting of piano keys. The MIDI events are stored in the MIDI’s

169
170 // get note number of current event
171 public int getNote()
172 {
173 if (noteMessage != null)
174 return noteMessage.getData1();
175
176 return -1;
177 }
178
179 // get volume of current event
180 public int getVolume()
181 {
182 return noteMessage.getData2();
183 }
184
185 } // end class MidiData

Fig. 22.7Fig. 22.7Fig. 22.7Fig. 22.7 MidiData loads MIDI files for playback (part 5 of 5).

Chapter 22 Java Media Framework and Java Sound (on CD) 1291

tracks, which are instances of class Track (package javax.sound.midi). MIDI events
in MIDI tracks are represented by class MidiEvent (package javax.sound.midi).
Each MIDI event contains an instruction and the time at which it should occur. The individual
events in a track contain messages of type MidiMessage that specify the MIDI instructions
for a MidiDevice. There are three types of MIDI messages—ShortMessage,
SysexMessage and MetaMessage. ShortMessages are explicit musical instructions,
such as the specific notes to play and pitch changes. The other two less-used messages are
SysexMessages, system-exclusive messages for MIDI devices, and MetaMessages,
which may indicate to a MIDI device that the MIDI has reached the end of a track. This sec-
tion deals exclusively with ShortMessages that play specific notes.

Next, the program must obtain the tracks and read their events. MidiData method
initializeTrack (lines 97–125) invokes Sequence’sgetTracks method (line 100)
to obtain all of the tracks in the MIDI sequence. Lines 108–114 determine the longest track
in the MIDI and set it as the one to play. Line 117 obtains the first MIDI event in the Track
by invoking its get method with the index of the event in the track as the parameter. At this
point eventIndex is set to 0 (line 32). Line 120 obtains the MIDI message from the MIDI
event using method getMessage of class MidiEvent. To help a program step through
each event in the tracks, the program can call MidiData method goNextEvent (lines
128–133) to load the next event and message. Method goNextEvent increments
eventIndex in the loaded MIDI Track and finds the next event’s MidiMessage.

In addition to reading the events, the program must also determine how long each event
lasts and the spacing between events. Method getEventDelay (lines 136–145) returns
the duration of a MidiEvent as the time difference between two events in the MIDI
sequence (lines 143–144). The MidiEvent’s getTick method provides the specific
time when the event takes place (also called a time stamp). Lines 139–140 return the first
MidiEvent’s time stamp as the event’s duration.

Class MidiData provides other methods to return the commands, the note numbers
and the volume of note-related ShortMessages. Method getEventCommand (lines
158–168) determines the command number representing the command instruction. Line
160 of method getEventCommand indicates whether the currently loaded MidiMes-
sage is a ShortMessage. If so, line 163 assigns the ShortMessage to object note-
Message and line 164 returns the ShortMessage’s command status byte by invoking
ShortMessage’s getCommand method. Method getEventCommand returns -1 if
the event does not contain a ShortMessage. MidiData method getNote (lines 171–
177) invokes ShortMessage method getData1 (line 174) to return the note number.
Method getVolume (lines 180–183) invokes ShortMessage method getData2 to
return the volume. Class MidiData also provides an indication of the end of a track in
method isTrackEnd (lines 148–155), which determines whether the event index has sur-
passed the number of events in the track (line 151).

22.7.2 MIDI Recording

A program can record MIDI using a sequencer. Class MidiRecord (Fig. 22.8) handles
the recording functions of this MIDI demo using an object that implements interface Se-
quencer as a MIDI recorder. As long as the MIDI devices are set up correctly, interface
Sequencer provides simple methods for recording. Class MidiRecord has a construc-
tor (lines 29–32) that receives an object that implements interface Transmitter as an

1292 Java Media Framework and Java Sound (on CD) Chapter 22

argument. A Transmitter sends MIDI messages to a MIDI device that implements in-
terface Receiver. Think of Transmitters and Receivers as output and input ports
respectively for MIDI devices.

1 // Fig. 22.8: MidiRecord.java
2 // Allows for recording and playback
3 // of synthesized MIDI
4
5 // Java core packages
6 import java.io.*;
7
8 // Java extension package
9 import javax.sound.midi.*;

10
11 public class MidiRecord {
12
13 // MIDI track
14 private Track track;
15
16 // MIDI sequencer to play and access music
17 private Sequencer sequencer;
18
19 // MIDI sequence
20 private Sequence sequence;
21
22 // receiver of MIDI events
23 private Receiver receiver;
24
25 // transmitter for transmitting MIDI messages
26 private Transmitter transmitter;
27
28 // constructor for MidiRecord
29 public MidiRecord(Transmitter transmit)
30 {
31 transmitter = transmit;
32 }
33
34 // initialize recording sequencer, set up recording sequence
35 public boolean initialize()
36 {
37 // create empty MIDI sequence and set up sequencer wiring
38 try {
39
40 // create tempo-based sequence of 10 pulses per beat
41 sequence = new Sequence(Sequence.PPQ, 10);
42
43 // obtain sequencer and open it
44 sequencer = MidiSystem.getSequencer();
45 sequencer.open();
46
47 // get receiver of sequencer
48 receiver = sequencer.getReceiver();

Fig. 22.8Fig. 22.8Fig. 22.8Fig. 22.8 MidiRecord enables a program to record a MIDI sequence (part 1 of 3).

Chapter 22 Java Media Framework and Java Sound (on CD) 1293

49
50 if (receiver == null) {
51 System.err.println(
52 "Receiver unavailable for sequencer");
53 return false;
54 }
55
56 // set receiver for transmitter to send MidiMessages
57 transmitter.setReceiver(receiver);
58
59 makeTrack();
60 }
61
62 // invalid timing division specification for new sequence
63 catch (InvalidMidiDataException invalidMidiException) {
64 invalidMidiException.printStackTrace();
65 return false;
66 }
67
68 // sequencer or receiver unavailable
69 catch (MidiUnavailableException noMidiException) {
70 noMidiException.printStackTrace();
71 return false;
72 }
73
74 // MIDI recorder initialization successful
75 return true;
76
77 } // end method initialize
78
79 // make new empty track for sequence
80 public void makeTrack()
81 {
82 // if previous track exists, delete it first
83 if (track != null)
84 sequence.deleteTrack(track);
85
86 // create track in sequence
87 track = sequence.createTrack();
88 }
89
90 // start playback of loaded sequence
91 public void play()
92 {
93 sequencer.start();
94 }
95
96 // start recording into sequence
97 public void startRecord()
98 {
99 // load sequence into recorder and start recording
100 try {
101 sequencer.setSequence(sequence);

Fig. 22.8Fig. 22.8Fig. 22.8Fig. 22.8 MidiRecord enables a program to record a MIDI sequence (part 2 of 3).

1294 Java Media Framework and Java Sound (on CD) Chapter 22

The first step of recording MIDI data is similar to the playback mechanism in class
MidiData. In addition to obtaining an empty sequence and a sequencer, a MIDI recording
program needs to connect the transmitters and receivers. After successfully “wiring” the
sequencer’s receiver as the “IN PORT,” the recorder loads the empty sequence into the
sequencer to start recording to a new track in the sequence. The following discussion covers
these steps.

102
103 // set track to recording-enabled and default channel
104 sequencer.recordEnable(track, 0);
105
106 sequencer.startRecording();
107 }
108
109 // sequence contains bad MIDI data
110 catch (InvalidMidiDataException badMidiException) {
111 badMidiException.printStackTrace();
112
113 }
114
115 } // end method startRecord
116
117 // stop MIDI recording
118 public void stopRecord()
119 {
120 sequencer.stopRecording();
121 }
122
123 // save MIDI sequence to file
124 public void saveSequence(File file)
125 {
126 // get all MIDI supported file types
127 int[] fileTypes = MidiSystem.getMidiFileTypes(sequence);
128
129 if (fileTypes.length == 0) {
130 System.err.println("No supported MIDI file format!");
131 return;
132 }
133
134 // write recorded sequence into MIDI file
135 try {
136 MidiSystem.write(sequence, fileTypes[0], file);
137 }
138
139 // error writing to file
140 catch (IOException ioException) {
141 ioException.printStackTrace();
142 }
143
144 } // end method saveSequence
145
146 } // end class MidiRecord

Fig. 22.8Fig. 22.8Fig. 22.8Fig. 22.8 MidiRecord enables a program to record a MIDI sequence (part 3 of 3).

Chapter 22 Java Media Framework and Java Sound (on CD) 1295

Method initialize (lines 35–77) of class MidiRecord sets up the sequencer for
recording. Line 41 of method initialize instantiates an empty sequence. Midi-
Record will record data to the empty sequence once the transmitter is connected to the
receiver. Line 48 obtains the recording sequencer’s receiver and line 57 specifies that
transmitter will send its messages to receiver.

MIDI messages must be placed in a track, so method initialize invokes method
makeTrack (lines 80–88) to delete the previous existing track (line 84) and to create
an empty Track (line 87). Method makeTrack can also be called from an external class
to record a new sequence without instantiating new sequencers and a new sequence.

After setting up a sequencer and an empty sequence, calling MidiRecord method
startRecord (lines 97–115) starts the recording process. Line 101 loads an empty
sequence into the sequencer. Sequencer method recordEnable is called and passed the
track object and a channel number as arguments (line 104), which enables recording on that
track. Line 106 invokes Sequencer’s startRecording method to start the recording
of MIDI events sent from the transmitter. Sequencer’s stopRecording method stops
recording and is called in MidiRecord’s stopRecord method (lines 118–121).

Class MidiRecord can also supports save a recorded sequence to a MIDI file using
its saveSequence method (lines 124–144). Although most MIDI sequences can support
MIDI type 0 files (the most common type of MIDI file), the sequence should be checked for
other supported file types. Line 127 obtains an array of MIDI file types supported by the
system for writing a sequence to a file. The MIDI file types are represented by integer
values of 0, 1 or 2. Using the first supported file type, the MidiSystem writes the
sequence to a specified File (line 136) passed into method saveSequence as an argu-
ment. MidiRecord’s play method (lines 91–94) enables the program to play back the
newly recorded sequence.

22.7.3 MIDI Synthesis

This MidiDemo program provides an interactive piano that generates notes according to
the keys pressed by the user. Class MidiSynthesizer (Fig. 22.9) generates these notes
directly, and sends them to another device. Specifically, it sends the notes to a sequencer’s
receiver through a transmitter to record the MIDI sequence. Class MidiSyn-
thesizer uses an object that implements interface Synthesizer (a sub-interface of
MidiDevice) to access the default synthesizer’s sound generation, instruments, channel
resources and sound banks. A SoundBank is the container for various Instruments,
which instructs the computer on how to make the sound of a specific note. Different notes
made by various instruments are played through a MidiChannel on different tracks si-
multaneously to produce symphonic melodies.

1 // Fig. 22.9: MidiSynthesizer.java
2 // Accessing synthesizer resources
3
4 // Java extension package
5 import javax.sound.midi.*;
6

Fig. 22.9Fig. 22.9Fig. 22.9Fig. 22.9 MidiSynthesizer can generate notes and send them to another MIDI
device (part 1 of 4).

1296 Java Media Framework and Java Sound (on CD) Chapter 22

7 public class MidiSynthesizer {
8
9 // main synthesizer accesses resources

10 private Synthesizer synthesizer;
11
12 // available instruments for synthesis use
13 private Instrument instruments[];
14
15 // channels through which notes sound
16 private MidiChannel channels[];
17 private MidiChannel channel; // current channel
18
19 // transmitter for transmitting messages
20 private Transmitter transmitter;
21
22 // receiver end of messages
23 private Receiver receiver;
24
25 // short message containing sound commands, note, volume
26 private ShortMessage message;
27
28 // constructor for MidiSynthesizer
29 public MidiSynthesizer()
30 {
31 // open synthesizer, set receiver,
32 // obtain channels and instruments
33 try {
34 synthesizer = MidiSystem.getSynthesizer();
35
36 if (synthesizer != null) {
37
38 synthesizer.open();
39
40 // get transmitter of synthesizer
41 transmitter = synthesizer.getTransmitter();
42
43 if (transmitter == null)
44 System.err.println("Transmitter unavailable");
45
46 // get receiver of synthesizer
47 receiver = synthesizer.getReceiver();
48
49 if (receiver == null)
50 System.out.println("Receiver unavailable");
51
52 // get all available instruments in default
53 // soundbank or synthesizer
54 instruments = synthesizer.getAvailableInstruments();
55
56 // get all 16 channels from synthesizer
57 channels = synthesizer.getChannels();
58

Fig. 22.9Fig. 22.9Fig. 22.9Fig. 22.9 MidiSynthesizer can generate notes and send them to another MIDI
device (part 2 of 4).

Chapter 22 Java Media Framework and Java Sound (on CD) 1297

59 // assign first channel as default channel
60 channel = channels[0];
61 }
62
63 else
64 System.err.println("No Synthesizer");
65 }
66
67 // synthesizer, receiver or transmitter unavailable
68 catch (MidiUnavailableException noMidiException) {
69 noMidiException.printStackTrace();
70 }
71
72 } // end constructor
73
74 // return available instruments
75 public Instrument[] getInstruments()
76 {
77 return instruments;
78 }
79
80 // return synthesizer's transmitter
81 public Transmitter getTransmitter()
82 {
83 return transmitter;
84 }
85
86 // sound note on through channel
87 public void midiNoteOn(int note, int volume)
88 {
89 channel.noteOn(note, volume);
90 }
91
92 // sound note off through channel
93 public void midiNoteOff(int note)
94 {
95 channel.noteOff(note);
96 }
97
98 // change to selected instrument
99 public void changeInstrument(int index)
100 {
101 Patch patch = instruments[index].getPatch();
102
103 channel.programChange(patch.getBank(),
104 patch.getProgram());
105 }
106
107 // send custom MIDI messages through transmitter
108 public void sendMessage(int command, int note, int volume)
109 {

Fig. 22.9Fig. 22.9Fig. 22.9Fig. 22.9 MidiSynthesizer can generate notes and send them to another MIDI
device (part 3 of 4).

1298 Java Media Framework and Java Sound (on CD) Chapter 22

MidiSynthesizer’s constructor (lines 29–72) acquires the synthesizer and initial-
izes related resources. Line 34 obtains a Synthesizer object from the MidiSystem
and line 38 opens the Synthesizer. To enable sounds to be played and recorded at the
same time, lines 41–47 obtain the Transmitter and Receiver of the Synthesizer.
When a MIDI message is sent to the synthesizer’s receiver, the synthesizer
executes the message’s instruction, generating notes, and the transmitter sends that
message to designated Receivers of other MidiDevices.

Common Programming Error 22.3
A MidiUnavailableException occurs when a program attempts to acquire unavail-
able MidiDevice resources such as synthesizers and transmitters. 22.3

MIDI messages are sent to the MidiSynthesizer from MidiDemo as a result of
either pressing a piano key or a MidiEvent in the preloaded track of MidiData. A note
can be generated by accessing the channels of the synthesizer directly. For sim-
plicity, MidiSynthesizer uses only the first channel (out of a possible 16) to sound
notes. Line 57 invokes Synthesizer method getChannels to obtain all 16 channels
from synthesizer, and line 60 sets the default channel to the first channel. A Mid-
iChannel sounds a note by calling its noteOn method with the note number (0–127)
and a volume number as arguments. MidiChannel’s noteOff method turns off a note
with just the note number as an argument. MidiSynthesizer accesses these Midi-
Channel methods through method midiNoteOn (lines 87–90) and method
midiNoteOff (lines 93–96), respectively.

A synthesizer can use its default instruments to sound notes. Line 54 obtains the default
instrument available through the synthesizer or through a default sound bank by invoking
Synthesizer method getAvailableInstruments. A sound bank usually has 128
instruments. The instrument in use can be changed by invoking MidiSynthesizer

110 // send a MIDI ShortMessage using this method's parameters
111 try {
112 message = new ShortMessage();
113
114 // set new message of command (NOTE_ON, NOTE_OFF),
115 // note number, volume
116 message.setMessage(command, note, volume);
117
118 // send message through receiver
119 receiver.send(message, -1);
120 }
121
122 // invalid message values set
123 catch (InvalidMidiDataException badMidiException) {
124 badMidiException.printStackTrace();
125 }
126
127 } // end method sendMessage
128
129 } // end class MidiSynthesizer

Fig. 22.9Fig. 22.9Fig. 22.9Fig. 22.9 MidiSynthesizer can generate notes and send them to another MIDI
device (part 4 of 4).

Chapter 22 Java Media Framework and Java Sound (on CD) 1299

method changeInstrument (lines 99–105). Lines 103–104 invoke MidiChannel’s
programChange method to load the desired instrument program with the bank and pro-
gram number obtained from patch (line 104) as the parameters. A Patch is the location
of a loaded instrument.

Performance Tip 22.5
A program can import more instruments by loading a customized sound bank through Syn-
thesizer method loadAllInstruments with a SoundBank object. 22.4

By sending MidiMessages to a Synthesizer’s Receiver, a program can
invoke the synthesizer to sound notes without using its channels. Sending MidiMessages
to a MidiDevice’s Receiver also allows the device’s Transmitters to send these
messages to another MidiDevice’s Receiver.

In MidiSynthesizer’s sendMessage method (lines 108–127), lines 112–116
create a new ShortMessage from the parameters of method sendMessage and send
the message to the synthesizer’s receiver (line 119). Line 116 of method sendMessage
invokes ShortMessage method setMessage to set the contents of the message’s
instructions using three int arguments: a command, the note to play and the volume of the
note. Method setMessage throws an InvalidMidiDataException if the desig-
nated command and parameter values are invalid.

When creating a new ShortMessage using method setMessage, the meaning of
the second and third arguments vary depending on the command. Command ShortMes-
sage.NOTE_ON designates the second parameter to be the note number and third argument
to be the velocity (i.e. volume) of the note. The ShortMessage.PROGRAM_CHANGE
command designates the second argument as the instrument program to use and ignores the
third argument.

Line 119 sends the created ShortMessage to the synthesizer’s receiver by
calling Receiver method send with the MidiMessage and a time stamp as its argu-
ments. MidiSynthesizer does not deal with the complexity of MIDI synthesis timing.
The receiver sends a value of -1 for the time stamp parameter to designate that the time
stamp should be ignored. The sequence recorder in class MidiRecord takes care of
timing issues when it receives the messages.

Up to this point, we have discussed the tools needed to create our MIDI piano. In brief
synopsis, class MidiDemo (Fig. 22.10) uses class MidiSynthesizer to generate
sounds and to access channels and instruments. MidiDemo uses MidiData to playback
MIDI files and access MIDI track information. MidiRecord provides the recording func-
tion for MidiDemo, which receives messages from MidiSynthesizer.

22.7.4 Class MidiDemo

We now present class MidiDemo (Fig. 22.10), which provides the GUI for our piano as
well as other GUI components to control the capabilities of this example.

Using a for loop, utility method makeKeys (lines 86–155) in class MidiDemo cre-
ates 64 buttons that represent 64 different piano keys. Whenever the mouse hovers over a
key, the program sounds the designated note. Method makeKeys arranges the keys at the
bottom of the frame using each button’s setBounds method (line 106) to designate the
location and size of the buttons. The program arranges the buttons horizontally according
to their index in array noteButton.

1300 Java Media Framework and Java Sound (on CD) Chapter 22

1 // Fig. 22.10: MidiDemo.java
2 // Simulates a musical keyboard with various
3 // instruments to play, also featuring recording, MIDI file
4 // playback and simulating MIDI playback with the keyboard
5
6 // Java core packages
7 import java.awt.*;
8 import java.awt.event.*;
9 import java.io.*;

10
11 // Java extension packages
12 import javax.swing.*;
13 import javax.swing.event.*;
14 import javax.sound.midi.*;
15
16 public class MidiDemo extends JFrame {
17
18 // recording MIDI data
19 private MidiRecord midiRecord;
20
21 // synthesize MIDI functioning
22 private MidiSynthesizer midiSynthesizer;
23
24 // MIDI data in MIDI file
25 private MidiData midiData;
26
27 // timer for simulating MIDI on piano
28 private Timer pianoTimer;
29
30 // piano keys
31 private JButton noteButton[];
32
33 // volume, tempo sliders
34 private JSlider volumeSlider, resolutionSlider;
35
36 // containers and panels holding GUI
37 private Container container;
38 private JPanel controlPanel, buttonPanel;
39
40 // instrument selector and buttons GUI
41 private JComboBox instrumentBox;
42 private JButton playButton, recordButton,
43 saveButton, pianoPlayerButton, listenButton;
44
45 // tempo, last piano key invoked, volume of MIDI
46 private int resolution, lastKeyOn = -1, midiVolume = 40;
47
48 // boolean value indicating if program is in recording mode
49 private boolean recording = false;
50
51 // first note number of first piano key, max number of keys
52 private static int FIRST_NOTE = 32, MAX_KEYS = 64;

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 MidiDemo provides the GUI than enables users to interact with the
application (part 1 of 14).

Chapter 22 Java Media Framework and Java Sound (on CD) 1301

53
54 // constructor for MidiDemo
55 public MidiDemo()
56 {
57 super("MIDI Demo");
58
59 container = getContentPane();
60 container.setLayout(new BorderLayout());
61
62 // synthesizer must be instantiated to enable synthesis
63 midiSynthesizer = new MidiSynthesizer();
64
65 // make piano keys
66 makeKeys();
67
68 // add control panel to frame
69 controlPanel = new JPanel(new BorderLayout());
70 container.add(controlPanel, BorderLayout.NORTH);
71
72 makeConfigureControls();
73
74 // add button panel to frame
75 buttonPanel = new JPanel(new GridLayout(5, 1));
76 controlPanel.add(buttonPanel, BorderLayout.EAST);
77
78 // make GUI
79 makePlaySaveButtons();
80 makeRecordButton();
81 makePianoPlayerButton();
82
83 } // end constructor
84
85 // utility method making piano keys
86 private void makeKeys()
87 {
88 // panel containing keys
89 JPanel keyPanel = new JPanel(null);
90 container.add(keyPanel, BorderLayout.CENTER);
91
92 // piano keys
93 noteButton = new JButton[MAX_KEYS];
94
95 // add MAX_KEYS buttons and what note they sound
96 for (int i = 0; i < MAX_KEYS; i++) {
97
98 final int note = i;
99
100 noteButton[i] = new JButton();
101
102 // setting white keys
103 noteButton[i].setBackground(Color.white);
104

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 MidiDemo provides the GUI than enables users to interact with the
application (part 2 of 14).

1302 Java Media Framework and Java Sound (on CD) Chapter 22

105 // set correct spacing for buttons
106 noteButton[i].setBounds((i * 11), 1, 11, 40);
107 keyPanel.add(noteButton[i]);
108
109 // register a mouse listener for mouse events
110 noteButton[i].addMouseListener(
111
112 // anonymous inner class to handle mouse events
113 new MouseAdapter() {
114
115 // invoke key note when mouse touches key
116 public void mouseEntered(MouseEvent mouseEvent)
117 {
118 // if recording, send message to receiver
119 if (recording)
120 midiSynthesizer.sendMessage(
121 ShortMessage.NOTE_ON,
122 note + FIRST_NOTE, midiVolume);
123
124 // else just sound the note
125 else
126 midiSynthesizer.midiNoteOn(
127 note + FIRST_NOTE, midiVolume);
128
129 // turn key color to blue
130 noteButton[note].setBackground(
131 Color.blue);
132 }
133
134 // turn key note off when mouse leaves key
135 public void mouseExited(MouseEvent mouseEvent)
136 {
137 if (recording)
138 midiSynthesizer.sendMessage(
139 ShortMessage.NOTE_OFF,
140 note + FIRST_NOTE, midiVolume);
141 else
142 midiSynthesizer.midiNoteOff(
143 note + FIRST_NOTE);
144
145 noteButton[note].setBackground(
146 Color.white);
147 }
148
149 } // end MouseAdapter
150
151); // end call to addMouseListener
152
153 } // end for loop
154
155 } // end method makeKeys
156

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 MidiDemo provides the GUI than enables users to interact with the
application (part 3 of 14).

Chapter 22 Java Media Framework and Java Sound (on CD) 1303

157 // set up configuration controls
158 private void makeConfigureControls()
159 {
160 JPanel configurePanel =
161 new JPanel(new GridLayout(5, 1));
162
163 controlPanel.add(configurePanel, BorderLayout.WEST);
164
165 instrumentBox = new JComboBox(
166 midiSynthesizer.getInstruments());
167
168 configurePanel.add(instrumentBox);
169
170 // register an ActionListener for instrumentBox events
171 instrumentBox.addActionListener(
172
173 // anonymous inner class to handle instrument selector
174 new ActionListener() {
175
176 // change current instrument program
177 public void actionPerformed(ActionEvent event)
178 {
179 // change instrument in synthesizer
180 midiSynthesizer.changeInstrument(
181 instrumentBox.getSelectedIndex());
182 }
183
184 } // end ActionListener
185
186); // end call to method addActionListener
187
188 JLabel volumeLabel = new JLabel("volume");
189 configurePanel.add(volumeLabel);
190
191 volumeSlider = new JSlider(
192 SwingConstants.HORIZONTAL, 5, 80, 30);
193
194 // register a ChangeListener for slider change events
195 volumeSlider.addChangeListener(
196
197 // anonymous inner class to handle volume slider events
198 new ChangeListener() {
199
200 // change volume
201 public void stateChanged(ChangeEvent changeEvent)
202 {
203 midiVolume = volumeSlider.getValue();
204 }
205
206 } // end class ChangeListener
207
208); // end call to method addChangeListener

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 MidiDemo provides the GUI than enables users to interact with the
application (part 4 of 14).

1304 Java Media Framework and Java Sound (on CD) Chapter 22

209
210 configurePanel.add(volumeSlider);
211
212 JLabel tempLabel = new JLabel("tempo");
213 configurePanel.add(tempLabel);
214
215 resolutionSlider = new JSlider(
216 SwingConstants.HORIZONTAL, 1, 10, 1);
217
218 // register a ChangeListener slider for change events
219 resolutionSlider.addChangeListener(
220
221 // anonymous inner class to handle tempo slider events
222 new ChangeListener() {
223
224 // change resolution if value changed
225 public void stateChanged(ChangeEvent changeEvent)
226 {
227 resolution = resolutionSlider.getValue();
228 }
229
230 } // end ChangeListener
231
232); // end call to method addChangeListener
233
234 resolutionSlider.setEnabled(false);
235 configurePanel.add(resolutionSlider);
236
237 } // end method makeConfigureControls
238
239 // set up play and save buttons
240 private void makePlaySaveButtons()
241 {
242 playButton = new JButton("Playback");
243
244 // register an ActionListener for playButton events
245 playButton.addActionListener(
246
247 // anonymous inner class to handle playButton event
248 new ActionListener() {
249
250 // playback last recorded MIDI
251 public void actionPerformed(ActionEvent event)
252 {
253 if (midiRecord != null)
254 midiRecord.play();
255 }
256
257 } // end ActionListener
258
259); // end call to method addActionListener
260

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 MidiDemo provides the GUI than enables users to interact with the
application (part 5 of 14).

Chapter 22 Java Media Framework and Java Sound (on CD) 1305

261 buttonPanel.add(playButton);
262 playButton.setEnabled(false);
263
264 listenButton = new JButton("Play MIDI");
265
266 // register an ActionListener for listenButton events
267 listenButton.addActionListener(
268
269 // anonymous inner class to handle listenButton events
270 new ActionListener() {
271
272 // playback MIDI file
273 public void actionPerformed(ActionEvent event)
274 {
275 File midiFile = getFile();
276
277 if (midiFile == null)
278 return;
279
280 midiData = new MidiData();
281
282 // prepare MIDI track
283 if (midiData.initialize(midiFile) == false)
284 return;
285
286 // play MIDI data
287 midiData.play();
288 }
289
290 } // end ActionListener
291
292); // end call to method addActionListener
293
294 buttonPanel.add(listenButton);
295
296 saveButton = new JButton("Save MIDI");
297
298 // register an ActionListener for saveButton events
299 saveButton.addActionListener(
300
301 // anonymous inner class to handle saveButton events
302 new ActionListener() {
303
304 // get save file and save recorded MIDI
305 public void actionPerformed(ActionEvent event)
306 {
307 File saveFile = getSaveFile();
308
309 if (saveFile != null)
310 midiRecord.saveSequence(saveFile);
311 }
312

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 MidiDemo provides the GUI than enables users to interact with the
application (part 6 of 14).

1306 Java Media Framework and Java Sound (on CD) Chapter 22

313 } // end ActionListener
314
315); // end call to method addActionListener
316
317 buttonPanel.add(saveButton);
318 saveButton.setEnabled(false);
319
320 } // end method makePlaySaveButtons
321
322 // make recording button
323 private void makeRecordButton()
324 {
325 recordButton = new JButton("Record");
326
327 // register an ActionListener for recordButton events
328 recordButton.addActionListener(
329
330 // anonymous inner class to handle recordButton events
331 new ActionListener() {
332
333 // start or stop recording
334 public void actionPerformed(ActionEvent event)
335 {
336 // record MIDI when button is "record" button
337 if (recordButton.getText().equals("Record")) {
338
339 if (midiRecord == null) {
340
341 // create new instance of recorder
342 // by passing in synthesizer transmitter
343 midiRecord = new MidiRecord(
344 midiSynthesizer.getTransmitter());
345
346 if (midiRecord.initialize() == false)
347 return;
348 }
349
350 else
351 midiRecord.makeTrack();
352
353 midiRecord.startRecord();
354
355 // disable playback during recording
356 playButton.setEnabled(false);
357
358 // change recording button to stop
359 recordButton.setText("Stop");
360 recording = true;
361
362 } // end if
363

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 MidiDemo provides the GUI than enables users to interact with the
application (part 7 of 14).

Chapter 22 Java Media Framework and Java Sound (on CD) 1307

364 // stop recording when button is "stop" button
365 else {
366 midiRecord.stopRecord();
367
368 recordButton.setText("Record");
369 recording = false;
370
371 playButton.setEnabled(true);
372 saveButton.setEnabled(true);
373 }
374
375 } // end method actionPerformed
376
377 } // end ActionListener
378
379); // end call to method addActionListener
380
381 buttonPanel.add(recordButton);
382
383 } // end method makeRecordButton
384
385 // create Piano Player button and functionality
386 private void makePianoPlayerButton()
387 {
388 pianoPlayerButton = new JButton("Piano Player");
389
390 // register an ActionListener for pianoPlayerButton events
391 pianoPlayerButton.addActionListener(
392
393 // anonymous inner class to handle pianoPlayerButton
394 new ActionListener() {
395
396 // initialize MIDI data and piano player timer
397 public void actionPerformed(ActionEvent event)
398 {
399 File midiFile = getFile();
400
401 if (midiFile == null)
402 return;
403
404 midiData = new MidiData();
405
406 // prepare MIDI track
407 if (midiData.initialize(midiFile) == false)
408 return;
409
410 if (midiData.initializeTrack() == false)
411 return;
412
413 // set initial resolution from MIDI
414 resolution = midiData.getResolution();
415

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 MidiDemo provides the GUI than enables users to interact with the
application (part 8 of 14).

1308 Java Media Framework and Java Sound (on CD) Chapter 22

416 // new instance of timer for handling
417 // piano sounds and key pressing with tempo
418 pianoTimer = new Timer(
419 midiData.getEventDelay() * resolution,
420 new TimerHandler());
421
422 listenButton.setEnabled(false);
423 pianoPlayerButton.setEnabled(false);
424 resolutionSlider.setEnabled(true);
425
426 pianoTimer.start();
427
428 } // method end actionPerformed
429
430 } // end ActionListener
431
432); // end call to method addActionListener
433
434 buttonPanel.add(pianoPlayerButton);
435
436 } // end method makePianoPlayerButton
437
438 // inner class handles MIDI timed events
439 private class TimerHandler implements ActionListener {
440
441 // simulate key note of event if present, jump to next
442 // event in track and set next delay interval of timer
443 // method invoked when timer reaches next event time
444 public void actionPerformed(ActionEvent actionEvent)
445 {
446 // if valid last key on, set it white
447 if (lastKeyOn != -1)
448 noteButton[lastKeyOn].setBackground(
449 Color.white);
450
451 noteAction();
452 midiData.goNextEvent();
453
454 // stop piano player when end of MIDI track
455 if (midiData.isTrackEnd() == true) {
456
457 if (lastKeyOn != -1)
458 noteButton[lastKeyOn].setBackground(
459 Color.white);
460
461 pianoTimer.stop();
462
463 listenButton.setEnabled(true);
464 pianoPlayerButton.setEnabled(true);
465 resolutionSlider.setEnabled(false);
466
467 return;

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 MidiDemo provides the GUI than enables users to interact with the
application (part 9 of 14).

Chapter 22 Java Media Framework and Java Sound (on CD) 1309

468
469 } // end if isTrackEnd
470
471 // set interval before next sounding event
472 pianoTimer.setDelay(
473 midiData.getEventDelay() * resolution);
474
475 } // end actionPerformed method
476
477 } // end inner class TimerHandler
478
479 // determine which note to sound
480 // according to MIDI messages
481 private void noteAction()
482 {
483 // during Note On message, sound note and press key
484 if (midiData.getEventCommand() ==
485 ShortMessage.NOTE_ON) {
486
487 // make sure valid note is in range of keys
488 if ((midiData.getNote() >= FIRST_NOTE) &&
489 (midiData.getNote() < FIRST_NOTE + MAX_KEYS)) {
490
491 lastKeyOn = midiData.getNote() - FIRST_NOTE;
492
493 // set key color to red
494 noteButton[lastKeyOn].setBackground(Color.red);
495
496 // send and sound note through synthesizer
497 midiSynthesizer.sendMessage(144,
498 midiData.getNote(), midiData.getVolume());
499
500 } // end if
501
502 // else no last key pressed
503 else
504 lastKeyOn = -1;
505
506 } // end if
507
508 // receiving Note Off message will sound off note
509 // and change key color back to white
510 else
511
512 // if message command is note off
513 if (midiData.getEventCommand() ==
514 ShortMessage.NOTE_OFF) {
515
516 if ((midiData.getNote() >= FIRST_NOTE) &&
517 (midiData.getNote() < FIRST_NOTE + MAX_KEYS)) {
518

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 MidiDemo provides the GUI than enables users to interact with the
application (part 10 of 14).

1310 Java Media Framework and Java Sound (on CD) Chapter 22

519 // set appropriate key to white
520 noteButton[midiData.getNote() -
521 FIRST_NOTE].setBackground(Color.white);
522
523 // send note off message to receiver
524 midiSynthesizer.sendMessage(128,
525 midiData.getNote(), midiData.getVolume());
526 }
527
528 } // end if
529
530 } // end method noteAction
531
532 // get save file from computer
533 public File getSaveFile()
534 {
535 JFileChooser fileChooser = new JFileChooser();
536
537 fileChooser.setFileSelectionMode(
538 JFileChooser.FILES_ONLY);
539 int result = fileChooser.showSaveDialog(this);
540
541 if (result == JFileChooser.CANCEL_OPTION)
542 return null;
543
544 else
545 return fileChooser.getSelectedFile();
546 }
547
548 // get file from computer
549 public File getFile()
550 {
551 JFileChooser fileChooser = new JFileChooser();
552
553 fileChooser.setFileSelectionMode(
554 JFileChooser.FILES_ONLY);
555 int result = fileChooser.showOpenDialog(this);
556
557 if (result == JFileChooser.CANCEL_OPTION)
558 return null;
559
560 else
561 return fileChooser.getSelectedFile();
562 }
563
564 // execute application
565 public static void main(String args[])
566 {
567 MidiDemo midiTest = new MidiDemo();
568
569 midiTest.setSize(711, 225);
570 midiTest.setDefaultCloseOperation (EXIT_ON_CLOSE);

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 MidiDemo provides the GUI than enables users to interact with the
application (part 11 of 14).

Chapter 22 Java Media Framework and Java Sound (on CD) 1311

571 midiTest.setVisible(true);
572 }
573
574 } // end class MidiDemo

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 MidiDemo provides the GUI than enables users to interact with the
application (part 12 of 14).

1312 Java Media Framework and Java Sound (on CD) Chapter 22

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 MidiDemo provides the GUI than enables users to interact with the
application (part 13 of 14).

Chapter 22 Java Media Framework and Java Sound (on CD) 1313

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 MidiDemo provides the GUI than enables users to interact with the
application (part 14 of 14).

1314 Java Media Framework and Java Sound (on CD) Chapter 22

Look-and-Feel Observation 22.3
To arrange GUI components at specific locations without the help of Layout Managers, set
the layout of the panel containing the components to null. By default, a JPanel sets a
FlowLayout LayoutManager when the panel is instantiated with no arguments. 22.3

Lines 110–151 register MouseListeners for each piano-key button. The program
calls method mouseEntered (lines 116–132) when the mouse hovers over that button. If
the program is not in recording mode, method mouseEntered directly accesses the chan-
nels in class MidiSynthesizer to sound the note (lines 125–127). Otherwise, method
mouseEntered invokes MidiSynthesizer’s sendMessage method to send a note
message to the synthesizer and to the recording device (lines 119–122). Lines 130–131 set the
button’s background color to blue to indicate that the note is being played. When the mouse
is no longer hovering over the button, the program calls method mouseExited (lines 135–
147) to turn off the note and change the button’s background to its original color.

Out of the possible 128 notes, only the middle 64 notes are accessible via the piano in
the example. The range of notes can be changed by modifying the constants in line 52. Con-
stant FIRST_NOTE is the value of the first key and the sum of FIRST_NOTE and
MAX_KEYS is the value of the last key. Constant MAX_KEYS specifies the number of piano
keys to create.

Class MidiDemo invokes method makeConfigureControls (lines 158–237) to
setup the program’s MIDI controls, which consist of an instrument selector JComboBox,
a user-synthesis volume changer JSlider and a “piano player” tempo changer
JSlider. When users select an instrument, the program calls instrumentBox method
actionPerformed (lines 177–182) to change to the selected instrument program by
invoking MidiSynthesizer method changeInstrument with the selected instru-
ment index as the parameter.

When users drag the volume slider, the program calls volumeSlider method
stateChanged (lines 201-204) to change the volume. Note that changing the volume
affects only the volume of user-synthesized MIDI notes. When users drag the tempo slider,
the program calls resolutionSlider’s stateChanged method (lines 225-228) to
set the tempo.

Invoking method makePlaySaveButtons (lines 240–320) sets up the Play MIDI,
Playback and Save buttons. Clicking Play MIDI invokes the actionPerformed
method of the listenButton (lines 273–288) to playback an opened MIDI file in its
entirety using class MidiData. Line 275 obtains a file from a file-chooser dialog using
MidiDemo method getFile (lines 549–562). Lines 280–284 initialize and play the MIDI
file using the instantiated midiData object. When the user clicks Playback, line 254 plays
the recorded MIDI. This button is enabled only if some recording took place. Clicking the
Save button allows the user to save the recorded sequence to a file (lines 307–310).

Method makeRecordButton (lines 323–383) creates the Record button and a lis-
tener for it. Clicking the button when it is set to recording mode (line 337) creates a new
recorder using class MidiRecord (lines 339–348). If a recorder has already been created,
line 351 invokes MidiRecord’s makeTrack method to make a new track for object
midiRecord. When recording starts (line 353), lines 356–360 turn the recording button
into a stop button and disable the playButton temporarily. When users stop the
recording by clicking the recording button again, the GUI returns to its state prior to
recording and the user can playback and save the MIDI sequence (lines 365–373).

Chapter 22 Java Media Framework and Java Sound (on CD) 1315

“Piano Player”
The “piano player” feature of this example synchronizes the playing of a note with the high-
lighting of the corresponding key. The program first obtains a MIDI track from a user-spec-
ified MIDI file using class MidiData. A Timer synchronizes the MIDI events in the
MIDI sequence. When the Timer reaches a MIDI event’s time stamp, it resets its delay to
the time stamp of the next event to synchronize. The delay of a timer is the period of time
that it waits before it causes an event.

The “piano player driver” responsible for synchronization is located in main class
MidiDemo. Method makePianoPlayerButton (lines 386–436) loads the MIDI file
and initializes the Timer that handles the timing of musical notes. As with the listen-
Button, method actionPerformed (lines 397–428) of makePlayerPi-
anoButton uses class MidiData to load MIDI data. Lines 399–408 open a file from a
file dialog box and load the MIDI data from the file. Line 410 invokes MidiData’s ini-
tializeTrack method to obtain the longest track from the loaded MIDI and to obtain
the first MIDI event message from the track.

Line 414 invokes MidiData’s getResolution method (lines 67–70 in Fig. 22.7)
to obtain the default tempo of the “piano player”. Lines 418–420 instantiate a new Timer
object that drives the playing of notes at the time of each MIDI event. Line 419 sets the
delay of the timer to be the duration of the first MidiEvent in the track by invoking Mid-
iData’s getEventDelay method. To allow user-specified tempo changes to the “piano
player,” line 424 enables the tempo slider and line 419 sets the delay of the timer to be mul-
tiplied by the value of resolution. The resolution variable, which specifies the
tempo of “piano player,” is multiplied by the event interval time to obtain a new interval
time used by pianoTimer. PianoTimer’s delay is set only for the first event’s duration
to start the timer. Later, inner class TimerHandler (lines 439–477) method action-
Performed (lines 444–475) resets the timer’s delay to the next MidiEvent’s duration
(lines 472–473). Line 426 starts the pianoTimer.

At the time of the next MIDI event, class TimerHandler’s actionPerformed
method synthesizes a note from the track and “presses” a key on the piano. Using piano-
Timer and its event handler, the program iterates through the track, simulating note events
when it encounters appropriate MidiEvents. Inner class TimerHandler drives the
synchronization by iterating through all the MidiEvents on a given track and calling
method actionPerformed to play the piano. Line 451 of method actionPer-
formed invokes utility method noteAction (lines 481–530) to sound the note and to
change the color of the specific piano key, given that the event contains a note message and
that the note is within the range designator for the piano keys in this example.

Lines 484–485 of method noteAction determine whether the current MidiEvent
contains a note command by invoking method getEventCommand of class MidiData.
Lines 488–489 invoke MidiData method getNote to determine whether the note
number specified in the noteMessage is a valid note within the range of possible piano
keys, specified in constants FIRST_NOTE and MAX_KEYS (line 52).

If the command is a ShortMessage.NOTE_ON command and is within range of
the piano keys, the synthesizer receives the specified note message (lines 497–498) and
the corresponding piano key’s color becomes red for the duration of the event (line 494).
Line 491 obtains the corresponding piano button number (lastKeyOn) that should
become red.

1316 Java Media Framework and Java Sound (on CD) Chapter 22

If the command is ShortMessage.NOTE_OFF and is within the allowable piano
key range (lines 513–517), lines 520–521 change the background of the specified piano key
back to white. Lines 524-525 send the ShortMessage to the synthesizer so that the note
will stop sounding. Because not all NOTE_ON ShortMessages are followed by a
NOTE_OFF ShortMessage as one would expect, the program needs to change the last
NOTE_ON key back to its original color at the time of the next event. For that purpose
method noteAction assigns a lastKeyOn value to the last piano button invoked. The
lastKeyOn object initialized to –1 remains –1 if the NOTE_ON command note is out of
range. This limits access only to keys in range of our simulated keyboard. When piano-
Timer reaches the next event, the program changes the background of the last “pressed”
piano key back to white (lines 447–449).

When the program finishes executing method noteAction, line 452 invokes Mid-
iData method goNextEvent to transition to the next event in the track. Every time the
handler’s actionPerformed method finishes loading the next event, line 455 deter-
mines whether the next event is the last event in the track by invoking MidiData method
isTrackEnd, assuming that the last event is the end-of-track MetaEvent. If the next
event is the last event, lines 457–459 change the background color of the last “pressed” key
to white and line 461 stops the pianoTimer. Lines 463–465 re-enable buttons that were
disabled during the “piano player” feature.

22.8 Internet and World Wide Web Resources
This section presents several Internet and Web resources for the Java Media Framework
and other multimedia related sites.

java.sun.com/products/java-media/jmf/
The Java Media Framework home page on the Java Web site. Here you can download the latest Sun
implementation of the JMF. The site also contains the documentation for the JMF.

www.nasa.gov/gallery/index.html
The NASA multimedia gallery contains a wide variety of images, audio clips and video clips that you
can download and use to test your Java multimedia programs.

sunsite.sut.ac.jp/multimed/
The Sunsite Japan Multimedia Collection also provides a wide variety of images, audio clips and vid-
eo clips that you can download for educational purposes.

www.anbg.gov.au/anbg/index.html
The Australian National Botanic Gardens Web site provides links to sounds of many animals. Try the
Common Birds link.

www.midi.com
Midi.com is a MIDI resource site with a MIDI search engine, links to other MIDI sites, a list of MIDI-
related books and other MIDI information.
www.streamingmedia.com
Streamingmedia.com provides many articles of the streaming media industry and technical informa-
tion streaming media technology.
www.harmony-central.com/MIDI/
Harmony Central’s MIDI resources section contains many useful MIDI documents, links and forums
that can be useful for a MIDI programmer.

Chapter 22 Java Media Framework and Java Sound (on CD) 1317

22.9 (Optional Case Study) Thinking About Objects: Animation
and Sound in the View
This case study has focused mainly on the elevator system model. Now that we have com-
pleted our design of the model, we turn our attention to the view, which provides the visual
presentation of the model. In our case study, the view—called ElevatorView—is a
JPanel object containing other JPanel “child” objects, each representing a unique ob-
ject in the model (e.g. a Person, a Button, the Elevator). Class ElevatorView is
the largest class in the case study. In this section, we discuss the graphics and sound classes
used by class ElevatorView. We present and explain the remainder of the code in this
class in Appendix I.

In Section 3.7, we constructed a class diagram for our model by locating the nouns and
noun phrases from the problem statement of Section 2.7. We ignored several of these
nouns, because they were not associated with the model. Now, we list the nouns and nouns
phrases that apply to displaying the model:

• display

• audio

• elevator music

The noun “display” corresponds to the view, or the visual presentation of the model.
As described in Section 13.17, class ElevatorView aggregates several classes com-
prising the view. The “audio” refers to the sound effects that our simulation generates when
various actions occur—we create class SoundEffects to generate these sound effects.
The phrase “elevator music” refers to the music played as the Person rides in the Ele-
vator—we create class ElevatorMusic to play this music.

The view must display all objects in the model. We create class ImagePanel to rep-
resent stationary objects in the model, such as the ElevatorShaft. We create class
MovingPanel, which extends ImagePanel, to represent moving objects, such as the
Elevator. Lastly, we create class AnimatedPanel, which extends MovingPanel,
to represent moving objects whose corresponding images change continuously, such as a
Person (we use several frames of animation to show the Person walking then pressing
a button). Using these classes, we present the class diagram of the view for our simulation
in Fig. 22.9.

The notes indicate the roles that the classes play in the system. According to the class
diagram, class ElevatorView represents the view, classes ImagePanel, Moving-
Panel and AnimatedPanel relate to the graphics, and classes SoundEffects and
ElevatorMusic relate to the audio. Class ElevatorView contains several instances
of classes ImagePanel, MovingPanel and AnimatedPanel and one instance each
of classes SoundEffects and ElevatorMusic. In Appendix I, we associate each
object in the model with a corresponding class in the view.

In this section, we discuss classes ImagePanel, MovingPanel and Animated-
Panel to explain the graphics and animation. We then discuss classes SoundEffects
and ElevatorMusic to explain the audio functionality.

ImagePanel
The ElevatorView uses objects from JPanel subclasses to represent and display each
object in the model (such as the Elevator, a Person, the ElevatorShaft, etc.).

1318 Java Media Framework and Java Sound (on CD) Chapter 22

Class ImagePanel (Fig. 22.10) is a JPanel subclass capable of displaying an image at
a given screen position. The ElevatorView uses ImagePanel objects to represent sta-
tionary objects in the model, such as the ElevatorShaft and the two Floors. Class
ImagePanel contains an integer attribute—ID (line 16)—that defines a unique identifier
used to track the ImagePanel in the view if necessary. This tracking is useful when sev-
eral objects of the same class exist in the model, such as several Person objects. Class
ImagePanel contains Point2D.Double object position (line 19) to represent the
ImagePanel screen position. We will see later that MovingPanel, which extends Im-
agePanel, defines velocity with doubles—using type double yields a highly accurate
velocity and position. We cast the position coordinates to ints to place the Im-
agePanel on screen (Java represents screen coordinates as ints) in method setPosi-
tion (lines 90–94). Class ImagePanel also contains an ImageIcon object called
imageIcon (line 22)—method paintComponent (lines 54–60) displays imageIcon
on screen. Lines 41–42 initialize imageIcon using a String parameter holding the
name of the image. Lastly, class ImagePanel contains Set panelChildren (line 25)
that stores any child objects of class ImagePanel (or objects of a subclass of Im-
agePanel). The child objects are displayed on top of their parent ImagePanel—for ex-
ample, a Person riding inside the Elevator. The first method add (lines 63–67)
appends an object to panelChildren. The second method add (lines 70–74) inserts an
object into panelChildren at a given index. Method setIcon (lines 84–87) sets im-
ageIcon to a new image. Objects of class AnimatedPanel use method setIcon re-
peatedly to change the image displayed, which causes the animation for the view—we
discuss animation later in the section.

Fig. 22.9Fig. 22.9Fig. 22.9Fig. 22.9 Class diagram of elevator simulation view.

ElevatorView

1 1

MovingPanel

AnimatedPanel

1

SoundEffects

ElevatorMusic

1
1..*

1..* 1

graphics

audio

view

ImagePanel

1

1..*

1

Chapter 22 Java Media Framework and Java Sound (on CD) 1319

1 // ImagePanel.java
2 // JPanel subclass for positioning and displaying ImageIcon
3 package com.deitel.jhtp4.elevator.view;
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.geom.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class ImagePanel extends JPanel {
14
15 // identifier
16 private int ID;
17
18 // on-screen position
19 private Point2D.Double position;
20
21 // imageIcon to paint on screen
22 private ImageIcon imageIcon;
23
24 // stores all ImagePanel children
25 private Set panelChildren;
26
27 // constructor initializes position and image
28 public ImagePanel(int identifier, String imageName)
29 {
30 super(null); // specify null layout
31 setOpaque(false); // make transparent
32
33 // set unique identifier
34 ID = identifier;
35
36 // set location
37 position = new Point2D.Double(0, 0);
38 setLocation(0, 0);
39
40 // create ImageIcon with given imageName
41 imageIcon = new ImageIcon(
42 getClass().getResource(imageName));
43
44 Image image = imageIcon.getImage();
45 setSize(
46 image.getWidth(this), image.getHeight(this));
47
48 // create Set to store Panel children
49 panelChildren = new HashSet();
50
51 } // end ImagePanel constructor
52

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 Class ImagePanel represents and displays a stationary object from the
model (part 1 of 3).

1320 Java Media Framework and Java Sound (on CD) Chapter 22

53 // paint Panel to screen
54 public void paintComponent(Graphics g)
55 {
56 super.paintComponent(g);
57
58 // if image is ready, paint it to screen
59 imageIcon.paintIcon(this, g, 0, 0);
60 }
61
62 // add ImagePanel child to ImagePanel
63 public void add(ImagePanel panel)
64 {
65 panelChildren.add(panel);
66 super.add(panel);
67 }
68
69 // add ImagePanel child to ImagePanel at given index
70 public void add(ImagePanel panel, int index)
71 {
72 panelChildren.add(panel);
73 super.add(panel, index);
74 }
75
76 // remove ImagePanel child from ImagePanel
77 public void remove(ImagePanel panel)
78 {
79 panelChildren.remove(panel);
80 super.remove(panel);
81 }
82
83 // sets current ImageIcon to be displayed
84 public void setIcon(ImageIcon icon)
85 {
86 imageIcon = icon;
87 }
88
89 // set on-screen position
90 public void setPosition(double x, double y)
91 {
92 position.setLocation(x, y);
93 setLocation((int) x, (int) y);
94 }
95
96 // return ImagePanel identifier
97 public int getID()
98 {
99 return ID;
100 }
101
102 // get position of ImagePanel
103 public Point2D.Double getPosition()
104 {

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 Class ImagePanel represents and displays a stationary object from the
model (part 2 of 3).

Chapter 22 Java Media Framework and Java Sound (on CD) 1321

MovingPanel
Class MovingPanel (Fig. 22.11) is an ImagePanel subclass capable of changing its
screen position according to its xVelocity and yVelocity (lines 20–21). The Ele-
vatorView uses MovingPanel objects to represent moving objects from the model,
such as the Elevator.

105 return position;
106 }
107
108 // get imageIcon
109 public ImageIcon getImageIcon()
110 {
111 return imageIcon;
112 }
113
114 // get Set of ImagePanel children
115 public Set getChildren()
116 {
117 return panelChildren;
118 }
119 }

1 // MovingPanel.java
2 // JPanel subclass with on-screen moving capabilities
3 package com.deitel.jhtp4.elevator.view;
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.geom.*;
8 import java.util.*;
9

10 // Java extension packages
11 import javax.swing.*;
12
13 public class MovingPanel extends ImagePanel {
14
15 // should MovingPanel change position?
16 private boolean moving;
17
18 // number of pixels MovingPanel moves in both x and y values
19 // per animationDelay milliseconds
20 private double xVelocity;
21 private double yVelocity;
22

Fig. 22.11Fig. 22.11Fig. 22.11Fig. 22.11 Class MovingPanel represents and displays a moving object from the
model (part 1 of 3).

Fig. 22.10Fig. 22.10Fig. 22.10Fig. 22.10 Class ImagePanel represents and displays a stationary object from the
model (part 3 of 3).

1322 Java Media Framework and Java Sound (on CD) Chapter 22

23 // constructor initializes position, velocity and image
24 public MovingPanel(int identifier, String imageName)
25 {
26 super(identifier, imageName);
27
28 // set MovingPanel velocity
29 xVelocity = 0;
30 yVelocity = 0;
31
32 } // end MovingPanel constructor
33
34 // update MovingPanel position and animation frame
35 public void animate()
36 {
37 // update position according to MovingPanel velocity
38 if (isMoving()) {
39 double oldXPosition = getPosition().getX();
40 double oldYPosition = getPosition().getY();
41
42 setPosition(oldXPosition + xVelocity,
43 oldYPosition + yVelocity);
44 }
45
46 // update all children of MovingPanel
47 Iterator iterator = getChildren().iterator();
48
49 while (iterator.hasNext()) {
50 MovingPanel panel = (MovingPanel) iterator.next();
51 panel.animate();
52 }
53 } // end method animate
54
55 // is MovingPanel moving on screen?
56 public boolean isMoving()
57 {
58 return moving;
59 }
60
61 // set MovingPanel to move on screen
62 public void setMoving(boolean move)
63 {
64 moving = move;
65 }
66
67 // set MovingPanel x and y velocity
68 public void setVelocity(double x, double y)
69 {
70 xVelocity = x;
71 yVelocity = y;
72 }
73

Fig. 22.11Fig. 22.11Fig. 22.11Fig. 22.11 Class MovingPanel represents and displays a moving object from the
model (part 2 of 3).

Chapter 22 Java Media Framework and Java Sound (on CD) 1323

Method animate (lines 35–53) moves the MovingPanel according to the current
values of attributes xVelocity and yVelocity. If boolean variable moving (line
16) is true, lines 38–44 use attributes xVelocity and yVelocity to determine the
next location for the MovingPanel. Lines 47–52 repeat the process for any children. In
our simulation, ElevatorView invokes method animate and method paintCompo-
nent of class ImagePanel every 50 milliseconds. These rapid, successive calls move
the MovingPanel object.

AnimatedPanel
Class AnimatedPanel (Fig. 22.12), which extends class MovingPanel, represents an
animated object from the model (i.e., moving objects whose corresponding image changes
continuously), such as a Person. The ElevatorView animates an AnimatedPanel
object by changing the image associated with imageIcon.

74 // return MovingPanel x velocity
75 public double getXVelocity()
76 {
77 return xVelocity;
78 }
79
80 // return MovingPanel y velocity
81 public double getYVelocity()
82 {
83 return yVelocity;
84 }
85 }

1 // AnimatedPanel.java
2 // MovingPanel subclass with animation capabilities
3 package com.deitel.jhtp4.elevator.view;
4
5 // Java core packages
6 import java.awt.*;
7 import java.util.*;
8
9 // Java extension packages

10 import javax.swing.*;
11
12 public class AnimatedPanel extends MovingPanel {
13
14 // should ImageIcon cycle frames
15 private boolean animating;
16
17 // frame cycle rate (i.e., rate advancing to next frame)
18 private int animationRate;

Fig. 22.12Fig. 22.12Fig. 22.12Fig. 22.12 Class AnimatedPanel represents and displays an animated object from
the model (part 1 of 4).

Fig. 22.11Fig. 22.11Fig. 22.11Fig. 22.11 Class MovingPanel represents and displays a moving object from the
model (part 3 of 3).

1324 Java Media Framework and Java Sound (on CD) Chapter 22

19 private int animationRateCounter;
20 private boolean cycleForward = true;
21
22 // individual ImageIcons used for animation frames
23 private ImageIcon imageIcons[];
24
25 // storage for all frame sequences
26 private java.util.List frameSequences;
27 private int currentAnimation;
28
29 // should loop (continue) animation at end of cycle?
30 private boolean loop;
31
32 // should animation display last frame at end of animation?
33 private boolean displayLastFrame;
34
35 // helps determine next displayed frame
36 private int currentFrameCounter;
37
38 // constructor takes array of filenames and screen position
39 public AnimatedPanel(int identifier, String imageName[])
40 {
41 super(identifier, imageName[0]);
42
43 // creates ImageIcon objects from imageName string array
44 imageIcons = new ImageIcon[imageName.length];
45
46 for (int i = 0; i < imageIcons.length; i++) {
47 imageIcons[i] = new ImageIcon(
48 getClass().getResource(imageName[i]));
49 }
50
51 frameSequences = new ArrayList();
52
53 } // end AnimatedPanel constructor
54
55 // update icon position and animation frame
56 public void animate()
57 {
58 super.animate();
59
60 // play next animation frame if counter > animation rate
61 if (frameSequences != null && isAnimating()) {
62
63 if (animationRateCounter > animationRate) {
64 animationRateCounter = 0;
65 determineNextFrame();
66 }
67 else
68 animationRateCounter++;
69 }
70 } // end method animate

Fig. 22.12Fig. 22.12Fig. 22.12Fig. 22.12 Class AnimatedPanel represents and displays an animated object from
the model (part 2 of 4).

Chapter 22 Java Media Framework and Java Sound (on CD) 1325

71
72 // determine next animation frame
73 private void determineNextFrame()
74 {
75 int frameSequence[] =
76 (int[]) frameSequences.get(currentAnimation);
77
78 // if no more animation frames, determine final frame,
79 // unless loop is specified
80 if (currentFrameCounter >= frameSequence.length) {
81 currentFrameCounter = 0;
82
83 // if loop is false, terminate animation
84 if (!isLoop()) {
85
86 setAnimating(false);
87
88 if (isDisplayLastFrame())
89
90 // display last frame in sequence
91 currentFrameCounter = frameSequence.length - 1;
92 }
93 }
94
95 // set current animation frame
96 setCurrentFrame(frameSequence[currentFrameCounter]);
97 currentFrameCounter++;
98
99 } // end method determineNextFrame
100
101 // add frame sequence (animation) to frameSequences ArrayList
102 public void addFrameSequence(int frameSequence[])
103 {
104 frameSequences.add(frameSequence);
105 }
106
107 // ask if AnimatedPanel is animating (cycling frames)
108 public boolean isAnimating()
109 {
110 return animating;
111 }
112
113 // set AnimatedPanel to animate
114 public void setAnimating(boolean animate)
115 {
116 animating = animate;
117 }
118
119 // set current ImageIcon
120 public void setCurrentFrame(int frame)
121 {
122 setIcon(imageIcons[frame]);

Fig. 22.12Fig. 22.12Fig. 22.12Fig. 22.12 Class AnimatedPanel represents and displays an animated object from
the model (part 3 of 4).

1326 Java Media Framework and Java Sound (on CD) Chapter 22

Class AnimatedPanel chooses the ImageIcon object to be drawn on screen from
among several ImageIcon objects stored in array imageIcons (line 23). Class Ani-
matedPanel determines the ImageIcon object according to a series of frame sequence
references, stored in List frameSequences (line 26). A frame sequence is an array of

123 }
124
125 // set animation rate
126 public void setAnimationRate(int rate)
127 {
128 animationRate = rate;
129 }
130
131 // get animation rate
132 public int getAnimationRate()
133 {
134 return animationRate;
135 }
136
137 // set whether animation should loop
138 public void setLoop(boolean loopAnimation)
139 {
140 loop = loopAnimation;
141 }
142
143 // get whether animation should loop
144 public boolean isLoop()
145 {
146 return loop;
147 }
148
149 // get whether to display last frame at animation end
150 private boolean isDisplayLastFrame()
151 {
152 return displayLastFrame;
153 }
154
155 // set whether to display last frame at animation end
156 public void setDisplayLastFrame(boolean displayFrame)
157 {
158 displayLastFrame = displayFrame;
159 }
160
161 // start playing animation sequence of given index
162 public void playAnimation(int frameSequence)
163 {
164 currentAnimation = frameSequence;
165 currentFrameCounter = 0;
166 setAnimating(true);
167 }
168 }

Fig. 22.12Fig. 22.12Fig. 22.12Fig. 22.12 Class AnimatedPanel represents and displays an animated object from
the model (part 4 of 4).

Chapter 22 Java Media Framework and Java Sound (on CD) 1327

integers holding the proper sequence to display the ImageIcon objects; specifically, each
integer represents the index of an ImageIcon object in imageIcons. Figure 22.13
demonstrates the relationship between imageIcons and frameSequences (this is not
a diagram of the UML). For example, frame sequence number

2 = { 2, 1, 0 }

refers to { imageIcon[2], imageIcon[1], imageIcon[0] }, which yields the
image sequence { C, B, A }. In the view, each image is a unique .png file. Method ad-
dFrameSequence (lines 102–105) adds a frame sequence to List frameSequenc-
es. Method playAnimation (lines 162–167) starts the animation associated with the
parameter frameSequence. For example, assume an AnimatedPanel object called
personAnimatedPanel in class ElevatorView. The code segment

animatedPanel.playAnimation(1);

would generate the { A, B, D, B, A } image sequence using Fig. 22.13 as a reference.
Method animate (lines 56–70) overrides method animate of superclass Moving-

Panel. Lines 61–69 determine the next frame of animation depending on attribute ani-
mationRate, which is inversely proportional to the animation speed—a higher value for
animationRate yields a slower frame rate. For example, if animationRate is 5,
animate moves to the next frame of animation every fifth time it is invoked. Using this
logic, the animation rate maximizes when animationRate has a value of 1, because the
next frame is determined each time animate runs.

Method animate calls determineNextFrame (lines 73–99) to determine the
next frame (image) to display—specifically, it calls method setCurrentFrame (lines
120–123), which sets imageIcon (the current image displayed) to the image returned
from the current frame sequence. Lines 84–92 of determineNextFrame are used for
“looping” purposes in the animation. If loop is false, the animation terminates after one
iteration. The last frame in the sequence is displayed if displayLastFrame is true,
and the first frame in the sequence is displayed if displayLastFrame is false. We
explain in greater detail in Appendix I how ElevatorView uses displayLastFrame
for the Person and Door AnimatedPanels to ensure the proper display of the image.
If loop is true, the animation repeats until stopped explicitly.

Sound Effects
We now discuss how we generate audio in our elevator simulation. We divide audio func-
tionality between two classes—SoundEffects and ElevatorMusic. (these classes
are not part of the Java packages, although SoundEffects uses the java.applet
package and ElevatorMusic uses the javax.sound.midi package). Class
SoundEffects (Figure 22.14) transforms audio (.au) and wave (.wav) files, contain-
ing such sounds as the bell ring and the person’s footsteps, into java.applet.Audi-
oClip objects. In Appendix I, we list all AudioClips used in our simulation. Class
ElevatorMusic (Fig. 22.15) plays a MIDI (.mid) file when the person rides the ele-
vator. The ElevatorView object will play the AudioClip and ElevatorMusic ob-
jects to generate sound. All sound files are in the directory structure

com/deitel/jhtp4/elevator/view/sounds

1328 Java Media Framework and Java Sound (on CD) Chapter 22

(i.e., in the sounds directory where the classes for the view are located in the file system).
In our simulation, we use sounds and MIDI files provided free for download by Microsoft
at the Web site:

msdn.microsoft.com/downloads/default.asp

To download these sounds, click on “Graphics and Multimedia,” “Multimedia (General),”
then “Sounds.”

Fig. 22.13Fig. 22.13Fig. 22.13Fig. 22.13 Relationship between array imageIcons and List
frameSequences.

 0 1 2

 0 1 3 1 0

 2 1 0

 3 2 2 0

0=

1=

2=

3=

frameSequences

 A D

 B

 C

 0 1 2 3

 imageIcons A

 B

 C

 A B B A D

 C B A

 D C C A

image sequences

1 // SoundEffects.java
2 // Returns AudioClip objects
3 package com.deitel.jhtp4.elevator.view;
4
5 // Java core packages
6 import java.applet.*;
7
8 public class SoundEffects {
9

10 // location of sound files
11 private String prefix = "";
12
13 public SoundEffects() {}
14
15 // get AudioClip associated with soundFile
16 public AudioClip getAudioClip(String soundFile)
17 {
18 try {
19 return Applet.newAudioClip(getClass().getResource(
20 prefix + soundFile));
21 }
22
23 // return null if soundFile does not exist
24 catch (NullPointerException nullPointerException) {
25 return null;
26 }
27 }

Fig. 22.14Fig. 22.14Fig. 22.14Fig. 22.14 Class SoundEffects return AudioClip objects (part 1 of 2).

Chapter 22 Java Media Framework and Java Sound (on CD) 1329

Class SoundEffects contains method getAudioClip (lines 16–27), which uses
static method newAudioClip (of class java.applet.Applet) to return an
AudioClip object using the soundFile parameter. Method setPrefix (lines 30–
33) allows for changing the directory of a sound file (useful if we want to partition our
sounds among several directories).

28
29 // set prefix for location of soundFile
30 public void setPathPrefix(String string)
31 {
32 prefix = string;
33 }
34 }

1 // ElevatorMusic.java
2 // Allows for MIDI playing capabilities
3 package com.deitel.jhtp4.elevator.view;
4
5 // Java core packages
6 import java.io.*;
7 import java.net.*;
8
9 // Java extension packages

10 import javax.sound.midi.*;
11
12 public class ElevatorMusic implements MetaEventListener {
13
14 // MIDI sequencer
15 private Sequencer sequencer;
16
17 // should music stop playing?
18 private boolean endOfMusic;
19
20 // sound file name
21 private String fileName;
22
23 // sequence associated with sound file
24 private Sequence soundSequence;
25
26 // constructor opens a MIDI file to play
27 public ElevatorMusic(String file)
28 {
29 // set sequencer
30 try {
31 sequencer = MidiSystem.getSequencer();
32 sequencer.addMetaEventListener(this);
33 fileName = file;
34 }

Fig. 22.15Fig. 22.15Fig. 22.15Fig. 22.15 Class ElevatorMusic plays music when a Person rides in the
Elevator (part 1 of 3).

Fig. 22.14Fig. 22.14Fig. 22.14Fig. 22.14 Class SoundEffects return AudioClip objects (part 2 of 2).

1330 Java Media Framework and Java Sound (on CD) Chapter 22

35
36 // handle exception if MIDI is unavailable
37 catch (MidiUnavailableException midiException) {
38 midiException.printStackTrace();
39 }
40 } // end ElevatorMusic constructor
41
42 // open music file
43 public boolean open()
44 {
45 try {
46
47 // get URL for media file
48 URL url = getClass().getResource(fileName);
49
50 // get valid MIDI file
51 soundSequence = MidiSystem.getSequence (url);
52
53 // open sequencer for specified file
54 sequencer.open();
55 sequencer.setSequence(soundSequence);
56 }
57
58 // handle exception if URL does not exist
59 catch (NullPointerException nullPointerException) {
60 nullPointerException.printStackTrace();
61 return false;
62 }
63
64 // handle exception if MIDI data is invalid
65 catch (InvalidMidiDataException midiException) {
66 midiException.printStackTrace();
67 soundSequence = null;
68 return false;
69 }
70
71 // handle IO exception
72 catch (java.io.IOException ioException) {
73 ioException.printStackTrace();
74 soundSequence = null;
75 return false;
76 }
77
78 // handle exception if MIDI is unavailable
79 catch (MidiUnavailableException midiException) {
80 midiException.printStackTrace();
81 return false;
82 }
83
84 return true;
85 }
86

Fig. 22.15Fig. 22.15Fig. 22.15Fig. 22.15 Class ElevatorMusic plays music when a Person rides in the
Elevator (part 2 of 3).

Chapter 22 Java Media Framework and Java Sound (on CD) 1331

As we discussed in Section 22.7, Java 2 offers MIDI support. Class Elevator-
Music uses the javax.sound.midi package to play the MIDI file. Class Eleva-
torMusic listens for a MetaMessage event from the MIDI file. The sequencer
generates a MetaMessage event. Class ElevatorMusic’s constructor (lines 27–40) of
the constructor initializes the system’s MIDI sequencer and registers class Elevator-
Music for MetaMessage events from the sequencer. Method open (lines 43–85) opens
the sequencer for a specified file and ensures the MIDI data is valid. Method play (lines
88–92) starts the sequencer and plays the MIDI file.

Conclusion
You have completed a substantial object-oriented design (OOD) process that was intended
to help prepare you for the challenges of “industrial-strength” projects. We hope you have
found the optional “Thinking About Objects” sections informative and useful as a supple-
ment to the material presented in the chapters. In addition, we hope you have enjoyed the
experience designing the elevator system using the UML. The worldwide software industry
has adopted the UML as the de facto standard for modeling object-oriented software.

Although we have completed the design process, we have merely “scratched the sur-
face” of the implementation process. We urge you to read Appendices G, H and I on the
accompanying CD, which fully implement the design. These appendices translate the UML
diagrams into a 3,465-line Java program for the elevator simulation. In these appendices,
we present all code that we did not cover in the “Thinking About Objects” sections and a
complete “walkthrough” of this code.

1. Appendix G presents the Java files that implement events and listeners

2. Appendix H presents the Java files that implement the model

87 // play MIDI track
88 public void play()
89 {
90 sequencer.start();
91 endOfMusic = false;
92 }
93
94 // get sequencer
95 public Sequencer getSequencer()
96 {
97 return sequencer;
98 }
99
100 // handle end of track
101 public void meta(MetaMessage message)
102 {
103 if (message.getType() == 47) {
104 endOfMusic = true;
105 sequencer.stop();
106 }
107 }
108 }

Fig. 22.15Fig. 22.15Fig. 22.15Fig. 22.15 Class ElevatorMusic plays music when a Person rides in the
Elevator (part 3 of 3).

1332 Java Media Framework and Java Sound (on CD) Chapter 22

3. Appendix I presents the Java files that implement the view

We do not introduce an abundance of new material or UML design in these appen-
dices—they simply serve to implement the UML-based diagram we have presented in pre-
vious chapters into a fully functional program. Studying the implementation in the
appendices should hone the programming skills you have developed throughout the book
and reinforce your understanding of the design process.

SUMMARY
• Through the JMF API, programmers can create Java applications that play, edit, stream and cap-

ture many popular and high-quality media types.

• JMF 2.1.1 supports popular media file types such as Microsoft Audio/Video Interleave (.avi),
Macromedia Flash 2 movies (.swf), MPEG Layer 3 Audio (.mp3), Musical Instrument Digital
Interface (MIDI;.mid), MPEG-1 videos (.mpeg, .mpg), QuickTime (.mov) and Sun Audio
(.au).

• The Java Sound API and its extensive sound processing capabilities. Java Sound is a lower-level
API that supports many of the JMF’s internal audio capabilities.

• A Player is a type of Controller in JMF that can process and play media clips. Playing me-
dia clips with interface Player can be as simple as specifying the media source, creating a
Player for the media, obtaining the output media and controls GUI components from Player
and displaying them. In addition, Players can access media from a capture device such as a mi-
crophone and from a Real-time transport protocol (RTP) stream—a stream of bytes sent over a net-
work that can be buffered and played on the client computer.

• Play media involves accessing the media, creating a Controller for the media and outputting
the media. Before outputting the media, there is the option of formatting the media.

• JMF provides lightweight video renderers compatible with Swing GUI components using Man-
ager method setHint with parameter Manager.LIGHTWEIGHT_RENDERER and Bool-
ean.TRUE.

• A MediaLocator is similar to a URL, but it also supports RTP streaming session addresses and
capture device locations.

• Invoke Manager method createPlayer to create a Player object that references a media
player. Method createPlayer opens the specified media source and determines the appropri-
ate player for the media source. A NoPlayerException occurs if no appropriate player can be
found for the media clip.

• Class Manager provides static methods that enable programs to access to most JMF resourc-
es.

• Throughout the media-handling process, Players generate ControllerEvents that Con-
trollerListeners listen for. Class ControllerAdapter, which implements methods of
interface ControllerListener.

• Controllers use state transitions to confirm their position in the media processing algorithm.

• Player’s realize method to confirm all resources necessary to play media. Method realize
places the Player in a Realizing state where the player interacts with its media sources.
When a Player completes realizing, it generates a RealizedCompleteEvent—a type of
ControllerEvent that occurs when a Player completes its transition to state Realized.

• Player method prefetch causes the Player to obtain hardware resources for playing the
media and begin buffering the media data. Buffering the media data reduces the delay before the
media clip plays because media reading can take a long time.

Chapter 22 Java Media Framework and Java Sound (on CD) 1333

• Invoke Player method getVisualComponent method to obtain the visual component of a
video. Invoke Player method getControlPanelComponent to return the player’s GUI
controls.

• When the media clip ends, the Player generates a ControllerEvent of type EndOfMedi-
aEvent.

• Player method setMediaTime sets the position of the media to a specific time in the media.

• Invoking Player method start starts media playback. It also buffers and realizes the player if
that has not been done.

• Capture devices such as microphones have the ability to convert analog media into digitized me-
dia. This type of media is known as captured media.

• Class DataSource abstracts the media source to allow a program to manipulate it and provides
a connection to the media source.

• Interface Processor allows a program to manipulate data at the various processing stages. It ex-
tends interface Player and provides more control over media processing.

• Monitoring allows you to hear or see the captured media as it is captured and saved. A Monitor-
Control and other control objects obtained from Controller by invoking method getCon-
trol.

• JMF provides class Format to describe the attributes of a media format, such as the sampling rate
(which controls the quality of the sound) and whether the media should be in stereo or mono for-
mat. FormatControl objects that allow us to format objects that support format controls.

• Class CaptureDeviceManager enables a program to access capture device information.

• A CaptureDeviceInfo object provides the essential information necessary of a capture de-
vice’s DataSource.

• Invoke Manager method createDataSource to obtain the DataSource object that of that
media location.

• Manager method createRealizedProcessor creates a realized Processor object that
can start processing media data. The method requires as an argument a ProcessorModel object
containing the specifications of the Processor.

• Use a ContentDescriptor to describe the content-type of output from a Processor.
FileTypeDescriptor specifies the a file media content.

• Call Processor method getTrackControls to get each track’s controls.

• An object that implements interface DataSink enables media data to be output to a specific lo-
cation—most commonly a file. Manager method createDataSink receives the Data-
Source and MediaLocator as arguments to create a DataSink object.

• Register a DataSinkListener to listen for DataSinkEvents generated by a DataSink.
A program can call DataSinkListener method dataSinkUpdate when each Data-
SinkEvent occurs. A DataSink causes an EndOfStreamEvent when the capture stream
connection closes

• Streaming media refers to media that is transferred from a server to a client in a continuous stream
of bytes. Streaming media technology loads media data into buffers before displaying media.

• JMF provides a streaming media package that enables Java applications to send and receive
streams of media in the formats discussed earlier in this chapter. JMF uses the industry-standard
Real-Time Transport Protocol (RTP) to control media transmission. RTP is designed specifically
to transmit real-time media data.

• Use a DataSink or a RTPManager to stream media. RTPManagers provide more control and
versatility for the transmission. If an application sends multiple streams, the application must have

1334 Java Media Framework and Java Sound (on CD) Chapter 22

an RTPManager for each separate streaming session. Both require the DataSource obtained
from Processor’s getOutput method.

• The URL of RTP streams is in format: rtp://<host>:<port>/<contentType>

• Formatting the media can only be done when the Processor has been configured. To notify the
program when it completes Processor configuration, register a ControllerListener to
notify the program that it has completed configuring. A ConfigureCompleteEvent occurs
when Processor completes configuration.

• Processor method setContentDescriptor sets the stream to an RTP-enabled format
with ContentDescriptor.RAW_RTP parameter.

• TrackControl interface allow the formats of the media tracks to be set.

• SessionAddress contains an IP addresses and port number used in the streaming process.
RTPMangers use SessionAddresses to stream media.

• Invoke RTPManager method initialize to initialize the local streaming session with the lo-
cal session address as the parameter. Invoke RTPManager method addTarget to add the des-
tination session address as the client recipient of the media stream. To stream media to multiple
clients, call RTPManger method addTarget for each destination address.

• RTPManager method removeTargets closes streaming to specific destinations. RTPMan-
ager method dispose release the resources held by the RTP sessions

• The Java Sound API provides classes and interfaces for accessing, manipulating and playing Mu-
sical Instrumental Data Interface (MIDI) and sampled audio.

• A sound card is required to play audio with Java Sound. Java Sound throws exceptions when it
accesses audio system resources to process audio on a computer that does not have a sound card.

• Programmers can use package javax.sound.sampled to play sampled audio file formats,
which includes Sun Audio (.au), Wave (.wav) and AIFF (.aiff).

• To process audio data, we can to use a Clip line that allows the flow of raw digital data to audio
data we can listen to.

• An AudioInputStream object to point to the audio stream. Class AudioInputStream (a
subclass of InputStream) provides access to the audio stream contents.

• The length of video and audio clips is measured in frames. Each frame represents data at a specific
time interval in the audio file.

• The algorithm for playing sampled audio supported by Java Sound is as follows: obtain an Au-
dioInputStream from an audio file, obtain a formatted Clip line, load the AudioInput-
Stream into the Clip line, start the data flow in the Clip line.

• All Lines generate LineEvents that can be handled by LineListener. The first step to sam-
pled audio playback involves obtaining the audio stream from an audio file.

• Class AudioSystem enables a program to access many audio system resources required to play
and manipulate sound files.

• Method getAudioInputStream throws an UnsupportedAudioFileException if the
specified sound file is a non-audio file or contains a sound clip format that is not supported by Java
Sound.

• Method getLine requires a Line.Info object as an argument, which specifies the attributes
of the line the AudioSystem should obtain.

• We can use a DataLine.Info object that specifies a Clip data line, a general encoding format
and a buffer range. We need to specify a buffer range so the program can determine the best buffer
size given a preferred range.

Chapter 22 Java Media Framework and Java Sound (on CD) 1335

• DataLine.Info objects specify information about a Clip line, such as the formats supported
by the Clip. The DataLine.Info object constructor receives as arguments the Line class,
the line’s supported AudioFormats, the minimum buffer size and the maximum buffer size in
bytes.

• AudioSystem method getLine and Clip method open throw LineUnavailableEx-
ceptions if another application is using the requested audio resource. Clip method open also
throws an IOException if open is unable to read the specified AudioInputStream.

• Invoke Clip method start to begin audio playback.

• When a LineEvent occurs, the program calls LineListener method update to process the
event. The four LineEvent types are defined in class LineEvent.Type. The event types are
CLOSE, OPEN, START and STOP.

• Method close of class Line stops audio activity and closes the line—which releases any audio
resources obtained previously by the Line.

• Clip method loop can be called with parameter Clip.LOOP_CONTINUOSLY. to replay the
audio clip forever.

• Invoking method stop of interface Clip only stops data activity in the Line. Invoking method
start resumes data activity.

• MIDI (Musical Instrument Digital Interface) music can be created through a digital instrument,
such as an electronic keyboard (synthesizer), or through packaged software synthesizers. A MIDI
synthesizer is a device that can produce MIDI sounds and music.

• The MIDI specification provides detailed information on the formats of a MIDI file. For detailed
information on MIDI and its specification, visit their official Web site at www.midi.org. Java
Sound’s MIDI package allows developers to access the data that specify the MIDI, but it does not
provide support for the specification.

• Interpretation of MIDI data varies between synthesizers and will sound different with different in-
struments. Package javax.sound.midi enables program to manipulate, play and synthesize
MIDI. There are three MIDI types—0 (the most common), 1 and 2. Java Sound supports MIDI
files with .mid extensions and .rmf (Rich Music Format).

• Some file parsers in various operating systems are unable to interpret the MIDI file as a MIDI file
that Java can play.

• MIDI playback is accomplished by a MIDI sequencer. Specifically, sequencers can play and
manipulate a MIDI sequence, which is the data formula that tells a device how to handle the
MIDI data.

• Often, MIDI is referred to as a sequence, because the musical data in MIDI is composed of a se-
quence of events. The simplicity of MIDI data enables us to view each event individually and learn
the purpose of each event. The process to MIDI playback involves accessing a sequencer, loading
a MIDI sequence or a MIDI file into a sequencer and starting the sequencer.

• Method getSequence also can obtain a MIDI sequence from a URL or an InputStream.
Method getSequence throws an InvalidMidiDataException if the MIDI system de-
tects an incompatible MIDI file.

• Interface Sequencer, which extends interface MidiDevice (the super-interface for all MIDI
devices), represents the standard device to play MIDI data.

• Sequencer’s open method prepares to play a Sequence. Sequencer method setSe-
quence loads a MIDI Sequence into the Sequencer and throws an InvalidMidiExcep-
tion if the Sequencer detects an unrecognizable MIDI sequence. Sequencer method play
begins playing the MIDI sequence.

1336 Java Media Framework and Java Sound (on CD) Chapter 22

• A MIDI track is a recorded sequence of data; MIDIs usually contain multiple tracks. MIDI tracks
are similar to CD tracks except that the music data in MIDI are played simultaneously. Class
Track (package javax.sound.midi) provides access to the MIDI music data stored in the
MIDI tracks.

• MIDI data in MIDI tracks are represented by MIDI events. MIDI events are the holders of the
MIDI action and the time when the MIDI command should occur. There are three types of MIDI
message—ShortMessage, SysexMessage and MetaMessage. ShortMessages pro-
vide instructions, such as specific notes play, and can configure options, such when a MIDI starts.
The other two less-used messages are exclusive system messages called SysexMessage and
MetaMessages which may tell a device that the MIDI has reached the end of a track. This sec-
tion deals exclusively with ShortMessages that play specific notes. Each MidiMessage is
encapsulated in a MidiEvent and a sequence of MidiEvents form a MIDI track.

• Each MidiEvent’s getTick method provides the time when the event takes place (time
stamp).

• ShortMessage method getCommand returns the command integer of the message. Short-
Message method getData1 returns the first status byte of the message. ShortMessage
method getData2 returns the second status byte. The first and second status bytes vary in inter-
pretation according to the type of command in ShortMessage.

• General MIDI recording is accomplished through a sequencer. Interface Sequencer provides
simple methods for recording—assuming the transmitters and receivers of MIDI devices are
“wired” correctly.

• After setting up a sequencer and an empty sequence, a Sequencer object can invoke its start-
Recording method to enable and start recording on the empty track. Method record-
Enable of interface Sequencer takes a Track object and a channel number as the parameters
to enable recording on a track.

• Method write of class MidiSystem writes the sequence to a specified file.

• An alternative method to record MIDI without having to deal with transmitters and receivers is to
create events from ShortMessages. The events should be added to a track of a sequence.

• Interface Synthesizer is a MidiDevice interface which enables access to MIDI sound gen-
eration, instruments, channel resources, and sound banks.

• A SoundBank is the container for various Instruments, which tell the computer how to sound
a specific note and are programmed algorithms of instructions. Different notes on various instru-
ments are played through a MidiChannel on different tracks simultaneously to produce sym-
phonic melodies.

• Acquiring any MIDI resources throws a MidiUnavailableException if the resource is un-
available.

• Invokes Synthesizer’s getChannels method to obtain all 16 channels from the synthesiz-
er. A MidiChannel can sound a note by calling its noteOn method with the note number (0-
127) and volume as parameters. MidiChannel’s noteOff method turns off a note with just the
note number parameter.

• Synthesizer’s getAvailableInstruments method obtains the default instrument pro-
grams of a synthesizer. One can also import more instruments by loading a customized sound bank
through method loadAllInstruments (SoundBank) in interface Synthesizer. A sound
bank usually has 128 instruments. MidiChannel’s programChange method loads the desired
instrument program into the synthesizer.

• Invoke Receiver’s send method with a MidiMessage and a time stamp as its parameters to
send MIDI message to all its transmitters.

Chapter 22 Java Media Framework and Java Sound (on CD) 1337

TERMINOLOGY
addControllerListener method of
 Controller

DataLine interface
DataLine.Info class

addDataSinkListener method of
 DataSink

DataSink interface
DataSinkEvent class

addLineListener method of Line DataSinkListener interface
addMetaEventListener method of
 Sequencer

dataSinkUpdate method of
 DataSinkListener

addTarget method of RTPManager DataSource class
AudioFormat class deleteTrack method of Sequence
AudioFormat.Encoding.PCM_SIGNED device ports
AudioInputStream class Direct Sound
AudioSystem class dispose method of RTPManager
Boolean.TRUE encoding
broadband endOfMedia method of

 ControllerAdapterCannotRealizeException class
capture EndofMediaEvent class
capture device EndofStreamEvent class
captured media FileTypeDescriptor class
CaptureDevice interface FileTypeDescriptor.QUICKTIME
CaptureDeviceInfo class Format class
CaptureDeviceManger class FormatControl interface
Clip interface frames
Clip.class get method of Track
Clip.LOOP_CONTINUOUSLY getAudioInputStream method of

 AudioSystemClock interface
close method of Controller getBank method of Patch
close method of Line getChannels method of Synthesizer
close method of MidiDevice getCommand method of ShortMessage
configure method of Processor getControlComponent method of Control
configureComplete method of
 ControllerAdapter

getControlPanelComponent method of
 Player

ConfigureCompleteEvent class getData1 method of ShortMessage
Controller.Prefetching getData2 method of ShortMessage
Controller.Prefeteched getDataOutput method of Processor
Controller.Realized getDeviceList method of

 CaptureDeviceManagerController.Realizing
Controller.Started getFormat method of AudioFormat
Controller.Stopped getFormat method of FormatControl
ControllerAdapter class getFormatControls method of

 CaptureDeviceControllerEvent class
ControllerListener interface getFrameLength method of

 AudioInputStream
getFrameSize method of AudioFormat

createDataSink method of Manager
createDataSource method of Manager
createPlayer method of Manager getLine method of AudioSystem
createProcessor method of Manager getLocator method of

 CaptureDeviceInfocreateRealizedProcessor method of
 Manager getMessage method of MidiEvent
createSendStream method of RTPManagergetMidiFileTypes method of MidiSystem
createTrack method of Sequence getPatch method of Instrument

1338 Java Media Framework and Java Sound (on CD) Chapter 22

getProgram method of Patch MidiEvent class
getReceiver method of MidiDevice MidiMessage class
getResolution method of Sequence MidiSystem class
getSequence method of MidiSystem MidiUnavailableException class
getSequencer method of MidiSystem mixers
getSupportedFormats method of
 FormatControl

MonitorControl interface
monitoring

getSynthesizer method of MidiSystem MP3
getTargetFormat method of AudioSystemMPEG-1
getTick method of MidiEvent network ports
getTrackControls method of Processor newInstance method of RTPManager
getTracks method of Sequence NoDataSinkException class
getTransmitter method of MidiDevice NoDataSourceException class
getType method of LineEvent NoPlayerException class
getVisualComponent method of Player NoProcessorException class
initialize method of RTPManager noteOff method of MidiChannel
Instrument class noteOn method of MidiChannel
InvalidMidiException class open method of Clip
InvalidSessionAddress class open method of DataSink
isEnabled method of FormatControl open method of MidiDevice
isLineSupported method of AudioSystemoutput format
Java Media Framework packetized data
Java Sound Patch class
javax.media package pitch
javax.media.control package Player interface
javax.media.datasink package pre-buffer
javax.media.format package prefetchComplete method of

 ControllerAdapterjavax.media.protocol package
javax.media.rtp package PrefetchCompleteEvent class
javax.sound.midi package pre-process
javax.sound.sampled package Processor interface
JOptionPane.CLOSED_OPTION Processor.Configured
JOptionPane.DEFAULT_OPTION Processor.Configuring
JOptionPane.OK_OPTION ProcessorModel class
Line interface propagation delay
LineEvent class protocol
LineEvent.Type.STOP QuickTime
LineListener interface realize method of Controller
LineUnavailableException class realizeComplete method of

 ControllerAdapterloop method of Clip
Manager class RealizeCompleteEvent class
Manger.LIGHTWEIGHT_RENDERER Receiver interface
media recordEnable method of Sequencer
media clip removeTargets method of RTPManager
media location RMF (Rich Music Format)
media tracks RTP (Real-time Transport Protocol)
MediaLocator class RTPManger class
MIDI (Musical Instrument Digital Interface) SecurityException class
MIDI Specification send method of Receiver
MidiChannel interface SendStream interface

Chapter 22 Java Media Framework and Java Sound (on CD) 1339

SELF-REVIEW EXERCISES
22.1 Fill in the blanks in each of the following.

a) Class provides access to many JMF resources.
b) In addition to locations of media files stored on the local computer, a can

also specify the location of capture devices and RTP sessions.
c) Class provides access to sampled audio system resources while class

 provides access to MIDI system resources.
d) An event of type indicates that a Controller has establish communica-

tions with the media source.
e) Method createRealizedProcessor takes a as an argument.
f) In order, the Processor’s states are: Unrealized, , ,

, , , and Started.
g) Constant specifies that the Processor should output media in QuickTime

format.
h) To stream media, we can use a or a .
i) objects set the stream formats for capture devices.
j) Invoking Clip method with constant as an argument replays a

sampled audio file continuously.
k) A MIDI contains multiple tracks, which contain a sequence of MIDI

 that each encapsulate a MIDI .

22.2 State whether each of the following is true or false. If false, explain why.
a) Manager method setHint can be used to specify that the visual component of a media

clip should be rendered using lightweight GUI components.
b) A ControllerListener handles events generated by a DataSink.
c) Only objects that implement interface Processor can play media.

Sequence class start method of Player
Sequence.PPQ start method of SendStream
Sequencer interface start method of Sequencer
SessionAddress class startRecord method of Sequencer
SessionAddress class stop method of DataLine
SessionEvent class stop method of DataSink
SessionListener interface stop method of Sequencer
setContentDescriptor method of
 Processor

stopRecord method of Sequencer
streaming media

setFormat method of FormatControl streams
setHint method of Manager synchronization
setMediaTime of Clock synthesis
setMessage method of ShortMessage Synthesizer interface
setReceiver method of Transmitter teleconferencing
setSequence method of Sequencer tempo
ShortMessage class time stamp
ShortMessage.NOTE_OFF Track class
ShortMessage.NOTE_ON TrackControl interface
ShortMessage.PROGRAM_CHANGE Transmitter interface
simulation UnsupportedAudioFileException class
size method of track UnsupportedFormatException class
SoundBank interface video conference
start method of DataLine Video for Windows
start method of DataSink write method of MidiSystem

1340 Java Media Framework and Java Sound (on CD) Chapter 22

d) A Player cannot access media from capture devices; a Processor must be used for
this purpose.

e) A Clip plays MIDI Sequences.
f) MIDI playback stops automatically when the Sequencer reaches the end of a MIDI

Sequence.
g) An RTPManger can stream an entire media file regardless of the number of tracks in

the file.
h) Method createPlayer throws a NoDataSourceException if it is unable to lo-

cate the specified media data source.

ANSWERS TO SELF-REVIEW EXERCISES
22.1 a) Manager. b) MediaLocator. c) AudioSystem, MidiSystem. d) Realize-
CompleteEvent. e) ProcessorModel. f) Configuring, Configured, Realizing, Realized,
Prefetching, Prefetched. g) FileTypeDescriptor.QUICKTIME. h) DataSink, RTPMan-
ager. i) FormatControl. j) loop, Clip.LOOP_CONTINUOUSLY. k) Sequence, events,
message.

22.2 The answers to Self-Review Exercise 3.2 are as follows:
a) True.
b) False. A DataSinkListener handles DataSinkEvents generated by a Data-

Sink.
c) False. Objects that implement Player or Processor can play media.
d) False. Both a Processor and a Player can access media from capture devices.
e) False. A Sequencer plays MIDI sequences.
f) True.
g) False. Each RTPManager can stream only one track.
h) False. Method createPlayer throws a NoPlayerException if it is unable to lo-

cate the specified media data source.

EXERCISES
22.3 Wave audio clips are commonly used to play sounds that alert the user of a problem in a pro-
gram. Typically, such sounds are accompanied by error-message dialogs. Modify the DivideByZ-
eroTest example of Fig. 14.1 to play an error-message sound (in addition to displaying an error
message dialog) if the user enters an invalid integer or attempts to divide by zero. Preload a compat-
ible sound clip using a Clip line as demonstrated in Fig. 22.5. The Clip line needs to support only
the format of the chosen sound clip. There should be a separate method that invokes the playback of
the clip. When the program detects an exception, it should call this method to play the error message
sound. After each clip playback, the program needs to rewind the clip by invoking Clip’s method
setFramePosition with the frame position as the argument, so that the clip can replay from its
beginning position.

22.4 Incorporate MIDI file playback capabilities, as demonstrated in class MidiData
(Fig. 22.7), into the ClipPlayer demo. Class ClipPlayer should have separate methods for ob-
taining MIDI sequence data and for playing back the sequence with a sequencer.

22.5 The SimplePlayer demo (Fig. 22.7) demonstrated JMF’s media playback (videos, cap-
ture media) capabilities using interface Player. Using the SimplePlayer demo as a guideline,
develop a karaoke application in which one portion of the program plays a music/video file (prefera-
bly without lyrics) while another portion of the program simultaneously captures the user’s voice. The
program should start playback and capture as soon as it obtains the media. It is important that the pro-
gram allows the user to control both the capture and music, so the control GUIs of each media should
be displayed. When the media file finishes playing, the voice capture should cease and the program

Chapter 22 Java Media Framework and Java Sound (on CD) 1341

should reset the music to the beginning. The program should close all Player-related resources
when the user terminates the program.

22.6 Modify your solution to Exercise 3.5 by implementing the program using interface Pro-
cessor. Create a Processor that is ready to display media with no format or output specifica-
tions. The voice capture should not end and the media should not rewind when the media finishes
playing. Deallocate Processor-related resources when the user opens a new file or closes the pro-
gram. All other program details remain the same as specified in Exercise 3.5.

22.7 Referring to the file saving process demonstrated in class CapturePlayer (Fig. 22.2),
modify your solution to Exercise 22.6 by saving both audio streams to two separate QuickTime files.
Specify the media tracks to be in AudioFormat.IMA4 encoding. The program should display file
saver dialogs for each audio file saver and a message when the saving completes or stops. There
should be separate data writers for each audio stream. The program should close the data writers when
there is no more data to process or when the user terminates the program. DataSinkEvent method
getSourceDataSink is available to obtain the DataSink that is generating the Data-
SinkEvent. Use MonitorControls to monitor both audio streams, so there is no need to display
video or default user controls. MonitorControl method setEnabled is available to enable
monitoring of the audio streams. Display one of the MonitorControls in a dialog box. Make sure
to close Processor resources when there is no more data from the media file or when the user
opens another file or terminates the program.

22.8 Modify class MidiSynthesizer (Fig. 22.9) into an application where the user can play
violin notes by pressing the computer keyboard keys. Use the virtual key code of the keys to specify
the note number that the synthesizer should play. The violin’s program number is 40. Use the first
and ninth channel to sound the notes at the same time. The ninth channel may generate a different
version of the violin notes.

SPECIAL SECTION: CHALLENGING MULTIMEDIA PROJECTS
The preceding exercises are keyed to the text and designed to test the reader’s understanding of fun-
damental JMF and Java Sound concepts. This section includes a collection of advanced multimedia
projects. The reader should find these problems challenging, yet entertaining. The problems vary
considerably in difficulty. Some require an hour or two of program writing and implementation. Oth-
ers are useful for lab assignments that might require two or three weeks of study and implementa-
tion. Some are challenging term projects. [Note: Solutions are not provided for these exercises.].

22.9 Modify the ClipPlayer (Fig. 22.5, Fig. 22.6) demo to provide a replay checkbox that al-
lows the user to replay the sampled audio file.

22.10 Modify the RTPServer demo (Fig. 22.3) to enable transmission of the audio portions of
media files to two clients. The application testing class should have twice the number of IP and port
number inquiry dialog boxes. The program can check for audio formats by matching track control
formats of the media to be instances of AudioFormat (class AudioFormat).

22.11 Many Web sites are able to play video clips. The SimplePlayer (Fig. 22.1) program can
be an applet. Simplify the SimplePlayer program to an applet that plays a preloaded media clip
on a web page. Insert this applet tag into your HTML file:

<applet code = AppletName.class width = # height = # >
 <param name = file value = "sample.mov" >

</applet>

22.12 Modify class MidiRecord (Fig. 22.8) and class MidiData (Fig. 22.7) to create a new ap-
plication class that duplicates MIDI files by recording the sequence to a new file. Play the sequence

1342 Java Media Framework and Java Sound (on CD) Chapter 22

using MidiData and use its Transmitter to transmit MIDI information to the Receiver of
MidiRecord.

22.13 Modify your solution to Exercise 22.6 to create a streaming karaoke application in which the
application streams only the video portion of a music video and the sound stream is replaced by a
voice capture stream. [Note: If the video format contains only one track for both audio and video, the
application cannot choose to stream only the video portion of the track.]

22.14 Modify class MidiData (Fig. 22.7) to load all tracks of a MIDI file and revise class Mid-
iDemo (Fig. 22.10) to enable the user to select the playback of each individual track displayed in a
JList selector panel. Allow the user to replay the sequence forever.

22.15 Implement an MP3 player with a file list window using Vectors and a JList.

22.16 Modify class MidiRecord (Fig. 22.8) and class MidiDemo (Fig. 22.10) to allow the user
to record MIDI to individual tracks stored in a Vector. Playback of the recorded MIDI should play
all MIDI tracks simultaneously.

22.17 Currently the MidiDemo program (Section 22.7) records synthesized music with the first
available instrument (i.e., Grand Piano). Modify class MidiDemo so that music will be recorded with
a user-selected instrument, and allow the user to change the instrument during recording. Also allow
the user to import their own sound banks. Make changes to classes MidiSynthesizer, MidiDa-
ta and MidiRecord as needed. (Hint: The command parameter to change instrument is Short-
Message.PROGRAM_CHANGE)

22.18 Modify the SimplePlayer demo (Fig. 22.1) to support multiple media players. Present
each media clip in its own JInternalFrame. The program needs to create separate Players for
each media clip and should register a ControllerListener for each player. Controller-
Event method getSourceController is available to obtain the controller generating the Con-
trollerEvent. Implement the program using a dynamic data structure such as a Vector to store
the multiple Players.

22.19 Modify your solution to Exercise 3.7 to save both media streams to one file and play the com-
bined stream. Use Manager method createMergingDataSource, which receives an array of
DataSource objects, to save both the capture stream and the music stream into one stream, whose
content-type will be MIXED. The program should obtain the output DataSources from the Pro-
cessors as the DataSource objects to be merged. The program must also obtain a duplicate
DataSource (of the merged DataSource) for creating the Player for that DataSource. To
do this, use Manager method createCloneableDataSource to create a Cloneable
DataSource with the merged DataSource as the argument. Duplicate the DataSource for the
player by invoking method createClone of interface Cloneable on the DataSource (similar
to obtaining the FormatControls of a CaptureDevice DataSource in the Capture-
Player demo (Fig. 22.2)).

22.20 A program can record MIDI without the use of transmitters and receivers by manually creat-
ing MidiMessages, placing them in MidiEvents, and adding these events to a track. In addi-
tion to the MidiMessage argument, a program must specify a time stamp to create the
MidiEvent, expressed in ticks (i.e. milliseconds of long type), so the program must obtain the sys-
tem’s current time in milliseconds, which can be obtained from System method current-
TimeMillis. Track method add is available to add events to a track. Create an acoustics table
(e.g. drums, cymbals, etc.) where the user can selected a sequence of instruments to play. Allow the
user to save the recorded MIDI sequence to a file.

22.21 Create a peer-to-peer teleconferencing kit that enables users to talk to and hear each other.
To listen to each other, each user must open an RTP session for the capture stream. A program can
open an RTP stream with a MediaLocator specifying the RTP session address. Then, the program

Chapter 22 Java Media Framework and Java Sound (on CD) 1343

can use the MediaLocator to create a Player for the RTP stream. The program can send the
voice capture as demonstrated in the RTPManager demo (Fig. 22.3). To send the voice capture to
more than two people, use RTPManagers for each separate session and call its addTarget method
to add each recipient’s session address as a destination of the capture stream. This is referred to as
multicast-unicast sessions.

22.22 Using the “piano player” driver (Section 22.7.4 discusses the driver) from class MidiDemo
(Fig. 22.10) and image animation functions from Chapter 18, write a program that displays a bounc-
ing ball whose pinnacle height is specified by the note numbers (of a ShortMessage in a Midi-
Event) of a loaded track in a MIDI file. The program should use the duration ticks of the
MidiEvent as the duration of the bounce.

22.23 Most karaoke music videos are in MPEG format, for which JMF provides an MpegAudio-
Control interface to control the audio channels. For multilingual and karaoke MPEG videos, chan-
nel layers direct the main audio to one of two audio streams (e.g. english-dubbed audio stream) or
both audio streams (e.g. both music and song channels turned on in karaoke videos). As an additional
feature for MPEG videos to your solution to Exercise 3.6, obtain and display the control GUI com-
ponent from a MpegAudioControl, if any, or display a customized radio button GUI selector to
let the user select the channel layout of the MPEG audio. Interface MpegAudioControl provides
method setChannelLayout to set the audio channel layout for MPEG videos, with the channel
layout as the argument. (Refer to the use of MonitorControl in Fig. 22.2)

22.24 Create a multimedia-rich Tic-Tac-Toe game that plays sampled audio sounds when a player
makes a valid move or makes an invalid move. Use a Vector to store preloaded AudioInput-
Streams representing each audio clip. Use a Clip line to play sounds in response to the user inter-
actions with the game. Play continuous MIDI background music while the game is in progress. Use
the JMF’s interface Player to play a video when a player wins.

22.25 Java Sound’s MIDI package can access MIDI software devices as well as hardware devices.
If you have a MIDI keyboard that the computer can detect or one that can be plugged into a MIDI IN
port of a sound card, Java Sound can access that keyboard. Use synthesizers, receivers, transmitters
and sequencers to allow the user to record MIDI synthesized by the electronic keyboard. MidiSys-
tem method getMidiDeviceInfo is available to obtain all detectable MIDI devices’ information
(array of MidiDevice.Info objects). Use MidiSystem method getMidiDevice with a Mi-
diDevice.Info argument to obtain the specified MIDI device resource.

22.26 Enhance the MidiDemo program to allow for more configurations such as tempo, control
and replay. Sequencers can implement MetaEventListeners to handle MetaMessages and
ControlEventListeners to handle ShortMessage.CONTROL_CHANGE commands (see
the MIDI specification for the type of changes and the various MetaEvents). Interface Sequenc-
er also provides many configuration and control methods that affect sequencer playback.

22.27 Enhance the RTPServer program (Fig. 22.3, Fig. 22.4) to a video distribution server where a
live video feed from a video capture device (e.g., VFW TV card, digital cameras) is broadcast to every-
one in the network. Use the IP address ending with .255 (i.e. to create a SessionAddress) to
broadcast to everyone in the network subnet. A server program should have access to stream transmis-
sion status, error controls and delay management. Package javax.media.rtp provides many inter-
faces to handle stream configurations and statistics. Package javax.media.rtcp allows the user to
access RTP session reports. Package javax.media.rtp.event contains many events generated
during an RTP session that can be used to perform RTP enhancements at those stages in the session.
Package javax.media.control provides several control interfaces useful in RTP sessions.

22.28 Enhance the media player application solution to Exercise 3.18 by adding editing features to
the program. First add a replay checkbox. Although a Processor is more suitable for control tasks
than a Player is, one can also use both interfaces by creating a Player for the output Data-

1344 Java Media Framework and Java Sound (on CD) Chapter 22

Source from the Processor. Control features should include track formatting, frame control set-
ting (interface FrameRateControl), buffer control (interface BufferControl), and quality
control (interface QualityControl). Include a program option that allows the user to save media
clips given the settings of these controls. For capture devices, there is a PortControl interface
available to control their ports of devices. These interfaces are in package javax.media.con-
trol. In package javax.media, there are other interfaces such as Codec and Effect that en-
able further rendering and processing of media to specific media formats. Allow the user to import
new codecs. Also implement an editing feature which enables the user to extract certain portions of
a media clip. (Hint: set the media position of a media clip and obtain the Processor output at the
marked positions.)

22.29 Package javax.media.sound offers many audio system resources. Use this package to
create a sound capture program that allows the users to save the capture stream in their desired for-
mats, bit rates, frequencies and encodings.

22.30 Create a visualization studio that displays graphics bars that synchronize with sampled audio
playback.

22.31 Extend MP3 playback support for class ClipPlayer (Fig. 22.5) using classes in package
javax.media.sound.spi. The MP3 encoding process uses the Huffman algorithm.

22.32 (Story Teller) Record audio for a large number of nouns, verbs, articles, prepositions, etc.
Then use random number generation to forms sentences and have your program speak the sentences.

22.33 (Project: Multimedia Authoring System) Develop a general-purpose multimedia authoring
system. Your program should allow the user to form multimedia presentations consisting of text, au-
dios, images, animations and eventually, videos. Your program lets the user weave together a presen-
tation consisting of any of these multimedia elements that are selected from a catalog your program
displays. Provide controls to allow the user to customize the presentation dynamically as the presen-
tation is delivered.

22.34 (Video Games) Video games have become wildly popular. Develop your own Java video
game program. Have a contest with your classmates to develop the best original video game.

22.35 (Physics Demo: Bouncing Ball) Develop an animated program that shows a bouncing ball.
Give the ball a constant horizontal velocity. Allow the user to specify the coefficient of restitution,
e.g., a coefficient of restitution of 75% means that after the ball bounces it returns to only 75% of its
height before it was bounced. Your demo should take gravity into effect—this will cause the bounc-
ing ball to trace a parabolic path. Track down a “boing” sound (like a spring bouncing) and play the
sound every time the ball hits the ground.

22.36 (Physics Demo: Kinetics) If you have taken physics, implement a Java program that will
demo concepts like energy, inertia, momentum, velocity, acceleration, friction, coefficient of restitu-
tion, gravity and others. Create visual effects and use audios for emphasis and realism.

22.37 (Project: Flight Simulator) Develop your own flight simulator Java program. This is a very
challenging project. It is also an excellent candidate for a contest with your classmates.

22.38 (Towers of Hanoi) Write an animated version of the Towers of Hanoi problem we presented
in Exercise 6.37. As each disk is lifted off a peg or slid onto a peg play a “whooshing” sound. As each
disk lands on the pile play a “clunking” sound. Play some appropriate background music.

22.39 (Tortoise and the Hare) Develop a multimedia version of the Tortoise and Hare simulation
we presented in Exercise 7.41. You might record an announcer’s voice calling the race, “The con-
tenders are at the starting line.” “And they’re off!” “The Hare pulls out in front.” “The Tortoise is
coming on strong.” etc. As the race proceeds, play the appropriate recorded audios. Play sounds to
simulate the animals’ running, and don’t forget the crowd cheering! Do an animation of the animals
racing up the side of the slippery mountain.

Chapter 22 Java Media Framework and Java Sound (on CD) 1345

22.40 (Knight’s Tour Walker) Develop multimedia-based versions of the Knight’s Tour programs
you wrote in Exercises 7.22 and 7.23.

22.41 (Pinball Machine) Here’s another contest problem. Develop a Java program that simulates a
pinball machine of your own design. Have a contest with your classmates to develop the best original
multimedia pinball machine. Use every possible multimedia trick you can think of to add “pizzazz”
to your pinball game. Try to keep the game mechanisms close to those of real pinball games.

22.42 (Roulette) Study the rules for the game of roulette and implement a multimedia-based version
of the game. Create an animated spinning roulette wheel. Use audio to simulate the sound of the ball
jumping the various compartments that correspond to each of the numbers. Use an audio to simulate
the sound of the ball falling into its final slot. While the roulette wheel is spinning, allow multiple
players to place their bets. When the ball lands in its final slot, you should update the bank accounts
of each of the players with the appropriate wins or losses.

22.43 (Craps) Simulate the complete game of craps. Use a graphical representation of a craps table.
Allow multiple players to place their bets. Use an animation of the player who is rolling the dice and
show the animated dice rolling eventually to a stop. Use audio to simulate some of the chatter around
the craps table. After each roll, the system should update the bank accounts of each of the players de-
pending on the bets they have made.

22.44 (Morse Code) Modify your solution to Exercise 10.26 to output the morse code using audio
clips. Use two different audio clips for the dot and dash characters in Morse code.

A
Java Demos

A.1 Introduction1

In this appendix, we list some of the best Java demos we found on the Web. We began our
journey at software.dev.earthweb.com/java. This site is an incredible Java re-
source and has some of the best Java demos including a huge compilation of games. The
code ranges from basic to complex. Many of the authors of these games and other resources
have provided source code. We hope you enjoy surfing these sites as much as we did.

A.2 The Sites
softwaredev.earthweb.com/java
Gamelan, a site owned by EarthWeb, has been a wonderful Java resource since the early days of Java.
This site originally was a large Java repository where individuals traded ideas on Java and examples
of Java programming. One of its early benefits was the volume of Java source code that was available
to the many people learning Java. It is now an all-around Java resource with Java references, free Java
downloads, areas where you can ask questions to Java experts, discussion groups on Java, a glossary
of Java-related terminology, upcoming Java-related events, directories for specialized industry topics
and hundreds of other Java resources.

www.jars.com
Another EarthWeb Web site is JARS—originally called the Java Applet Rating Service. The JARS site
calls itself the “#1 Java Review Service.” This site originally was a large Java repository for applets.
It rated every applet registered at the site as top 1%, top 5% and top 25%, so you could immediately
view the best applets on the Web. Early in the development of the Java language, having your applet
rated here was a great way to demonstrate your Java programming abilities. JARS is now another all-
around resource for Java programmers.

1. There are many Java-related Web sites that cover more advanced Java topics such as servlets, Java-
Server Pages (JSP), Enterprise Java Beans (EJB), database, Java 2 Enterprise Edition (J2EE), Java
2 Micro Edition (J2ME), Security, XML and many more. These sites are provided in our compan-
ion book, Advanced Java 2 Platform How to Program (ISBN# 0-13-089560-1).

Appendix A Java Demos 1347

www.javashareware.com
Java Shareware contains hundreds of Java applications, applets, classes and other Java resources. The
site includes a large number of links to other Java developer Web sites.

javaboutique.internet.com
Java Boutique is a great resource for any Java programmer. The site offers applets, applications, fo-
rums, tutorials, reviews, glossaries and more.

www.thejmaker.com
The J Maker has numerous live Java demos, including games, menus and animated visual effects.
Many of the programs on this site are acclaimed worldwide and some have won awards.

www.demicron.com/gallery/photoalbum2/index.shtml
The PhotoAlbum II has some of the coolest effects we have found on the Web. The effects include a
liquid effect, folding an image into a paper airplane and others.

www.blaupunkt.de/simulations/svdef_en.html
The Sevilla RDM 168 is a simulation, built with Java, of a car Radio and CD player. You can tune into
a variety of on-line radio stations or CDs, adjust the volume, clock settings and more.

www.frontiernet.net/~imaging/play_a_piano.html
Play A Piano is a Java applet that allows you to play the piano or watch the sound waves and listen
as the piano plays itself.

www.gamesdomain.co.uk/GamesArena/goldmine
Goldmine is a fun game using simple animation.

www.javaonthebrain.com
This site offers many new and original Java games for the Web. Source code for many of the programs
is provided.

www.javagamepark.com
If you are looking for games, the Java Game Park site has loads of them. All of the games are written
in Java. The source code is provided in some cases.

teamball.sdsu.edu/~boyns/java/
This site has interesting games written in Java and includes source code for many of them.

www.cruzio.com/~sabweb/arcade/index.html
SABames Arcade is another source for Java video games. Source code is provided for many of the
games. Don’t miss the SabBowl bowling game.

dogfeathers.com/java/hyprcube.html
Stereoscopic Animated Hypercube. If you happen to possess the old red and blue 3D glasses, check
this site out. The programmer was able to create a 3D image using Java. It isn’t really a complicated
image, just some cubes, however the idea that you can create images that will jump off your screen is
a great concept!

www.npac.syr.edu/projects/vishuman/VisibleHuman.html
This site has won various awards. You can look at cross sections of the human body.

www-groups.dcs.st-and.ac.uk/~history/Java/
Famous Curves Applet Index. Provides graphs of complex curves. Allows the user to alter the param-
eters to the equations that calculate the curves.

B
Java Resources

B.1 Resources1

java.sun.com
The Sun Microsystems, Inc. Java Web site is an essential stop when searching the Web for Java infor-
mation. Go to this site to download the Java 2 Software Development Kit. This site offers news, in-
formation, on-line support, code samples and more.

java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html
This site reviews the Sun Microsystems, Inc. code conventions for the Java programming language.

www.softwaredev.earthweb.com
This site provides a wide variety of information on Java and other Internet-related topics. The Java
directory page contains links to thousands of Java applets and other Java resources.

softwaredev.earthweb.com/java
The Gamelan site has been a wonderful Java resource since the early days of Java. This site originally
was a large Java repository where individuals traded ideas on Java and examples of Java programming.
One of its early benefits was the volume of Java source code that was available to the many people learn-
ing Java. It is now an all-around Java resource with Java references, free Java downloads, areas where
you can ask questions of Java experts, discussion groups on Java, a glossary of Java terminology, up-
coming Java events, directories for specialized industry topics and hundreds of other Java resources.

www.jars.com
Another Earthweb.com Web site is JARS—originally called the Java Applet Rating Service. The
JARS site calls itself the “#1 Java Review Service.” This site originated as a large Java repository for
applets. Its benefit was that it rated every applet registered at the site as top 1%, top 5% and top 25%,
so you could immediately view the best applets on the Web. Early in the development of the Java lan-
guage, having your applet rated here was a great way to demonstrate your Java programming abilities.
JARS is now another all-around resource for Java programmers.

1. There are many Java-related Web sites that cover more advanced Java topics such as servlets, Java-
Server Pages (JSP), Enterprise Java Beans (EJB), database, Java 2 Enterprise Edition (J2EE), Java
2 Micro Edition (J2ME), Security, XML and many more. These sites are provided in our compan-
ion book, Advanced Java 2 Platform How to Program (ISBN# 0-13-089560-1).

Appendix B Java Resources 1349

developer.java.sun.com/developer
On the Sun Microsystems Java Web site, visit the Java Developer Connection. The site includes tech-
nical support, discussion forums, on-line training courses, technical articles, resources, announce-
ments of new Java features, early access to new Java technologies and links to other important Java
Web sites. Even though the site is free, you must register to use it.

www.acme.com/java
This page has several animated Java applets with the source code provided. This site is an excellent
resource for information on Java. The page provides software, notes and a list of hyperlinks to other
resources. Under software you will find animated applets, utility classes and applications.

www.javaworld.com/index.html
The JavaWorld online magazine provides a collection of Java articles, tips, news and discussions. A
questions area of this site addresses both general and specific problems programmers face.

www.nikos.com/javatoys
The Java Toys Web site includes links to the latest Java news, Java User Groups (JUGs), FAQs, tools,
Java-related mailing lists, books and white papers.

www.java-zone.com
The Development Exchange Java Zone site includes Java discussion groups, an “ask the Java Pro”
section and some recent Java news.

www.ibiblio.org/javafaq
This site provides the latest Java news. It also has some helpful Java resources including a Java FAQ
List, a tutorial called Brewing Java, Java User Groups, Java Links, the Java Book List, Java Trade
Shows, Java Training and Exercises.

dir.yahoo.com/Computers_and_Internet/Programming_Languages/Java
Yahoo, a popular World Wide Web search engine, provides a complete Java resource. You can initiate
a search using key words or explore the categories listed at the site including games, contests, events,
tutorials and documentation, mailing lists, security and more.

www-106.ibm.com/developerworks/java
The IBM Developers Java Technology Zone site lists the latest news, tools, code, case studies and
events related to IBM and Java.

B.2 Products
java.sun.com/products
Download the Java 2 SDK and other Java products from the Sun Microsystems Java Products page.

www.sun.com/forte/ffj/index.cgi
The NetBeans IDE is a customizable, platform independent, visual programming development envi-
ronment.

www.borland.com/jbuilder
The Borland JBuilder IDE home page has news, product information and customer support.

www.towerj.com
At this site you will find information on how to enhance the performance of server-side Java applica-
tions along with free evaluation copies of native Java compilers.

www.symantec.com/domain/cafe
Visit the Symantec site for information on their Visual Café Integrated Development Environment.

www-4.ibm.com/software/ad/vajava
Download and read more about the IBM Visual Age for Java development environment.

1350 Java Resources Appendix B

www.metrowerks.com
The Metrowerks CodeWarrior IDE supports a few programming languages, including Java.

B.3 FAQs
www.ibiblio.org/javafaq/javafaq.html
This is a comprehensive resource for both Java language basics and more advanced topics in Java Pro-
gramming. Section 6: Language Issues and Section 11: Common Errors and Problems may be par-
ticularly useful, as they clarify situations that often are not explained well.

www.afu.com/javafaq.html
This is another FAQ which covers a fairly broad slice of topics in Java. This includes some good code
samples and hints for getting projects to compile and run.
www.nikos.com/javatoys/faqs.html
The Java Toys Web site includes links to FAQs on a broad range of Java-related topics.

www.jguru.com/faq/index.jsp
This is a thorough compilation of FAQs on Java and related subjects. Questions can be read in order
or searched for by subject.

B.4 Tutorials
Several tutorials are on the sites listed in the Resources section.

java.sun.com/docs/books/tutorial/
The Java Tutorial Site has a number of tutorials, including sections on JavaBeans, JDBC, RMI, Serv-
lets, Collections and Java Native Interface.

www.ibiblio.org/javafaq/
This site provides the latest Java news. It also has some helpful Java resources including the Java FAQ
List, a tutorial called Brewing Java, Java User Groups, Java Links, the Java Book List, Java Confer-
ences, Java Course Notes and Java Seminar Slides.

B.5 Magazines
www.javaworld.com
The JavaWorld on-line magazine is an excellent resource for current Java information. You will find
news clips, conference information and links to Java-related Web sites.

www.sys-con.com/java
Catch up with the latest Java news at the Java Developer’s Journal site. This magazine is one of the
premier resources for Java news.

www.javareport.com
The Java Report is a great resource for Java developers. You will find the latest industry news, sample
code, event listings, products and jobs.

www.javapro.com
The JAVAPro is an excellent Java developer resource with up-to-the-minute technical articles.

B.6 Java Applets
java.sun.com/applets/index.html
This page contains a variety of Java applet resources, including free applets you can use on your own
Web site, the demonstration applets from the J2SDK and a variety of other applets. There is a section
entitled “Applets at Work” where you can read about applets in industry.

Appendix B Java Resources 1351

developer.java.sun.com/developer/
On the Sun Microsystems Java Web site, visit the Java Developer Connection. This free site has close
to one million members. The site includes technical support, discussion forums, on-line training
courses, technical articles, resources, announcements of new Java features, early access to new Java
technologies, and links to other important Java Web sites.

www.gamelan.com
Gamelan, a site owned by EarthWeb, has been a wonderful Java resource since the early days of Java.
This site originally was a large Java repository where individuals traded ideas on Java and examples
of Java programming. One of its early benefits was the volume of Java source code that was available
to the many people learning Java. It is now an all-around Java resource with Java references, free Java
downloads, areas where you can ask questions to Java experts, discussion groups on Java, a glossary
of Java-related terminology, upcoming Java-related events, directories for specialized industry topics
and hundreds of other Java resources.

www.jars.com
Another EarthWeb Web site is JARS—originally called the Java Applet Rating Service. The JARS site
calls itself the “#1 Java Review Service.” This site originally was a large Java repository for applets.
Its benefit was that it rated every applet registered at the site as top 1%, top 5% and top 25%, so you
could immediately view the best applets on the Web. Early in the development of the Java language,
having your applet rated here was a great way to demonstrate your Java programming abilities. JARS
is now another all-around resource for Java programmers.

B.7 Multimedia
java.sun.com/products/java-media/jmf
This is the Java Media Framework home page on the Java Web site. Here you can download the latest
Sun implementation of the JMF (see Chapter 22). The site also contains the documentation for the
JMF.

www.nasa.gov/gallery/index.html
The NASA multimedia gallery contains a wide variety of images, audio clips and video clips that you
can download and use to test your Java multimedia programs.

sunsite.sut.ac.jp/multimed
The Sunsite Japan Multimedia Collection also provides a wide variety of images, audio clips and vid-
eo clips that you can download for educational purposes.

www.anbg.gov.au/anbg/index.html
The Australian National Botanic Gardens Web site provides links to the audio clips of many animal
sounds.

java.sun.com/products/java-media/jmf/index.html
This site provides an HTML-based on-line guide to the Java Media Framework API.

B.8 Newsgroups
Newsgroups are forums on the Internet in which people can post questions, responses, hints
and clarifications for other users. Newsgroups can be a valuable resource to anyone learning
Java or anyone with questions on specific Java topics. When posting your own questions to
a newsgroup, provide specific details of the problem you are trying to solve (such as a prob-
lem with a program you are writing). This will enable other people reading the newsgroup
to understand your posting and (hopefully) provide a response to you. Be sure to specify a
subject heading that clearly states your problem. If you are responding to other people’s

1352 Java Resources Appendix B

questions, verify your response before posting it to ensure that the response is correct.
Newsgroups should not be used to promote products or services, nor should contact infor-
mation (such as email addresses for other newsgroup users) be used for unrelated purposes.
These are generally not forums for chatting, so posts should be courteous and to the point.

Normally, newsgroup reader software is required for you to interact with a newsgroup.
Such software is provided as part of Netscape Navigator and Microsoft Outlook Express,
and there are many other newsgroup software programs available. You also can access
newsgroups through the Web. If you do not use newsgroups already, try the Google site

groups.google.com

Type the name of the group you would like to view (you can also search for newsgroups)
and you will be presented with a list of that newsgroup’s current topics and questions. List-
ed below are some Java newsgroups that you may find useful.

news:comp.lang.java.advocacy
This group is an active center of discussion for current Java culture, including the merits of different
programming languages.

news:comp.lang.java.announce
This group provides announcements on major additions to Java, new class libraries and conferences.

news:comp.lang.java.api
This groups contains questions about bugs, compile errors, Java specifications and which classes are
most appropriate for different situations.

news:comp.lang.java.gui
This group responds to problems encountered working with Java graphical user interfaces. If you are
having trouble with a particular component, layout or event, this may be a good place to start.

news:comp.lang.java.help
This group is particularly active. It addresses many language and environment issues. Questions in-
clude requests for classes or algorithms that solve a specific problem.

news:comp.lang.java.machine
For people interested in the inner workings of Java, this group focuses on the Java Virtual Machine.

news:comp.lang.java.misc
This group contains everything from job postings to questions about the Java documentation and is
mainly for questions that do not fit into other Java newsgroup categories.

news:comp.lang.java.programmer
This group is another extremely active forum that addresses a range of questions. Posts tend to be
largely project-oriented and concerned with overall program style and structure.

news:comp.lang.java.softwaretools
This newsgroup is centered around Java software products, their uses, their faults and possible mod-
ifications. Some questions about writing effective software are also included here.

news:comp.lang.java.tech
This is a new group devoted to the technical aspects of Java and its inner workings.

C
Operator Precedence

Chart

Operators are shown in decreasing order of precedence from top to bottom.

OperatorOperatorOperatorOperator TypeTypeTypeType AssociativityAssociativityAssociativityAssociativity

()
[]
.

parentheses
array subscript
member selection

left to right

++
--

unary postincrement
unary postdecrement

right to left

++
--
+
-
!
~
(type)

unary preincrement
unary predecrement
unary plus
unary minus
unary logical negation
unary bitwise complement
unary cast

right to left

*
/
%

multiplication
division
modulus

left to right

+
-

addition
subtraction

left to right

<<
>>
>>>

bitwise left shift
bitwise right shift with sign extension
bitwise right shift with zero extension

left to right

Fig. C.1Fig. C.1Fig. C.1Fig. C.1 Operator precedence chart (part 1 of 2).

1354 Operator Precedence Chart Appendix C

<
<=
>
>=
instanceof

relational less than
relational less than or equal to
relational greater than
relational greater than or equal to
type comparison

left to right

==
!=

relational is equal to
relational is not equal to

left to right

& bitwise AND left to right

^ bitwise exclusive OR
boolean logical exclusive OR

left to right

| bitwise inclusive OR
boolean logical inclusive OR

left to right

&& logical AND left to right

|| logical OR left to right

?: ternary conditional right to left

=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=
>>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
modulus assignment
bitwise AND assignment
bitwise exclusive OR assignment
bitwise inclusive OR assignment
bitwise left shift assignment
bitwise right shift with sign extension assignment
bitwise right shift with zero extension assignment

right to left

OperatorOperatorOperatorOperator TypeTypeTypeType AssociativityAssociativityAssociativityAssociativity

Fig. C.1Fig. C.1Fig. C.1Fig. C.1 Operator precedence chart (part 2 of 2).

D
ASCII Character Set

Fig. D.1Fig. D.1Fig. D.1Fig. D.1 ASCII character set.

The digits at the left of the table are the left digits of the decimal equivalent (0-127) of the
character code, and the digits at the top of the table are the right digits of the character code.
For example, the character code for “F” is 70, and the character code for “&” is 38.

Most users of this book are interested in the ASCII character set used to represent
English characters on many computers. The ASCII character set is a subset of the Unicode
character set used by Java to represent characters from most of the world’s languages. For
more information on the Unicode character set, see Appendix K.

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 nl vt ff cr so si dle dc1 dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us sp ! " # $ % & ‘

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ’ a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ del

E
Number Systems

(on CD)

Objectives
• To understand basic number systems concepts such as

base, positional value, and symbol value.
• To understand how to work with numbers represented

in the binary, octal, and hexadecimal number systems
• To be able to abbreviate binary numbers as octal

numbers or hexadecimal numbers.
• To be able to convert octal numbers and hexadecimal

numbers to binary numbers.
• To be able to covert back and forth between decimal

numbers and their binary, octal, and hexadecimal
equivalents.

• To understand binary arithmetic, and how negative
binary numbers are represented using two’s
complement notation.

Here are only numbers ratified.
William Shakespeare

Nature has some sort of arithmetic-geometrical coordinate
system, because nature has all kinds of models. What we
experience of nature is in models, and all of nature’s models
are so beautiful.
It struck me that nature’s system must be a real beauty,
because in chemistry we find that the associations are always
in beautiful whole numbers—there are no fractions.
Richard Buckminster Fuller

Appendix E Number Systems (on CD) 1357

E.1 Introduction
In this appendix, we introduce the key number systems that Java programmers use, espe-
cially when they are working on software projects that require close interaction with “ma-
chine-level” hardware. Projects like this include operating systems, computer networking
software, compilers, database systems, and applications requiring high performance.

When we write an integer such as 227 or -63 in a Java program, the number is assumed
to be in the decimal (base 10) number system. The digits in the decimal number system are
0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The lowest digit is 0 and the highest digit is 9—one less than
the base of 10. Internally, computers use the binary (base 2) number system. The binary
number system has only two digits, namely 0 and 1. Its lowest digit is 0 and its highest digit
is 1—one less than the base of 2.

As we will see, binary numbers tend to be much longer than their decimal equivalents.
Programmers who work in assembly languages and in high-level languages like Java that
enable programmers to reach down to the “machine level,” find it cumbersome to work
with binary numbers. So two other number systems the octal number system (base 8) and
the hexadecimal number system (base 16)—are popular primarily because they make it
convenient to abbreviate binary numbers.

In the octal number system, the digits range from 0 to 7. Because both the binary
number system and the octal number system have fewer digits than the decimal number
system, their digits are the same as the corresponding digits in decimal.

The hexadecimal number system poses a problem because it requires sixteen digits—
a lowest digit of 0 and a highest digit with a value equivalent to decimal 15 (one less than
the base of 16). By convention, we use the letters A through F to represent the hexadecimal
digits corresponding to decimal values 10 through 15. Thus in hexadecimal we can have
numbers like 876 consisting solely of decimal-like digits, numbers like 8A55F consisting
of digits and letters, and numbers like FFE consisting solely of letters. Occasionally, a
hexadecimal number spells a common word such as FACE or FEED—this can appear
strange to programmers accustomed to working with numbers.

Each of these number systems uses positional notation—each position in which a digit
is written has a different positional value. For example, in the decimal number 937 (the 9,
the 3, and the 7 are referred to as symbol values), we say that the 7 is written in the ones
position, the 3 is written in the tens position, and the 9 is written in the hundreds position.

Outline

E.1 Introduction
E.2 Abbreviating Binary Numbers as Octal Numbers and Hexadecimal

Numbers
E.3 Converting Octal Numbers and Hexadecimal Numbers to Binary

Numbers
E.4 Converting from Binary, Octal, or Hexadecimal to Decimal
E.5 Converting from Decimal to Binary, Octal, or Hexadecimal
E.6 Negative Binary Numbers: Two’s Complement Notation

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

1358 Number Systems (on CD) Appendix E

Notice that each of these positions is a power of the base (base 10), and that these powers
begin at 0 and increase by 1 as we move left in the number (Fig. E.3).

Binary digit Octal digit Decimal digit Hexadecimal digit

0 0 0 0

1 1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7 7 7

8 8

9 9

A (decimal value of 10)

B (decimal value of 11)

C (decimal value of 12)

D (decimal value of 13)

E (decimal value of 14)

F (decimal value of 15)

Fig. E.1Fig. E.1Fig. E.1Fig. E.1 Digits of the binary, octal, decimal and hexadecimal number systems.

Attribute Binary Octal Decimal Hexadecimal

Base 2 8 10 16

Lowest digit 0 0 0 0

Highest digit 1 7 9 F

Fig. E.2Fig. E.2Fig. E.2Fig. E.2 Comparing the binary, octal, decimal and hexadecimal number systems.

Positional values in the decimal number system

Decimal digit 9 3 7

Position name Hundreds Tens Ones

Positional value 100 10 1

Positional value as a
power of the base (10)

102 101 100

Fig. E.3Fig. E.3Fig. E.3Fig. E.3 Positional values in the decimal number system.

Appendix E Number Systems (on CD) 1359

For longer decimal numbers, the next positions to the left would be the thousands posi-
tion (10 to the 3rd power), the ten-thousands position (10 to the 4th power), the hundred-
thousands position (10 to the 5th power), the millions position (10 to the 6th power), the
ten-millions position (10 to the 7th power), and so on.

In the binary number 101, we say that the rightmost 1 is written in the ones position,
the 0 is written in the twos position, and the leftmost 1 is written in the fours position.
Notice that each of these positions is a power of the base (base 2), and that these powers
begin at 0 and increase by 1 as we move left in the number (Fig E.4).

For longer binary numbers, the next positions to the left would be the eights position
(2 to the 3rd power), the sixteens position (2 to the 4th power), the thirty-twos position (2
to the 5th power), the sixty-fours position (2 to the 6th power), and so on.

In the octal number 425, we say that the 5 is written in the ones position, the 2 is written
in the eights position, and the 4 is written in the sixty-fours position. Notice that each of
these positions is a power of the base (base 8), and that these powers begin at 0 and increase
by 1 as we move left in the number (Fig. E.5).

For longer octal numbers, the next positions to the left would be the five-hundred-and-
twelves position (8 to the 3rd power), the four-thousand-and-ninety-sixes position (8 to the
4th power), the thirty-two-thousand-seven-hundred-and-sixty eights position (8 to the 5th
power), and so on.

In the hexadecimal number 3DA, we say that the A is written in the ones position, the
D is written in the sixteens position, and the 3 is written in the two-hundred-and-fifty-sixes
position. Notice that each of these positions is a power of the base (base 16), and that these
powers begin at 0 and increase by 1 as we move left in the number (Fig. E.6).

Positional values in the binary number system

Binary digit 1 0 1

Position name Fours Twos Ones

Positional value 4 2 1

Positional value as a
power of the base (2)

22 21 20

Fig. E.4Fig. E.4Fig. E.4Fig. E.4 Positional values in the binary number system.

Positional values in the octal number system

Decimal digit 4 2 5

Position name Sixty-fours Eights Ones

Positional value 64 8 1

Positional value as a
power of the base (8)

82 81 80

Fig. E.5Fig. E.5Fig. E.5Fig. E.5 Positional values in the octal number system.

1360 Number Systems (on CD) Appendix E

For longer hexadecimal numbers, the next positions to the left would be the four-thou-
sand-and-ninety-sixes position (16 to the 3rd power), the sixty-five-thousand-five-hun-
dred-and-thirty-six position (16 to the 4th power), and so on.

E.2 Abbreviating Binary Numbers as Octal Numbers and
Hexadecimal Numbers
The main use for octal and hexadecimal numbers in computing is for abbreviating lengthy
binary representations. Figure E.7 highlights the fact that lengthy binary numbers can be
expressed concisely in number systems with higher bases than the binary number system.

Positional values in the hexadecimal number system

Decimal digit 3 D A

Position name Two-hundred-and-
fifty-sixes

Sixteens Ones

Positional value 256 16 1

Positional value as a
power of the base (16)

162 161 160

Fig. E.6Fig. E.6Fig. E.6Fig. E.6 Positional values in the hexadecimal number system.

Decimal
number

Binary{
representation

Octal
representation

Hexadecimal
representation

 0 0 0 0

 1 1 1 1

 2 10 2 2

 3 11 3 3

 4 100 4 4

 5 101 5 5

 6 110 6 6

 7 111 7 7

 8 1000 10 8

 9 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

16 10000 20 10

Fig. E.7Fig. E.7Fig. E.7Fig. E.7 Decimal, binary, octal, and hexadecimal equivalents.

Appendix E Number Systems (on CD) 1361

A particularly important relationship that both the octal number system and the hexa-
decimal number system have to the binary system is that the bases of octal and hexadecimal
(8 and 16 respectively) are powers of the base of the binary number system (base 2). Con-
sider the following 12-digit binary number and its octal and hexadecimal equivalents. See
if you can determine how this relationship makes it convenient to abbreviate binary num-
bers in octal or hexadecimal. The answer follows the numbers.

Binary Number Octal equivalent Hexadecimal equivalent
100011010001 4321 8D1

To see how the binary number converts easily to octal, simply break the 12-digit binary
number into groups of three consecutive bits each, and write those groups over the corre-
sponding digits of the octal number as follows

100 011 010 001
4 3 2 1

Notice that the octal digit you have written under each group of thee bits corresponds
precisely to the octal equivalent of that 3-digit binary number as shown in Fig. E.7.

The same kind of relationship may be observed in converting numbers from binary to
hexadecimal. In particular, break the 12-digit binary number into groups of four consecu-
tive bits each and write those groups over the corresponding digits of the hexadecimal
number as follows

1000 1101 0001
8 D 1

Notice that the hexadecimal digit you wrote under each group of four bits corresponds
precisely to the hexadecimal equivalent of that 4-digit binary number as shown in Fig. E.7.

E.3 Converting Octal Numbers and Hexadecimal Numbers to
Binary Numbers
In the previous section, we saw how to convert binary numbers to their octal and hexadec-
imal equivalents by forming groups of binary digits and simply rewriting these groups as
their equivalent octal digit values or hexadecimal digit values. This process may be used in
reverse to produce the binary equivalent of a given octal or hexadecimal number.

For example, the octal number 653 is converted to binary simply by writing the 6 as its
3-digit binary equivalent 110, the 5 as its 3-digit binary equivalent 101, and the 3 as its 3-
digit binary equivalent 011 to form the 9-digit binary number 110101011.

The hexadecimal number FAD5 is converted to binary simply by writing the F as its
4-digit binary equivalent 1111, the A as its 4-digit binary equivalent 1010, the D as its 4-
digit binary equivalent 1101, and the 5 as its 4-digit binary equivalent 0101 to form the 16-
digit 1111101011010101.

E.4 Converting from Binary, Octal, or Hexadecimal to Decimal
Because we are accustomed to working in decimal, it is often convenient to convert a bina-
ry, octal, or hexadecimal number to decimal to get a sense of what the number is “really”
worth. Our diagrams in Section E.1 express the positional values in decimal. To convert a
number to decimal from another base, multiply the decimal equivalent of each digit by its

1362 Number Systems (on CD) Appendix E

positional value, and sum these products. For example, the binary number 110101 is con-
verted to decimal 53 as shown in Fig. E.8.

To convert octal 7614 to decimal 3980, we use the same technique, this time using
appropriate octal positional values as shown in Fig. E.9.

To convert hexadecimal AD3B to decimal 44347, we use the same technique, this time
using appropriate hexadecimal positional values as shown in Fig. E.10.

E.5 Converting from Decimal to Binary, Octal, or Hexadecimal
The conversions of the previous section follow naturally from the positional notation con-
ventions. Converting from decimal to binary, octal, or hexadecimal also follows these con-
ventions.

Suppose we wish to convert decimal 57 to binary. We begin by writing the positional
values of the columns right to left until we reach a column whose positional value is greater
than the decimal number. We do not need that column, so we discard it. Thus, we first write:

Converting a binary number to decimal

Positional values: 32 16 8 4 2 1

Symbol values: 1 1 0 1 0 1

Products: 1*32=32 1*16=16 0*8=0 1*4=4 0*2=0 1*1=1

Sum: = 32 + 16 + 0 + 4 + 0 + 1 = 53

Fig. E.8Fig. E.8Fig. E.8Fig. E.8 Converting a binary number to decimal.

Converting an octal number to decimal

Positional values: 512 64 8 1

Symbol values: 7 6 1 4

Products 7*512=3584 6*64=384 1*8=8 4*1=4

Sum: = 3584 + 384 + 8 + 4 = 3980

Fig. E.9Fig. E.9Fig. E.9Fig. E.9 Converting an octal number to decimal.

Converting a hexadecimal number to decimal

Positional values: 4096 256 16 1

Symbol values: A D 3 B

Products A*4096=40960 D*256=3328 3*16=48 B*1=11

Sum: = 40960 + 3328 + 48 + 11 = 44347

Fig. E.10Fig. E.10Fig. E.10Fig. E.10 Converting a hexadecimal number to decimal.

Appendix E Number Systems (on CD) 1363

Positional values: 64 32 16 8 4 2 1

Then we discard the column with positional value 64 leaving:

Positional values: 32 16 8 4 2 1

Next we work from the leftmost column to the right. We divide 32 into 57 and observe
that there is one 32 in 57 with a remainder of 25, so we write 1 in the 32 column. We divide
16 into 25 and observe that there is one 16 in 25 with a remainder of 9 and write 1 in the 16
column. We divide 8 into 9 and observe that there is one 8 in 9 with a remainder of 1. The
next two columns each produce quotients of zero when their positional values are divided
into 1 so we write 0s in the 4 and 2 columns. Finally, 1 into 1 is 1 so we write 1 in the 1
column. This yields:

Positional values: 32 16 8 4 2 1
Symbol values: 1 1 1 0 0 1

and thus decimal 57 is equivalent to binary 111001.
To convert decimal 103 to octal, we begin by writing the positional values of the col-

umns until we reach a column whose positional value is greater than the decimal number.
We do not need that column, so we discard it. Thus, we first write:

Positional values: 512 64 8 1

Then we discard the column with positional value 512, yielding:

Positional values: 64 8 1

Next we work from the leftmost column to the right. We divide 64 into 103 and
observe that there is one 64 in 103 with a remainder of 39, so we write 1 in the 64 column.
We divide 8 into 39 and observe that there are four 8s in 39 with a remainder of 7 and write
4 in the 8 column. Finally, we divide 1 into 7 and observe that there are seven 1s in 7 with
no remainder so we write 7 in the 1 column. This yields:

Positional values: 64 8 1
Symbol values: 1 4 7

and thus decimal 103 is equivalent to octal 147.
To convert decimal 375 to hexadecimal, we begin by writing the positional values of

the columns until we reach a column whose positional value is greater than the decimal
number. We do not need that column, so we discard it. Thus, we first write

Positional values: 4096 256 16 1

Then we discard the column with positional value 4096, yielding:

Positional values: 256 16 1

Next we work from the leftmost column to the right. We divide 256 into 375 and
observe that there is one 256 in 375 with a remainder of 119, so we write 1 in the 256
column. We divide 16 into 119 and observe that there are seven 16s in 119 with a remainder
of 7 and write 7 in the 16 column. Finally, we divide 1 into 7 and observe that there are
seven 1s in 7 with no remainder so we write 7 in the 1 column. This yields:

1364 Number Systems (on CD) Appendix E

Positional values: 256 16 1
Symbol values: 1 7 7

and thus decimal 375 is equivalent to hexadecimal 177.

E.6 Negative Binary Numbers: Two’s Complement Notation
The discussion in this appendix has been focussed on positive numbers. In this section, we
explain how computers represent negative numbers using two’s complement notation. First
we explain how the two’s complement of a binary number is formed, and then we show
why it represents the negative value of the given binary number.

Consider a machine with 32-bit integers. Suppose

int value = 13;

The 32-bit representation of value is

00000000 00000000 00000000 00001101

To form the negative of value we first form its one’s complement by applying Java’s bit-
wise complement operator (~):

onesComplementOfValue = ~value;

Internally, ~value is now value with each of its bits reversed—ones become zeros and
zeros become ones as follows:

value:
00000000 00000000 00000000 00001101

~value (i.e., value’s ones complement):
11111111 11111111 11111111 11110010

To form the two’s complement of value we simply add one to value’s one’s comple-
ment. Thus

Two’s complement of value:
11111111 11111111 11111111 11110011

Now if this is in fact equal to -13, we should be able to add it to binary 13 and obtain a result
of 0. Let us try this:

 00000000 00000000 00000000 00001101
+11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00000000

The carry bit coming out of the leftmost column is discarded and we indeed get zero as a
result. If we add the one’s complement of a number to the number, the result would be all
1s. The key to getting a result of all zeros is that the twos complement is 1 more than the
one’s complement. The addition of 1 causes each column to add to 0 with a carry of 1. The
carry keeps moving leftward until it is discarded from the leftmost bit, and hence the result-
ing number is all zeros.

Computers actually perform a subtraction such as

x = a - value;

Appendix E Number Systems (on CD) 1365

by adding the two’s complement of value to a as follows:

x = a + (~value + 1);

Suppose a is 27 and value is 13 as before. If the two’s complement of value is actually
the negative of value, then adding the two’s complement of value to a should produce the
result 14. Let us try this:

a (i.e., 27) 00000000 00000000 00000000 00011011
+(~value + 1) +11111111 11111111 11111111 11110011

 00000000 00000000 00000000 00001110

which is indeed equal to 14.

SUMMARY
• When we write an integer such as 19 or 227 or -63 in a Java program, the number is automatically

assumed to be in the decimal (base 10) number system. The digits in the decimal number system
are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. The lowest digit is 0 and the highest digit is 9—one less than the
base of 10.

• Internally, computers use the binary (base 2) number system. The binary number system has only
two digits, namely 0 and 1. Its lowest digit is 0 and its highest digit is 1—one less than the base of
2.

• The octal number system (base 8) and the hexadecimal number system (base 16) are popular pri-
marily because they make it convenient to abbreviate binary numbers.

• The digits of the octal number system range from 0 to 7.

• The hexadecimal number system poses a problem because it requires sixteen digits—a lowest digit
of 0 and a highest digit with a value equivalent to decimal 15 (one less than the base of 16). By
convention, we use the letters A through F to represent the hexadecimal digits corresponding to
decimal values 10 through 15.

• Each number system uses positional notation—each position in which a digit is written has a dif-
ferent positional value.

• A particularly important relationship that both the octal number system and the hexadecimal num-
ber system have to the binary system is that the bases of octal and hexadecimal (8 and 16 re-
spectively) are powers of the base of the binary number system (base 2).

• To convert an octal number to a binary number, simply replace each octal digit with its three-digit
binary equivalent.

• To convert a hexadecimal number to a binary number, simply replace each hexadecimal digit with
its four-digit binary equivalent.

• Because we are accustomed to working in decimal, it is convenient to convert a binary, octal or
hexadecimal number to decimal to get a sense of the number’s “real” worth.

• To convert a number to decimal from another base, multiply the decimal equivalent of each digit
by its positional value, and sum these products.

• Computers represent negative numbers using two’s complement notation.

• To form the negative of a value in binary, first form its one’s complement by applying Java’s bit-
wise complement operator (~). This reverses the bits of the value. To form the two’s complement
of a value, simply add one to the value’s one’s complement.

1366 Number Systems (on CD) Appendix E

TERMINOLOGY

SELF-REVIEW EXERCISES
E.1 The bases of the decimal, binary, octal, and hexadecimal number systems are ,

, and respectively.

E.2 In general, the decimal, octal, and hexadecimal representations of a given binary number
contain (more/fewer) digits than the binary number contains.

E.3 (True/False) A popular reason for using the decimal number system is that it forms a conve-
nient notation for abbreviating binary numbers simply by substituting one decimal digit per group of
four binary bits.

E.4 The (octal / hexadecimal / decimal) representation of a large binary value is the most concise
(of the given alternatives).

E.5 (True/False) The highest digit in any base is one more than the base.

E.6 (True/False) The lowest digit in any base is one less than the base.

E.7 The positional value of the rightmost digit of any number in either binary, octal, decimal, or
hexadecimal is always .

E.8 The positional value of the digit to the left of the rightmost digit of any number in binary,
octal, decimal, or hexadecimal is always equal to .

E.9 Fill in the missing values in this chart of positional values for the rightmost four positions in
each of the indicated number systems:

decimal 1000 100 10 1
hexadecimal ... 256
binary
octal 512 ... 8 ...

E.10 Convert binary 110101011000 to octal and to hexadecimal.

E.11 Convert hexadecimal FACE to binary.

E.12 Convert octal 7316 to binary.

E.13 Convert hexadecimal 4FEC to octal. (Hint: First convert 4FEC to binary then convert that
binary number to octal.)

E.14 Convert binary 1101110 to decimal.

E.15 Convert octal 317 to decimal.

E.16 Convert hexadecimal EFD4 to decimal.

E.17 Convert decimal 177 to binary, to octal, and to hexadecimal.

E.18 Show the binary representation of decimal 417. Then show the one’s complement of 417, and
the two’s complement of 417.

base digit
base 2 number system hexadecimal number system
base 8 number system negative value
base 10 number system octal number system
base 16 number system one’s complement notation
binary number system positional notation
bitwise complement operator (~) positional value
conversions symbol value
decimal number system two’s complement notation

Appendix E Number Systems (on CD) 1367

E.19 What is the result when the one’s complement of a number is added to itself?

SELF-REVIEW ANSWERS
E.1 10, 2, 8, 16.

E.2 Fewer.

E.3 False.

E.4 Hexadecimal.

E.5 False. The highest digit in any base is one less than the base.

E.6 False. The lowest digit in any base is zero.

E.7 1 (the base raised to the zero power).

E.8 The base of the number system.

E.9 Fill in the missing values in this chart of positional values for the rightmost four positions in
each of the indicated number systems:

decimal 1000 100 10 1
hexadecimal 4096 256 16 1
binary 8 4 2 1
octal 512 64 8 1

E.10 Octal 6530; Hexadecimal D58.

E.11 Binary 1111 1010 1100 1110.

E.12 Binary 111 011 001 110.

E.13 Binary 0 100 111 111 101 100; Octal 47754.

E.14 Decimal 2+4+8+32+64=110.

E.15 Decimal 7+1*8+3*64=7+8+192=207.

E.16 Decimal 4+13*16+15*256+14*4096=61396.

E.17 Decimal 177
to binary:

256 128 64 32 16 8 4 2 1
128 64 32 16 8 4 2 1
(1*128)+(0*64)+(1*32)+(1*16)+(0*8)+(0*4)+(0*2)+(1*1)
10110001

to octal:

512 64 8 1
64 8 1
(2*64)+(6*8)+(1*1)
261

to hexadecimal:

256 16 1
16 1
(11*16)+(1*1)
(B*16)+(1*1)
B1

1368 Number Systems (on CD) Appendix E

E.18 Binary:

512 256 128 64 32 16 8 4 2 1
256 128 64 32 16 8 4 2 1
(1*256)+(1*128)+(0*64)+(1*32)+(0*16)+(0*8)+(0*4)+(0*2)+
(1*1)
110100001

One’s complement: 001011110
Two’s complement: 001011111
Check: Original binary number + its two’s complement

110100001
001011111

000000000

E.19 Zero.

EXERCISES
E.20 Some people argue that many of our calculations would be easier in the base 12 number sys-
tem because 12 is divisible by so many more numbers than 10 (for base 10). What is the lowest digit
in base 12? What might the highest symbol for the digit in base 12 be? What are the positional values
of the rightmost four positions of any number in the base 12 number system?

E.21 How is the highest symbol value in the number systems we discussed related to the positional
value of the first digit to the left of the rightmost digit of any number in these number systems?

E.22 Complete the following chart of positional values for the rightmost four positions in each of
the indicated number systems:

decimal1000100 10 1
base 6 6...
base 13 ... 169... ...
base 3 27.........

E.23 Convert binary 100101111010 to octal and to hexadecimal.

E.24 Convert hexadecimal 3A7D to binary.

E.25 Convert hexadecimal 765F to octal. (Hint: First convert 765F to binary, then convert that bi-
nary number to octal.)

E.26 Convert binary 1011110 to decimal.

E.27 Convert octal 426 to decimal.

E.28 Convert hexadecimal FFFF to decimal.

E.29 Convert decimal 299 to binary, to octal, and to hexadecimal.

E.30 Show the binary representation of decimal 779. Then show the one’s complement of 779, and
the two’s complement of 779.

E.31 What is the result when the two’s complement of a number is added to itself?

E.32 Show the two’s complement of integer value -1 on a machine with 32-bit integers.

F
Creating HTML

Documentation with
javadoc (on CD)

Objectives
• To introduce the javadoc J2SDK tool.
• To introduce documentation comments.
• To understand javadoc tags.
• To be able to generate HTML API documentation

with javadoc.
• To understand javadoc generated documentation files.
Oh I get by with a little help from my friends.
John Lennon and Paul McCartney

I feel
The link of nature draw me.
John Milton

I think I shall never see
A poem lovely as a tree.
Joyce Kilmer

There is only one religion, though there are a hundred
versions of it.
George Bernard Shaw

What I like in a good author is not what he says, but what he
whispers.
Logan Pearsall Smith

I shall return.
Douglas MacArthur

1370 Creating HTML Documentation with javadoc (on CD) Appendix F

F.1 Introduction
In this appendix, we provide an introduction to the Java 2 Software Developent Kit’s
javadoc utility for creating HTML files that document Java code. This is the tool used
by Sun Microsystems to create the Java API documentation (Fig. F.1). We discuss the spe-
cial Java comments and tags required by javadoc to create documentation based on your
source code and how to execute the javadoc tool.

For detailed information on javadoc, visit the javadoc home page at

java.sun.com/j2se/1.3/docs/tooldocs/javadoc/index.html

F.2 Documentation Comments
Before HTML files can be generated with the javadoc tool, programmers must insert
special comments—called documentation comments—into their source files. Documenta-
tion comments are the only comments recognized by javadoc. Documentation comments
begin with /** and end with */. An example of a simple documentation comment is

/** Sorts integer array using MySort algorithm */

Like other comments, documentation comments are not translated into bytecodes.
Because javadoc is used to create HTML files, documentation comments can contain
HTML tags. For example, the documentation comment

/** Sorts integer array using MySort algorithm */

which contains the HTML emphasis tags and is valid. In the generated
HTML files, MySort will appear as emphasized text (normally italic). As we will see, ja-
vadoc tags can be inserted into the documentation comments to help javadoc document
your source code. These tags—which begin with an @ symbol—are not HTML tags.

F.3 Documenting Java Source Code
Figure F.2 presents a modified version of the Time3 class from Fig. 8.8 that contains doc-
umentation comments. In the text that follows the example, we thoroughly discuss each of
the javadoc tags used in the documentation comments. We discuss how to use the ja-
vadoc tool to generate HTML documentation from this file in Section F.4.

Outline

F.1 Introduction
F.2 Documentation Comments
F.3 Documenting Java Source Code
F.4 javadoc
F.5 Files Produced by javadoc

Summary • Terminology

Appendix F Creating HTML Documentation with javadoc (on CD) 1371

Fig. F.1Fig. F.1Fig. F.1Fig. F.1 Java API documentation.

1 // Fig. F.2: Time3.java
2 // Time3 class definition with set and get methods
3 package com.deitel.jhtp4.appenF;
4
5 // Java core packages
6 import java.text.DecimalFormat;
7
8 /**
9 * This class maintains the time in 24-hour format.

10 * @see java.lang.Object
11 * @author Deitel & Associates, Inc.
12 */
13 public class Time3 extends Object {
14
15 private int hour; // 0 - 23

Fig. F.2Fig. F.2Fig. F.2Fig. F.2 A Java source code file containing documentation comments (part 1 of 5).

links to packages are
displayed in this frame

the selected Web page is
displayed in this frame

links to classes and interfaces are displayed in this frame. Interfaces are italicized

1372 Creating HTML Documentation with javadoc (on CD) Appendix F

16 private int minute; // 0 - 59
17 private int second; // 0 - 59
18
19
20 /**
21 * Time3 constructor initializes each instance variable
22 * to zero. Ensures that Time object starts in a
23 * consistent state.
24 * @throws <code>Exception</code> in the case of an invalid time
25 */
26 public Time3() throws Exception
27 {
28 setTime(0, 0, 0);
29 }
30
31
32 /**
33 * Time3 constructor: hour supplied, minute and second
34 * defaulted to 0
35 * @param h the hour
36 * @throws <code>Exception</code> in the case of an invalid time
37 */
38 public Time3(int h) throws Exception
39 {
40 setTime(h, 0, 0);
41 }
42
43 /**
44 * Time3 constructor: hour and minute supplied, second
45 * defaulted to 0
46 * @param h the hour
47 * @param m the minute
48 * @throws <code>Exception</code> in the case of an invalid time
49 */
50 public Time3(int h, int m) throws Exception
51 {
52 setTime(h, m, 0);
53 }
54
55 /**
56 * Time3 constructor: hour, minute and second supplied
57 * @param h the hour
58 * @param m the minute
59 * @param s the second
60 * @throws <code>Exception</code> in the case of an invalid time
61 */
62 public Time3(int h, int m, int s) throws Exception
63 {
64 setTime(h, m, s);
65 }
66

Fig. F.2Fig. F.2Fig. F.2Fig. F.2 A Java source code file containing documentation comments (part 2 of 5).

Appendix F Creating HTML Documentation with javadoc (on CD) 1373

67 /**
68 * Time3 constructor: another Time3 object supplied
69 * @param time Time3 object
70 * @throws <code>Exception</code> in the case of an invalid time
71 */
72 public Time3(Time3 time) throws Exception
73 {
74 setTime(time.getHour(), time.getMinute(),
75 time.getSecond());
76 }
77
78 // Set Methods
79 /**
80 * Set a new time value using universal time. Perform
81 * validity checks on data. Set invalid values to zero.
82 * @param h the hour
83 * @param m the minute
84 * @param s the second
85 * @see com.deitel.jhtp4.appenF.Time3#setHour
86 * @see Time3#setMinute
87 * @see #setSecond
88 * @throws <code>Exception</code> in the case of an invalid time
89 */
90 public void setTime(int h, int m, int s) throws Exception
91 {
92 setHour(h); // set the hour
93 setMinute(m); // set the minute
94 setSecond(s); // set the second
95 }
96
97 /**
98 * Sets the hour
99 * @param h the hour
100 * @throws Exception in the case of an invalid time
101 */
102 public void setHour(int h) throws Exception
103 {
104 if (h >= 0 && h < 24)
105 hour = h;
106 else
107 throw new Exception();
108 }
109
110 /**
111 * Sets the minute
112 * @param m the minute
113 * @throws Exception in the case of an invalid time
114 */
115 public void setMinute(int m) throws Exception
116 {
117 if (m >= 0 && h < 60)
118 minute = m;

Fig. F.2Fig. F.2Fig. F.2Fig. F.2 A Java source code file containing documentation comments (part 3 of 5).

1374 Creating HTML Documentation with javadoc (on CD) Appendix F

119 else
120 throw new Exception();
121 }
122
123 /**
124 * Sets the second
125 * @param m the minute
126 * @throws Exception in the case of an invalid time
127 */
128 public void setSecond(int s) throws Exception
129 {
130 if (s >= 0 && s < 60)
131 second = s;
132 else
133 throw new Exception();
134 }
135
136 // Get Methods
137 /**
138 * Gets the hour
139 * @return an <code>int</code> specifying the hour.
140 */
141 public int getHour()
142 {
143 return hour;
144 }
145
146 /**
147 * Gets the minute
148 * @return an <code>int</code> specifying the minute.
149 */
150 public int getMinute()
151 {
152 return minute;
153 }
154
155 /**
156 * Gets the second
157 * @return an <code>int</code> specifying the second.
158 */
159 public int getSecond()
160 {
161 return second;
162 }
163
164 /**
165 * Convert to <code>String</code> in universal-time format
166 * @return a <code>String</code> representation
167 * of the time in universal-time format
168 */
169 public String toUniversalString()
170 {
171 DecimalFormat twoDigits = new DecimalFormat("00");

Fig. F.2Fig. F.2Fig. F.2Fig. F.2 A Java source code file containing documentation comments (part 4 of 5).

Appendix F Creating HTML Documentation with javadoc (on CD) 1375

Documentation comments are placed on the line before a class definition, an interface
definition, a constructor, a method and a field (i.e., an instance variable or a reference). The
first documentation comment (lines 8–12) introduces class Time3. The line

* This class maintains the time in 24-hour format.

is a description of class Time3 provided by the programmer. The description can contain
as many lines as necessary to provide a description of the class to any programmer who may
use it. Tags @see and @author are used to specify a See Also: note and an Author:
note, respectively in the HTML documentation (Fig. F.3). The See Also: note specifies
other related classes that may be of interest to a programmer using this class. The @au-
thor tag specifies the author of the class. More than one @author tag can be used to
document multiple authors. Note that the asterisks (*) on each line between /** and */
are not required. This is a convention used by programmers to align descriptions and ja-
vadoc tags. When parsing a documentation comment, javadoc discards all whitespace
characters up to the first non-whitespace character in each line. If the first non-whitespace
character encountered is an asterisk, it is also discarded.

Notice that the documentation comment in lines 8–12 immediately precedes the class
definition—any code placed between the documentation comment and the class definition
causes javadoc to ignore the documentation comment. This is also true of other code
structures (e.g., constructors, methods, instance variables, etc.).

Common Programming Error F.1
Placing an import statement between the class comment and the class declaration is a log-
ic error. This causes the class comment to be ignored by javadoc. F.1

172
173 return twoDigits.format(getHour()) + ":" +
174 twoDigits.format(getMinute()) + ":" +
175 twoDigits.format(getSecond());
176 }
177
178 /**
179 * Convert to <code>String</code> in standard-time format
180 * @return a <code>String</code> representation
181 * of the time in standard-time format
182 */
183 public String toString()
184 {
185 DecimalFormat twoDigits = new DecimalFormat("00");
186
187 return ((getHour() == 12 || getHour() == 0) ?
188 12 : getHour() % 12) + ":" +
189 twoDigits.format(getMinute()) + ":" +
190 twoDigits.format(getSecond()) +
191 (getHour() < 12 ? " AM" : " PM");
192 }
193 }

Fig. F.2Fig. F.2Fig. F.2Fig. F.2 A Java source code file containing documentation comments (part 5 of 5).

1376 Creating HTML Documentation with javadoc (on CD) Appendix F

Software Engineering Observation F.1
Defining several fields in one comma-separated statement with a single comment above that
statement, will result in javadoc using that comment for all of the fields. F.1

The documentation comment on lines 32–37 describes one of the Time3 constructors.
The tag @param describes a parameter to the method. Parameters appear in the HTML
document in a Parameters: note (Fig. F.4) that is followed by a list of all parameters spec-
ified with the @param tag. For this constructor, the parameter’s name is h and its descrip-
tion is “the hour.” Tag @param can be used only with methods and constructors.

The tag @throws specifies the exceptions thrown by this method. Like @param tags,
@throws tags are only used with methods and constructors. One @throws should be
supplied for each type of exception thrown by the method.

Software Engineering Observation F.2
To produce proper javadoc documentation, you must declare every instance variable on
a separate line. F.2

Documentation comments can contain multiple @param and @see tags. The docu-
mentation comment at lines 79–89 describes method setTime. The HTML generated for
this method is shown in Fig. F.5. Three @param tags describe the method’s parameters.
This results in one Parameters: note which lists the three parameters. Methods set-
Hour, setMinute and setSecond are tagged with @see to create hyperlinks to their
descriptions in the HTML document. A # character is used instead of a dot when tagging a
method or a field. This creates a link to the name that follows the # character. We demon-

Fig. F.3Fig. F.3Fig. F.3Fig. F.3 HTML documentation for class Time3.

Appendix F Creating HTML Documentation with javadoc (on CD) 1377

strate three different ways (i.e., the fully qualified name, class name qualification and no
qualification) to tag methods using @see on lines 85–87. If the fully qualified name is not
given (as in lines 86–87), javadoc looks for the specified method or field in the following
order: current class, superclasses, package and imported files.

Fig. F.4Fig. F.4Fig. F.4Fig. F.4 The Parameters: note generated by javadoc.

Fig. F.5Fig. F.5Fig. F.5Fig. F.5 HTML documentation for method setTime.

1378 Creating HTML Documentation with javadoc (on CD) Appendix F

The only other tag used in this file is @return which specifies a Returns: note in
the HTML documentation (Fig. F.6). The comment at lines 137–140 documents method
getHour. Tag @return describes a method’s return type to help the programmer under-
stand how to use the return value of the method. By javadoc convention, programmers
typeset source code (i.e., keywords, identifiers, expressions, etc.) with the HTML tags
<code> and </code>.

Good Programming Practice F.1
Changing source code fonts in javadoc tags helps code names stand out from the rest of
the description. F.1

In addition to the tags presented in this example, javadoc recognizes four other tags.
Figure F.7 summarizes the most commonly used tags.

Fig. F.6Fig. F.6Fig. F.6Fig. F.6 HTML documentation for method getHour.

javadoc tag Description

@author Adds a Author: note if the -author option is used when executing
javadoc.

@param Used to describe the parameters of methods and constructors.

@return Adds a Returns: note describing a methods return type.

@see Adds a See Also: note containing hyperlinks to related classes or methods.

@throws Adds a Throws: note that specifies the exceptions thrown by the method.
@exception is a synonym for @throws.

@deprecated Adds a Deprecated note. These are notes to programmers indicating that
they should not use the specified features of the class. Deprecated notes
normally appear when a class has been enhanced with new and improved
features, but older features are maintained for backwards compatibility.

Fig. F.7Fig. F.7Fig. F.7Fig. F.7 Common javadoc tags (part 1 of 2).

Appendix F Creating HTML Documentation with javadoc (on CD) 1379

F.4 javadoc
In this section, we discuss how to execute the javadoc tool on a Java source file to create
HTML documentation for the class in the file. Like other tools, javadoc is executed from
the command line. The general form of the javadoc command is

javadoc options packages sources @files

where options is a list of command line options, packages is a list of packages the user
would like to document, sources is a list of java source files to document and @files is a text
file containing the names of packages and/or source files to send to the javadoc utility,
so that it can create documentation for those packages and classes. The wildcard character
* can be used to specify multiple sources. (e.g., c:*.java) [Note: All items are sepa-
rated by spaces and @files is one word.] Figure F.8 shows a DOS window containing the
javadoc command we typed to generate the HTML documentation.

In Fig. F.8, the -d argument specifies the directory (e.g., c:\docs) where the HTML
files will be stored on disk. We use the -link option so that our documentation links to
Sun’s documentation. This creates a hyperlink between our documentation and Sun’s doc-
umentation (see Fig. F.5 where Java class Exception from package java.lang is
hyperlinked). Without the -link argument, Exception appears as text in the HTML doc-
ument—not a hyperlink. The -author argument instructs javadoc to process the
@author tag (it ignores this tag by default).

F.5 Files Produced by javadoc
In the last section, we executed the javadoc tool on the Time3.java file. When java-
doc executes, it displays the name of each HTML file it creates (see Fig. F.8). From the
source file, javadoc created an HTML document named Time3.html for the class. If the
source file contained multiple classes or interfaces, a separate HTML document is created
for each class. Because class Time3 belongs to a package, the page is created in the direc-
tory C:\docs\com\deitel\jhtp4\appenF (on Win32 platforms). The c:\docs direc-
tory was specified with the -d command line option of javadoc, and the remaining
directories were created based on the package statement.

@link This allows the programmer to insert an explicit hyperlink to another HTML
document.

@since Adds a Since note. These notes are used for new versions of a class to indi-
cate when a feature was first introduced. For example, the Java API docu-
mentation uses this to indicate features that were introduced in Java 1.0, Java
1.1 and Java 2.

@version Adds a Version note. These notes help maintain version number of the soft-
ware containing the class or method.

javadoc tag Description

Fig. F.7Fig. F.7Fig. F.7Fig. F.7 Common javadoc tags (part 2 of 2).

1380 Creating HTML Documentation with javadoc (on CD) Appendix F

Another file that javadoc creates is index.html the starting HTML page in the
documentation. To view the documentation you generate with javadoc, load
index.html into your web browser. In Fig. F.9, the right frame contains the page
index.html and the left frame contains the page allclasses-frame.html which
contains links to the source code’s classes. [Note: Because our example does not contain
multiple packages, there is no frame listing the packages. Normally this frame would
appear above the left frame (containing “All Classes”) as in Fig. F.1.]

The navigation bar (at the top of the right frame in Fig. F.9) indicates which HTML
page is currently loaded by highlighting the page’s link (e.g., the Class link in Fig. F.9).

Clicking the Tree link (Fig. F.10) displays a class hierarchy for all the classes dis-
played in the left frame. In our example, we documented only class Time3—which extends
Object. Clicking the Deprecated link loads deprecated-list.html into the right frame. This
page contains a list of all deprecated names. Because we did not use the @deprecated tag
in this example, this page does not contain any information. Clicking the Index link loads
the index-all.html page which contains an alphabetical list of all classes, interfaces,
methods and fields.

Figure F.11 shows class Time3’s index-all.html page loaded into a Web browser.
Clicking the Help link loads helpdoc.html (Fig. F.12). This is a help file for navi-
gating the documentation. A default help file is provided, however the programmer can
specify other help files.

Among the other files generated by javadoc are serialized-form.html
which documents Serializable and Externalizable classes and package-list.txt
which is used by the -link command-line argument and is not actually part of the documen-
tation.

Fig. F.8Fig. F.8Fig. F.8Fig. F.8 Using the javadoc tool.

Appendix F Creating HTML Documentation with javadoc (on CD) 1381

Fig. F.9Fig. F.9Fig. F.9Fig. F.9 Class Time3’s index.html.

Fig. F.10Fig. F.10Fig. F.10Fig. F.10 Tree page.

navigation barhighlighted linkframes

1382 Creating HTML Documentation with javadoc (on CD) Appendix F

Fig. F.11Fig. F.11Fig. F.11Fig. F.11 Time3’s index-all.html page.

Fig. F.12Fig. F.12Fig. F.12Fig. F.12 Time3’s helpdoc.html page.

Appendix F Creating HTML Documentation with javadoc (on CD) 1383

TERMINOLOGY
allclasses-frame.html @link tag
–author argument name-frame.html
@author javadoc tag Overrides: note
Class item in the navigator bar Parameters: note
–d argument @param tag
deprecated-list.html Returns: note
@deprecated tag @return tag
documentation comment See Also: note
Exception note @see tag
@exception tag serialized-form.html
Help @serial tag
helpdoc.html @serialData tag
index.html @since tag
index-all.html @throws tag
javadoc Tree link
-link argument @version tag

G
Elevator Events

and Listener Interfaces
(on CD)

G.1 Introduction
In “Thinking About Objects” Section 10.22, we discussed how event handling works in our
elevator simulation. We mentioned that for an object to receive an event, that object must
register as a listener for that event. Therefore, the class of that object must implement an
appropriate listener interface that contains methods that receive an event object as a param-
eter. In this section, we present the events and listener interfaces used in our simulation.

G.2 Events
The next eight figures (Fig. G.1–Fig. G.7) contain the events of the system. Each event in-
herits from class ElevatorModelEvent in Fig. G.1. This class contains a Location
reference (line 11) that represent where the event was generated—in our simulation, this
reference is the Elevator object or either Floor object. Class ElevatorModelEv-
ent also contains an Object reference (line 14) representing the source object that gen-
erated the event. Methods getLocation (lines 30–33) and getSource (lines 42–45)
return the Location and Object references, respectively. Note that each subclass of
ElevatorModelEvent (Fig. G.2–Fig. G.7) provides only a constructor calling the con-
structor of class ElevatorModelEvent. As we mentioned in Section 10.22, dividing
class ElevatorModelEvent into several subclass events makes event handling easier
to understand in our simulation.

1 // ElevatorModelEvent.java
2 // Basic event packet in Elevator simulation
3 package com.deitel.jhtp4.elevator.event;
4

Fig. G.1Fig. G.1Fig. G.1Fig. G.1 ElevatorModelEvent superclass for events in the elevator simulation
model (part 1 of 2).

Appendix G Elevator Events and Listener Interfaces (on CD) 1385

5 // Deitel packages
6 import com.deitel.jhtp4.elevator.model.*;
7
8 public class ElevatorModelEvent {
9

10 // Location where ElevatorModelEvent was generated
11 private Location location;
12
13 // source Object that generated ElevatorModelEvent
14 private Object source;
15
16 // ElevatorModelEvent constructor sets Location
17 public ElevatorModelEvent(Object source, Location location)
18 {
19 setSource(source);
20 setLocation(location);
21 }
22
23 // set ElevatorModelEvent Location
24 public void setLocation(Location eventLocation)
25 {
26 location = eventLocation;
27 }
28
29 // get ElevatorModelEvent Location
30 public Location getLocation()
31 {
32 return location;
33 }
34
35 // set ElevatorModelEvent source
36 private void setSource(Object eventSource)
37 {
38 source = eventSource;
39 }
40
41 // get ElevatorModelEvent source
42 public Object getSource()
43 {
44 return source;
45 }
46 }

1 // BellEvent.java
2 // Indicates that Bell has rung
3 package com.deitel.jhtp4.elevator.event;
4

Fig. G.2Fig. G.2Fig. G.2Fig. G.2 BellEvent ElevatorModelEvent subclass indicating that the
Bell has rung (part 1 of 2).

Fig. G.1Fig. G.1Fig. G.1Fig. G.1 ElevatorModelEvent superclass for events in the elevator simulation
model (part 2 of 2).

1386 Elevator Events and Listener Interfaces (on CD) Appendix G

5 // Deitel packages
6 import com.deitel.jhtp4.elevator.model*;
7
8 public class BellEvent extends ElevatorModelEvent {
9

10 // BellEvent constructor
11 public BellEvent(Object source, Location location)
12 {
13 super(source, location);
14 }
15 }

1 // ButtonEvent.java
2 // Indicates that a Button has changed state
3 package com.deitel.jhtp4.elevator.event;
4
5 // Deitel packages
6 import com.deitel.jhtp4.elevator.model.*;
7
8 public class ButtonEvent extends ElevatorModelEvent {
9

10 // ButtonEvent constructor
11 public ButtonEvent(Object source, Location location)
12 {
13 super(source, location);
14 }
15 }

Fig. G.3Fig. G.3Fig. G.3Fig. G.3 ButtonEvent ElevatorModelEvent subclass indicating that a
Button has changed state.

1 // DoorEvent.java
2 // Indicates that a Door has changed state
3 package com.deitel.jhtp4.elevator.event;
4
5 // Deitel packages
6 import com.deitel.jhtp4.elevator.model.*;
7
8 public class DoorEvent extends ElevatorModelEvent {
9

10 // DoorEvent constructor
11 public DoorEvent(Object source, Location location)
12 {
13 super(source, location);
14 }
15 }

Fig. G.4Fig. G.4Fig. G.4Fig. G.4 DoorEvent ElevatorModelEvent subclass indicating that a Door
has changed state.

Fig. G.2Fig. G.2Fig. G.2Fig. G.2 BellEvent ElevatorModelEvent subclass indicating that the
Bell has rung (part 2 of 2).

Appendix G Elevator Events and Listener Interfaces (on CD) 1387

Class PersonMoveEvent (Fig. G.7) has a slightly different structure than that of the
other event classes. Line 11 declares int attribute ID. We will discover in Appendix I that
the ElevatorView obtains this attribute through method getID (lines 22–25) to deter-
mine which Person sent the event.

1 // ElevatorMoveEvent.java
2 // Indicates on which Floor the Elevator arrived or departed
3 package com.deitel.jhtp4.elevator.event;
4
5 // Deitel packages
6 import com.deitel.jhtp4.elevator.model.*;
7
8 public class ElevatorMoveEvent extends ElevatorModelEvent {
9

10 // ElevatorMoveEvent constructor
11 public ElevatorMoveEvent(Object source, Location location)
12 {
13 super(source, location);
14 }
15 }

Fig. G.5Fig. G.5Fig. G.5Fig. G.5 ElevatorMoveEvent ElevatorModelEvent subclass indicating
on which Floor the Elevator has either arrived or departed.

1 // LightEvent.java
2 // Indicates on which Floor the Light has changed state
3 package com.deitel.jhtp4.elevator.event;
4
5 // Deitel packages
6 import com.deitel.jhtp4.elevator.model.*;
7
8 public class LightEvent extends ElevatorModelEvent {
9

10 // LightEvent constructor
11 public LightEvent(Object source, Location location)
12 {
13 super(source, location);
14 }
15 }

Fig. G.6Fig. G.6Fig. G.6Fig. G.6 LightEvent ElevatorModelEvent subclass indicating on which
Floor the Light has changed state.

1 // PersonMoveEvent.java
2 // Indicates that a Person has moved
3 package com.deitel.jhtp4.elevator.event;
4
5 // Deitel packages
6 import com.deitel.jhtp4.elevator.model.*;

Fig. G.7Fig. G.7Fig. G.7Fig. G.7 PersonMoveEventElevatorModelEvent subclass indicating that
a Person has moved (part 1 of 2).

1388 Elevator Events and Listener Interfaces (on CD) Appendix G

G.3 Listeners
The next eight figures (Fig. G.8–Fig. G.14) contain the listener interfaces for the elevator
simulation. BellListener (Fig. G.8) provides method bellRang (lines 8), which is
invoked when the Bell has rung. ButtonListener (Fig. G.9) provides methods but-
tonPressed (line 8) and buttonReset (line 11), which listen when a Button is
pressed or reset. DoorListener (Fig. G.10) provides methods doorOpened (line 8)
and doorClosed (line 11), which listen for a Door opening or closing. Elevator-
MoveListener (Fig. G.11) provides methods elevatorDeparted (line 8) and el-
evatorArrived (line 11), which listen for Elevator departures and arrivals.
LightListener (Fig. G.12) provides methods lightTurnedOn (line 8) and
lightTurnedOff (line 11) that listen for Light state changes. PersonMoveLis-
tener (Fig. G.13) provides methods personCreated (line 8), personArrived
(line 11), personDeparted (line 14), personPressedButton (line 17–18), per-
sonEntered (line 21) and personExited (line 24). These methods listen for when a
Person has been created, has arrived at or departed from the Elevator, pressed a But-
ton, entered the Elevator, or exited the simulation, respectively. Lastly, Elevator-
ModelListener (Fig. G.14) inherits behaviors from all listener interfaces. The
ElevatorView uses interface ElevatorModelListener in Section 13.17 and
Appendix I to receive events from the ElevatorModel.

7
8 public class PersonMoveEvent extends ElevatorModelEvent {
9

10 // identifier of Person sending Event
11 private int ID;
12
13 // PersonMoveEvent constructor
14 public PersonMoveEvent(Object source, Location location,
15 int identifier)
16 {
17 super(source, location);
18 ID = identifier;
19 }
20
21 // return identifier
22 public int getID()
23 {
24 return(ID);
25 }
26 }

1 // BellListener.java
2 // Method invoked when Bell has rung
3 package com.deitel.jhtp4.elevator.event;
4

Fig. G.8Fig. G.8Fig. G.8Fig. G.8 Interface BellListener method when Bell has rung (part 1 of 2).

Fig. G.7Fig. G.7Fig. G.7Fig. G.7 PersonMoveEventElevatorModelEvent subclass indicating that
a Person has moved (part 2 of 2).

Appendix G Elevator Events and Listener Interfaces (on CD) 1389

5 public interface BellListener {
6
7 // invoked when Bell has rungs
8 public void bellRang(BellEvent bellEvent);
9 }

1 // ButtonListener.java
2 // Methods invoked when Button has been either pressed or reset
3 package com.deitel.jhtp4.elevator.event;
4
5 public interface ButtonListener {
6
7 // invoked when Button has been pressed
8 public void buttonPressed(ButtonEvent buttonEvent);
9

10 // invoked when Button has been reset
11 public void buttonReset(ButtonEvent buttonEvent);
12 }

Fig. G.9Fig. G.9Fig. G.9Fig. G.9 Interface ButtonListener methods when Button has been either
pressed or reset.

1 // DoorListener.java
2 // Methods invoked when Door has either opened or closed
3 package com.deitel.jhtp4.elevator.event;
4
5 public interface DoorListener {
6
7 // invoked when Door has opened
8 public void doorOpened(DoorEvent doorEvent);
9

10 // invoked when Door has closed
11 public void doorClosed(DoorEvent doorEvent);
12 }

Fig. G.10Fig. G.10Fig. G.10Fig. G.10 Interface DoorListener methods when Door has either opened or
closed.

1 // ElevatorMoveListener.java
2 // Methods invoked when Elevator has either departed or arrived
3 package com.deitel.jhtp4.elevator.event;
4
5 public interface ElevatorMoveListener {
6
7 // invoked when Elevator has departed
8 public void elevatorDeparted(ElevatorMoveEvent moveEvent);
9

Fig. G.11Fig. G.11Fig. G.11Fig. G.11 Interface ElevatorMoveListener methods when Elevator has
either departed from or arrived on a Floor (part 1 of 2).

Fig. G.8Fig. G.8Fig. G.8Fig. G.8 Interface BellListener method when Bell has rung (part 2 of 2).

1390 Elevator Events and Listener Interfaces (on CD) Appendix G

10 // invoked when Elevator has arrived
11 public void elevatorArrived(ElevatorMoveEvent moveEvent);
12 }

1 // LightListener.java
2 // Methods invoked when Light has either turned on or off
3 package com.deitel.jhtp4.elevator.event;
4
5 public interface LightListener {
6
7 // invoked when Light has turned on
8 public void lightTurnedOn(LightEvent lightEvent);
9

10 // invoked when Light has turned off
11 public void lightTurnedOff(LightEvent lightEvent);
12 }

Fig. G.12Fig. G.12Fig. G.12Fig. G.12 Interface LightListener method for when Light has either
turned on or off.

1 // PersonMoveListener.java
2 // Methods invoked when Person moved
3 package com.deitel.jhtp4.elevator.event;
4
5 public interface PersonMoveListener {
6
7 // invoked when Person has been instantiated in model
8 public void personCreated(PersonMoveEvent moveEvent);
9

10 // invoked when Person arrived at elevator
11 public void personArrived(PersonMoveEvent moveEvent);
12
13 // invoked when Person departed from elevator
14 public void personDeparted(PersonMoveEvent moveEvent);
15
16 // invoked when Person pressed Button
17 public void personPressedButton(
18 PersonMoveEvent moveEvent);
19
20 // invoked when Person entered Elevator
21 public void personEntered(PersonMoveEvent moveEvent);
22
23 // invoked when Person exited simulation
24 public void personExited(PersonMoveEvent moveEvent);
25 }

Fig. G.13Fig. G.13Fig. G.13Fig. G.13 Interface PersonMoveListener methods when Person has
moved.

Fig. G.11Fig. G.11Fig. G.11Fig. G.11 Interface ElevatorMoveListener methods when Elevator has
either departed from or arrived on a Floor (part 2 of 2).

Appendix G Elevator Events and Listener Interfaces (on CD) 1391

G.4 Component Diagrams Revisited
In Section 13.17, we introduced the component diagram for the elevator simulation. In our
simulation, the ElevatorView and every object in the model import package event.
Figure G.15 presents the component diagram for package event. Each component in
package event maps to a class from Fig. G.1–Fig. G.14. According to the component di-
agram, ElevatorView.java of package view aggregates package event. In Java,
this aggregation translates to class ElevatorView importing package event. Also ac-
cording to Fig. G.15, package model aggregates package event—i.e., each component
in package model contains an aggregation with all components in pacckage event. (We
show all components of package model in a separate component diagram in Appendix H.)
In Java, this aggregation translates to each class in package model that imports ‘package
event.

This concludes the appendix on the events and listener interfaces of the elevator sim-
ulation. We hope you have found it a useful reference for the material on event handling
discussed in “Thinking About Objects” Section 10.22. In the next two appendices, we
implement the design for the model and the view, and we provide the component diagrams
for packages model and view.

1 // ElevatorModelListener.java
2 // Listener for ElevatorView from ElevatorModel
3 package com.deitel.jhtp4.elevator.event;
4
5 // ElevatorModelListener inherits all Listener interfaces
6 public interface ElevatorModelListener extends BellListener,
7 ButtonListener, DoorListener, ElevatorMoveListener,
8 LightListener, PersonMoveListener {
9 }

Fig. G.14Fig. G.14Fig. G.14Fig. G.14 Interface ElevatorModelListener allows the model to send all
events to the view.

1392 Elevator Events and Listener Interfaces (on CD) Appendix G

Fig. G.15Fig. G.15Fig. G.15Fig. G.15 Component diagram for package event.

event

BellEvent.java

«file»

BellListener.java

«file»

ButtonEvent.java

«file»

ButtonListener.java

«file»

DoorEvent.java

«file»

DoorListener.java

«file»

ElevatorMoveEvent.java

«file»

ElevatorMoveListener.java

«file»

ElevatorModelEvent.java

«file»

ElevatorModelListener.java

«file»

LightEvent.java

«file»

LightListener.java

«file»

PersonMoveEvent.java

«file»

PersonMoveListener.java

«file»

view

ElevatorView.java

«file»
1

model

1

1

1

H
Elevator Model (on CD)

H.1 Introduction
After reading the “Thinking About Objects” sections, you should have a comfortable grasp
of the design process and of the UML diagrams that pertain to our simulation. This appen-
dix presents the code for all 10 classes that collectively represent the model, and concludes
the discussion of its workings. We discuss each class separately and in detail.

H.2 Class ElevatorModel
As discussed in Section 13.17, class ElevatorModel (Fig. H.1) ties together the objects
that comprise the elevator simulation model. The ElevatorModel serves to send events
from the model to the view. The ElevatorModel also instantiates new Persons and
allows each Floor to obtain a reference to the ElevatorShaft.

1 // ElevatorModel.java
2 // Elevator simulation model with ElevatorShaft and two Floors
3 package com.deitel.jhtp4.elevator.model;
4
5 // Java core packages
6 import java.util.*;
7
8 // Deitel packages
9 import com.deitel.jhtp4.elevator.event.*;

10 import com.deitel.jhtp4.elevator.ElevatorConstants;
11
12 public class ElevatorModel implements ElevatorModelListener,
13 ElevatorConstants {
14

Fig. H.1Fig. H.1Fig. H.1Fig. H.1 Class ElevatorModel represents the model in our elevator simulation
(part 1 of 7).

1394 Elevator Model (on CD) Appendix H

15 // declare two-Floor architecture in simulation
16 private Floor firstFloor;
17 private Floor secondFloor;
18
19 // ElevatorShaft in simulation
20 private ElevatorShaft elevatorShaft;
21
22 // objects listening for events from ElevatorModel
23 private Set personMoveListeners;
24 private DoorListener doorListener;
25 private ButtonListener buttonListener;
26 private LightListener lightListener;
27 private BellListener bellListener;
28 private ElevatorMoveListener elevatorMoveListener;
29
30 // cumulative number of people in simulation
31 private int numberOfPeople = 0;
32
33 // constructor instantiates ElevatorShaft and Floors
34 public ElevatorModel()
35 {
36 // instantiate firstFloor and secondFloor objects
37 firstFloor = new Floor(FIRST_FLOOR_NAME);
38 secondFloor = new Floor(SECOND_FLOOR_NAME);
39
40 // instantiate ElevatorShaft object
41 elevatorShaft =
42 new ElevatorShaft(firstFloor, secondFloor);
43
44 // give elevatorShaft reference to first and second Floor
45 firstFloor.setElevatorShaft(elevatorShaft);
46 secondFloor.setElevatorShaft(elevatorShaft);
47
48 // register for events from ElevatorShaft
49 elevatorShaft.setDoorListener(this);
50 elevatorShaft.setButtonListener(this);
51 elevatorShaft.addElevatorMoveListener(this);
52 elevatorShaft.setLightListener(this);
53 elevatorShaft.setBellListener(this);
54
55 // instantiate Set for ElevatorMoveListener objects
56 personMoveListeners = new HashSet(1);
57
58 } // end ElevatorModel constructor
59
60 // return Floor with given name
61 private Floor getFloor(String name)
62 {
63 if (name.equals(FIRST_FLOOR_NAME))
64 return firstFloor;
65 else
66

Fig. H.1Fig. H.1Fig. H.1Fig. H.1 Class ElevatorModel represents the model in our elevator simulation
(part 2 of 7).

Appendix H Elevator Model (on CD) 1395

67 if (name.equals(SECOND_FLOOR_NAME))
68 return secondFloor;
69 else
70 return null;
71
72 } // end method getFloor
73
74 // add Person to Elevator Simulator
75 public void addPerson(String floorName)
76 {
77 // instantiate new Person and place on Floor
78 Person person =
79 new Person(numberOfPeople, getFloor(floorName));
80 person.setName(Integer.toString(numberOfPeople));
81
82 // register listener for Person events
83 person.setPersonMoveListener(this);
84
85 // start Person thread
86 person.start();
87
88 // increment number of Person objects in simulation
89 numberOfPeople++;
90
91 } // end method addPerson
92
93 // invoked when Elevator has departed from Floor
94 public void elevatorDeparted(
95 ElevatorMoveEvent moveEvent)
96 {
97 elevatorMoveListener.elevatorDeparted(moveEvent);
98 }
99
100 // invoked when Elevator has arrived at destination Floor
101 public void elevatorArrived(
102 ElevatorMoveEvent moveEvent)
103 {
104 elevatorMoveListener.elevatorArrived(moveEvent);
105 }
106
107 // send PersonMoveEvent to listener, depending on event type
108 private void sendPersonMoveEvent(
109 int eventType, PersonMoveEvent event)
110 {
111 Iterator iterator = personMoveListeners.iterator();
112
113 while (iterator.hasNext()) {
114
115 PersonMoveListener listener =
116 (PersonMoveListener) iterator.next();
117

Fig. H.1Fig. H.1Fig. H.1Fig. H.1 Class ElevatorModel represents the model in our elevator simulation
(part 3 of 7).

1396 Elevator Model (on CD) Appendix H

118 // send Event to this listener, depending on eventType
119 switch (eventType) {
120
121 // Person has been created
122 case Person.PERSON_CREATED:
123 listener.personCreated(event);
124 break;
125
126 // Person arrived at Elevator
127 case Person.PERSON_ARRIVED:
128 listener.personArrived(event);
129 break;
130
131 // Person entered Elevator
132 case Person.PERSON_ENTERING_ELEVATOR:
133 listener.personEntered(event);
134 break;
135
136 // Person pressed Button object
137 case Person.PERSON_PRESSING_BUTTON:
138 listener.personPressedButton(event);
139 break;
140
141 // Person exited Elevator
142 case Person.PERSON_EXITING_ELEVATOR:
143 listener.personDeparted(event);
144 break;
145
146 // Person exited simulation
147 case Person.PERSON_EXITED:
148 listener.personExited(event);
149 break;
150
151 default:
152 break;
153 }
154 }
155 } // end method sendPersonMoveEvent
156
157 // invoked when Person has been created in model
158 public void personCreated(PersonMoveEvent moveEvent)
159 {
160 sendPersonMoveEvent(Person.PERSON_CREATED, moveEvent);
161 }
162
163 // invoked when Person has arrived at Floor's Button
164 public void personArrived(PersonMoveEvent moveEvent)
165 {
166 sendPersonMoveEvent(Person.PERSON_ARRIVED, moveEvent);
167 }
168

Fig. H.1Fig. H.1Fig. H.1Fig. H.1 Class ElevatorModel represents the model in our elevator simulation
(part 4 of 7).

Appendix H Elevator Model (on CD) 1397

169 // invoked when Person has pressed Button
170 public void personPressedButton(PersonMoveEvent moveEvent)
171 {
172 sendPersonMoveEvent(Person.PERSON_PRESSING_BUTTON,
173 moveEvent);
174 }
175
176 // invoked when Person has entered Elevator
177 public void personEntered(PersonMoveEvent moveEvent)
178 {
179 sendPersonMoveEvent(Person.PERSON_ENTERING_ELEVATOR,
180 moveEvent);
181 }
182
183 // invoked when Person has departed from Elevator
184 public void personDeparted(PersonMoveEvent moveEvent)
185 {
186 sendPersonMoveEvent(Person.PERSON_EXITING_ELEVATOR,
187 moveEvent);
188 }
189
190 // invoked when Person has exited Simulation
191 public void personExited(PersonMoveEvent moveEvent)
192 {
193 sendPersonMoveEvent(Person.PERSON_EXITED, moveEvent);
194 }
195
196 // invoked when Door has opened
197 public void doorOpened(DoorEvent doorEvent)
198 {
199 doorListener.doorOpened(doorEvent);
200 }
201
202 // invoked when Door has closed
203 public void doorClosed(DoorEvent doorEvent)
204 {
205 doorListener.doorClosed(doorEvent);
206 }
207
208 // invoked when Button has been pressed
209 public void buttonPressed(ButtonEvent buttonEvent)
210 {
211 buttonListener.buttonPressed(buttonEvent);
212 }
213
214 // invoked when Button has been reset
215 public void buttonReset(ButtonEvent buttonEvent)
216 {
217 buttonListener.buttonReset(buttonEvent);
218 }
219

Fig. H.1Fig. H.1Fig. H.1Fig. H.1 Class ElevatorModel represents the model in our elevator simulation
(part 5 of 7).

1398 Elevator Model (on CD) Appendix H

220 // invoked when Bell has rung
221 public void bellRang(BellEvent bellEvent)
222 {
223 bellListener.bellRang(bellEvent);
224 }
225
226 // invoked when Light has turned on
227 public void lightTurnedOn(LightEvent lightEvent)
228 {
229 lightListener.lightTurnedOn(lightEvent);
230 }
231
232 // invoked when Light has turned off
233 public void lightTurnedOff(LightEvent lightEvent)
234 {
235 lightListener.lightTurnedOff(lightEvent);
236 }
237
238 // set listener for ElevatorModelListener
239 public void setElevatorModelListener(
240 ElevatorModelListener listener)
241 {
242 // ElevatorModelListener extends all interfaces below
243 addPersonMoveListener(listener);
244 setElevatorMoveListener(listener);
245 setDoorListener(listener);
246 setButtonListener(listener);
247 setLightListener(listener);
248 setBellListener(listener);
249 }
250
251 // set listener for PersonMoveEvents
252 public void addPersonMoveListener(
253 PersonMoveListener listener)
254 {
255 personMoveListeners.add(listener);
256 }
257
258 // set listener for DoorEvents
259 public void setDoorListener(DoorListener listener)
260 {
261 doorListener = listener;
262 }
263
264 // set listener for ButtonEvents
265 public void setButtonListener(ButtonListener listener)
266 {
267 buttonListener = listener;
268 }
269

Fig. H.1Fig. H.1Fig. H.1Fig. H.1 Class ElevatorModel represents the model in our elevator simulation
(part 6 of 7).

Appendix H Elevator Model (on CD) 1399

The class diagram in Fig. 15.21 shows that class ElevatorModel contains one
instance of class ElevatorShaft and two instances of class Floor, so Elevator-
Model declares object elevatorShaft (line 20) and objects firstFloor and sec-
ondFloor (lines 16–17). Lines 37–46 instantiate these objects and give each Floor
object a reference to the ElevatorShaft object. Fig. 15.21 also shows that class Ele-
vatorModel creates Person objects. According to Fig. 15.21, class Elevator-
Model contains method addPerson (lines 75–91), which creates and places a Person
on the specified Floor. Line 86 of method addPerson starts the Person’s thread and
line 89 increments the cumulative number of Person objects in the simulation.

As previously mentioned, class ElevatorModel sends events from the model to the
view. The class declaration (lines 12–13) and lines 49–53 reveal that the Elevator-
Model listens for several types of events from the ElevatorShaft—this is how the
ElevatorModel receives events from the objects that comprise the model. Specifically,
class ElevatorModel implements interface ElevatorModelListener, which
implements all interfaces in package event. Lines 23–28 declare the listener objects to
which the ElevatorModel sends the events it receives from the ElevatorShaft. As
mentioned in Section 13.17, the ElevatorFrame (the application) registers the Eleva-
torView as a listener for events from the ElevatorModel—this is how the Eleva-
torModel sends events from the model to the view.

Lines 94–236 of class ElevatorModel implement all methods of interface Ele-
vatorModelListener, and lines 239–288 provide addListener methods to reg-
ister a listener (in this case, the listener is the ElevatorView) for all events. In fact, two-
thirds of the class devotes itself to “bubbling up” messages from the model to the view.

We presented a class diagram that showed the realizations of the elevator model in
Fig. 11.27. We alter this diagram to accommodate the fact that class ElevatorModel
implements all interfaces through interface ElevatorModelListener. In addition,
class ElevatorShaft must implement more interfaces to receive events from class

270 // add listener for ElevatorMoveEvents
271 public void setElevatorMoveListener(
272 ElevatorMoveListener listener)
273 {
274 elevatorMoveListener = listener;
275 }
276
277 // set listener for LightEvents
278 public void setLightListener(LightListener listener)
279 {
280 lightListener = listener;
281 }
282
283 // set listener for BellEvents
284 public void setBellListener(BellListener listener)
285 {
286 bellListener = listener;
287 }
288 }

Fig. H.1Fig. H.1Fig. H.1Fig. H.1 Class ElevatorModel represents the model in our elevator simulation
(part 7 of 7).

1400 Elevator Model (on CD) Appendix H

Elevator so that ElevatorShaft can send these events to the ElevatorModel.
We present the class diagram showing all realizations for the model in Fig. H.2 and
Fig. H.3—Fig. H.2 shows the relationship between the classes in the model and the listener
interfaces, and Fig. H.3 shows the relationship between the listener interfaces and interface
ElevatorModelListener (we could have created one class diagram showing both
types of relationships, but the diagram would have been too cluttered).

Figure H.4 describes the contents of the class diagram that shows elevator model real-
izations. The substantial changes are that class ElevatorShaft now implements inter-
face ElevatorMoveListener, and ElevatorModel implements interface
ElevatorModelListener, which implements all interfaces.

Fig. H.2Fig. H.2Fig. H.2Fig. H.2 Class diagram showing realizations in the elevator model (Part 1).

Light

ElevatorModel

Bell

Person

Door Button

ElevatorMoveListener

ElevatorModelListener

Elevator

ButtonListener DoorListener BellListener

ElevatorShaft

ButtonListener DoorListenerLightListener
ElevatorMove-

Listener

DoorListener

BellListener

Appendix H Elevator Model (on CD) 1401

H.3 Classes Location and Floor
We need to represent the location of the Person in the simulation. The Person could
have an int attribute describing on which Floor the Person is walking; however, the
Person does not occupy either Floor when riding the Elevator. As described in
“Thinking About Objects” Section 9.23, our solution is for the Person to maintain a Lo-
cation reference, which references either a Floor or the Elevator, depending on the
whereabouts of the Person. To implement this feature, classes Floor and Elevator
extend abstract superclass Location (Fig. H.5).

Fig. H.3Fig. H.3Fig. H.3Fig. H.3 Class diagram showing realizations in the elevator model (Part 2).

Class implements Listener

ElevatorModel ElevatorModelListener

ElevatorModelListener PersonMoveListener
ElevatorMoveListener
ButtonListener
DoorListener
BellListener
LightListener

Door, Light, Bell, Button ElevatorMoveListener

Elevator ButtonListener
DoorListener
BellListener

ElevatorShaft LightListener
ButtonListener
DoorListener
BellListener
ElevatorMoveListener

Person DoorListener

Fig. H.4Fig. H.4Fig. H.4Fig. H.4 Classes and implemented listener interfaces from Fig. H.2.

ElevatorModel

Button-
Listener

Door-
Listener

ElevatorMove-
Listener

PersonMove-
Listener

Bell-
Listener

Light-
Listener

ElevatorModelListener

1402 Elevator Model (on CD) Appendix H

Location contains String locationName (line 11), which may contain either
value firstFloor, secondFloor or elevator to describe the three locations the
Person may occupy. Lines 26 and 29 declare abstract methods getButton and get-
Door, respectively. Using these methods, a Floor returns references to objects associated
with that Floor, and the Elevator returns references to the objects associated with the
Elevator. The Location reference allows a Person to press a Button and to know
when a Door has opened. For example, if we wish a Person to press a Button, we write

person.getLocation().getButton().pressButton();

Therefore, our use of an abstract superclass provides an alternate means for objects in
our model to interact. Figure H.6 presents class Floor, a subclass of class Location.
The Floor constructor (lines 15–18) takes as a String argument the value first-
Floor or secondFloor to identify the Floor. Line 17 invokes method setLoca-
tionName to assign the value of this String to attribute locationName, inherited
from superclass Location.

1 // Location.java
2 // Abstract superclass representing location in simulation
3 package com.deitel.jhtp4.elevator.model;
4
5 // Deitel packages
6 import com.deitel.jhtp4.elevator.event.*;
7
8 public abstract class Location {
9

10 // name of Location
11 private String locationName;
12
13 // set name of Location
14 protected void setLocationName(String name)
15 {
16 locationName = name;
17 }
18
19 // return name of Location
20 public String getLocationName()
21 {
22 return locationName;
23 }
24
25 // return Button at Location
26 public abstract Button getButton();
27
28 // return Door object at Location
29 public abstract Door getDoor();
30 }

Fig. H.5Fig. H.5Fig. H.5Fig. H.5 Location abstract superclass that represents a location in the simulation.

Appendix H Elevator Model (on CD) 1403

1 // Floor.java
2 // Represents a Floor located next to an ElevatorShaft
3 package com.deitel.jhtp4.elevator.model;
4
5 // Deitel packages
6 import com.deitel.jhtp4.elevator.ElevatorConstants;
7
8 public class Floor extends Location
9 implements ElevatorConstants {

10
11 // reference to ElevatorShaft object
12 private ElevatorShaft elevatorShaft;
13
14 // Floor constructor sets name of Floor
15 public Floor(String name)
16 {
17 setLocationName(name);
18 }
19
20 // get first or second Floor Button, using Location name
21 public Button getButton()
22 {
23 if (getLocationName().equals(FIRST_FLOOR_NAME))
24 return getElevatorShaft().getFirstFloorButton();
25 else
26
27 if (getLocationName().equals(SECOND_FLOOR_NAME))
28 return getElevatorShaft().getSecondFloorButton();
29 else
30
31 return null;
32
33 } // end method getButton
34
35 // get first or second Floor Door, using Location name
36 public Door getDoor()
37 {
38 if (getLocationName().equals(FIRST_FLOOR_NAME))
39 return getElevatorShaft().getFirstFloorDoor();
40 else
41
42 if (getLocationName().equals(SECOND_FLOOR_NAME))
43 return getElevatorShaft().getSecondFloorDoor();
44 else
45
46 return null;
47
48 } // end method getDoor
49
50 // get ElevatorShaft reference
51 public ElevatorShaft getElevatorShaft()
52 {

Fig. H.6Fig. H.6Fig. H.6Fig. H.6 Class Floor—a subclass of Location—represents a Floor across
which a Person walks to the Elevator (part 1 of 2).

1404 Elevator Model (on CD) Appendix H

Class Floor provides concrete methods getButton (lines 21–33) and getDoor
(lines 36–48). Methods getButton and getDoor return a Button and Door reference
on either the first or second Floor, depending on which Floor returns the reference.
Lastly, method getElevatorShaft (lines 51–54) returns a reference to the Eleva-
torShaft. We will see later how a Person uses this method, in conjunction with that
Person’s Location reference, to enter the Elevator.

H.4 Class Door
The Doors are an essential part of the model, because they inform a Person when to enter
and exit the Elevator—without the Doors, no Person would ride the Elevator. The
collaboration diagrams of Fig. 7.20, Fig. 10.25 and Fig. 15.18 presented the collaborations
among the Doors, the Elevator and the Person. Now, we provide a walkthrough of
class Door (Fig. H.7).

53 return elevatorShaft;
54 }
55
56 // set ElevatorShaft reference
57 public void setElevatorShaft(ElevatorShaft shaft)
58 {
59 elevatorShaft = shaft;
60 }
61 }

1 // Door.java
2 // Sends DoorEvents to DoorListeners when opened or closed
3 package com.deitel.jhtp4.elevator.model;
4
5 // Java core packages
6 import java.util.*;
7
8 // Deitel packages
9 import com.deitel.jhtp4.elevator.event.*;

10
11 public class Door implements ElevatorMoveListener {
12
13 // represent whether Door is open or closed
14 private boolean open = false;
15
16 // time before Door closes automatically
17 public static final int AUTOMATIC_CLOSE_DELAY = 3000;
18
19 // Set of DoorListeners
20 private Set doorListeners;
21

Fig. H.7Fig. H.7Fig. H.7Fig. H.7 Class Door, which represents a Door in the model, informs listeners when
a Door has opened or closed (part 1 of 4).

Fig. H.6Fig. H.6Fig. H.6Fig. H.6 Class Floor—a subclass of Location—represents a Floor across
which a Person walks to the Elevator (part 2 of 2).

Appendix H Elevator Model (on CD) 1405

22 // location where Door opened or closed
23 private Location doorLocation;
24
25 // Door constructor instantiates Set for DoorListeners
26 public Door()
27 {
28 doorListeners = new HashSet(1);
29 }
30
31 // add Door listener
32 public void addDoorListener(DoorListener listener)
33 {
34 // prevent other objects from modifying doorListeners
35 synchronized(doorListeners)
36 {
37 doorListeners.add(listener);
38 }
39 }
40
41 // remove Door listener
42 public void removeDoorListener(DoorListener listener)
43 {
44 // prevent other objects from modifying doorListeners
45 synchronized(doorListeners)
46 {
47 doorListeners.remove(listener);
48 }
49 }
50
51 // open Door and send all listeners DoorEvent objects
52 public void openDoor(Location location)
53 {
54 if (!open) {
55
56 open = true;
57
58 // obtain iterator from Set
59 Iterator iterator;
60 synchronized(doorListeners)
61 {
62 iterator = new HashSet(doorListeners).iterator();
63 }
64
65 // get next DoorListener
66 while (iterator.hasNext()) {
67 DoorListener doorListener =
68 (DoorListener) iterator.next();
69
70 // send doorOpened event to this DoorListener
71 doorListener.doorOpened(
72 new DoorEvent(this, location));
73 }

Fig. H.7Fig. H.7Fig. H.7Fig. H.7 Class Door, which represents a Door in the model, informs listeners when
a Door has opened or closed (part 2 of 4).

1406 Elevator Model (on CD) Appendix H

74
75 doorLocation = location;
76
77 // declare Thread that ensures automatic Door closing
78 Thread closeThread = new Thread(
79 new Runnable() {
80
81 public void run()
82 {
83 // close Door if open for more than 3 seconds
84 try {
85 Thread.sleep(AUTOMATIC_CLOSE_DELAY);
86 closeDoor(doorLocation);
87 }
88
89 // handle exception if interrupted
90 catch (InterruptedException exception) {
91 exception.printStackTrace();
92 }
93 }
94 } // end anonymous inner class
95);
96
97 closeThread.start();
98 }
99 } // end method openDoor
100
101 // close Door and send all listeners DoorEvent objects
102 public void closeDoor(Location location)
103 {
104 if (open) {
105
106 open = false;
107
108 // obtain iterator from Set
109 Iterator iterator;
110 synchronized(doorListeners)
111 {
112 iterator = new HashSet(doorListeners).iterator();
113 }
114
115 // get next DoorListener
116 while (iterator.hasNext()) {
117 DoorListener doorListener =
118 (DoorListener) iterator.next();
119
120 // send doorClosed event to this DoorListener
121 doorListener.doorClosed(
122 new DoorEvent(this, location));
123 }
124 }
125 } // end method closeDoor

Fig. H.7Fig. H.7Fig. H.7Fig. H.7 Class Door, which represents a Door in the model, informs listeners when
a Door has opened or closed (part 3 of 4).

Appendix H Elevator Model (on CD) 1407

Figure 15.12 indicates that class Door contains boolean attribute open (line 14) to
represent the state of the Door (open or closed). Figure 15.12 also indicates that class Door
contains methods openDoor (lines 52–99) and closeDoor (lines 102–125). Method
openDoor sends a doorOpened event to all registered DoorListeners (the Door
passes a DoorEvent object to the doorOpened method of each registered DoorLis-
tener), and method closeDoor sends a doorClosed event to all registered DoorL-
isteners. Set doorListeners (line 20) stores all registered DoorListeners. A
DoorListener wishing to receive DoorEvents from a Door must invoke method
addDoorListener (lines 32–39); those listeners that no longer wish to be a DoorLis-
tener for that Door must invoke removeDoorListener (lines 42–49).

Line 56 of method openDoor opens the Door by setting open to true. Lines 66–
73 iterate Set doorListeners and send each object a doorOpened event. Lines 60–
63 use a synchronized block obtaining the Iterator from Set doorListeners,
because a Person, at any time, can add or remove itself from this Set. If method open-
Door iterates doorListeners as a Person adds or removes itself from doorLis-
teners, the JVM throws a ConcurrentModificationException—the Person
is modifying the Set as method openDoor is iterating the same Set. Method open-
Door avoids this situation with the synchronized block.

Method openDoor receives as an argument a Location reference on what Floor
that Door should open. Lines 71–72 send a DoorEvent using the Location reference
to all registered DoorListeners. Method closeDoor sets open to false (thus
closing the Door) and invokes the doorClosed method on all registered DoorLis-
teners.

We decided in Section 15.12 to make class Door an active class, so that the Door closes
itself after three seconds of being open. Lines 78–95 of method openDoor instantiate a
thread that handles this responsibility. Method run (lines 81–93) puts this thread to sleep for
three seconds then closes the Door. Line 97 of method openDoor starts the thread.

Lastly, according to Fig. H.2, Door implements ElevatorMoveListener. In our
simulation, the Elevator invokes method elevatorDeparted (line 134) when the

126
127 // return whether Door is open or closed
128 public boolean isDoorOpen()
129 {
130 return open;
131 }
132
133 // invoked after Elevator has departed
134 public void elevatorDeparted(ElevatorMoveEvent moveEvent) {}
135
136 // invoked when Elevator has arrived
137 public void elevatorArrived(ElevatorMoveEvent moveEvent)
138 {
139 openDoor(moveEvent.getLocation());
140 }
141 }

Fig. H.7Fig. H.7Fig. H.7Fig. H.7 Class Door, which represents a Door in the model, informs listeners when
a Door has opened or closed (part 4 of 4).

1408 Elevator Model (on CD) Appendix H

Elevator has departed and invokes method elevatorArrived (lines 137–140)
when the Elevator has arrived. Method elevatorArrived calls method open-
Door—the Door opens when the Elevator has arrived. Method elevatorDe-
parted does not perform any action. At a first glance, you may wonder why this method
does not call method closeDoor. The reason is that a Door should close before the
Elevator has departed so the passenger will not be injured—in our model, the Ele-
vator calls method closeDoor before calling elevatorDeparted.

H.5 Class Button
Buttons (Fig. H.8) are important to the model as well, because they signal the Eleva-
tor to move between Floors. Figure 15.12 indicates that class Button contains bool-
ean attribute pressed (line 14) to represent the state of the Button (pressed or reset).
Figure 15.12 indicates also that class Button contains methods pressButton (lines
23–29) and resetButton (lines 32–38).

1 // Button.java
2 // Sends ButtonEvents to ButtonListeners when accessed
3 package com.deitel.jhtp4.elevator.model;
4
5 // Deitel packages
6 import com.deitel.jhtp4.elevator.event.*;
7
8 public class Button implements ElevatorMoveListener {
9

10 // ButtonListener
11 private ButtonListener buttonListener = null;
12
13 // represent whether Button is pressed
14 private boolean pressed = false;
15
16 // set listener
17 public void setButtonListener(ButtonListener listener)
18 {
19 buttonListener = listener;
20 }
21
22 // press Button and send ButtonEvent
23 public void pressButton(Location location)
24 {
25 pressed = true;
26
27 buttonListener.buttonPressed(
28 new ButtonEvent(this, location));
29 }
30
31 // reset Button and send ButtonEvent
32 public void resetButton(Location location)
33 {
34 pressed = false;

Fig. H.8Fig. H.8Fig. H.8Fig. H.8 Class Button, which represents a Button in the model, informs listeners
when a Button has been pressed or reset (part 1 of 2).

Appendix H Elevator Model (on CD) 1409

Method pressButton sends a buttonPressed event to the registered Button-
Listener (line 11), and method resetButton sends a buttonReset event to the
ButtonListener. Method setButtonListener (lines 17–20) allows an object to
receive ButtonEvents by registering itself as the ButtonListener.

Line 25 of method pressButton sets attribute pressed to true, and lines 27–28
pass a ButtonEvent to method buttonPressed of the buttonListener. Line 34
of method resetButton sets attribute pressed to false and line 36–37 pass a But-
tonEvent to method buttonReset of the buttonListener.

Lastly, according to Fig. H.2, classes Button implements interface Elevator-
MoveListener. Method elevatorArrived (lines 50–53) calls method reset-
Button to reset the Button.

H.6 Class ElevatorShaft
Class ElevatorShaft (Fig. H.9) represents the ElevatorShaft in which the El-
evator travels in the model. Most methods in class ElevatorShaft access pri-
vate variables, listen for messages from the Elevator and send “bubble up” events
to the ElevatorModel, which sends them to the ElevatorView. According to the
class diagram of Fig. 15.21, class ElevatorShaft contains one Elevator object,
two Button objects, two Door objects and two Light objects. The Button, Door
and Light objects refer to the buttons, doors and lights on each Floor. Line 15 de-
clares the Elevator object—elevator. Lines 18–19 declare the Buttons first-
FloorButton and secondFloorButton. Lines 22–23 declare the Doors
firstFloorDoor and secondFloorDoor. Lines 26–27 declare the Lights
firstFloorLight and secondFloorLight. Lines 169–208 provide methods to
access references to these objects.

35
36 buttonListener.buttonReset(
37 new ButtonEvent(this, location));
38 }
39
40 // return whether button is pressed
41 public boolean isButtonPressed()
42 {
43 return pressed;
44 }
45
46 // invoked when Elevator has departed
47 public void elevatorDeparted(ElevatorMoveEvent moveEvent) {}
48
49 // invoked when Elevator has arrived
50 public void elevatorArrived(ElevatorMoveEvent moveEvent)
51 {
52 resetButton(moveEvent.getLocation());
53 }
54 }

Fig. H.8Fig. H.8Fig. H.8Fig. H.8 Class Button, which represents a Button in the model, informs listeners
when a Button has been pressed or reset (part 2 of 2).

1410 Elevator Model (on CD) Appendix H

1 // ElevatorShaft.java
2 // Represents elevator shaft, which contains elevator
3 package com.deitel.jhtp4.elevator.model;
4
5 // Java core packages
6 import java.util.*;
7
8 // Deitel packages
9 import com.deitel.jhtp4.elevator.event.*;

10
11 public class ElevatorShaft implements ElevatorMoveListener,
12 LightListener, BellListener {
13
14 // Elevator
15 private Elevator elevator;
16
17 // Buttons on Floors
18 private Button firstFloorButton;
19 private Button secondFloorButton;
20
21 // Doors on Floors
22 private Door firstFloorDoor;
23 private Door secondFloorDoor;
24
25 // Lights on Floors
26 private Light firstFloorLight;
27 private Light secondFloorLight;
28
29 // listeners
30 private DoorListener doorListener;
31 private ButtonListener buttonListener;
32 private LightListener lightListener;
33 private BellListener bellListener;
34 private Set elevatorMoveListeners;
35
36 // constructor initializes aggregated components
37 public ElevatorShaft(Floor firstFloor, Floor secondFloor)
38 {
39 // instantiate Set for ElevatorMoveListeners
40 elevatorMoveListeners = new HashSet(1);
41
42 // anonymous inner class listens for ButtonEvents
43 ButtonListener floorButtonListener =
44 new ButtonListener() {
45
46 // called when Floor Button has been pressed
47 public void buttonPressed(ButtonEvent buttonEvent)
48 {
49 // request elevator move to location
50 Location location = buttonEvent.getLocation();
51 buttonListener.buttonPressed(buttonEvent);

Fig. H.9Fig. H.9Fig. H.9Fig. H.9 Class ElevatorShaft, which represents the ElevatorShaft, which
sends events from the Elevator to the ElevatorModel (part 1 of 6).

Appendix H Elevator Model (on CD) 1411

52 elevator.requestElevator(location);
53 }
54
55 // called when Floor Button has been reset
56 public void buttonReset(ButtonEvent buttonEvent)
57 {
58 buttonListener.buttonReset(buttonEvent);
59 }
60 }; // end anonymous inner class
61
62 // instantiate Floor Buttons
63 firstFloorButton = new Button();
64 secondFloorButton = new Button();
65
66 // register anonymous ButtonListener with Floor Buttons
67 firstFloorButton.setButtonListener(
68 floorButtonListener);
69 secondFloorButton.setButtonListener(
70 floorButtonListener);
71
72 // Floor Buttons listen for ElevatorMoveEvents
73 addElevatorMoveListener(firstFloorButton);
74 addElevatorMoveListener(secondFloorButton);
75
76 // anonymous inner class listens for DoorEvents
77 DoorListener floorDoorListener = new DoorListener() {
78
79 // called when Floor Door has opened
80 public void doorOpened(DoorEvent doorEvent)
81 {
82 // forward event to doorListener
83 doorListener.doorOpened(doorEvent);
84 }
85
86 // called when Floor Door has closed
87 public void doorClosed(DoorEvent doorEvent)
88 {
89 // forward event to doorListener
90 doorListener.doorClosed(doorEvent);
91 }
92 }; // end anonymous inner class
93
94 // instantiate Floor Doors
95 firstFloorDoor = new Door();
96 secondFloorDoor = new Door();
97
98 // register anonymous DoorListener with Floor Doors
99 firstFloorDoor.addDoorListener(floorDoorListener);
100 secondFloorDoor.addDoorListener(floorDoorListener);
101
102 // instantiate Lights, then listen for LightEvents
103 firstFloorLight = new Light();

Fig. H.9Fig. H.9Fig. H.9Fig. H.9 Class ElevatorShaft, which represents the ElevatorShaft, which
sends events from the Elevator to the ElevatorModel (part 2 of 6).

1412 Elevator Model (on CD) Appendix H

104 addElevatorMoveListener(firstFloorLight);
105 firstFloorLight.setLightListener(this);
106
107 secondFloorLight = new Light();
108 addElevatorMoveListener(secondFloorLight);
109 secondFloorLight.setLightListener(this);
110
111 // instantiate Elevator object
112 elevator = new Elevator(firstFloor, secondFloor);
113
114 // register for ElevatorMoveEvents from elevator
115 elevator.addElevatorMoveListener(this);
116
117 // listen for BellEvents from elevator
118 elevator.setBellListener(this);
119
120 // anonymous inner class listens for ButtonEvents from
121 // elevator
122 elevator.setButtonListener(
123 new ButtonListener() {
124
125 // invoked when button has been pressed
126 public void buttonPressed(ButtonEvent buttonEvent)
127 {
128 // send event to listener
129 buttonListener.buttonPressed(buttonEvent);
130 }
131
132 // invoked when button has been reset
133 public void buttonReset(ButtonEvent buttonEvent)
134 {
135 // send event to listener
136 buttonListener.buttonReset(
137 new ButtonEvent(this, elevator));
138 }
139 } // end anonymous inner class
140);
141
142 // anonymous inner class listens for DoorEvents from
143 // elevator
144 elevator.setDoorListener(
145 new DoorListener() {
146
147 // invoked when door has opened
148 public void doorOpened(DoorEvent doorEvent)
149 {
150 // send event to listener
151 doorListener.doorOpened(doorEvent);
152 }
153

Fig. H.9Fig. H.9Fig. H.9Fig. H.9 Class ElevatorShaft, which represents the ElevatorShaft, which
sends events from the Elevator to the ElevatorModel (part 3 of 6).

Appendix H Elevator Model (on CD) 1413

154 // invoked when door has closed
155 public void doorClosed(DoorEvent doorEvent)
156 {
157 // send event to listener
158 doorListener.doorClosed(doorEvent);
159 }
160 } // end anonymous inner class
161);
162
163 // start Elevator Thread
164 elevator.start();
165
166 } // end ElevatorShaft constructor
167
168 // get Elevator
169 public Elevator getElevator()
170 {
171 return elevator;
172 }
173
174 // get Door on first Floor
175 public Door getFirstFloorDoor()
176 {
177 return firstFloorDoor;
178 }
179
180 // get Door on second Floor
181 public Door getSecondFloorDoor()
182 {
183 return secondFloorDoor;
184 }
185
186 // get Button on first Floor
187 public Button getFirstFloorButton()
188 {
189 return firstFloorButton;
190 }
191
192 // get Button on second Floor
193 public Button getSecondFloorButton()
194 {
195 return secondFloorButton;
196 }
197
198 // get Light on first Floor
199 public Light getFirstFloorLight()
200 {
201 return firstFloorLight;
202 }
203

Fig. H.9Fig. H.9Fig. H.9Fig. H.9 Class ElevatorShaft, which represents the ElevatorShaft, which
sends events from the Elevator to the ElevatorModel (part 4 of 6).

1414 Elevator Model (on CD) Appendix H

204 // get Light on second Floor
205 public Light getSecondFloorLight()
206 {
207 return secondFloorLight;
208 }
209
210 // invoked when Bell rings
211 public void bellRang(BellEvent bellEvent)
212 {
213 bellListener.bellRang(bellEvent);
214 }
215
216 // invoked when Light turns on
217 public void lightTurnedOn(LightEvent lightEvent)
218 {
219 lightListener.lightTurnedOn(lightEvent);
220 }
221
222 // invoked when Light turns off
223 public void lightTurnedOff(LightEvent lightEvent)
224 {
225 lightListener.lightTurnedOff(lightEvent);
226 }
227
228 // invoked when Elevator departs
229 public void elevatorDeparted(ElevatorMoveEvent moveEvent)
230 {
231 Iterator iterator = elevatorMoveListeners.iterator();
232
233 // iterate Set of ElevatorMoveEvent listeners
234 while (iterator.hasNext()) {
235
236 // get respective ElevatorMoveListener from Set
237 ElevatorMoveListener listener =
238 (ElevatorMoveListener) iterator.next();
239
240 // send ElevatorMoveEvent to this listener
241 listener.elevatorDeparted(moveEvent);
242 }
243 } // end method elevatorDeparted
244
245 // invoked when Elevator arrives
246 public void elevatorArrived(ElevatorMoveEvent moveEvent)
247 {
248 // obtain iterator from Set
249 Iterator iterator = elevatorMoveListeners.iterator();
250
251 // get next DoorListener
252 while (iterator.hasNext()) {
253

Fig. H.9Fig. H.9Fig. H.9Fig. H.9 Class ElevatorShaft, which represents the ElevatorShaft, which
sends events from the Elevator to the ElevatorModel (part 5 of 6).

Appendix H Elevator Model (on CD) 1415

The main responsibility of the ElevatorShaft is to receive events from other
objects then to send these events to the ElevatorModel (the ElevatorModel then
sends the events to the ElevatorView, which displays the workings of the model). The
ElevatorShaft contains references to several different listener objects, such as a
DoorListener, a ButtonListener, a LightListener, a BellListener and
several ElevatorMoveListeners. Lines 30–34 declare these listeners—line 34
declares a Set to hold multiple ElevatorMoveListeners, because the Buttons,
Doors, Lights and the ElevatorModel are all ElevatorMoveListeners. Lines

254 // get next ElevatorMoveListener from Set
255 ElevatorMoveListener listener =
256 (ElevatorMoveListener) iterator.next();
257
258 // send ElevatorMoveEvent to this listener
259 listener.elevatorArrived(moveEvent);
260
261 } // end while loop
262 } // end method elevatorArrived
263
264 // set listener to DoorEvents
265 public void setDoorListener(DoorListener listener)
266 {
267 doorListener = listener;
268 }
269
270 // set listener to ButtonEvents
271 public void setButtonListener(ButtonListener listener)
272 {
273 buttonListener = listener;
274 }
275
276 // add listener to ElevatorMoveEvents
277 public void addElevatorMoveListener(
278 ElevatorMoveListener listener)
279 {
280 elevatorMoveListeners.add(listener);
281 }
282
283 // set listener to LightEvents
284 public void setLightListener(LightListener listener)
285 {
286 lightListener = listener;
287 }
288
289 // set listener to BellEvents
290 public void setBellListener(BellListener listener)
291 {
292 bellListener = listener;
293 }
294 }

Fig. H.9Fig. H.9Fig. H.9Fig. H.9 Class ElevatorShaft, which represents the ElevatorShaft, which
sends events from the Elevator to the ElevatorModel (part 6 of 6).

1416 Elevator Model (on CD) Appendix H

265–293 provide methods allowing objects to register themselves as listeners for various
events.

The constructor (lines 37–166) instantiates listener objects from several inner classes—
these listener objects receive events from other objects, then re-send the events to the listener
objects defined in line 30–34. For example, lines 43–60 declare a ButtonListener object
called floorButtonListener, which contains the logic for when a Button on a
Floor has been pressed or reset. Lines 63–70 instantiate firstFloorButton and sec-
ondFloorButton, then register floorButtonListener as a ButtonListener
for both Button objects. When either Button has been pressed, that Button invokes
method buttonPressed (lines 47–53) of the floorButtonListener. When either
Button has been reset, that Button invokes the floorButtonListener’s method
buttonReset (lines 56–59). Method buttonPressed requests the Elevator by
invoking the Elevator’s method requestElevator—method buttonPressed
passes a Location reference of the Floor that generated the ButtonEvent. Both
methods buttonPressed and buttonReset send the ButtonEvent to the But-
tonListener defined in line 31 (which, in this case, is ElevatorModel).

Lines 77–92 declare a DoorListener object called floorDoorListener,
which contains the logic for when a Door on a Floor has opened or closed. Lines 95–100
instantiate firstFloorDoor and secondFloorDoor, then register floorDoorL-
istener as a DoorListener for both Door objects. When either Door has opened,
that Door calls method doorOpened (lines 80–84) of the floorDoorListener.
When either Door has closed, that Door calls method doorClosed (lines 87–91) of the
floorDoorListener. Both methods send the DoorEvent to the DoorListener
declared in line 30 (which, in this case, is ElevatorModel).

Lines 112–115 instantiate the Elevator and register the ElevatorShaft as an
ElevatorMoveListener with the Elevator. When the Elevator has departed,
the Elevator invokes method elevatorDeparted (lines 229–243), which informs
all objects in elevatorMoveListeners of the departure. When the Elevator has
arrived, the Elevator invokes method elevatorArrived (lines 246–262), which
informs all objects in elevatorMoveListeners of the arrival.

H.7 Classes Light and Bell
Class Light (Fig. H.10) represents the Lights on the Floors in the model. Objects of
classes Light help decorate the view by sending events to the ElevatorView via the
“bubble up” technique described previously. In our simulation, the ElevatorView turns
on and off the Light in the view upon receiving a lightTurnedOn or light-
TurnedOff event, respectively.

1 // Light.java
2 // Light turns a light on or off
3 package com.deitel.jhtp4.elevator.model;
4
5 // Deitel packages
6 import com.deitel.jhtp4.elevator.event.*;
7

Fig. H.10Fig. H.10Fig. H.10Fig. H.10 Class Light represents a Light on the Floor in the model (part 1 of 3).

Appendix H Elevator Model (on CD) 1417

8 public class Light implements ElevatorMoveListener {
9

10 // Light state (on/off)
11 private boolean lightOn;
12
13 // time before Light turns off automatically (3 seconds)
14 public static final int AUTOMATIC_TURNOFF_DELAY = 3000;
15
16 // LightListener listens for when Light should turn on/off
17 private LightListener lightListener;
18
19 // location where Light turned on or off
20 private Location lightLocation;
21
22 // set LightListener
23 public void setLightListener(LightListener listener)
24 {
25 lightListener = listener;
26 }
27
28 // turn on Light
29 public void turnOnLight(Location location)
30 {
31 if (!lightOn) {
32
33 lightOn = true;
34
35 // send LightEvent to LightListener
36 lightListener.lightTurnedOn(
37 new LightEvent(this, location));
38
39 lightLocation = location;
40
41 // declare Thread that ensures automatic Light turn off
42 Thread thread = new Thread(
43 new Runnable() {
44
45 public void run()
46 {
47 // turn off Light if on for more than 3 seconds
48 try {
49 Thread.sleep(AUTOMATIC_TURNOFF_DELAY);
50 turnOffLight(lightLocation);
51 }
52
53 // handle exception if interrupted
54 catch (InterruptedException exception) {
55 exception.printStackTrace();
56 }
57 }
58 } // end anonymous inner class
59);
60

Fig. H.10Fig. H.10Fig. H.10Fig. H.10 Class Light represents a Light on the Floor in the model (part 2 of 3).

1418 Elevator Model (on CD) Appendix H

According to Fig. 15.21, class Light contains attribute lightOn (line 11), which
represents the state of the Light (on or off). In addition, Fig. 15.21 specifies that class
Light contains methods turnOnLight (lines 29–63) and turnOffLight (lines 66–
76). Line 33 of method turnOnLight sets attribute lightOn to true, and lines 36–37
call method lightTurnedOn of the lightListener (line 17). In our model, the
ElevatorShaft is the lightListener—the ElevatorShaft receives events
from the Light and sends them to the ElevatorModel, which sends them to the Ele-
vatorView. The ElevatorShaft uses method setLightListener (lines 23–26)
to register for LightEvents. Method turnOffLight sets attribute lightOn to
false, then calls method lightTurnedOff of the lightListener.

We decided in Section 15.12 to make class Light an active class, so that the Light
turns itself off after three seconds of being illuminated. Lines 42–59 of method turnOn-

61 thread.start();
62 }
63 } // end method turnOnLight
64
65 // turn off Light
66 public void turnOffLight(Location location)
67 {
68 if (lightOn) {
69
70 lightOn = false;
71
72 // send LightEvent to LightListener
73 lightListener.lightTurnedOff(
74 new LightEvent(this, location));
75 }
76 } // end method turnOffLight
77
78 // return whether Light is on or off
79 public boolean isLightOn()
80 {
81 return lightOn;
82 }
83
84 // invoked when Elevator has departed
85 public void elevatorDeparted(
86 ElevatorMoveEvent moveEvent)
87 {
88 turnOffLight(moveEvent.getLocation());
89 }
90
91 // invoked when Elevator has arrived
92 public void elevatorArrived(
93 ElevatorMoveEvent moveEvent)
94 {
95 turnOnLight(moveEvent.getLocation());
96 }
97 }

Fig. H.10Fig. H.10Fig. H.10Fig. H.10 Class Light represents a Light on the Floor in the model (part 3 of 3).

Appendix H Elevator Model (on CD) 1419

Light instantiate a thread that handles this responsibility. Method run (lines 45–57) puts
this thread to sleep for three seconds, then turns off the Light. Line 61 of method turn-
OnLight starts the thread.

According to Fig. H.2, class Light implements interface ElevatorMoveLis-
tener. Lines 85–89 and lines 92–96 list methods elevatorDeparted and eleva-
torArrived, respectively. In our model, the Light turns off when the Elevator has
departed, and the Light turns on when the Elevator has arrived.

Class Bell (Fig. H.11) represents the Bell in the model and sends a bellRang
event to a BellListener when the Bell has rung. This event eventually “bubbles up”
to the ElevatorView. The ElevatorView plays an audio clip of a bell ringing upon
receiving a bellRang event.

1 // Bell.java
2 // Represents Bell in simulation
3 package com.deitel.jhtp4.elevator.model;
4
5 // Deitel packages
6 import com.deitel.jhtp4.elevator.event.*;
7
8 public class Bell implements ElevatorMoveListener {
9

10 // BellListener listens for BellEvent object
11 private BellListener bellListener;
12
13 // ring bell and send BellEvent object to listener
14 private void ringBell(Location location)
15 {
16 if (bellListener != null)
17 bellListener.bellRang(
18 new BellEvent(this, location));
19 }
20
21 // set BellListener
22 public void setBellListener(BellListener listener)
23 {
24 bellListener = listener;
25 }
26
27 // invoked when Elevator has departed
28 public void elevatorDeparted(ElevatorMoveEvent moveEvent) {}
29
30 // invoked when Elevator has arrived
31 public void elevatorArrived(ElevatorMoveEvent moveEvent)
32 {
33 ringBell(moveEvent.getLocation());
34 }
35 }

Fig. H.11Fig. H.11Fig. H.11Fig. H.11 Class Bell represents the Bell in the model.

1420 Elevator Model (on CD) Appendix H

According to Fig. 15.21, class Bell does not contain attributes, because the Bell
does not change state. However, Fig. 15.21 specifies that class Bell contains method
ringBell (lines 14–19), which rings the Bell by invoking method bellRang of the
BellListener bellListener (line 11). In our simulation, the Elevator is the
bellListener—the Elevator receives event from the Bell, then sends the event to
the ElevatorShaft, which sends the event to the ElevatorModel, which sends the
event to the ElevatorView. The ElevatorView then plays an audio clip of a bell
ringing. The Elevator uses method setBellListener (lines 22–24) to register for
BellEvents from the Bell.

According to Fig. H.2, class Bell implements interface ElevatorMoveListener.
Line 28 and lines 31–34 list methods elevatorDeparted and elevatorArrived,
respectively. In our simulation, the Bell rings when the Elevator has arrived.

H.8 Class Elevator
Class Elevator (Fig. H.12) represents the elevator car that travels between the two
Floors in the ElevatorShaft while carrying a Person. According to the class dia-
gram of Fig. 15.21, class Elevator contains one object each of classes Button, Door
and Bell—lines 37–39 declare objects elevatorButton, elevatorDoor and
bell. As discussed in Section 9.23, class Elevator extends superclass Location, be-
cause the Elevator is a location that the Person can occupy. Class Elevator imple-
ments methods getButton (lines 232–235) and getDoor (lines 238–241) provided by
class Location. Method getButton returns the elevatorButton and method
getDoor returns the elevatorDoor. According to Fig. 15.21, we also must include
two Location objects—one named currentFloor (line 22), which represents the
current Floor being serviced, and the other named destinationFloor (line 25),
which represents the Floor at which the Elevator will arrive. In addition, Fig. 15.21
specifies that class Elevator requires boolean variable moving (line 19), which de-
scribes whether the Elevator is moving or idle, and boolean variable summoned
(line 28), which describes whether the Elevator has been summoned. Also, class Ele-
vator uses int constant TRAVEL_TIME (line 44), which indicates the five second travel
time between Floors.

1 // Elevator.java
2 // Travels between Floors in the ElevatorShaft
3 package com.deitel.jhtp4.elevator.model;
4
5 // Java core packages
6 import java.util.*;
7
8 // Deitel packages
9 import com.deitel.jhtp4.elevator.event.*;

10 import com.deitel.jhtp4.elevator.ElevatorConstants;
11
12 public class Elevator extends Location implements Runnable,
13 BellListener, ElevatorConstants {

Fig. H.12Fig. H.12Fig. H.12Fig. H.12 Class Elevator represents the Elevator traveling between two
Floors, operating asynchronously with other objects (part 1 of 9).

Appendix H Elevator Model (on CD) 1421

14
15 // manages Elevator thread
16 private boolean elevatorRunning = false;
17
18 // describes Elevator state (idle or moving)
19 private boolean moving = false;
20
21 // current Floor
22 private Location currentFloorLocation;
23
24 // destination Floor
25 private Location destinationFloorLocation;
26
27 // Elevator needs to service other Floor
28 private boolean summoned;
29
30 // listener objects
31 private Set elevatorMoveListeners;
32 private ButtonListener elevatorButtonListener;
33 private DoorListener elevatorDoorListener;
34 private BellListener bellListener;
35
36 // Door, Button and Bell on Elevator
37 private Door elevatorDoor;
38 private Button elevatorButton;
39 private Bell bell;
40
41 public static final int ONE_SECOND = 1000;
42
43 // time needed to travel between Floors (5 seconds)
44 private static final int TRAVEL_TIME = 5 * ONE_SECOND;
45
46 // max travel time for Elevator (20 minutes)
47 private static final int MAX_TRAVEL_TIME =
48 20 * 60 * ONE_SECOND;
49
50 // Elevator's thread to handle asynchronous movement
51 private Thread thread;
52
53 // constructor creates variables; registers for ButtonEvents
54 public Elevator(Floor firstFloor, Floor secondFloor)
55 {
56 setLocationName(ELEVATOR_NAME);
57
58 // instantiate Elevator's Door, Button and Bell
59 elevatorDoor = new Door();
60 elevatorButton = new Button();
61 bell = new Bell();
62
63 // register Elevator for BellEvents
64 bell.setBellListener(this);
65

Fig. H.12Fig. H.12Fig. H.12Fig. H.12 Class Elevator represents the Elevator traveling between two
Floors, operating asynchronously with other objects (part 2 of 9).

1422 Elevator Model (on CD) Appendix H

66 // instantiate listener Set
67 elevatorMoveListeners = new HashSet(1);
68
69 // start Elevator on first Floor
70 currentFloorLocation = firstFloor;
71 destinationFloorLocation = secondFloor;
72
73 // register elevatorButton for ElevatorMoveEvents
74 addElevatorMoveListener(elevatorButton);
75
76 // register elevatorDoor for ElevatorMoveEvents
77 addElevatorMoveListener(elevatorDoor);
78
79 // register bell for ElevatorMoveEvents
80 addElevatorMoveListener(bell);
81
82 // anonymous inner class listens for ButtonEvents from
83 // elevatorButton
84 elevatorButton.setButtonListener(
85 new ButtonListener() {
86
87 // invoked when elevatorButton has been pressed
88 public void buttonPressed(ButtonEvent buttonEvent)
89 {
90 // send ButtonEvent to listener
91 elevatorButtonListener.buttonPressed(
92 buttonEvent);
93
94 // start moving Elevator to destination Floor
95 setMoving(true);
96 }
97
98 // invoked when elevatorButton has been reset
99 public void buttonReset(ButtonEvent buttonEvent)
100 {
101 // send ButtonEvent to listener
102 elevatorButtonListener.buttonReset(
103 buttonEvent);
104 }
105 } // end anonymous inner class
106);
107
108 // anonymous inner class listens for DoorEvents from
109 // elevatorDoor
110 elevatorDoor.addDoorListener(
111 new DoorListener() {
112
113 // invoked when elevatorDoor has opened
114 public void doorOpened(DoorEvent doorEvent)
115 {
116 // get Location associated with DoorEvent
117 Location location = doorEvent.getLocation();

Fig. H.12Fig. H.12Fig. H.12Fig. H.12 Class Elevator represents the Elevator traveling between two
Floors, operating asynchronously with other objects (part 3 of 9).

Appendix H Elevator Model (on CD) 1423

118 String locationName = location.getLocationName();
119
120 // open Door on Floor Location
121 if (!locationName.equals(ELEVATOR_NAME))
122 location.getDoor().openDoor(location);
123
124 // send DoorEvent to listener
125 elevatorDoorListener.doorOpened(new DoorEvent(
126 doorEvent.getSource(), Elevator.this));
127 }
128
129 // invoked when elevatorDoor has closed
130 public void doorClosed(DoorEvent doorEvent)
131 {
132 // get Location associated with DoorEvent
133 Location location = doorEvent.getLocation();
134 String locationName = location.getLocationName();
135
136 // close Door on Floor Location
137 if (!locationName.equals(ELEVATOR_NAME))
138 location.getDoor().closeDoor(location);
139
140 // send DoorEvent to listener
141 elevatorDoorListener.doorClosed(new DoorEvent(
142 doorEvent.getSource(), Elevator.this));
143 }
144 } // end anonymous inner class
145);
146 } // end Elevator constructor
147
148 // swaps current Floor Location with opposite Floor Location
149 private void changeFloors()
150 {
151 Location location = currentFloorLocation;
152 currentFloorLocation = destinationFloorLocation;
153 destinationFloorLocation = location;
154 }
155
156 // start Elevator thread
157 public void start()
158 {
159 if (thread == null)
160 thread = new Thread(this);
161
162 elevatorRunning = true;
163 thread.start();
164 }
165

Fig. H.12Fig. H.12Fig. H.12Fig. H.12 Class Elevator represents the Elevator traveling between two
Floors, operating asynchronously with other objects (part 4 of 9).

1424 Elevator Model (on CD) Appendix H

166 // stop Elevator thread; method run terminates
167 public void stopElevator()
168 {
169 elevatorRunning = false;
170 }
171
172 // Elevator thread's run method
173 public void run()
174 {
175 while (isElevatorRunning()) {
176
177 // remain idle until awoken
178 while (!isMoving())
179 pauseThread(10);
180
181 // close elevatorDoor
182 getDoor().closeDoor(currentFloorLocation);
183
184 // closing Door takes one second
185 pauseThread(ONE_SECOND);
186
187 // issue elevatorDeparted Event
188 sendDepartureEvent(currentFloorLocation);
189
190 // Elevator needs 5 seconds to travel
191 pauseThread(TRAVEL_TIME);
192
193 // stop Elevator
194 setMoving(false);
195
196 // swap Floor Locations
197 changeFloors();
198
199 // issue elevatorArrived Event
200 sendArrivalEvent(currentFloorLocation);
201
202 } // end while loop
203
204 } // end method run
205
206 // invoked when Person rides Elevator between Floors
207 public synchronized void ride()
208 {
209 try {
210 Thread.sleep(MAX_TRAVEL_TIME);
211 }
212 catch (InterruptedException exception) {
213 // method doorOpened in Person interrupts method sleep;
214 // Person has finished riding Elevator
215 }
216 }
217

Fig. H.12Fig. H.12Fig. H.12Fig. H.12 Class Elevator represents the Elevator traveling between two
Floors, operating asynchronously with other objects (part 5 of 9).

Appendix H Elevator Model (on CD) 1425

218 // pause concurrent thread for number of milliseconds
219 private void pauseThread(int milliseconds)
220 {
221 try {
222 Thread.sleep(milliseconds);
223 }
224
225 // handle if interrupted while sleeping
226 catch (InterruptedException exception) {
227 exception.printStackTrace();
228 }
229 } // end method pauseThread
230
231 // return Button on Elevator
232 public Button getButton()
233 {
234 return elevatorButton;
235 }
236
237 // return Door on Elevator
238 public Door getDoor()
239 {
240 return elevatorDoor;
241 }
242
243 // set if Elevator should move
244 public void setMoving(boolean elevatorMoving)
245 {
246 moving = elevatorMoving;
247 }
248
249 // is Elevator moving?
250 public boolean isMoving()
251 {
252 return moving;
253 }
254
255 // is Elevator thread running?
256 private boolean isElevatorRunning()
257 {
258 return elevatorRunning;
259 }
260
261 // register ElevatorMoveListener for ElevatorMoveEvents
262 public void addElevatorMoveListener(
263 ElevatorMoveListener listener)
264 {
265 elevatorMoveListeners.add(listener);
266 }
267

Fig. H.12Fig. H.12Fig. H.12Fig. H.12 Class Elevator represents the Elevator traveling between two
Floors, operating asynchronously with other objects (part 6 of 9).

1426 Elevator Model (on CD) Appendix H

268 // register ButtonListener for ButtonEvents
269 public void setButtonListener(ButtonListener listener)
270 {
271 elevatorButtonListener = listener;
272 }
273
274 // register DoorListener for DoorEvents
275 public void setDoorListener(DoorListener listener)
276 {
277 elevatorDoorListener = listener;
278 }
279
280 // register BellListener fpr BellEvents
281 public void setBellListener(BellListener listener)
282 {
283 bellListener = listener;
284 }
285
286 // notify all ElevatorMoveListeners of arrival
287 private void sendArrivalEvent(Location location)
288 {
289 // obtain iterator from Set
290 Iterator iterator = elevatorMoveListeners.iterator();
291
292 // get next DoorListener
293 while (iterator.hasNext()) {
294
295 // get next ElevatorMoveListener from Set
296 ElevatorMoveListener listener =
297 (ElevatorMoveListener) iterator.next();
298
299 // send event to listener
300 listener.elevatorArrived(new
301 ElevatorMoveEvent(this, location));
302
303 } // end while loop
304
305 // service queued request, if one exists
306 if (summoned) {
307 pauseThread(Door.AUTOMATIC_CLOSE_DELAY);
308 setMoving(true); // start moving Elevator
309 }
310
311 summoned = false; // request has been serviced
312
313 } // end method sendArrivalEvent
314
315 // notify all ElevatorMoveListeners of departure
316 private void sendDepartureEvent(Location location)
317 {
318 // obtain iterator from Set
319 Iterator iterator = elevatorMoveListeners.iterator();

Fig. H.12Fig. H.12Fig. H.12Fig. H.12 Class Elevator represents the Elevator traveling between two
Floors, operating asynchronously with other objects (part 7 of 9).

Appendix H Elevator Model (on CD) 1427

320
321 // get next DoorListener
322 while (iterator.hasNext()) {
323
324 // get next ElevatorMoveListener from Set
325 ElevatorMoveListener listener =
326 (ElevatorMoveListener) iterator.next();
327
328 // send ElevatorMoveEvent to this listener
329 listener.elevatorDeparted(new ElevatorMoveEvent(
330 this, currentFloorLocation));
331
332 } // end while loop
333 } // end method sendDepartureEvent
334
335 // request Elevator
336 public void requestElevator(Location location)
337 {
338 // if Elevator is idle
339 if (!isMoving()) {
340
341 // if Elevator is on same Floor of request
342 if (location == currentFloorLocation)
343
344 // Elevator has already arrived; send arrival event
345 sendArrivalEvent(currentFloorLocation);
346
347 // if Elevator is on opposite Floor of request
348 else {
349
350 if (getDoor().isDoorOpen())
351 pauseThread(Door.AUTOMATIC_CLOSE_DELAY);
352 setMoving(true); // move to other Floor
353 }
354 }
355 else // if Elevator is moving
356
357 // if Elevator departed from same Floor as request
358 if (location == currentFloorLocation)
359 summoned = true;
360
361 // if Elevator is traveling to Floor of request,
362 // continue traveling
363
364 } // end method requestElevator
365
366 // invoked when bell has rung
367 public void bellRang(BellEvent bellEvent)
368 {
369 // send event to bellListener
370 if (bellListener != null)
371 bellListener.bellRang(bellEvent);

Fig. H.12Fig. H.12Fig. H.12Fig. H.12 Class Elevator represents the Elevator traveling between two
Floors, operating asynchronously with other objects (part 8 of 9).

1428 Elevator Model (on CD) Appendix H

According to Fig. H.2, class Elevator implements interfaces ButtonListener,
DoorListener and BellListener and therefore can listen for ButtonEvents,
DoorEvents and BellEvents. Class Elevator must send these events to a listener
(in this case, the ElevatorShaft), so that these events can “bubble up” to the Eleva-
torView. Class Elevator contains a ButtonListener called elevatorBut-
tonListener (line 32), a DoorListener called elevatorDoorListener (line
33) and a BellListener called bellListener (line 34). Lines 269–284 list methods
setButtonListener, setDoorListener and setBellListener that allow an
object—such as ElevatorShaft—to register as a listener for these events.

Class Elevator contains an anonymous ButtonListener (lines 84–106) that reg-
isters for ButtonEvents from the elevatorButton. When a Person has pressed the
elevatorButton, the ButtonListener calls method buttonPressed (lines 88–
96) of the ButtonListener. Lines 91–92 of this method call method buttonPressed
of the elevatorButtonListener, and line 95 informs the Elevator to move using
method setMoving. When the Button has been reset, the ButtonListener calls
method buttonReset (lines 99–104) of the ButtonListener. Lines 102–103 of this
method calls method buttonReset of the elevatorButtonListener.

Class Elevator contains an anonymous DoorListener (lines 110–145) that reg-
isters for DoorEvents from the elevatorDoor. When the elevatorDoor has
opened, the DoorListener calls method doorOpened (lines 114–127) of this Door-
Listener. Lines 121–122 open the Door on the Floor that generated the event, and
lines 125–126 call method doorOpened of the elevatorDoorListener. Method
doorOpened guarantees that the Door on the Floor opens before the passenger exits
the Elevator. When the elevatorDoor has closed, the DoorListener calls
method doorClosed (lines 130–143) of the DoorListener. Lines 137–138 close the
Door on the Floor that generated the event, and lines 141–142 call method door-
Closed of the elevatorDoorListener.

Class Elevator acts as a thread because it implements interface Runnable. Method
run (lines 173–204) handles the travel between Floors. The method begins with the Ele-
vator remaining idle in a while loop (lines 178–179). The loop exits when method but-
tonPressed in the anonymous ButtonListener calls method setMoving.

When the Elevator exits the loop, the Elevator closes the elevatorDoor
(line 182) then calls private method sendDepartureEvent (lines 316–333), to
inform all listeners—the elevatorButton, the elevatorDoor, the bell and the
ElevatorShaft—of the Elevator’s departure. Class Elevator contains Set
elevatorMoveListeners (line 31), which stores all registered Elevator-
MoveListeners. Objects wishing to receive ElevatorMoveEvents from the Ele-
vator must call method addElevatorMoveListener (lines 262–266), which
appends that object to elevatorMoveListeners. Method sendDepartureEvent
invokes method elevatorDeparted of each listener object in Set elevator-
MoveListeners.

372 }
373 }

Fig. H.12Fig. H.12Fig. H.12Fig. H.12 Class Elevator represents the Elevator traveling between two
Floors, operating asynchronously with other objects (part 9 of 9).

Appendix H Elevator Model (on CD) 1429

Line 191 of method run allows the Elevator to travel to the Floor by calling
method pauseThread (lines 219–229)—this simulates travel by invoking method
sleep of class Thread. The Elevator stops moving when its thread awakens after five
seconds. Line 197 calls private method changeFloors (lines 149–154), which
swaps currentFloorLocation and destinationFloorLocation. Line 200
calls private method sendArrivalEvent (lines 287–313), which invokes method
elevatorArrived of all listeners in Set elevatorMoveListeners. Lines 306–
309 of method sendArrivalEvent service any queued request (e.g., a Person
pressed a Button on the Floor from which the Elevator has departed). If a queued
request exists, line 308 invokes method setMoving to move the Elevator to the oppo-
site Floor.

Method requestElevator (lines 336–364) requests the Elevator and generates
a queued request. In our model, the ButtonListener defined in the inner class of the
ElevatorShaft calls this method when a Button on either Floor has been pressed.
The activity diagram of Fig. 5.30 specifies the logic for method requestElevator. If
the Elevator is idle and on the same Floor as the Floor of the request, line 345 calls
method sendArrivalEvent, because the Elevator has already arrived. If the Ele-
vator is idle but on the opposite Floor from the Floor of the request, line 352 moves
the Elevator to the opposite Floor. If the Elevator is traveling to the Floor that
generated the request, the Elevator should continue traveling to that Floor. If the
Elevator is traveling away from the Floor that generated the request, the Elevator
must remember to return to that Floor (lines 358–359).

Lastly, as mentioned in Section 15.12, class Elevator contains synchronized
method ride (lines 207–216). The Person calls this method to guarantee exclusivity
with the Elevator. Method ride ensures that two Person objects cannot occupy the
Elevator at the same time. When a Person object invokes method ride, that Person
object obtains a monitor on the Elevator object. Other objects may not access the Ele-
vator until that Person releases the monitor by exiting method ride.

H.9 Class Person
Class Person (Fig. H.13) represents a Person that walks across the Floors and rides
the Elevator in our simulation. According to the class diagram of Fig. 15.21, class Per-
son contains one object of class Location (line 20) that represents the Person’s cur-
rent location in the model (either on a Floor or in the Elevator). In addition, Fig. 15.21
specifies that Person requires int attribute ID (line 14) as a unique identifier and
boolean attribute moving (line 17), which indicates whether Person is walking across
the Floor or waiting for a Door to open.

1 // Person.java
2 // Person riding the elevator
3 package com.deitel.jhtp4.elevator.model;
4
5 // Java core packages
6 import java.util.*;

Fig. H.13Fig. H.13Fig. H.13Fig. H.13 Class Person represents the Person that rides the Elevator. The
Person operates asynchronously with other objects (part 1 of 7).

1430 Elevator Model (on CD) Appendix H

7
8 // Deitel packages
9 import com.deitel.jhtp4.elevator.event.*;

10
11 public class Person extends Thread implements DoorListener {
12
13 // identification number
14 private int ID = -1;
15
16 // represents whether Person is moving or waiting
17 private boolean moving;
18
19 // reference to Location (either on Floor or in Elevator)
20 private Location location;
21
22 // listener object for PersonMoveEvents
23 private PersonMoveListener personMoveListener;
24
25 // time in milliseconds to walk to Button on Floor
26 private static final int TIME_TO_WALK = 3000;
27
28 // maximum time Person will wait for Elevator (10 minutes)
29 private static final int TIME_WAITING = 10 * 60 * 1000;
30
31 // types of messages Person may send
32 public static final int PERSON_CREATED = 1;
33 public static final int PERSON_ARRIVED = 2;
34 public static final int PERSON_ENTERING_ELEVATOR = 3;
35 public static final int PERSON_PRESSING_BUTTON = 4;
36 public static final int PERSON_EXITING_ELEVATOR = 5;
37 public static final int PERSON_EXITED = 6;
38
39 // Person constructor set initial location
40 public Person(int identifier, Location initialLocation)
41 {
42 super();
43
44 ID = identifier; // assign unique identifier
45 location = initialLocation; // set Floor Location
46 moving = true; // start moving toward Button on Floor
47 }
48
49 // set listener for PersonMoveEvents
50 public void setPersonMoveListener(
51 PersonMoveListener listener)
52 {
53 personMoveListener = listener;
54 }
55
56 // invoked when Door has opened
57 public void doorOpened(DoorEvent doorEvent)
58 {

Fig. H.13Fig. H.13Fig. H.13Fig. H.13 Class Person represents the Person that rides the Elevator. The
Person operates asynchronously with other objects (part 2 of 7).

Appendix H Elevator Model (on CD) 1431

59 // set Person on Floor where Door opened
60 setLocation(doorEvent.getLocation());
61
62 // interrupt Person's sleep method in run method and
63 // Elevator's ride method
64 interrupt();
65 }
66
67 // invoked when Door has closed
68 public void doorClosed(DoorEvent doorEvent) {}
69
70 // set Person Location
71 private void setLocation(Location newLocation)
72 {
73 location = newLocation;
74 }
75
76 // get current Location
77 private Location getLocation()
78 {
79 return location;
80 }
81
82 // get identifier
83 public int getID()
84 {
85 return ID;
86 }
87
88 // set if Person should move
89 public void setMoving(boolean personMoving)
90 {
91 moving = personMoving;
92 }
93
94 // get if Person should move
95 public boolean isMoving()
96 {
97 return moving;
98 }
99
100 // Person either rides or waits for Elevator
101 public void run()
102 {
103 sendPersonMoveEvent(PERSON_CREATED);
104
105 // walk to Elevator
106 pauseThread(TIME_TO_WALK);
107 setMoving(false);
108
109 // Person arrived at Floor Button
110 sendPersonMoveEvent(PERSON_ARRIVED);

Fig. H.13Fig. H.13Fig. H.13Fig. H.13 Class Person represents the Person that rides the Elevator. The
Person operates asynchronously with other objects (part 3 of 7).

1432 Elevator Model (on CD) Appendix H

111
112 // get current Door on Floor
113 Door currentFloorDoor = location.getDoor();
114
115 // determine if Door on Floor is open
116 try {
117
118 boolean doorOpen = currentFloorDoor.isDoorOpen();
119
120 // if Door on Floor is closed
121 if (!doorOpen) {
122
123 // press Floor Button
124 sendPersonMoveEvent(PERSON_PRESSING_BUTTON);
125 pauseThread(1000);
126
127 // register for Floor Door's doorOpen event
128 currentFloorDoor.addDoorListener(this);
129
130 // press Floor's Button to request Elevator
131 Button floorButton = getLocation().getButton();
132 floorButton.pressButton(getLocation());
133
134 // wait for Floor's Door to open
135 sleep(TIME_WAITING);
136
137 // unregister with Floor's Door if too long
138 currentFloorDoor.removeDoorListener(this);
139 }
140
141 // if Door on Floor is open, ride Eelevator
142 else
143 enterAndRideElevator();
144 }
145
146 // handle exception when interrupted from waiting
147 catch (InterruptedException interruptedException) {
148
149 // Person unregisters for Floor's Door doorOpen event
150 currentFloorDoor.removeDoorListener(this);
151
152 // enter and ride Elevator when Door on Floor opens,
153 pauseThread(1000);
154 enterAndRideElevator();
155 }
156
157 // waiting for Elevator's Door to open takes a second
158 pauseThread(1000);
159
160 // begin walking away from Elevator
161 setMoving(true);
162

Fig. H.13Fig. H.13Fig. H.13Fig. H.13 Class Person represents the Person that rides the Elevator. The
Person operates asynchronously with other objects (part 4 of 7).

Appendix H Elevator Model (on CD) 1433

163 // Person exits Elevator
164 sendPersonMoveEvent(PERSON_EXITING_ELEVATOR);
165
166 // walking from elevator takes five seconds
167 pauseThread(2 * TIME_TO_WALK);
168
169 // Person exits simulation
170 sendPersonMoveEvent(PERSON_EXITED);
171
172 } // end method run
173
174 // Person enters Elevator
175 private void enterAndRideElevator()
176 {
177 // Person enters Elevator
178 sendPersonMoveEvent(PERSON_ENTERING_ELEVATOR);
179
180 // set Person Location to Elevator
181 Floor floorLocation = (Floor) getLocation();
182 setLocation(
183 floorLocation.getElevatorShaft().getElevator());
184
185 // Person takes one second to enter Elevator
186 pauseThread(1000);
187
188 // register for Elevator's Door's doorOpen event
189 Door elevatorDoor = getLocation().getDoor();
190 elevatorDoor.addDoorListener(this);
191
192 // pressing Elevator Button takes one second
193 sendPersonMoveEvent(PERSON_PRESSING_BUTTON);
194 pauseThread(1000);
195
196 // get Elevator's Button
197 Button elevatorButton = getLocation().getButton();
198
199 // press Elevator's Button
200 elevatorButton.pressButton(location);
201
202 // Door closing takes one second
203 pauseThread(1000);
204
205 // ride in Elevator
206 Elevator elevator = (Elevator) getLocation();
207 elevator.ride();
208
209 // Person finished riding Elevator
210
211 // unregister for Elevator's Door's doorOpen event
212 elevatorDoor.removeDoorListener(this);
213
214 } // end method enterAndRideElevator

Fig. H.13Fig. H.13Fig. H.13Fig. H.13 Class Person represents the Person that rides the Elevator. The
Person operates asynchronously with other objects (part 5 of 7).

1434 Elevator Model (on CD) Appendix H

215
216 // pause thread for desired number of milliseconds
217 private void pauseThread(int milliseconds)
218 {
219 try {
220 sleep(milliseconds);
221 }
222
223 // handle exception if interrupted when paused
224 catch (InterruptedException interruptedException) {
225 interruptedException.printStackTrace();
226 }
227 } // end method pauseThread
228
229 // send PersonMoveEvent to listener, depending on event type
230 private void sendPersonMoveEvent(int eventType)
231 {
232 // create new event
233 PersonMoveEvent event =
234 new PersonMoveEvent(this, getLocation(), getID());
235
236 // send Event to this listener, depending on eventType
237 switch (eventType) {
238
239 // Person has been created
240 case PERSON_CREATED:
241 personMoveListener.personCreated(event);
242 break;
243
244 // Person arrived at Elevator
245 case PERSON_ARRIVED:
246 personMoveListener.personArrived(event);
247 break;
248
249 // Person entered Elevator
250 case PERSON_ENTERING_ELEVATOR:
251 personMoveListener.personEntered(event);
252 break;
253
254 // Person pressed Button object
255 case PERSON_PRESSING_BUTTON:
256 personMoveListener.personPressedButton(event);
257 break;
258
259 // Person exited Elevator
260 case PERSON_EXITING_ELEVATOR:
261 personMoveListener.personDeparted(event);
262 break;
263
264 // Person exited simulation
265 case PERSON_EXITED:
266 personMoveListener.personExited(event);

Fig. H.13Fig. H.13Fig. H.13Fig. H.13 Class Person represents the Person that rides the Elevator. The
Person operates asynchronously with other objects (part 6 of 7).

Appendix H Elevator Model (on CD) 1435

Class Person is subclass of class Thread. The Person performs all actions, such
as walking across Floors and riding the Elevator, in method run (lines 101–172).
Method run represents the lifetime of a Person described in the sequence diagram of
Fig. 15.20. Class Person contains a PersonMoveListener object (line 23) to which
the Person sends PersonMoveEvents. In our simulation, the ElevatorModel uses
method setPersonMoveListener (lines 50–54) to register itself as the Person-
MoveListener. The ElevatorModel, upon receiving a PersonMoveEvent, sends
the event to the ElevatorView—therefore, the ElevatorView “knows” when a
Person has performed certain actions discussed momentarily.

There are several types of actions a Person performs in its lifetime, so there exists
several types of PersonMoveEvents that a Person may send to the person-
MoveListener. Lines 32–37 define a series of constants in which each constant repre-
sents a unique type of PersonMoveEvent. The Person sends events to
personMoveListener when

• the Person has been created

• the Person arrives at the Elevator

• the Person enters the Elevator

• the Person presses a Button (either in the Elevator or on a Floor)

• the Person exits the Elevator

• the Person exits the simulation

 When the Person decides to send an event to its PersonMoveListener, the
Person calls private method sendPersonMoveEvent and passes the desired con-
stant as a parameter. This method sends the event associated with the constant. For
example, line 124 calls

sendPersonMoveEvent(PERSON_PRESSED_BUTTON);

when the Person presses a Button on a Floor. In method run, the Person
walks to the Elevator, then sends a personArrived event upon arrival at the Ele-
vator. We use the activity diagram of Fig. 5.29 to determine the Person’s next action.
If the Door on the Floor is closed (line 121), the Person must wait for that Door to
open. Specifically, line 128 registers the Person as a DoorListener for that Door,
and lines 131–132 allow the Person to press the Button on that Floor. The Person
waits for the Door to open by calling method sleep (line 135) of the Person’s super-
class Thread. When the Door opens, that Door informs Person in doorOpened

267 break;
268
269 default:
270 break;
271 }
272 } // end method sendPersonMoveEvent
273 }

Fig. H.13Fig. H.13Fig. H.13Fig. H.13 Class Person represents the Person that rides the Elevator. The
Person operates asynchronously with other objects (part 7 of 7).

1436 Elevator Model (on CD) Appendix H

(lines 57–65). Line 64 of method doorOpened interrupts the Person’s thread, which
terminates method sleep of line 135. Method interrupt throws an Inter-
ruptedException received by a catch block (lines 147–155). Line 150 of this
catch block unregisters the Person with the Door on the Floor, and line 154 calls
private method enterAndRideElevator (lines 175–214)—however, according to
Fig. 5.29, if the Door on the Floor is already open when the Person arrives, the
Person calls method enterAndRideElevator immediately.

Line 178 of method enterAndRideElevator sends a personEntered event
to personMoveListener, indicating that the Person is entering the Elevator.
When the Person enters the Elevator, the Person’s Location references the Ele-
vator (lines 181–183). When the Person has entered the Elevator, lines 189–190
register the Person as a DoorListener with the Door in the Elevator. Lines 197–
200 allow the Person to press the Button in the Elevator and to send a person-
PressedButton event to the personMoveListener. Lines 206–207 invoke the
synchronized method ride in the Elevator, ensuring that other Persons cannot
occupy the Elevator. When the Elevator arrives, it sends an elevatorArrived
event to the Door in the Elevator, which opens that Door and invokes method
doorOpened of the Person. Method doorOpened, as previously mentioned, inter-
rupts the Person’s thread—in this case, method interrupt terminates the sleep in
method ride and allows the Person to exit the Elevator (allowing a Person waiting
for the Elevator to enter). Method enterAndRideElevator returns, and lines 161–
170 of method run make the Person exit the Elevator and exit the simulation shortly
thereafter.

H.10 Component Diagrams Revisited
In Section 13.17, we introduced the component diagram for the elevator simulation. In our
simulation, the each class in the model imports package event—we showed the compo-
nents of package event in Fig. G.15. Figure H.14 presents the component diagram for
package model. Each component in package model maps to a class from the class dia-
gram of Fig. 15.21—package model aggregates package event.

H.11 Conclusion
This concludes discussion case study model. We hope you have enjoyed the design process
of our elevator simulation using the UML, along with the presentation of object-oriented
fundamentals and Java-specific topics, such as event handling and multithreading. Using
the concepts discussed in this case study, you should now be able to tackle even larger sys-
tems. We encourage you to read Appendix I, which implements the ElevatorView,
which transforms the ElevatorModel that we have designed into a vibrant and interac-
tive program abundant with graphics, animation and sound.

Appendix H Elevator Model (on CD) 1437

Fig. H.14Fig. H.14Fig. H.14Fig. H.14 Component diagram for package model.

model

Bell.java

<<file>>

Button.java

<<file>>

Door.java

<<file>>

Elevator.java

<<file>>

ElevatorModel.java

<<file>>

ElevatorShaft.java

<<file>>

Floor.java

<<file>>

Light.java

<<file>>

Location.java

<<file>>

Person.java

<<file>>

1

1
event

I
Elevator View (on CD)

I.1 Introduction
This appendix contains the implementation for class ElevatorView (Fig. I.1). Familiar-
ity with the “Thinking About Objects” sections from all chapters (Chapter 22, in particular)
necessitates the understanding of material presented in this appendix. Class Elevator-
View is the largest class in the simulation. To facilitate discussion, we have divided the
discussion of the ElevatorView into five topics—Class Objects, Class Constants,
Class Constructor, Event Handling and Component Diagrams Revisited.

1 // ElevatorView.java
2 // View for ElevatorSimulation
3 package com.deitel.jhtp4.elevator.view;
4
5 // Java core packages
6 import java.awt.*;
7 import java.awt.event.*;
8 import java.util.*;
9 import java.applet.*;

10
11 // Java extension package
12 import javax.swing.*;
13
14 // Deitel packages
15 import com.deitel.jhtp4.elevator.event.*;
16 import com.deitel.jhtp4.elevator.ElevatorConstants;
17
18 public class ElevatorView extends JPanel
19 implements ActionListener, ElevatorModelListener,
20 ElevatorConstants {
21

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 1 of 18).

Appendix I Elevator View (on CD) 1439

22 // ElevatorView dimensions
23 private static final int VIEW_WIDTH = 800;
24 private static final int VIEW_HEIGHT = 435;
25
26 // offset for positioning Panels in ElevatorView
27 private static final int OFFSET = 10;
28
29 // Elevator repaints components every 50 ms
30 private static final int ANIMATION_DELAY = 50;
31
32 // horizontal distance constants
33 private static final int PERSON_TO_BUTTON_DISTANCE = 400;
34 private static final int BUTTON_TO_ELEVATOR_DISTANCE = 50;
35 private static final int PERSON_TO_ELEVATOR_DISTANCE =
36 PERSON_TO_BUTTON_DISTANCE + BUTTON_TO_ELEVATOR_DISTANCE;
37
38 // times walking to Floor's Button and Elevator
39 private static final int TIME_TO_BUTTON = 3000; // 3 seconds
40 private static final int TIME_TO_ELEVATOR = 1000; // 1 second
41
42 // time traveling in Elevator (5 seconds)
43 private static final int ELEVATOR_TRAVEL_TIME = 5000;
44
45 // Door images for animation
46 private static final String doorFrames[] = {
47 "images/door1.png", "images/door2.png", "images/door3.png",
48 "images/door4.png", "images/door5.png" };
49
50 // Person images for animation
51 private static final String personFrames[] = {
52 "images/bug1.png", "images/bug2.png", "images/bug3.png",
53 "images/bug4.png", "images/bug5.png", "images/bug6.png",
54 "images/bug7.png", "images/bug8.png" };
55
56 // Light images for animation
57 private static final String lightFrames[] = {
58 "images/lightOff.png", "images/lightOn.png" };
59
60 // Floor Light images for animation
61 private static final String firstFloorLightFrames[] = {
62 "images/firstFloorLightOff.png",
63 "images/firstFloorLightOn.png" };
64
65 private static final String secondFloorLightFrames[] = {
66 "images/secondFloorLightOff.png",
67 "images/secondFloorLightOn.png", };
68
69 // Floor Button images for animation
70 private static final String floorButtonFrames[] = {
71 "images/floorButtonUnpressed.png",
72 "images/floorButtonPressed.png",
73 "images/floorButtonLit.png" };
74

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 2 of 18).

1440 Elevator View (on CD) Appendix I

75 // Elevator Button images for animation
76 private static final String elevatorButtonFrames[] = {
77 "images/elevatorButtonUnpressed.png",
78 "images/elevatorButtonPressed.png",
79 "images/elevatorButtonLit.png" };
80
81 // Bell images for animation
82 private static final String bellFrames[] = {
83 "images/bell1.png", "images/bell2.png",
84 "images/bell3.png" };
85
86 private static final String floorImage =
87 "images/floor.png";
88 private static final String ceilingImage =
89 "images/ceiling.png";
90 private static final String elevatorImage =
91 "images/elevator.png";
92 private static final String wallImage =
93 "images/wall.jpg";
94 private static final String elevatorShaftImage =
95 "images/elevatorShaft.png";
96
97 // audio files
98 private static final String bellSound = "bell.wav";
99 private static final String doorOpenSound = "doorOpen.wav";
100 private static final String doorCloseSound = "doorClose.wav";
101 private static final String elevatorSound = "elevator.au";
102 private static final String buttonSound = "button.wav";
103 private static final String walkingSound = "walk.wav";
104
105 private static final String midiFile = "sounds/liszt.mid";
106
107 // ImagePanels for Floors, ElevatorShaft, wall and ceiling
108 private ImagePanel firstFloorPanel;
109 private ImagePanel secondFloorPanel;
110 private ImagePanel elevatorShaftPanel;
111 private ImagePanel wallPanel;
112 private ImagePanel ceilingPanel;
113
114 // MovingPanels for Elevator
115 private MovingPanel elevatorPanel;
116
117 // AnimatedPanels for Buttons, Bell, Lights and Door
118 private AnimatedPanel firstFloorButtonPanel;
119 private AnimatedPanel secondFloorButtonPanel;
120 private AnimatedPanel elevatorButtonPanel;
121 private AnimatedPanel bellPanel;
122 private AnimatedPanel elevatorLightPanel;
123 private AnimatedPanel firstFloorLightPanel;
124 private AnimatedPanel secondFloorLightPanel;
125 private AnimatedPanel doorPanel;
126

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 3 of 18).

Appendix I Elevator View (on CD) 1441

127 // List containing AnimatedPanels for all Person objects
128 private java.util.List personAnimatedPanels;
129
130 // AudioClips for sound effects
131 private AudioClip bellClip;
132 private AudioClip doorOpenClip;
133 private AudioClip doorCloseClip;
134 private AudioClip elevatorClip;
135 private AudioClip buttonClip;
136 private AudioClip walkClip;
137
138 // ElevatorMusic to play in Elevator
139 private ElevatorMusic elevatorMusic;
140
141 // Timer for animation controller;
142 private javax.swing.Timer animationTimer;
143
144 // distance from top of screen to display Floors
145 private int firstFloorPosition;
146 private int secondFloorPosition;
147
148 // Elevator's velocity
149 private double elevatorVelocity;
150
151 // ElevatorView constructor
152 public ElevatorView()
153 {
154 // specifiy null Layout
155 super(null);
156
157 instantiatePanels();
158 placePanelsOnView();
159 initializeAudio();
160
161 // calculate distance Elevator travels
162 double floorDistance =
163 firstFloorPosition - secondFloorPosition;
164
165 // calculate time needed for travel
166 double time = ELEVATOR_TRAVEL_TIME / ANIMATION_DELAY;
167
168 // determine Elevator velocity (rate = distance / time)
169 elevatorVelocity = (floorDistance + OFFSET) / time;
170
171 // start animation Thread
172 startAnimation();
173
174 } // end ElevatorView constructor
175
176 // instantiate all Panels (Floors, Elevator, etc.)
177 private void instantiatePanels()
178 {

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 4 of 18).

1442 Elevator View (on CD) Appendix I

179 // instantiate ImagePanels representing Floors
180 firstFloorPanel = new ImagePanel(0, floorImage);
181 secondFloorPanel = new ImagePanel(0, floorImage);
182
183 // calculate first and second Floor positions
184 firstFloorPosition =
185 VIEW_HEIGHT - firstFloorPanel.getHeight();
186 secondFloorPosition =
187 (int) (firstFloorPosition / 2) - OFFSET;
188
189 firstFloorPanel.setPosition(0, firstFloorPosition);
190 secondFloorPanel.setPosition(0, secondFloorPosition);
191
192 wallPanel = new ImagePanel(0, wallImage);
193
194 // create and position ImagePanel for ElevatorShaft
195 elevatorShaftPanel =
196 new ImagePanel(0, elevatorShaftImage);
197
198 double xPosition = PERSON_TO_ELEVATOR_DISTANCE + OFFSET;
199 double yPosition =
200 firstFloorPosition - elevatorShaftPanel.getHeight();
201
202 elevatorShaftPanel.setPosition(xPosition, yPosition);
203
204 // create and position ImagePanel for ceiling
205 ceilingPanel = new ImagePanel(0, ceilingImage);
206
207 yPosition = elevatorShaftPanel.getPosition().getY() -
208 ceilingPanel.getHeight();
209
210 ceilingPanel.setPosition(xPosition, yPosition);
211
212 // create and position MovingPanel for Elevator
213 elevatorPanel = new MovingPanel(0, elevatorImage);
214
215 yPosition = firstFloorPosition - elevatorPanel.getHeight();
216
217 elevatorPanel.setPosition(xPosition, yPosition);
218
219 // create and position first Floor Button
220 firstFloorButtonPanel =
221 new AnimatedPanel(0, floorButtonFrames);
222
223 xPosition = PERSON_TO_BUTTON_DISTANCE + 2 * OFFSET;
224 yPosition = firstFloorPosition - 5 * OFFSET;
225 firstFloorButtonPanel.setPosition(xPosition, yPosition);
226
227 int floorButtonPressedFrameOrder[] = { 0, 1, 2 };
228 firstFloorButtonPanel.addFrameSequence(
229 floorButtonPressedFrameOrder);
230

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 5 of 18).

Appendix I Elevator View (on CD) 1443

231 // create and position second Floor Button
232 secondFloorButtonPanel =
233 new AnimatedPanel(1, floorButtonFrames);
234
235 xPosition = PERSON_TO_BUTTON_DISTANCE + 2 * OFFSET;
236 yPosition = secondFloorPosition - 5 * OFFSET;
237 secondFloorButtonPanel.setPosition(xPosition, yPosition);
238
239 secondFloorButtonPanel.addFrameSequence(
240 floorButtonPressedFrameOrder);
241
242 // create and position Floor Lights
243 firstFloorLightPanel =
244 new AnimatedPanel(0, firstFloorLightFrames);
245
246 xPosition = elevatorPanel.getLocation().x - 4 * OFFSET;
247 yPosition =
248 firstFloorButtonPanel.getLocation().y - 10 * OFFSET;
249 firstFloorLightPanel.setPosition(xPosition, yPosition);
250
251 secondFloorLightPanel =
252 new AnimatedPanel(1, secondFloorLightFrames);
253
254 yPosition =
255 secondFloorButtonPanel.getLocation().y - 10 * OFFSET;
256 secondFloorLightPanel.setPosition(xPosition, yPosition);
257
258 // create and position Door AnimatedPanels
259 doorPanel = new AnimatedPanel(0, doorFrames);
260 int doorOpenedFrameOrder[] = { 0, 1, 2, 3, 4 };
261 int doorClosedFrameOrder[] = { 4, 3, 2, 1, 0 };
262 doorPanel.addFrameSequence(doorOpenedFrameOrder);
263 doorPanel.addFrameSequence(doorClosedFrameOrder);
264
265 // determine where Door is located relative to Elevator
266 yPosition =
267 elevatorPanel.getHeight() - doorPanel.getHeight();
268
269 doorPanel.setPosition(0, yPosition);
270
271 // create and position Light AnimatedPanel
272 elevatorLightPanel = new AnimatedPanel(0, lightFrames);
273 elevatorLightPanel.setPosition(OFFSET, 5 * OFFSET);
274
275 // create and position Bell AnimatedPanel
276 bellPanel = new AnimatedPanel(0, bellFrames);
277
278 yPosition = elevatorLightPanel.getPosition().getY() +
279 elevatorLightPanel.getHeight() + OFFSET;
280
281 bellPanel.setPosition(OFFSET, yPosition);
282 int bellRingAnimation[] = { 0, 1, 0, 2 };
283 bellPanel.addFrameSequence(bellRingAnimation);

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 6 of 18).

1444 Elevator View (on CD) Appendix I

284
285 // create and position Elevator's Button AnimatedPanel
286 elevatorButtonPanel =
287 new AnimatedPanel(0, elevatorButtonFrames);
288
289 yPosition = elevatorPanel.getHeight() - 6 * OFFSET;
290 elevatorButtonPanel.setPosition(10 * OFFSET, yPosition);
291
292 int buttonPressedFrameOrder[] = { 0, 1, 2 };
293 elevatorButtonPanel.addFrameSequence(
294 buttonPressedFrameOrder);
295
296 // create List to store Person AnimatedPanels
297 personAnimatedPanels = new ArrayList();
298
299 } // end method instantiatePanels
300
301 // place all Panels on ElevatorView
302 private void placePanelsOnView()
303 {
304 // add Panels to ElevatorView
305 add(firstFloorPanel);
306 add(secondFloorPanel);
307 add(ceilingPanel);
308 add(elevatorPanel);
309 add(firstFloorButtonPanel);
310 add(secondFloorButtonPanel);
311 add(firstFloorLightPanel);
312 add(secondFloorLightPanel);
313 add(elevatorShaftPanel);
314 add(wallPanel);
315
316 // add Panels to Elevator's MovingPanel
317 elevatorPanel.add(doorPanel);
318 elevatorPanel.add(elevatorLightPanel);
319 elevatorPanel.add(bellPanel);
320 elevatorPanel.add(elevatorButtonPanel);
321
322 } // end method placePanelsOnView
323
324 // get sound effects and elevatorMusic
325 private void initializeAudio()
326 {
327 // create AudioClip sound effects from audio files
328 SoundEffects sounds = new SoundEffects();
329 sounds.setPathPrefix("sounds/");
330
331 bellClip = sounds.getAudioClip(bellSound);
332 doorOpenClip = sounds.getAudioClip(doorOpenSound);
333 doorCloseClip = sounds.getAudioClip(doorCloseSound);
334 elevatorClip = sounds.getAudioClip(elevatorSound);
335 buttonClip = sounds.getAudioClip(buttonSound);
336 walkClip = sounds.getAudioClip(walkingSound);

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 7 of 18).

Appendix I Elevator View (on CD) 1445

337
338 // create MIDI player using Java Media Framework
339 elevatorMusic = new ElevatorMusic(midiFile);
340 elevatorMusic.open();
341
342 } // end method initializeAudio
343
344 // starts animation by repeatedly drawing images to screen
345 public void startAnimation()
346 {
347 if (animationTimer == null) {
348 animationTimer =
349 new javax.swing.Timer(ANIMATION_DELAY, this);
350 animationTimer.start();
351 }
352 else
353
354 if (!animationTimer.isRunning())
355 animationTimer.restart();
356 }
357
358 // stop animation
359 public void stopAnimation()
360 {
361 animationTimer.stop();
362 }
363
364 // update AnimatedPanels animation in response to Timer
365 public void actionPerformed(ActionEvent actionEvent)
366 {
367 elevatorPanel.animate();
368
369 firstFloorButtonPanel.animate();
370 secondFloorButtonPanel.animate();
371
372 Iterator iterator = getPersonAnimatedPanelsIterator();
373
374 while (iterator.hasNext()) {
375
376 // get Person's AnimatedPanel from Set
377 AnimatedPanel personPanel =
378 (AnimatedPanel) iterator.next();
379
380 personPanel.animate(); // update panel
381 }
382
383 repaint(); // paint all Components
384
385 } // end method actionPerformed
386
387 private Iterator getPersonAnimatedPanelsIterator()
388 {

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 8 of 18).

1446 Elevator View (on CD) Appendix I

389 // obtain iterator from List
390 synchronized(personAnimatedPanels)
391 {
392 return new ArrayList(personAnimatedPanels).iterator();
393 }
394 }
395
396 // stop sound clip of Person walking
397 private void stopWalkingSound()
398 {
399 // stop playing walking sound
400 walkClip.stop();
401
402 Iterator iterator = getPersonAnimatedPanelsIterator();
403
404 // but if Person is still walking, then keep playing
405 while (iterator.hasNext()) {
406 AnimatedPanel panel = (AnimatedPanel) iterator.next();
407
408 if (panel.getXVelocity() != 0)
409 walkClip.loop();
410 }
411 } // end method stopWalkingSound
412
413 // returns Person AnimatedPanel with proper identifier
414 private AnimatedPanel getPersonPanel(PersonMoveEvent event)
415 {
416 Iterator iterator = getPersonAnimatedPanelsIterator();
417
418 while (iterator.hasNext()) {
419
420 // get next AnimatedPanel
421 AnimatedPanel personPanel =
422 (AnimatedPanel) iterator.next();
423
424 // return AnimatedPanel with identifier that matches
425 if (personPanel.getID() == event.getID())
426 return personPanel;
427 }
428
429 // return null if no match with correct identifier
430 return null;
431
432 } // end method getPersonPanel
433
434 // invoked when Elevator has departed from Floor
435 public void elevatorDeparted(ElevatorMoveEvent moveEvent)
436 {
437 String location =
438 moveEvent.getLocation().getLocationName();
439
440 // determine if Person is on Elevator
441 Iterator iterator = getPersonAnimatedPanelsIterator();

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 9 of 18).

Appendix I Elevator View (on CD) 1447

442
443 while (iterator.hasNext()) {
444
445 AnimatedPanel personPanel =
446 (AnimatedPanel) iterator.next();
447
448 double yPosition = personPanel.getPosition().getY();
449 String panelLocation;
450
451 // determine on which Floor the Person entered
452 if (yPosition > secondFloorPosition)
453 panelLocation = FIRST_FLOOR_NAME;
454 else
455 panelLocation = SECOND_FLOOR_NAME;
456
457 int xPosition =
458 (int) personPanel.getPosition().getX();
459
460 // if Person is inside Elevator
461 if (panelLocation.equals(location)
462 && xPosition > PERSON_TO_BUTTON_DISTANCE + OFFSET) {
463
464 // remove Person AnimatedPanel from ElevatorView
465 remove(personPanel);
466
467 // add Person AnimatedPanel to Elevator
468 elevatorPanel.add(personPanel, 1);
469 personPanel.setLocation(2 * OFFSET, 9 * OFFSET);
470 personPanel.setMoving(false);
471 personPanel.setAnimating(false);
472 personPanel.setVelocity(0, 0);
473 personPanel.setCurrentFrame(1);
474 }
475 } // end while loop
476
477 // determine Elevator velocity depending on Floor
478 if (location.equals(FIRST_FLOOR_NAME))
479 elevatorPanel.setVelocity(0, -elevatorVelocity);
480 else
481
482 if (location.equals(SECOND_FLOOR_NAME))
483 elevatorPanel.setVelocity(0, elevatorVelocity);
484
485 // begin moving Elevator and play Elevator music
486 elevatorPanel.setMoving(true);
487
488 if (elevatorClip != null)
489 elevatorClip.play();
490
491 elevatorMusic.play();
492
493 } // end method elevatorDeparted
494

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 10 of 18).

1448 Elevator View (on CD) Appendix I

495 // invoked when Elevator has arrived at destination Floor
496 public void elevatorArrived(ElevatorMoveEvent moveEvent)
497 {
498 // stop Elevator and music
499 elevatorPanel.setMoving(false);
500 elevatorMusic.getSequencer().stop();
501
502 double xPosition = elevatorPanel.getPosition().getX();
503 double yPosition;
504
505 // set Elevator's position to either first or second Floor
506 if (elevatorPanel.getYVelocity() < 0)
507 yPosition =
508 secondFloorPosition - elevatorPanel.getHeight();
509 else
510 yPosition =
511 firstFloorPosition - elevatorPanel.getHeight();
512
513 elevatorPanel.setPosition(xPosition, yPosition);
514
515 } // end method elevatorArrived
516
517 // invoked when Person has been created in model
518 public void personCreated(PersonMoveEvent personEvent)
519 {
520 int personID = personEvent.getID();
521
522 String floorLocation =
523 personEvent.getLocation().getLocationName();
524
525 // create AnimatedPanel representing Person
526 AnimatedPanel personPanel =
527 new AnimatedPanel(personID, personFrames);
528
529 // determine where Person should be drawn initially
530 // negative xPosition ensures Person drawn offscreen
531 double xPosition = - personPanel.getWidth();
532 double yPosition = 0;
533
534 if (floorLocation.equals(FIRST_FLOOR_NAME))
535 yPosition = firstFloorPosition +
536 (firstFloorPanel.getHeight() / 2);
537 else
538
539 if (floorLocation.equals(SECOND_FLOOR_NAME))
540 yPosition = secondFloorPosition +
541 (secondFloorPanel.getHeight() / 2);
542
543 yPosition -= personPanel.getHeight();
544
545 personPanel.setPosition(xPosition, yPosition);
546

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 11 of 18).

Appendix I Elevator View (on CD) 1449

547 // add some animations for each Person
548 int walkFrameOrder[] = { 1, 0, 1, 2 };
549 int pressButtonFrameOrder[] = { 1, 3, 3, 4, 4, 1 };
550 int walkAwayFrameOrder[] = { 6, 5, 6, 7 };
551 personPanel.addFrameSequence(walkFrameOrder);
552 personPanel.addFrameSequence(pressButtonFrameOrder);
553 personPanel.addFrameSequence(walkAwayFrameOrder);
554
555 // have Person begin walking to Elevator
556 personPanel.playAnimation(0);
557 personPanel.setLoop(true);
558 personPanel.setAnimating(true);
559 personPanel.setMoving(true);
560
561 // determine Person velocity
562 double time =
563 (double) (TIME_TO_BUTTON / ANIMATION_DELAY);
564
565 double xDistance = PERSON_TO_BUTTON_DISTANCE -
566 2 * OFFSET + personPanel.getSize().width;
567 double xVelocity = xDistance / time;
568
569 personPanel.setVelocity(xVelocity, 0);
570 personPanel.setAnimationRate(1);
571
572 walkClip.loop(); // play sound clip of Person walking
573
574 // store in personAnimatedPanels
575 synchronized(personAnimatedPanels)
576 {
577 personAnimatedPanels.add(personPanel);
578 }
579
580 add(personPanel, 0);
581
582 } // end method personCreated
583
584 // invoked when Person has arrived at Elevator
585 public void personArrived(PersonMoveEvent personEvent)
586 {
587 // find Panel associated with Person that issued event
588 AnimatedPanel panel = getPersonPanel(personEvent);
589
590 if (panel != null) { // if Person exists
591
592 // Person stops at Floor Button
593 panel.setMoving(false);
594 panel.setAnimating(false);
595 panel.setCurrentFrame(1);
596 stopWalkingSound();
597
598 double xPosition = PERSON_TO_BUTTON_DISTANCE -
599 (panel.getSize().width / 2);

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 12 of 18).

1450 Elevator View (on CD) Appendix I

600 double yPosition = panel.getPosition().getY();
601
602 panel.setPosition(xPosition, yPosition);
603 }
604 } // end method personArrived
605
606 // invoked when Person has pressed Button
607 public void personPressedButton(PersonMoveEvent personEvent)
608 {
609 // find Panel associated with Person that issued event
610 AnimatedPanel panel = getPersonPanel(personEvent);
611
612 if (panel != null) { // if Person exists
613
614 // Person stops walking and presses Button
615 panel.setLoop(false);
616 panel.playAnimation(1);
617
618 panel.setVelocity(0, 0);
619 panel.setMoving(false);
620 panel.setAnimating(true);
621 stopWalkingSound();
622 }
623 } // end method personPressedButton
624
625 // invoked when Person has started to enter Elevator
626 public void personEntered(PersonMoveEvent personEvent)
627 {
628 // find Panel associated with Person that issued event
629 AnimatedPanel panel = getPersonPanel(personEvent);
630
631 if (panel != null) {
632
633 // determine velocity
634 double time = TIME_TO_ELEVATOR / ANIMATION_DELAY;
635
636 double distance =
637 elevatorPanel.getPosition().getX() -
638 panel.getPosition().getX() + 2 * OFFSET;
639
640 panel.setVelocity(distance / time, -1.5);
641
642 // Person starts walking
643 panel.setMoving(true);
644 panel.playAnimation(0);
645 panel.setLoop(true);
646 }
647 } // end method personEntered
648
649 // invoked when Person has departed from Elevator
650 public void personDeparted(PersonMoveEvent personEvent)
651 {

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 13 of 18).

Appendix I Elevator View (on CD) 1451

652 // find Panel associated with Person that issued event
653 AnimatedPanel panel = getPersonPanel(personEvent);
654
655 if (panel != null) { // if Person exists
656
657 // determine velocity (in opposite direction)
658 double time = TIME_TO_BUTTON / ANIMATION_DELAY;
659 double xVelocity = - PERSON_TO_BUTTON_DISTANCE / time;
660
661 panel.setVelocity(xVelocity, 0);
662
663 // remove Person from Elevator
664 elevatorPanel.remove(panel);
665
666 double xPosition =
667 PERSON_TO_ELEVATOR_DISTANCE + 3 * OFFSET;
668 double yPosition = 0;
669
670 String floorLocation =
671 personEvent.getLocation().getLocationName();
672
673 // determine Floor onto which Person exits
674 if (floorLocation.equals(FIRST_FLOOR_NAME))
675 yPosition = firstFloorPosition +
676 (firstFloorPanel.getHeight() / 2);
677 else
678
679 if (floorLocation.equals(SECOND_FLOOR_NAME))
680 yPosition = secondFloorPosition +
681 (secondFloorPanel.getHeight() / 2);
682
683 yPosition -= panel.getHeight();
684
685 panel.setPosition(xPosition, yPosition);
686
687 // add Person to ElevatorView
688 add(panel, 0);
689
690 // Person starts walking
691 panel.setMoving(true);
692 panel.setAnimating(true);
693 panel.playAnimation(2);
694 panel.setLoop(true);
695 walkClip.loop();
696 }
697 } // end method PersonDeparted
698
699 // invoked when Person has exited simulation
700 public void personExited(PersonMoveEvent personEvent)
701 {
702 // find Panel associated with Person that issued moveEvent
703 AnimatedPanel panel = getPersonPanel(personEvent);
704

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 14 of 18).

1452 Elevator View (on CD) Appendix I

705 if (panel != null) { // if Person exists
706
707 panel.setMoving(false);
708 panel.setAnimating(false);
709
710 // remove Person permanently and stop walking sound
711 synchronized(personAnimatedPanels)
712 {
713 personAnimatedPanels.remove(panel);
714 }
715 remove(panel);
716 stopWalkingSound();
717 }
718 } // end method personExited
719
720 // invoked when Door has opened in model
721 public void doorOpened(DoorEvent doorEvent)
722 {
723 // get DoorEvent Location
724 String location =
725 doorEvent.getLocation().getLocationName();
726
727 // play animation of Door opening
728 doorPanel.playAnimation(0);
729 doorPanel.setAnimationRate(2);
730 doorPanel.setDisplayLastFrame(true);
731
732 // play sound clip of Door opening
733 if (doorOpenClip != null)
734 doorOpenClip.play();
735
736 } // end method doorOpened
737
738 // invoked when Door has closed in model
739 public void doorClosed(DoorEvent doorEvent)
740 {
741 // get DoorEvent Location
742 String location =
743 doorEvent.getLocation().getLocationName();
744
745 // play animation of Door closing
746 doorPanel.playAnimation(1);
747 doorPanel.setAnimationRate(2);
748 doorPanel.setDisplayLastFrame(true);
749
750 // play sound clip of Door closing
751 if (doorCloseClip != null)
752 doorCloseClip.play();
753
754 } // end method doorClosed
755

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 15 of 18).

Appendix I Elevator View (on CD) 1453

756 // invoked when Button has been pressed in model
757 public void buttonPressed(ButtonEvent buttonEvent)
758 {
759 // get ButtonEvent Location
760 String location =
761 buttonEvent.getLocation().getLocationName();
762
763 // press Elevator Button if from Elevator
764 if (location.equals(ELEVATOR_NAME)) {
765 elevatorButtonPanel.playAnimation(0);
766 elevatorButtonPanel.setDisplayLastFrame(true);
767 }
768
769 // press Floor Button if from Floor
770 else
771
772 if (location.equals(FIRST_FLOOR_NAME)) {
773 firstFloorButtonPanel.playAnimation(0);
774 firstFloorButtonPanel.setDisplayLastFrame(true);
775 }
776 else
777
778 if (location.equals(SECOND_FLOOR_NAME)) {
779 secondFloorButtonPanel.playAnimation(0);
780 secondFloorButtonPanel.setDisplayLastFrame(true);
781 }
782
783 if (buttonClip != null)
784 buttonClip.play(); // play button press sound clip
785
786 } // end method buttonPressed
787
788 // invoked when Button has been reset in model
789 public void buttonReset(ButtonEvent buttonEvent)
790 {
791 // get ButtonEvent Location
792 String location =
793 buttonEvent.getLocation().getLocationName();
794
795 // reset Elevator Button if from Elevator
796 if (location.equals(ELEVATOR_NAME)) {
797
798 // return to first frame if still animating
799 if (elevatorButtonPanel.isAnimating())
800 elevatorButtonPanel.setDisplayLastFrame(false);
801 else
802 elevatorButtonPanel.setCurrentFrame(0);
803 }
804
805 // reset Floor Button if from Floor
806 else
807

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 16 of 18).

1454 Elevator View (on CD) Appendix I

808 if (location.equals(FIRST_FLOOR_NAME)) {
809
810 // return to first frame if still animating
811 if (firstFloorButtonPanel.isAnimating())
812 firstFloorButtonPanel.setDisplayLastFrame(
813 false);
814 else
815 firstFloorButtonPanel.setCurrentFrame(0);
816 }
817 else
818
819 if (location.equals(SECOND_FLOOR_NAME)) {
820
821 // return to first frame if still animating
822 if (secondFloorButtonPanel.isAnimating())
823 secondFloorButtonPanel.setDisplayLastFrame(
824 false);
825 else
826 secondFloorButtonPanel.setCurrentFrame(0);
827 }
828
829 } // end method buttonReset
830
831 // invoked when Bell has rung in model
832 public void bellRang(BellEvent bellEvent)
833 {
834 bellPanel.playAnimation(0); // animate Bell
835
836 if (bellClip != null) // play Bell sound clip
837 bellClip.play();
838 }
839
840 // invoked when Light turned on in model
841 public void lightTurnedOn(LightEvent lightEvent)
842 {
843 // turn on Light in Elevator
844 elevatorLightPanel.setCurrentFrame(1);
845
846 String location =
847 lightEvent.getLocation().getLocationName();
848
849 // turn on Light on either first or second Floor
850 if (location.equals(FIRST_FLOOR_NAME))
851 firstFloorLightPanel.setCurrentFrame(1);
852
853 else
854
855 if (location.equals(SECOND_FLOOR_NAME))
856 secondFloorLightPanel.setCurrentFrame(1);
857
858 } // end method lightTurnedOn
859

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 17 of 18).

Appendix I Elevator View (on CD) 1455

I.2 Class Objects
The ElevatorView is a JPanel with a series of other JPanel “children” added to it.
Each JPanel provides a visual representation of an object from the model. For example,
the ElevatorView contains ImagePanels, MovingPanels and AnimatedPan-
els to represent the Elevator, Persons, the ElevatorShaft, the Buttons on the
Floors, the Button in the Elevator, the Doors on the Floors, the Door in the El-
evator, the Lights on the Floors, the two Floors and the Bell. Figure I.2 lists the
ElevatorView’s objects and their counterparts in the model.

860 // invoked when Light turned off in model
861 public void lightTurnedOff(LightEvent lightEvent)
862 {
863 // turn off Light in Elevator
864 elevatorLightPanel.setCurrentFrame(0);
865
866 String location =
867 lightEvent.getLocation().getLocationName();
868
869 // turn off Light on either first or second Floor
870 if (location.equals(FIRST_FLOOR_NAME))
871 firstFloorLightPanel.setCurrentFrame(0);
872
873 else
874
875 if (location.equals(SECOND_FLOOR_NAME))
876 secondFloorLightPanel.setCurrentFrame(0);
877
878 } // end method lightTurnedOff
879
880 // return preferred size of ElevatorView
881 public Dimension getPreferredSize()
882 {
883 return new Dimension(VIEW_WIDTH, VIEW_HEIGHT);
884 }
885
886 // return minimum size of ElevatorView
887 public Dimension getMinimumSize()
888 {
889 return getPreferredSize();
890 }
891
892 // return maximum size of ElevatorView
893 public Dimension getMaximumSize()
894 {
895 return getPreferredSize();
896 }
897 }

Fig. I.1Fig. I.1Fig. I.1Fig. I.1 ElevatorView displays the elevator simulation model (part 18 of 18).

1456 Elevator View (on CD) Appendix I

Lines 108–128 of class ElevatorView declare the objects in the second column of
Fig. I.2. The firstFloorPanel (line 108), secondFloorPanel (line 109) and
elevatorShaftPanel (line 110) are ImagePanels, because neither the Floors nor
the ElevatorShaft move in the simulation. The elevatorPanel (line 115) is a
MovingPanel, because the Elevator’s only function is to move between Floors.
The firstFloorButtonPanel (line 118), secondFloorButtonPanel (line
119) and elevatorButtonPanel (line 120) are AnimatedPanels, because each
object animates when the associated Button in the model is pressed or reset. The bell-
Panel (line 121) is an AnimatedPanel to animate the ringing of the Bell. The
firstFloorLightPanel (line 123) and secondFloorLightPanel (line 124) are
AnimatedPanels, because these objects animate when the associated Light turns on
or off. The doorPanel (line 125) is an AnimatedPanel to animate the opening and
closing of the Door. Note that the ElevatorView shows only the Door in the Ele-
vator. The ElevatorView does not show the Doors on the Floors, which enables
us to show the Elevator’s interior (these Doors would obstruct the objects inside the
Elevator). Lastly, the personAnimatedPanels (line 128) is a List of Animat-
edPanels, because there can exist several Person objects during execution—the Ele-
vatorView must need to store dynamically the AnimatedPanels associated with
Persons in the model.

We add to the ElevatorView three more elements that we assume to be parts of the
Elevator (Fig. I.3), although the model does not represent these elements—a light inside
the Elevator of type AnimatedPanel called elevatorLightPanel (line 122), a
ceiling over the Elevator of type ImagePanel called ceilingPanel (line 112),
and wallpaper inside the building of type ImagePanel called wallPanel (line 111).

The object (in model)
of Class...

is represented by the object
(in view)... of Class...

Floor firstFloorPanel
secondFloorPanel

ImagePanel
ImagePanel

ElevatorShaft elevatorShaftPanel ImagePanel

Elevator elevatorPanel MovingPanel

Button (on Floor) firstFloorButtonPanel
secondFloorButtonPanel

AnimatedPanel
AnimatedPanel

Button (in Elevator) elevatorButtonPanel AnimatedPanel

Bell bellPanel AnimatedPanel

Light firstFloorLightPanel
secondFloorLightPanel

AnimatedPanel
AnimatedPanel

Door (in Elevator) doorPanel AnimatedPanel

Door (on Floor) <not represented> <not represented>

Person personAnimatedPanels List (of AnimatedPanels)

Fig. I.2Fig. I.2Fig. I.2Fig. I.2 Objects in the ElevatorView representing objects in the model.

Appendix I Elevator View (on CD) 1457

In addition, the class diagram of Fig. 22.9 shows that the ElevatorView contains
one instance each of classes SoundEffects and ElevatorMusic. The SoundEf-
fects object generates the AudioClips used to play sound effects, such as the Door
opening and a Person walking. Lines 131–136 declare all AudioClips, line 139
declares the ElevatorMusic object, and line 328 (in method initializeAudio,
which we discuss later in this section) declares the SoundEffects object.

I.3 Class Constants
The ElevatorView uses constants to specify or obtain such information as

• The initial placement of objects in the ElevatorView

• The rate at which the ElevatorView redraws the screen (animation rate)

• The names of image files used by the ImagePanels

• The names of sound files used by the SoundEffects object and the Eleva-
torMusic

• The distances in pixels the ImagePanels representing the Elevator and
Person must travel

• The times needed to travel these distances

Lines 23–24 declare int constants VIEW_WIDTH and VIEW_HEIGHT, which
specify the ElevatorView’s dimensions. Method getPreferredSize (lines 881–
884) returns this dimension. Method pack of class ElevatorSimulation uses this
method to obtain the ElevatorView’s dimension to place the ElevatorView in the
GUI properly.

The ElevatorView has a null layout, so we may place ImagePanels in any x-
y coordinate in the ElevatorView. Line 27 of class ElevatorView declares int
constant OFFSET, which helps to determine the exact positions of objects in the Eleva-
torView. Line 30 declares int constant ANIMATION_DELAY, which specifies the
number of milliseconds between animation frames. In our simulation, we initialize
ANIMATION_DELAY to 50 milliseconds. Lines 46–95 declare String constants speci-
fying the image files used to instantiate the ImagePanels. Lines 98–105 declare the
String constant specifying the audio files used to instantiate the AudioClips and the
ElevatorMusic.

Line 33 declares the int constant PERSON_TO_BUTTON_DISTANCE, which repre-
sents the horizontal distance between the on-screen location of the firstFloorBut-

The object (in
model) of Class...

is represented by the object (in
view)... of Class...

<not represented> elevatorLightPanel AnimatedPanel

<not represented> ceilingPanel ImagePanel

<not represented> wallPanel ImagePanel

Fig. I.3Fig. I.3Fig. I.3Fig. I.3 Objects in the ElevatorView not represented in the model.

1458 Elevator View (on CD) Appendix I

tonPanel or secondFloorButtonPanel and the initial on-screen location of an
AnimatedPanel associated with Person. This AnimatedPanel uses this constant
to calculate the travel distance to the firstFloorButtonPanel or secondFloor-
ButtonPanel. The firstFloorButtonPanel and secondFloorButton-
Panel use the constant to position themselves on screen. Line 34 declares the int
constant BUTTON_TO_ELEVATOR_DISTANCE, describing the horizontal distance
between the firstFloorButtonPanel or secondFloorButtonPanel and the
elevatorPanel. The AnimatedPanel associated with a Person uses this constant
to determine the travel distance when entering the elevatorPanel.

Line 39 declares int constant TIME_TO_BUTTON, which represents this Animat-
edPanel’s travel time to the firstFloorButtonPanel or secondFloorBut-
tonPanel. Line 40 declares int constant TIME_TO_ELEVATOR, which represents the
time the AnimatedPanel associated with a Person needs to enter the elevator-
Panel from the firstFloorButtonPanel or secondFloorButtonPanel.
Using the equation rate = distance / time, the AnimatedPanel associated with the
Person can determine the velocity needed to travel. Similarly, line 43 declares int con-
stant ELEVATOR_TRAVEL_TIME, which represents the elevatorPanel’s travel time
between the firstFloorPanel and secondFloorPanel—lines 166–169 use this
constant to determine double attribute elevatorVelocity (line 149).

I.4 Class constructor
The responsibilities of the ElevatorView constructor (lines 152–174) are

• To instantiate all ImagePanels

• To add all ImagePanels to the ElevatorView

• To initialize the audio objects

• To compute the elevatorPanel’s initial velocity and distance traveled

• To start the animation Timer

Lines 157 calls private method instantiatePanels (lines 177–299), which
instantiates all ImagePanels in the ElevatorView. Lines 180–181 instantiate the
firstFloorPanel and secondFloorPanel, and lines 184–190 set these objects’
positions—the ElevatorView positions the firstFloorPanel on the bottom of
the screen and positions the secondFloorPanel in the vertical center of the screen.
Line 192 instantiates the wallPanel ImagePanel. The ElevatorView does not
need to calculate the position for the wallPanel, because the wallPanel’s default
screen position (i.e., xPosition = 0, yPosition = 0) is correct. Lines 195–202 and
lines 205–210 instantiate and position the elevatorShaftPanel and ceiling-
Panel ImagePanels, respectively. The ElevatorView positions the elevator-
ShaftPanel in the right of the screen and positions the ceilingPanel above the
elevatorShaftPanel. Lines 213–217 instantiate the elevatorPanel and posi-
tion it over the elevatorShaftPanel above the firstFloorPanel. Lines 220–
229 instantiate the firstFloorButtonPanel AnimatedPanel, place it next to the
elevatorShaftPanel, then create a frame sequence Button pressed animation.
Lines 232–240 perform the same actions on the secondFloorButtonPanel. Lines
243–249 instantiate the firstFloorLightPanel AnimatedPanel and place it to

Appendix I Elevator View (on CD) 1459

the left of the elevatorShaftPanel but above the firstFloorButtonPanel.
Lines 251–256 position the secondFloorLightPanel above the secondFloor-
ButtonPanel. Lines 259–269 instantiate the doorPanel AnimatedPanel, place it
relative to the elevatorPanel’s position (because the elevatorPanel will contain
the doorPanel) and assign frame sequences describing the Door animation opening
and closing. Lines 272–273 instantiate the elevatorLightPanel AnimatedPanel
and position it over the elevatorPanel and to the left of the doorPanel. Lines 276–
283 instantiate the bellPanel, position it below the elevatorLightPanel, then
assign a frame sequence describing the Bell ringing animation. Lines 286–294 instan-
tiate the elevatorButtonPanel, position it in the center of the elevatorPanel
and assign a frame sequence describing the Button pressed animation. Lastly, line 297
instantiates the ArrayList holding the AnimatedPanels associated with the Per-
sons in the model.

After the ElevatorView constructor has called method instantiatePanels,
the constructor calls method placePanelsOnView (lines 302–322), which adds all
instantiated Panels to the ElevatorView. Lines 317–320 add the doorPanel, ele-
vatorLightPanel, bellPanel and elevatorButtonPanel to the elevator-
Panel. The ElevatorView constructor then calls method initializeAudio (lines
325–342). Lines 328–329 instantiate a SoundEffects object, and lines 331–336 use
method getAudioClip of the SoundEffects object to return the AudioClips for
the simulation. Method play of class AudioClip plays the AudioClip—the Eleva-
torView uses this method for sounds that do not repeat, such as the Bell ring. Method
loop of class AudioClip plays the clip continually—the ElevatorView uses this
method for sounds that repeat, such as the sound of footsteps. Lines 339–340 instantiate the
ElevatorMusic object and ensure that the MIDI data is valid.

Finally, lines 162–163 (in the ElevatorView constructor) calculate the distance
between the two Floors (i.e., the distance the elevatorPanel will travel). Lines 166–
169 use the equation rate = distance / time to determine the elevatorPanel’s velocity
when traveling. Finally, line 172 calls method startAnimation, which starts the ani-
mation timer.

The ElevatorView animates the ImagePanels using animationTimer (line
142), an instance of class javax.swing.Timer. The animationTimer starts in the
ElevatorView constructor through method startAnimation (lines 345–356). Class
ElevatorView implements interface ActionListener to listen for ActionEvents.
The animationTimer sends an ActionEvent to the ElevatorView every 50
(ANIMATION_DELAY) milliseconds. When the ElevatorView receives an Action-
Event, the ElevatorView calls method actionPerformed (lines 365–385). Line
367 in this method update the position and current image of the elevatorPanel and of
the elevatorPanel’s children. Lines 369–370 allow the firstFloorButtonPanel
and secondFloorButtonPanel to update themselves. Lines 374–381 iterate List
personAnimatedPanels and update the position and current image of each Animat-
edPanel associated with a Person in the model. Lastly, line 383 calls method repaint
to redraw all ImagePanels added to the ElevatorView on screen.

We present an object diagram that lists all objects in the ElevatorView. Recall that
an object diagram provides a snapshot of the structure when the system is running. The
object diagram of Fig. I.4 represents the ElevatorView after invoking the constructor.

1460 Elevator View (on CD) Appendix I

The ElevatorView object links (contains an association) with all objects presented
in Fig. I.4. The elevatorPanel links with objects elevatorLightPanel, bell-
Panel, doorPanel and elevatorButtonPanel. This association provides a visu-
alization of what is happening in the model—the Elevator contains a Light, Bell,
Door and Button. The SoundEffects object links with the AudioClip objects,
because the SoundEffects object generates the AudioClip objects.

I.5 Event Handling
Figure 13.19 specified that the ElevatorView implements interface ElevatorMod-
elListener, which implements all interfaces in the simulation. The ElevatorSim-
ulation registers the ElevatorView as a listener for events from the
ElevatorModel; in other words, the ElevatorModel sends all events generated in
the model to the ElevatorView.

Every method implementing an interface receives an event object of type Eleva-
torModelEvent (or a subclass) as a parameter. For example, the doorOpened method

Fig. I.4Fig. I.4Fig. I.4Fig. I.4 Object diagram for the ElevatorView after initialization.

elevatorPanel : MovingPanel

firstFloorButtonPanel : AnimatedPanel

secondFloorButtonPanel : AnimatedPanel

elevatorButtonPanel : AnimatedPanel

doorPanel : AnimatedPanel

secondFloorLightPanel : AnimatedPanel

firstFloorLightPanel : AnimatedPanel

bellPanel : AnimatedPanel

elevatorShaftPanel : ImagePanel

secondFloorPanel : ImagePanel

lightPanel : AnimatedPanel

firstFloorPanel : ImagePanel

: SoundEffects

bellClip : AudioClip

doorOpenClip : AudioClip

doorCloseClip : AudioClip

elevatorClip : AudioClip

buttonClip : AudioClip

walkClip : AudioClip

ceilingPanel : ImagePanel

wallPanel : ImagePanel

: ElevatorView

: ElevatorMusic

Appendix I Elevator View (on CD) 1461

receives a DoorEvent. Appendix G contains further reference on events and listeners.
The following sections discuss the types of events that the ElevatorView handles.

I.5.1 ElevatorMoveEvent types

The ElevatorModel sends an ElevatorMoveEvent when the Elevator has ei-
ther departed or arrived in the model. The ElevatorModel invokes method eleva-
torDeparted (lines 435–493) when the Elevator has departed from a Floor. Lines
441–475 determine if an AnimatedPanel associated with a Person overlaps the el-
evatorPanel by iterating personAnimatedPanels and testing whether any Ani-
matedPanel in the List has an on-screen x-coordinate greater than that of the
elevatorPanel. If this is the case, then the Person is inside the Elevator, and lines
465–468 add the AnimatedPanel associated with that Person to the elevator-
Panel. Regardless of whether a Person is inside the Elevator, lines 478–515 set the
elevatorPanel’s velocity according to the direction the Elevator must travel. Line
500 plays the elevatorMusic.

The ElevatorModel invokes method elevatorArrived (lines 496–515) when
the Elevator has arrived at a Floor. Line 499 stops the elevatorPanel, and line
512 stops the elevatorMusic. Lines 506–513 change the direction of the elevator-
Panel for the next travel.

I.5.2 PersonMoveEvent types

The ElevatorModel sends a PersonMoveEvent when a Person has performed some
action in the model that the ElevatorView must represent. The ElevatorModel in-
vokes method personCreated (lines 518–582) when the model instantiates a new Per-
son. Lines 526–527 instantiate an AnimatedPanel for a Person. Lines 531–545
determine on which Floor to situate the AnimatedPanel, depending on the Floor on
which the event was generated. Lines 548–553 add frame sequences to the AnimatedPan-
el describing the Person walking and pressing a Button. Lines 556–572 animate the
Person walking, determine the Person’s velocity necessary to reach the Button on the
Floor and play the sound effect of footsteps. Lastly, lines 575–580 add the Animated-
Panel associated with the Person to List personAnimatedPanels, using a syn-
chronized block (lines 575–578) to guarantee no other object can access the List.

The ElevatorModel invokes method personArrived (lines 585–604) when a
Person has arrived at the Elevator. Line 588 calls method getPersonPanel (lines
414–432), which determines the AnimatedPanel associated with the Person that
issued the event. Specifically, method getPersonPanel iterates List personAni-
matedPanels and returns the AnimatedPanel whose identifier matches the identifier
of the PersonMoveEvent. Lines 590–603 in method personArrived stop this Ani-
matedPanel from moving. Line 596 stops the sound of footsteps by calling method
stopWalkingSound (lines 397–411), which stops the AudioClip playing the foot-
step sound only if no Persons are walking.

The ElevatorModel invokes method personPressedButton (lines 607–623)
when a Person pressed a Button. Line 610 determines the AnimatedPanel associ-
ated with the Person who pressed the Button. Line 616 calls method playAnima-
tion, which plays the animation sequence of that Person pressing the Button.

1462 Elevator View (on CD) Appendix I

The ElevatorModel invokes method personEntered (lines 626–647) when a
Person is about to enter the Elevator. Line 629 retrieves the AnimatedPanel asso-
ciated with the Person entering the Elevator. Line 634–640 determine the velocity
needed to walk into the Elevator. Line 643–645 animate this AnimatedPanel to
walk in the elevatorPanel.

The ElevatorModel invokes method personDeparted (lines 650–697) when a
Person is about to exit the Elevator. Line 653 determines the AnimatedPanel
associated with the Person departing from the Elevator. Lines 658–661 determine that
Person’s velocity needed to walk to across the Floor to exit the simulation. Lines 664–
688 position the AnimatedPanel associated with the Person on the Floor in front of
the Elevator by removing the AnimatedPanel from the elevatorPanel and
adding the AnimatedPanel to the ElevatorView. Lines 691–695 animate this Ani-
matedPanel to walk across either the firstFloorPanel or secondFloorPanel
and start the sound of footsteps.

 The ElevatorModel invokes method personExited (lines 700–718) when a
Person has exited from the simulation. Line 703 determines the AnimatedPanel asso-
ciated with the Person who exited the simulation. Lines 711–716 remove the Animat-
edPanel associated with that Person from the ElevatorView and stop the sound of
footsteps.

I.5.3 DoorEvent types

The ElevatorModel sends a DoorEvent to the ElevatorView when a Door has
opened or closed in the model. The ElevatorModel invokes method doorOpened
(lines 721–736) when a Door has opened. Lines 724–730 animate the doorPanel open-
ing, and lines 733–734 plays the doorOpenClip, which is the sound effect associated
with the Door’s opening.

The ElevatorModel invokes method doorClosed (lines 739–754) when a Door
has closed. Lines 742–748 animate the doorPanel closing, and lines 751–752 plays the
doorClosedClip, which is the sound effect associated with the Door’s closing.

I.5.4 ButtonEvent types

The ElevatorModel sends a ButtonEvent to the ElevatorView when a Button
has been pressed or reset in the model. The ElevatorModel invokes method button-
Pressed (lines 757–786) when a Button has been pressed. Lines 760–761 determine
the Location where the Button was pressed. If the Location is the Elevator, then
lines 764–767 play the Button pressed animation inside the Elevator. If the Loca-
tion is the first Floor, then lines 772–767 play the Button pressed animation on the
first Floor. If the Location is the second Floor, then lines 778–781 play the Button
pressed animation on the second Floor being pressed. Lines 783–784 play the button-
Clip, which is the sound effect associated with the Button being pressed.

The ElevatorModel invokes method buttonReset (lines 789–829) when a
Button has been reset. Lines 792–793 determine the Location where the Button was
reset. If the Location is the Elevator, then lines 796–803 change the elevator-
ButtonPanel’s image to that of the Button reset. If the Location is the first Floor,
then lines 808–816 change the firstFloorButtonPanel’s image associated with the

Appendix I Elevator View (on CD) 1463

Button reset. If the Location is the second Floor, then lines 819–827 change the
secondFloorButtonPanel’s image associated with the Button reset.

I.5.5 BellEvent types

The ElevatorModel sends a BellEvent to the ElevatorView by invoking meth-
od bellRang (lines 832–838) when a Bell has rung in the model. Line 834 animates the
bellPanel, and lines 836–837 play the bellClip, which is the sound effect associated
with the Bell ringing.

I.5.6 LightEvent types

The ElevatorModel sends a LightEvent to the ElevatorView when a Light
has changed state in the model. The ElevatorModel invokes method light-
TurnedOn (lines 841–858) when a Light has turned on. Line 844 turns on elevator-
LightPanel. Lines 846–856 determine on which Floor the Light has turned on, then
illuminates the AnimatedPanel associated with that Light in the ElevatorView.

The ElevatorModel invokes method lightTurnedOff (lines 861–878) when a
Light has turned off. Line 864 turns on elevatorLightPanel. Lines 866–876 deter-
mine on which Floor the Light has turned on, then turns off the AnimatedPanel
associated with that Light in the ElevatorView.

I.6 Component Diagrams Revisited
In Section 13.17, we introduced the component diagram for the elevator simulation, and in
Appendix G and Appendix H, we added components to packages event and model, re-
spectively. Figure I.5 presents the component diagram for package view, which contains
components ElevatorView.java, ImagePanel.java, MovingPanel.java,
AnimatedPanel.java, ElevatorMusic.java and SoundEffects.java.
ElevatorView.java aggregates packages images, sounds and event. Packages
images and sounds contain all image files and sound files (components) used by Ele-
vatorView.java, respectively. The diagram does not show the components of these di-
rectories, because there exist far to many graphics and audio files to represent on one
page—the contents of these packages can be found in the directory structures

com/deitel/jhtp4/elevator/view/images
com/deitel/jhtp4/elevator/view/sounds

(i.e., in the images and sounds directory where the classes for the view are located in
the file system).

I.7 Conclusion
Congratulations! You have completed an “industrial-strength” OOD/UML case study.

You are well prepared to tackle more substantial design problems and to go on to deeper
study of OOD with the UML. Hopefully you have developed a greater appreciation and
understanding of design and implementation processes. Now, you can use Java to imple-
ment substantial object-oriented system designs generated by the UML. We hope you have

1464 Elevator View (on CD) Appendix I

enjoyed using Java and the UML to construct this case study while learning what features
the two technologies have to offer. In addition, we hope you have enjoyed using Java’s
GUI, graphics and sound capabilities, while learning important object-oriented and Java-
related concepts, such as classes, objects, GUI construction, inheritance, event handling
and multithreading.

Fig. I.5Fig. I.5Fig. I.5Fig. I.5 Component diagram for package view.

view

ElevatorView.java

<<file>>

ImagePanel.java

<<file>>

ElevatorMusic.java

<<file>>

AnimatedPanel.java

<<file>>

MovingPanel.java

<<file>>

SoundEffects.java

<<file>>

images sounds event

11 1

1

11

J
Career Opportunities

(on CD)

Objectives
• To explore the various online career services.
• To examine the advantages and disadvantages of

posting and finding jobs online.
• To review the major online career services Web sites

available to job seekers.
• To explore the various online services available to

employers seeking to build their workforces.
What is the city but the people?
William Shakespeare

A great city is that which has the greatest men and women,
If it be a few ragged huts it is still the greatest city in the
whole world.
Walt Whitman

To understand the true quality of people, you must look into
their minds, and examine their pursuits and aversions.
Marcus Aurelius

The soul is made for action, and cannot rest till it be
employed. Idleness is its rust. Unless it will up and think and
taste and see, all is in vain.
Thomas Traherne

1466 Career Opportunities (on CD) Appendix J

J.1 Introduction
There are approximately 40,000 career-advancement services on the Internet today.1 These
services include large, comprehensive job sites, such as Monster.com (see the upcoming
Monster.com feature), as well as interest-specific job sites such as JustJava-
Jobs.com. Companies can reduce the amount of time spent searching for qualified em-
ployees by building a recruiting feature on their sites or establishing an account with a
career site. This results in a larger pool of qualified applicants, as online services can auto-
matically select and reject resumes based on user-designated criteria. Online interviews,
testing services and other resources also expedite the recruiting process.

Applying for a position online is a relatively new method of exploring career opportu-
nities. Online recruiting services streamline the process and allow job seekers to concen-
trate their energies in careers that are of interest to them. Job seekers can explore
opportunities according to geographic location, position, salary or benefits packages.

Job seekers can learn how to write a resume and cover letter, post them online and
search through job listings to find the jobs that best suit their needs. Entry-level positions,
or positions commonly sought by individuals who are entering a specific field or the job
market for the first time; contracting positions; executive-level positions and middle-man-
agement-level positions are all available on the Web.

Outline

J.1 Introduction
J.2 Resources for the Job Seeker
J.3 Online Opportunities for Employers

J.3.1 Posting Jobs Online
J.3.2 Problems with Recruiting on the Web
J.3.3 Diversity in the Workplace

J.4 Recruiting Services
J.4.1 Testing Potential Employees Online

J.5 Career Sites
J.5.1 Comprehensive Career Sites
J.5.2 Technical Positions
J.5.3 Wireless Positions
J.5.4 Contracting Online
J.5.5 Executive Positions
J.5.6 Students and Young Professionals
J.5.7 Other Online Career Services

J.6 Internet and World Wide Web Resources

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises •
Works Cited

Appendix J Career Opportunities (on CD) 1467

 Job seekers will find a number of time-saving features when searching for a job online.
These include storing and distributing resumes digitally, e-mail notification of possible
positions, salary and relocation calculators, job coaches, self-assessment tools and informa-
tion on continuing education.

In this appendix, we explore online career services from the employer and employee’s
perspective. We suggest sites on which applications can be submitted, jobs can be searched
for and applicants can be reviewed. We also review services that build recruiting pages
directly into an e-business.

J.2 Resources for the Job Seeker
Finding a job online can greatly reduce the amount of time spent applying for a position.
Instead of searching through newspapers and mailing resumes, job seekers can request a
specific position in a specific industry through a search engine. Some sites allow job seek-
ers to setup intelligent agents to find jobs that meet their requirements. Intelligent agents
are programs that search and arrange large amounts of data, and report answers based on
that data. When the agent finds a potential match, it sends it to the job seeker’s inbox. Re-
sumes can be stored digitally, customized quickly to meet job requirements and e-mailed
instantaneously. Potential candidates can also learn more about a company by visiting its
Web site. Most employment sites are free to job seekers. These sites typically generate their
revenues by charging employers for posting job opportunities and by selling advertising
space on their Web pages (see the Monster.com feature).

Career services, such as FlipDog.com, search a list of employer job sites to find
positions. By searching links to employer Web sites, FlipDog.com is able to identify
positions from companies of all sizes. This feature enables job seekers to find jobs that
employers may not have posted outside the corporation’s Web site.

Monster.com

Super Bowl ads and effective marketing have made Monster.com one of the most
recognizable online brands (see Fig. B.1). In fact, in the 24 hours following Super Bowl
XXXIV, 5 million job searches occurred on Monster.com.2 The site allows people
looking for jobs to post their resumes, search job listings, read advice and information
about the job-search process and take proactive steps to improve their careers. These
services are free to job seekers. Employers can post job listings, search resume databas-
es and become featured employers.

Posting a resume at Monster.com is simple and free. Monster.com has a
resume builder that allows users to post a resume to its site in 15–30 minutes. Each user
can store up to 5 resumes and cover letters on the Monster.com server. Some com-
panies offer their employment applications directly through the Monster.com site.
Monster.com has job postings in every state and all major categories. Users can
limit access to their personal identification information. As one of the leading
recruiting sites on the Web, Monster.com is a good place to begin a job search or to
find out more about the search process.

1468 Career Opportunities (on CD) Appendix J

Job seekers can visit FlipDog.com and choose, by state, the area in which they are
looking for a position. Applicants can also conduct worldwide searches. After a user selects
a region, FlipDog.com requests the user to specify a job category containing several spe-
cific positions. The user’s choice causes a list of local employers to appear. The user can
choose a specific employer or request that FlipDog.com search the employment data-
bases for jobs offered by all employers (see Fig. B.2).

Other services, such as employment networks, also help job seekers in their search.
Sites such as Vault.com (see the Vault.com feature) and WetFeet.com allow job
seekers to post questions about employers and positions in designated chat rooms and on
bulletin boards.

J.3 Online Opportunities for Employers
Recruiting on the Internet provides several benefits over traditional recruiting. For exam-
ple, Web recruiting reaches a much larger audience than posting an advertisement in a local
newspaper. Given the breadth of the services provided by most online career services Web
sites, the cost of posting online can be considerably less expensive than posting positions
through traditional means. Even newspapers, which depend greatly on career opportunity
advertising, are starting online career sites.3

Fig. J.1Fig. J.1Fig. J.1Fig. J.1 The Monster.com home page. (Courtesy of Monster.com.)

Monster.com (Cont.)

Appendix J Career Opportunities (on CD) 1469

Fig. J.2Fig. J.2Fig. J.2Fig. J.2 FlipDog.com job search. (Courtesy of Flipdog.com.)

Vault.com: Finding the Right Job on the Web4

Vault.com allows potential employees to seek out additional, third-party informa-
tion for over 3000 companies. By visiting the Insider Research page, Web users have
access to a profile on the company of their choice, as long as it exists in Vault.com’s
database. In addition to Vault.com’s profile, there is a link to additional commentary
by company employees. Most often anonymous, these messages can provide prospec-
tive employees with potentially valuable decision-making information. However, users
must consider the integrity of the source. For example, a disgruntled employee may
leave a posting that is not an accurate representation of the corporate culture of his or
her company.

The Vault.com Electronic Watercooler™ is a message board that allows visi-
tors to post stories, questions and concerns and to advise employees and job seekers. In
addition, the site provides e-newsletters and feature stories designed to help job seekers
in their search. Individuals seeking information on business, law and graduate schools
can also find information on Vault.com.

Job-posting and career-advancement services for the job seeker are featured on
Vault.com. These services include VaultMatch, a career service that e-mails job
postings as requested, and Salary Wizard™, which helps job seekers determine the
salary they are worth. Online guides with advice for fulfilling career ambitions are also
available.

1470 Career Opportunities (on CD) Appendix J

e-Fact J.1
According to Forrester Research, 33 percent of today’s average company’s hiring budget
goes toward online career services, while the remaining 66 percent is used toward tradition-
al recruiting mechanisms. Online use is expected to increase to 42 percent by 2004, while
traditional mechanisms may be reduced to 10 percent.5 0.0

Generally, jobs posted online are viewed by a larger number of job seekers than jobs
posted through traditional means. However, it is important not to overlook the benefits of
combining online efforts with human-to-human interaction. There are many job seekers
who are not yet comfortable with the process of finding a job online. Often, online
recruiting is used as a means of freeing up a recruiter’s time for the interviewing process
and final selection.

e-Fact J.2
Cisco Systems cites a 39 percent reduction in cost-per-hire expenses, and a 60 percent re-
duction in the time spent hiring.6 0.0

J.3.1 Posting Jobs Online

When searching for job candidates online, there are many things employers need to consid-
er. The Internet is a valuable tool for recruiting, but one that takes careful planning to ac-
quire the best results. It provides a good supplementary tool, but should not be considered
the complete solution for filling positions. Web sites, such as WebHire (www.web-
hire.com), enhance a company’s online employment search (see the WebHire feature).

There are a variety of sites that allow employers to post jobs online. Some of these sites
require a fee, which generally runs between $100–200. Postings typically remain on the
Web site for 30–60 days. Employers should be careful to post to sites that are most likely
to be visited by eligible candidates. As we discovered in the previous section, there are a
variety of online career services focused on specific industries, and many of the larger,
more comprehensive sites have categorized their databases by job category.

When designing a posting, the recruiter should consider the vast number of postings
already on the Web. Defining what makes the job position unique, including information
such as benefits and salary, might convince a qualified candidate to further investigate the
position (see Fig. B.3).7

HotJobs.com career postings are cross-listed on a variety of other sites, thus
increasing the number of potential employees who see the job listings. Like Mon-
ster.com and jobfind.com, hotjobs.com requires a fee per listing. Employers
also have the option of becoming HotJob.com members. Employers can gain access to
HotJob’s Private Label Job Boards (private corporate employment sites), online recruiting
technology and online career fairs.

Employers can also use the site. HR Vault, a feature of Vault.com, provides
employers with a free job-posting site. It offers career-management advice, employer-
to-employee relationship management and recruiting resources.

Vault.com: Finding the Right Job on the Web4 (Cont.)

Appendix J Career Opportunities (on CD) 1471

Boston Herald Job Find (www.jobfind.com) also charges employers to post on its
site. The initial fee entitles the employer to post up to three listings. Employers have no lim-
itations on the length of their postings.

Other Web sites providing employers with employee recruitment services include
CareerPath.com, America’s Job Bank (www.ajb.dni.us/employer),
CareerWeb (www.cweb.com), Jobs.com and Career.com.

WebHire™8

Designed specifically for recruiters and employers, WebHire is a multifaceted service
that provides employers with end-to-end recruiting solutions. The service offers job-
posting services as well as candidate searches. The most comprehensive of the services,
WebHire™ Enterprise, locates and ranks candidates found through resume-scanning
mechanisms. Clients will also receive a report indicating the best resources for their
search. Other services available through the WebHire™ Employment Services Network
include preemployment screening, tools for assessing employees’ skill levels and in-
formation on compensation packages. An employment law advisor helps organizations
design interview questions.

WebHire™ Agent is an intelligent agent that searches for qualified applicants
based on job specifications. When WebHire Agent identifies a potential candidate, an
e-mail is automatically sent to the candidate to generate interest. WebHire Agent then
ranks applicants according to the skills information it gains from the Web search; the
information is stored so that new applicants are distinguished from those who have
already received an e-mail from the site.

Yahoo!® Resumes, a feature of WebHire, allows recruiters to find potential
employees by typing in keywords on the Yahoo! Resumes search engine. Employers
can purchase a year’s membership to the recruiting solution for a flat fee; there are no
per-use charges.

Job Seeker’s Criteria

Position (responsibilities)

Salary

Location

Benefits (health, dental, stock options)

Advancement

Time Commitment

Training Opportunities

Tuition Reimbursement

Corporate Culture

Fig. J.3Fig. J.3Fig. J.3Fig. J.3 List of a job seeker’s criteria.

1472 Career Opportunities (on CD) Appendix J

J.3.2 Problems with Recruiting on the Web
The large number of applicants presents a challenge to both job seekers and employers. On
many recruitment sites, matching resumes to positions is conducted by resume-filtering
software. The software scans a pool of resumes for keywords that match the job description.
While this software increases the number of resumes that receive attention, it is not a fool-
proof system. For example, the resume-filtering software might overlook someone with
similar skills to those listed in the job description, or someone whose abilities would enable
them to learn the skills required for the position. Digital transmissions can also create prob-
lems because certain software platforms are not always acceptable by the recruiting soft-
ware. This sometimes results in an unformatted transmission, or a failed transmission.

A lack of confidentiality is another disadvantage of online career services. In many
cases, a job candidate will want to search for job opportunities anonymously. This reduces
the possibility of offending the candidate’s current employer. Posting a resume on the Web
increases the likelihood that the candidate’s employer might come across it when recruiting
new employees. The traditional method of mailing resumes and cover letters to potential
employers does not impose the same risk.

According to recent studies, the number of individuals researching employment posi-
tions through traditional means, such as referrals, newspapers and temporary agencies, far
outweighs the number of job seekers researching positions through the Internet.9 Optimists
feel, however, that this disparity is largely due to the early stages of e-business develop-
ment. Given time, online career services will become more refined in their posting and
searching capabilities, decreasing the amount of time it takes for a job seeker to find jobs
and employers to fill positions.

J.3.3 Diversity in the Workplace

Every workplace inevitably develops its own culture. Responsibilities, schedules, dead-
lines and projects all contribute to a working environment. Perhaps the most defining ele-
ments of a corporate culture are the employees. For example, if all employees were to have
the same skills and the same ideas, the workplace would lack diversity. It might also lack
creativity and enthusiasm. One way to increase the dynamics of an organization is to em-
ploy people of all backgrounds and cultures.

The Internet hosts demographic-specific sites for employers seeking to increase diver-
sity in the workplace. By recruiting people from different backgrounds, new ideas and per-
spectives are brought forth, helping businesses meet the needs of a larger, more diverse
target audience.10

Blackvoices.com and hirediversity.com are demographic-specific Web
sites. BlackVoices™, which functions primarily as a portal (a site offering news, sports and
weather information, as well as the ability to search the Web), features job searching capa-
bilities and the ability for prospective employees to post resumes. HireDiversity is divided
into several categories, including opportunities for African Americans, Hispanics and
women. Other online recruiting services place banner advertisements on ethnic Web sites
for companies seeking diverse workforces.

The Diversity Directory (www.mindexchange.com) offers international career-
searching capabilities. Users selecting the Diversity site can find job opportunities, infor-
mation and additional resources to help them in their career search. The site can be searched

Appendix J Career Opportunities (on CD) 1473

according to demographics (African American, Hispanic, alternative lifestyle, etc.) or by
subject (employer, position, etc.) via hundreds of links. Featured sites include Bilin-
gualJobs.com, Latin World and American Society for Female Entrepreneurs.

Many sites have sections dedicated to job seekers with disabilities. In addition to pro-
viding job-searching capabilities, these sites include additional resources, such as equal
opportunity documents and message boards. The National Business and Disability Council
(NBDC) provides employers with integration and accessibility information for employing
people with disabilities, and the site also lists opportunities for job seekers.

J.4 Recruiting Services
There are many services on the Internet that help employers match individuals to positions.
The time saved by conducting preliminary searches on the Internet can be dedicated to in-
terviewing qualified candidates and making the best matches possible.

Advantage Hiring, Inc. (www.advantagehiring.com) provides employers with
a resume-screening service. When a prospective employee submits a resume for a partic-
ular position, Advantage Hiring, Inc. presents Net-Interview™, a small questionnaire to
supplement the information presented on the resume. The site also offers SiteBuilder, a ser-
vice that helps employers build an employee recruitment site. An online demonstration can
be found at www.advantagehiring.com. The demonstration walks the user through
the Net-Interview software, as well as a number of other services offered by Advantage
Hiring (see Fig. B.4).

Recruitsoft.com is an application service provider (ASP) that offers companies
recruiting software on a pay-per-hire basis (Recruitsoft receives a commission on hires
made via its service). Recruiter WebTop™ is the company’s online recruiting software. It
includes features such as Web-site hosting, an employee-referral program, skill-based
resume screening, applicant-tracking capabilities and job-board posting capabilities. A
demonstration of Recruiter WebTop’s Corporate Recruiting Solutions can be found at
www.recruitsoft.com/process. The demonstration shows how recruiting solu-
tions find and rank potential candidates. More information about Recruitsoft’s solution can
be viewed in a QuickTime media player demonstration, found at www.recruit-
soft.com/corpoVideo.

Peoplescape.com is an online service that helps employers recruit employees and
maintain a positive work environment once the employee has been hired. In addition to
searches for potential candidates, Peoplescape offers PayCheck™, LegalCheck™ and Peo-
pleCheck™. These services help to ensure that compensation offers are adequate, legal
guidelines are met and candidates have provided accurate information on their resumes and
during the hiring process. For job seekers, Peoplescape offers searching capabilities,
insights to career transitions, a job compensation calculator that takes benefits and bonuses
into consideration when exploring a new job possibility and a series of regularly posted arti-
cles relevant to the job search.11

To further assist companies in their recruiting process, Web sites such as Refer.com
reward visitors for successful job referrals. Highly sought-after positions can earn thou-
sands of dollars. If a user refers a friend or a family member and he or she is hired, the user
receives a commission.

Other online recruiting services include SkillsVillage.com, Hire.com, Mor-
ganWorks.com and Futurestep.com™.

1474 Career Opportunities (on CD) Appendix J

J.4.1 Testing Potential Employees Online

The Internet also provides employers with a cost-effective means of testing their prospec-
tive employees in such categories as decision making, problem solving and personality.
Services such eTest help to reduce the cost of in-house testing and to make the interview
process more effective. Test results, given in paragraph form, present employers with the
interested individual’s strengths and weaknesses. Based on these results, the report sug-
gests interview methods, such as asking open-ended questions, which are questions that re-
quire more than a “yes” or “no” response. Sample reports and a free-trial test can be found
at www.etest.net.

Employers and job seekers can also find career placement exercises at www.advi-
sorteam.net/AT/User/kcs.asp. Some of these services require a fee. The tests
ask several questions regarding the individual’s interests and working style. Results help
candidates determine the best career for their skills and interests.

Fig. J.4Fig. J.4Fig. J.4Fig. J.4 Advantage Hiring, Inc.’s Net-Interview™ service. (Courtesy of
Advantage Hiring, Inc.)

Appendix J Career Opportunities (on CD) 1475

J.5 Career Sites
Online career sites can be comprehensive or industry specific. In this section, we explore a
variety of sites on the Web that accommodate the needs of both the job seeker and the em-
ployer. We review sites offering technical positions, free-lancing opportunities and con-
tracting positions.

J.5.1 Comprehensive Career Sites

As mentioned previously, there are many sites on the Web that provide job seekers with ca-
reer opportunities in multiple fields. Monster.com is the largest of these sites, attracting
the greatest number of unique visitors per month. Other popular online recruiting sites include
JobsOnline.com, HotJobs.com, www.jobtrak.com and Headhunter.net.

Searching for a job online can be a conducted in a few steps. For example, during an
initial visit to JobsOnline.com, a user is required to fill out a registration form. The
form requests basic information, such as name, address and area of interest. After regis-
tering, members can search through job postings according to such criteria as job category,
location and the number of days the job has been posted. Contact information is provided
for additional communication. Registered members are offered access to XDrive™
(www.xdrive.com), which provides 25 MB of storage space for resumes, cover letters
and additional communication. Stored files can be shared through any Web browser or
Wireless Application Protocol (WAP)-enabled device. Driveway.com offers a similar
service, allowing individuals to store, share and organize job search files online. An online
demonstration of the service can be found at www.driveway.com. The animated demo
walks the user through the features offered by the service. Driveway.com offers 100 MB
of space, and the service is free.12 Other sites, such as Cruel World (see the Cruel World
feature), allow users to store and send their resumes directly to employers.

Cruel World13

Cruel World is a free, online career advancement service for job seekers. After becom-
ing a registered member, your information is matched with available positions in the
Cruel World database. When an available job matches your criteria, JobCast®, a fea-
ture of Cruel World, sends an e-mail alerting you of the available position. If you are
interested, you can send your resume to the employer that posted the position, custom-
ized to the job’s requirements. If you do not wish to continue your search, you can sim-
ply send a negative response via e-mail.

The client list, or the list of companies seeking new employees through Cruel
World, can be viewed at www.cruelworld.com/corporate/aboutus.asp
(Fig. B.5). Additional features on the site include hints for salary negotiation; a self-
assessment link to CareerLeader.com, where, for a small fee, members can reas-
sess their career goals under the advisement of career counselors and a relocation cal-
culator for job seekers who are considering changing location.

Employers seeking to hire new talent can post opportunities through Cruel World.
posting positions requires a fee. A demonstration of the service can be viewed at
www.cruelworld.com/clients/quicktour1.asp. The demonstration is a
three-step slide of JobCast.

1476 Career Opportunities (on CD) Appendix J

J.5.2 Technical Positions
Technical positions are becoming widely available as the Internet grows more pervasive.
Limited job loyalty and high turnover rates in technical positions allow job seekers to find
jobs that best suit their needs and skills. Employers are required to rehire continuously to
keep positions filled and productivity levels high. The amount of time for an employer to
fill a technical position can be greatly reduced by using an industry-specific site. Career
sites designed for individuals seeking technical positions are among the most popular on-
line career sites. In this section, we review several sites that offer recruiting and hiring op-
portunities for technical positions.

e-Fact J.3
It costs a company 25 percent more to hire a new technical employee than it does to pay an
already employed individual’s salary.14

0.0

Dice.com (www.dice.com) is a recruiting Web site that focuses on technical
fields. Company fees are based on the number of jobs the company posts and the frequency

Fig. J.5Fig. J.5Fig. J.5Fig. J.5 Cruel World online career services. (Courtesy of Cruel World.)

Cruel World13 (Cont.)

Appendix J Career Opportunities (on CD) 1477

with which the postings are updated. Job seekers can post their resumes and search the job
database for free. JustComputerJobs.com directs job seekers toward 39 specific
computer technologies for their job search. Language-specific sites include JustJava-
Jobs.com, JustCJobs.com and JustPerlJobs.com. Hardware, software and
communications technology sites are also available. Other technology recruiting sites
include HireAbility.com, Bid4Geeks.com, HotDispatch.com and
www.cmpnet.com/careerdirect.

J.5.3 Wireless Positions

The wireless industry is developing rapidly. According to WirelessResumes.com, the
number of wireless professionals is 328,000. This number is expected to increase 40 percent
each year for the next five years. To accommodate this growth, and the parallel demand for
professionals, WirelessResumes.com has created an online career site specifically for
the purpose of filling wireless jobs (see the WirelessResumes.com feature).

The Caradyne Group (www.pcsjobs.com), an executive search firm, connects job
seekers to employers in the wireless technology field. Interested job seekers must first fill
out a “Profile Questionnaire.” This information is then entered into The Caradyne Group’s
database and is automatically matched to an open position in the job seeker’s field of exper-
tise. If there are no open positions, a qualified consultant from The Caradyne Group will
contact the job seeker for further a interview and discussion. Jobs4wireless.com also
provides job seekers with employment opportunities in the wireless industry.

J.5.4 Contracting Online

The Internet also serves as a forum for job seekers to find employment on a project-by-
project basis. Online contracting services allow businesses to post positions for which they
wish to hire outside resources, and individuals can identify projects that best suit their in-
terests, schedules and skills.

e-Fact J.4
Approximately six percent of America’s workforce falls into the category of independent con-
tractor.15

0.0

WirelessResumes.com: Filling Wireless Positions

WirelessResumes.com is an online career site focused specifically on matching
wireless professionals with careers in the industry. This narrow focus enables business-
es to locate new employees quickly—reducing the time and expense attached to tradi-
tional recruiting methods. Similarly, candidates can limit their searches to precisely the
job category of interest. Wireless carriers, device manufacturers, WAP and Bluetooth
developers, e-commerce companies and application service providers (ASPs) are
among those represented on the site.

In addition to searching for jobs and posting a resume, WirelessRe-
sumes.com provides job seekers with resume writing tips, interviewing techniques,
relocation tools and assistance in obtaining a Visa or the completion of other necessary
paperwork. Employers can use the site to search candidates and post job opportunities.

1478 Career Opportunities (on CD) Appendix J

Guru.com (www.guru.com) is a recruiting site for contract employees. Independent
contractors, private consultants and trainers use guru.com to find short-term and long-term
contract assignments. Tips, articles and advice are available for contractors who wish to learn
more about their industry. Other sections of the site teach users how to manage their busi-
nesses, buy the best equipment and deal with legal issues. Guru.com includes an online
store where contractors can buy products associated with small-business management, such
as printing services and office supplies. Companies wishing to hire contractors must register
with guru.com, but individuals seeking contract assignments do not.

Monster.com’s Talent Market™ offers online auction-style career services to free
agents. Interested users design a profile, listing their qualifications. After establishing a
profile, free agents “Go Live” to start the bidding on their services. The bidding lasts for
five days during which users can view the incoming bids. At the close of five days, the user
can choose the job of his or her choice. The service is free for users, and bidding employers
pay a commission on completed transactions.

eLance.com is another site where individuals can find contracting work. Interested
applicants can search eLance’s database by category, including business, finance and mar-
keting (see Fig. B.6). These projects, or requests for proposals (RFPs), are posted by com-
panies worldwide. When users find projects for which they feel qualified, they submit bids
on the projects. Bids must contain a user’s required payment, a statement detailing the
user’s skills and a feedback rating drawn from other projects on which the user has worked.
If a user’s bid is accepted, the user is given the project, and the work is conducted over
eLance’s file-sharing system, enabling both the contractor and the employer to contact one
another quickly and easily. For an online demonstration, visit www.elance.com and
click on the demonstration icon.

FreeAgent (www.freeagent.com) is another site designed for contracting
projects. Candidates create an e.portfolio that provides an introductory “snapshot” of their
skills, a biography, a list of their experience and references. The interview section of the
portfolio lists questions and the applicant’s answers. Examples of e.portfolios can be found
at www.freeagent.com/splash/models.asp. Free Agent’s e.office offers a ben-
efits package to outside contractors, including health insurance, a retirement plan and reim-
bursement for business-related expenses.

Other Web sites that provide contractors with projects and information include
eWork® Exchange (www.ework.com), MBAFreeAgent.com, Aquent.com and
WorkingSolo.com.

J.5.5 Executive Positions

Next, we discuss the advantages and disadvantages of finding an executive position online.
Executive career advancement sites usually include many of the features found on compre-
hensive job-search sites. Searching for an executive position online differs from finding an
entry-level position online. The Internet allows individuals to continually survey the job mar-
ket. However, candidates for executive-level positions must exercise a higher level of caution
when determining who is able to view their resume. Applying for an executive position online
is an extensive process. As a result of the high level of scrutiny passed on a candidate during
the hiring process, the initial criteria presented by an executive level candidate often are more
specific than the criteria presented by the first-time job seeker. Executive positions often are
difficult to fill, due to the high demands and large amount of experience required for the jobs.

Appendix J Career Opportunities (on CD) 1479

SixFigureJobs (www.sixfigurejobs.com) is a recruitment site designed for
experienced executives. Resume posting and job searching is free to job seekers. Other
sites, including www.execunet.com, Monster.com’s ChiefMonster™
(www.chiefmonster.com) and www.nationjob.com are designed for helping
executives find positions.

J.5.6 Students and Young Professionals
The Internet provides students and young professionals with tools to get them started in the
job market. Individuals still in school and seeking internships, individuals who are just
graduating and individuals who have been in the workforce for a few years make up the
target market. Additional tools specifically designed for this demographic (a population de-
fined by a specific characteristic) are available. For example, journals kept by previous in-
terns provide prospective interns with information regarding what to look for in an
internship, what to expect and what to avoid. Many sites will provide information to lead
young professionals in the right direction, such as matching positions to their college or
university major.

Experience.com is a career services Web site geared toward the younger popu-
lation. Members can search for positions according to specific criteria, such as geo-

Fig. J.6Fig. J.6Fig. J.6Fig. J.6 eLance.com request for proposal (RFP) example. (Courtesy of
eLance, Inc.]

1480 Career Opportunities (on CD) Appendix J

graphic location, job category, keywords, commitment (i.e. full time, part time,
internship), amount of vacation and amount of travel time. After applicants register, they
can send their resumes directly to the companies posted on the site. In addition to the
resume, candidates provide a personal statement, a list of applicable skills and their lan-
guage proficiency. Registered members also receive access to the site’s Job Agent. Up to
three Job Agents can be used by each member. The agents search for available positions,
based on the criteria posted by the member. If a match is made, the site contacts the can-
didate via e-mail.16,17

Internshipprograms.com helps students find internships. In addition to posting
a resume and searching for an internship, students can use the relocation calculator to com-
pare the cost of living in different regions. Tips on building resumes and writing essays are
provided. The City Intern program provides travel, housing and entertainment guides to
interns interviewing or accepting a position in an unfamiliar city, making them feel more
at home in a new location.

In addition to its internship locators, undergraduate, graduate, law school, medical
school and business school services, the Princeton Review’s Web site
(www.review.com) offers career services to graduating students. While searching for a
job, students and young professionals can also read through the site’s news reports or even
increase their vocabulary by visiting the “word for the day.” Other career sites geared
toward the younger population include campuscareercenter.com, brassring-
campus.com and collegegrads.com.

J.5.7 Other Online Career Services
In addition to Web sites that help users find and post jobs online, there are a number of Web
sites that offer features that will enhance searches, prepare users to search online, help ap-
plicants design resumes or help users calculate the cost of relocating.

Salary.com helps job seekers gauge their expected income, based on position, level
of responsibility and years of experience. The search requires job category, ZIP code and
specific job title. Based on this information, the site will return an estimated salary for an
individual living in the specified area and employed in the position described. Estimates are
returned based on the average level of income for the position.

In addition to helping applicants find employment, www.careerpower.com pro-
vides individuals with tests that will help them realize their strengths, weaknesses, values,
skills and personality traits. Based on the results, which can be up to 10–12 pages per test,
users can best decide what job categories they are qualified for and what career choice will
be best suited to their personal ambitions. The service is available for a fee.

InterviewSmart™ is another service offered through CareerPower that prepares job
seekers of all levels for the interviewing process. The service can be downloaded for a min-
imal fee or can be used on the Web for free. Both versions are available at www.career-
power.com/CareerPerfect/interviewing.htm#is.start.anchor.

Additional services will help applicants find positions that meet their unique needs, or
design their resumes to attract the attention of specific employers. Dogfriendly.com,
organized by geographic location, helps job seekers find opportunities that allow them to
bring their pets to work, and cooljobs.com is a searchable database of unique job
opportunities.

Appendix J Career Opportunities (on CD) 1481

J.6 Internet and World Wide Web Resources

Information Technology (IT) Career Sites

www.dice.com
This is a recruiting Web site that focuses on the computer industry.
www.guru.com
This is a recruiting site for contract employees. Independent contractors, private consultants and train-
ers can use guru.com to find short-term and long-term work.

www.hallkinion.com
This is a Web recruiting service for individuals seeking IT positions.

www.techrepublic.com
This site provides employers and job seekers with recruiting capabilities and information regarding
developing technology.

www.justcomputerjobs.com
This site serves as a portal with access to language-specific sites, including Java, Perl, C and C++.

www.bid4geeks.com
This career services site is geared toward the technical professional.

www.hotdispatch.com
This forum provides software developers with the opportunity to share projects, discuss code and ask
questions.

www.techjobs.bizhosting.com/jobs.htm
This site directs job seekers to links of numerous technological careers listed by location, internet,
type of field, etc.

Career Sites

www.careerbuilder.com
A network of career sites, including IT Careers, USA Today and MSN, CareerBuilder attracts 3 mil-
lion unique job seekers per month. The site provides resume-builder and job-searching agents.

www.recruitek.com
This free site caters to jobs seekers, employers and contractors.

www.monster.com
This site, the largest of the online career sites, allows people looking for jobs to post their resumes,
search job listings and read advice and information about the job-search process. It also provides a
variety of recruitment services for employers.

www.jobsonline.com
Similar to Monster.com, this site provides opportunities for job seekers and employers.

www.hotjobs.com
This online recruiting site offers cross-listing possibilities on additional sites.

www.jobfind.com
This job site is an example of locally targeted job-search resources. JobFind.com targets the Bos-
ton area.

www.flipdog.com
This site allows online job candidates to search for career opportunities. It employs intelligent agents
to scour the Web and return jobs matching the candidate’s request.

1482 Career Opportunities (on CD) Appendix J

www.cooljobs.com
This site highlights unique job opportunities.

www.careerhighway.com
This site presents an opportunity for job seekers and employers to match up and register the career-
specific information for which they are searching.

www.inetsupermall.com
This site aids job searchers in creating professional resumes and connecting with employers.

www.wirelessnetworksonline.com
This site helps connect job searchers to careers for which they are qualified.

www.careerweb.com
This site highlights featured employers and jobs and allows job seekers and employers to post and
view resumes, respectively.

Executive Positions

www.sixfigurejobs.com
This is a recruitment site designed for experienced executives.

www.leadersonline.com
This career services Web site offers confidential job searches for mid-level professionals. Potential
job matches are e-mailed to job candidates.

www.ecruitinginc.com
This site is designed to search for employees for executive positions.

Diversity

www.latpro.com
This site is designed for Spanish-speaking and Portuguese-speaking job seekers. In addition to pro-
viding resume-posting services, the site enables job seekers to receive matching positions via e-mail.
Advice and information services are available.

www.blackvoices.com
This portal site hosts a career center designed to match African American job seekers with job oppor-
tunities.

www.hirediversity.com
In addition to services for searching for and posting positions, resume-building and updating services
are also available on this site. The site targets a variety of demographics including African Americans,
Asian Americans, people with disabilities, women and Latin Americans.

People with Disabilities

www.halftheplanet.com
This site represents people with disabilities. The site is large and includes many different resources
and information services. A special section is dedicated to job seekers and employers.

www.wemedia.com
This site is designed to meet the needs of people with disabilities. It includes a section for job seekers
and employers.

www.disabilities.com
This site provides users with a host of links to information resources on career opportunities.

Appendix J Career Opportunities (on CD) 1483

www.rileyguide.com
This site includes a section with opportunities for people with disabilities, which can be viewed at
www.dbm.com/jobguide/vets.html#abled.

www.mindexchange.com
The diversity section of this site provides users with several links to additional resources regarding
people with disabilities and employment.

www.usdoj.gov/crt/ada/adahom1.htm
This is the Americans with Disabilities Act home page.

www.abanet.org/disability/home.html
This is the Web site for The Commission on Mental and Physical Disability Law.

janweb.icdi.wvu.edu
The Job Accommodation Web site offers consulting services to employers regarding integration of
people with disabilities into the workplace.

General Resources

www.vault.com
This site provides potential employees with “insider information” on over 3000 companies. In addi-
tion, job seekers can search through available positions and post and answer questions on the message
board.

www.wetfeet.com
Similar to vault.com, this site allows visitors to ask questions and receive “insider information”
on companies that are hiring.

Free Services

www.sleuth.com
On this site job seekers can fill out a form that indicates their desired field of employment. Job
Sleuth™ searches the Internet and returns potential matches to the user’s inbox. The service is free.

www.ajb.org
America’s Job Bank is an online recruiting service provided through the Department of Labor and the
state employment service. Searching for and posting positions on the site are free.

www.xdrive.com
This free site provides members with 25 MB of storage space for housing documents related to a us-
er’s job search. XDrive is able to communicate with all browser types and has wireless capabilities.

www.driveway.com
Similar to XDrive.com, this Web site provides users with 100 MB of storage space. Users can back
up, share and organize information about various job searches. Driveway.com works on all plat-
forms.

Special Interest

www.eharvest.com/careers/index.cfm
This Web site provides job seekers interested in agricultural positions with online career services.

www.opportunitynocs.org
This career services site is for both employers and job seekers interested in non-profit opportunities.

www.experience.com
This Web site is designed specifically for young professionals and students seeking full-time, part-
time and internship positions.

1484 Career Opportunities (on CD) Appendix J

www.internshipprograms.com
Students seeking internships can search job listings on this site. It also features City Intern, to help
interns become acquainted with a new location.

www.brassringcampus.com
This site provides college grads and young professionals with less than five years of experience with
job opportunities. Additional features help users buy cars or find apartments.

Online Contracting

www.ework.com
This online recruiting site matches outside contractors with companies needing project specialists.
Other services provided through eWork include links to online training sites, benefits packages and
payment services and online meeting and management resources.

www.elance.com
Similar to eWork.com, eLance matches outside contractors with projects.

www.freeagent.com
FreeAgent matches contractors with projects.

www.MBAFreeAgent.com
This site is designed to match MBAs with contracting opportunities.

www.aquent.com
This site provides access to technical contracting positions.

www.WorkingSolo.com
This site helps contractors begin their own projects.

Recruiting Services

www.advantagehiring.com
This site helps employers screen resumes.

www.etest.net
This site provides employers with testing services to assess the strengths and weaknesses of prospec-
tive employees. This information can be used for better hiring strategies.

www.hire.com
Hire.com’s eRecruiter is an application service provider that helps organizations streamline their
Web-recruiting process.

www.futurestep.com
Executives can register confidentially at Futurestep.com to be considered for senior executive
positions. The site connects registered individuals to positions. It also offers career management ser-
vices.

www.webhire.com
This site provides employers with end-to-end recruiting solutions.

Wireless Career Resources

www.wirelessresumes.com
This site connects employers and job seekers with resumes that focus on jobs revolving around wire-
less technology.

www.msua.org/job.htm
This site contains links to numerous wireless job-seeking Web sites.

Appendix J Career Opportunities (on CD) 1485

www.jobs4wireless.com
This site searches for jobs in the wireless telecommunications field.

www.staffing.net
This site allows job seekers to discover openings in the world of wireless technology and communi-
cations.

www.wiwc.org
This site’s focus is wireless communication job searching for women.

www.firstsearch.com
At this site a job seeker is able to discover part-time, full-time and salary-based opportunities in the
wireless industry.

www.pcsjobs.com
This is the site for The Caradyne Group, which is an executive search firm that focuses on finding job
seekers wireless job positions.

www.cnijoblink.com
CNI Career Networks offers confidential, no-charge job placement in the wireless and telecommuni-
cations industries.

SUMMARY
• The Internet can improve an employer’s ability to recruit employees and help users find career op-

portunities worldwide.

• Job seekers can learn how to write a resume and cover letter, post them online and search through
job listings to find the jobs that best suit their needs.

• Employers can post jobs that can be searched by an enormous pool of applicants.

• Job seekers can store and distribute resumes digitally, receive e-mail notification of possible posi-
tions, use salary and relocation calculators, consult job coaches and use self-assessment tools when
searching for a job on the Web.

• There are approximately 40,000 career-advancement services on the Internet today.

• Finding a job online can greatly reduce the amount of time spent applying for a position. Potential
candidates can also learn more about a company by visiting its Web site.

• Most sites are free to job seekers. These sites typically generate their revenues by charging em-
ployers who post their job opportunities, and by selling advertising space on their Web pages.

• Sites such as Vault.com and WetFeet.com allow job seekers to post questions about employ-
ers and positions in chat rooms and on bulletin boards.

• On many recruitment sites, the match of a resume to a position is conducted with resume-filtering
software.

• A lack of confidentiality is a disadvantage of online career services.

• According to recent studies, the number of individuals researching employment positions through
means other than the Internet, such as referrals, newspapers and temporary agencies, far outweighs
the number of Internet job seekers.

• Career sites designed for individuals seeking technical positions are among the most popular on-
line career sites.

• Online contracting services allow businesses to post positions for which they wish to hire outside re-
sources, and allow individuals to identify projects that best suit their interests, schedules and skills.

• The Internet provides students and young professionals with some of the necessary tools to get
them started in the job market. The target market is made up of individuals still in school and seek-

1486 Career Opportunities (on CD) Appendix J

ing internships, individuals who are just graduating and individuals who have been in the work-
force for a few years.

• There are a number of Web sites that offer features that enhance job searches, prepare users to
search online, help design applicants’ resumes or help users calculate the cost of relocating.

• Web recruiting reaches a much larger audience than posting an advertisement in the local news-
paper.

• There are a variety of sites that allow employers to post jobs online. Some of these sites require a
fee, which generally runs between $100–200. Postings remain on the Web site for approximately
30–60 days.

• Employers should try to post to sites that are most likely to be visited by eligible candidates.

• When designing a job posting, defining what makes a job position unique and including information
such as benefits and salary might convince a qualified candidate to further investigate the position.

• The Internet hosts demographic-specific sites for employers seeking to increase diversity in the
workplace.

• The Internet has provided employers with a cost-effective means of testing their prospective em-
ployees in such categories as decision making, problem solving and personality.

TERMINOLOGY

SELF-REVIEW EXERCISES
J.1 State whether each of the following is true or false. If false, explain why.

a) Online contracting services allow businesses to post job listings for specific projects that
can be viewed by job seekers over the Web.

b) Employment networks are Web sites designed to provide information on a selected com-
pany to better inform job seekers of the corporate environment.

c) The large number of applications received over the Internet is considered an advantage
by most online recruiters.

d) There is a greater number of individuals searching for work on the Web than through all
other mediums combined.

e) Sixteen percent of America’s workforce is categorized as independent contractors.

J.2 Fill in the blanks in each of the following statements:
a) There are approximately online career services Web sites on the Internet to-

day.
b) The Internet hosts demographic-specific sites for employers seeking to increase

 in the workplace.
c) In the 24 hours following the Super Bowl, job searches occurred on Mon-

ster.com.
d) Many recruitment sites use to filter through received resumes.
e) Employers should try to post to sites that are most likely to be visited by can-

didates.

corporate culture open-ended question
demographic pay-per-hire
end-to-end recruiting solutions
entry-level position request for proposal (RFP)
online contracting service resume-filtering software

Appendix J Career Opportunities (on CD) 1487

ANSWERS TO SELF-REVIEW EXERCISES
J.1 a) True. b) True. c) False. The large number of applicants reduces the amount of time a re-
cruiter can spend interviewing and making decisions. Despite screening processes, many highly qual-
ified applicants can be overlooked. d) False. The number of individuals researching employment
positions through other means, such as referrals, newspapers and temporary agencies, far outweighs
the number of Internet job seekers. e) False. Six percent of America’s workforce is categorized as in-
dependent consultants.

J.2 a) 40,000. b) diversity. c) 5 million. d) resume-filtering software. e) eligible.

EXERCISES
J.3 State whether each of the following is true or false. If false, explain why.

a) RFP is the acronym for request for proposal.
b) The Internet has provided employers with a cost-effective means of testing their prospec-

tive employees in such categories as decision making, problem solving and personality.
c) Online job recruiting can completely replace other means of hiring employees.
d) Posting a job online is less expensive than placing ads in more traditional media.
e) A lack of confidentiality is a disadvantage of online career services.

J.4 Fill in the blanks in each of the following statements:
a) Finding a job online can greatly the amount of time spent applying for a po-

sition.
b) is an example of a Web site in which contractors can bid on projects.
c) When designing a job posting, defining what makes the position unique and including

information such as and might convince a qualified candidate
to further investigate the position.

d) The Internet hosts for employers seeking to increase diversity in the work-
place.

e) The Internet provides employers with a cost-effective means of testing their prospective
employees in such categories as , and .

J.5 Define the following
a) corporate culture
b) pay-per-hire
c) request for proposal (RFP)
d) resume-filtering software

J.6 (Class discussion). In this appendix, we discuss the shortcomings and advantages of recruit-
ing on the Internet. Using the text, additional reading material and personal accounts answer the fol-
lowing questions. Be prepared to discuss your answers.

a) Do you think finding a job is easier on the Web? Why or why not?
b) What disadvantages can you identify?
c) What are some of the advantages?
d) Which online recruiting services do you think will be most successful? Why?

J.7 Many of the career services Web sites we have discussed in this appendix offer resume-
building capabilities. Begin building your resume, choosing an objective that is of interest to you.
Think of your primary concerns. Are you searching for a paid internship or a volunteer opportunity?
Do you have a specific location in mind? Do you have an opportunity for future employment? Are
stock options important to you? Find several entry-level jobs that meet your requirements. Write a
short summary of your results. Include any obstacles and opportunities.

1488 Career Opportunities (on CD) Appendix J

J.8 In this appendix, we have discussed online contracting opportunities. Visit FreeAgent
(www.freeagent.com) and create your own e.portfolio, or visit eLance (www.elance.com)
and search the requests for proposals for contracting opportunities that interest you.

J.9 In this appendix, we have discussed many career services Web sites. Choose three sites. Ex-
plore the opportunities and resources offered by the sites. Visit any demonstrations, conduct a job
search, build your resume and calculate your salary or relocation expenses. Answer the following
questions.

a) Which site provides the best service? Why?
b) What did you like? Dislike?
c) Write a brief summary of your findings, including descriptions of any features that you

would add.

WORKS CITED
The notation <www.domain-name.com> indicates that the citation is for information found at the
Web site.

1. J. Gaskin, “Web Job Sites Face Tough Tasks,” Inter@ctive Week 14 August 2000: 50.

2. J. Gaskin, 50.

3. M. Berger, “Jobs Supermarket,” Upside November 2000: 224.

4. <www.vault.com>

5. M. Berger, 224.

6. Cisco Advertisement, The Wall Street Journal 19 October 2000: B13.

7. M. Feffer, “Posting Jobs on the Internet,” <www.webhire.com/hr/spotlight.asp>
18 August 2000.

8. <www.webhire.com>

9. J. Gaskin, 51.

10. C. Wilde, “Recruiters Discover Diverse Value in Web Sites,” Information Week 7 February
2000: 144.

11. <www.jobsonline.com>

12. <www.driveway.com>

13. <www.cruelworld.com>

14. A.K. Smith, “Charting Your Own Course,” U.S. News and World Report 6 November 2000: 58.

15. D. Lewis, “Hired! By the Highest Bidder,” The Boston Globe 9 July 2000: G1.

16. <www.experience.com>

17. M. French, “Experience Inc., E-Recruiting for Jobs for College Students,” Mass High Tech 7
February–13 February 2000: 29.

K
Unicode® (on CD)

Objectives
• To become familiar with Unicode.
• To discuss the mission of the Unicode Consortium.
• To discuss the design basis of Unicode.
• To understand the three Unicode encoding forms: UTF-8, UTF-16 and UTF-32.
• To introduce characters and glyphs.
• To discuss the advantages and disadvantages of using Unicode.
• To provide a brief tour of the Unicode Consortium’s Web site.

1490 Unicode® (on CD) Appendix K

K.1 Introduction
The use of inconsistent character encodings (i.e., numeric values associated with charac-
ters) when developing global software products causes serious problems because comput-
ers process information using numbers. For instance, the character “a” is converted to a
numeric value so that a computer can manipulate that piece of data. Many countries and
corporations have developed their own encoding systems that are incompatible with the en-
coding systems of other countries and corporations. For example, the Microsoft Windows
operating system assigns the value 0xC0 to the character “A with a grave accent” while the
Apple Macintosh operating system assigns that same value to an upside-down question
mark. This results in the misrepresentation and possible corruption of data because data is
not processed as intended.

In the absence of a widely-implemented universal character encoding standard, global
software developers had to localize their products extensively before distribution. Local-
ization includes the language translation and cultural adaptation of content. The process of
localization usually includes significant modifications to the source code (such as the con-
version of numeric values and the underlying assumptions made by programmers), which
results in increased costs and delays releasing the software. For example, some English-
speaking programmers might design global software products assuming that a single char-
acter can be represented by one byte. However, when those products are localized in Asian
markets, the programmer’s assumptions are no longer valid, thus the majority, if not the
entirety, of the code needs to be rewritten. Localization is necessary with each release of a
version. By the time a software product is localized for a particular market, a newer version,
which needs to be localized as well, is ready for distribution. As a result, it is cumbersome
and costly to produce and distribute global software products in a market where there is no
universal character encoding standard.

In response to this situation, the Unicode Standard, an encoding standard that facili-
tates the production and distribution of software, was created. The Unicode Standard out-
lines a specification to produce consistent encoding of the world’s characters and symbols.
Software products which handle text encoded in the Unicode Standard need to be localized,
but the localization process is simpler and more efficient because the numeric values need
not be converted and the assumptions made by programmers about the character encoding
are universal. The Unicode Standard is maintained by a non-profit organization called the

Outline

K.1 Introduction
K.2 Unicode Transformation Formats
K.3 Characters and Glyphs
K.4 Advantages/Disadvantages of Unicode
K.5 Unicode Consortium’s Web Site
K.6 Using Unicode
K.7 Character Ranges

Summary • Terminology • Self-Review Exercises • Answers to Self-Review Exercises • Exercises

Appendix K Unicode® (on CD) 1491

Unicode Consortium, whose members include Apple, IBM, Microsoft, Oracle, Sun Micro-
systems, Sybase and many others.

When the Consortium envisioned and developed the Unicode Standard, they wanted
an encoding system that was universal, efficient, uniform and unambiguous. A universal
encoding system encompasses all commonly used characters. An efficient encoding system
allows text files to be parsed easily. A uniform encoding system assigns fixed values to all
characters. An unambiguous encoding system represents a given character in a consistent
manner. These four terms are referred to as the Unicode Standard design basis.

K.2 Unicode Transformation Formats
Although Unicode incorporates the limited ASCII character set (i.e., a collection of char-
acters), it encompasses a more comprehensive character set. In ASCII each character is rep-
resented by a byte containing 0s and 1s. One byte is capable of storing the binary numbers
from 0 to 255. Each character is assigned a number between 0 and 255, thus ASCII-based
systems can support only 256 characters, a tiny fraction of world’s characters. Unicode ex-
tends the ASCII character set by encoding the vast majority of the world’s characters. The
Unicode Standard encodes all of those characters in a uniform numerical space from 0 to
10FFFF hexadecimal. An implementation will express these numbers in one of several
transformation formats, choosing the one that best fits the particular application at hand.

Three such formats are in use, called UTF-8, UTF-16 and UTF-32, depending on the
size of the units—in bits—being used. UTF-8, a variable width encoding form, requires one
to four bytes to express each Unicode character. UTF-8 data consists of 8-bit bytes
(sequences of one, two, three or four bytes depending on the character being encoded) and
is well suited for ASCII-based systems when there is a predominance of one-byte charac-
ters (ASCII represents characters as one-byte). Currently, UTF-8 is widely implemented in
UNIX systems and in databases.

The variable width UTF-16 encoding form expresses Unicode characters in units of
16-bits (i.e., as two adjacent bytes, or a short integer in many machines). Most characters
of Unicode are expressed in a single 16-bit unit. However, characters with values above
FFFF hexadecimal are expressed with an ordered pair of 16-bit units called surrogates. Sur-
rogates are 16-bit integers in the range D800 through DFFF, which are used solely for the
purpose of “escaping” into higher numbered characters. Approximately one million char-
acters can be expressed in this manner. Although a surrogate pair requires 32-bits to repre-
sent characters, it is space-efficient to use these 16-bit units. Surrogates are rare characters
in current implementations. Many string-handling implementations are written in terms of
UTF-16. [Note: Details and sample-code for UTF-16 handling are available on the Unicode
Consortium Web site at www.unicode.org.]

Implementations that require significant use of rare characters or entire scripts encoded
above FFFF hexadecimal, should use UTF-32, a 32-bit fixed-width encoding form that usu-
ally requires twice as much memory as UTF-16 encoded characters. The major advantage
of the fixed-width UTF-32 encoding form is that it uniformly expresses all characters, so it
is easy to handle in arrays.

There are few guidelines that state when to use a particular encoding form. The best
encoding form to use depends on computer systems and business protocols, not on the data
itself. Typically, the UTF-8 encoding form should be used where computer systems and
business protocols require data to be handled in 8-bit units, particularly in legacy systems

1492 Unicode® (on CD) Appendix K

being upgraded because it often simplifies changes to existing programs. For this reason,
UTF-8 has become the encoding form of choice on the Internet. Likewise, UTF-16 is the
encoding form of choice on Microsoft Windows applications. UTF-32 is likely to become
more widely used in the future as more characters are encoded with values above FFFF
hexadecimal. Also, UTF-32 requires less sophisticated handling than UTF-16 in the pres-
ence of surrogate pairs.

Figure K.1 shows the different ways in which the three encoding forms handle char-
acter encoding.

K.3 Characters and Glyphs
The Unicode Standard consists of characters, written components (i.e., alphabets, num-
bers, punctuation marks, accent marks, etc.) that can be represented by numeric values. Ex-
amples of characters include: U+0041 LATIN CAPITAL LETTER A. In the first character
representation, U+yyyy is a code value, in which U+ refers to Unicode code values, as op-
posed to other hexadecimal values. The yyyy represents a four-digit hexadecimal number
of an encoded character. Code values are bit combinations that represent encoded charac-
ters. Characters are represented using glyphs, various shapes, fonts and sizes for displaying
characters. There are no code values for glyphs in the Unicode Standard. Examples of
glyphs are shown in Fig. K.2.

The Unicode Standard encompasses the alphabets, ideographs, syllabaries, punctua-
tion marks, diacritics, mathematical operators, etc. that comprise the written languages and
scripts of the world. A diacritic is a special mark added to a character to distinguish it from
another letter or to indicate an accent (e.g., in Spanish, the tilde “~” above the character
“n”). Currently, Unicode provides code values for 94,140 character representations, with
more than 880,000 code values reserved for future expansion.

Fig. K.2Fig. K.2Fig. K.2Fig. K.2 Various glyphs of the character A.

Character UTF-8 UTF-16 UTF-32

LATIN CAPITAL LETTER A 0x41 0x0041 0x00000041

GREEK CAPITAL LETTER
ALPHA

0xCD 0x91 0x0391 0x00000391

CJK UNIFIED IDEOGRAPH-
4E95

0xE4 0xBA 0x95 0x4E95 0x00004E95

OLD ITALIC LETTER A 0xF0 0x80 0x83 0x80 0xDC00 0xDF00 0x00010300

Fig. K.1Fig. K.1Fig. K.1Fig. K.1 Correlation between the three encoding forms.

Appendix K Unicode® (on CD) 1493

K.4 Advantages/Disadvantages of Unicode
The Unicode Standard has several significant advantages that promote its use. One is the
impact it has on the performance of the international economy. Unicode standardizes the
characters for the world’s writing systems to a uniform model that promotes transferring
and sharing data. Programs developed using such a schema maintain their accuracy because
each character has a single definition (i.e., a is always U+0061, % is always U+0025). This
enables corporations to manage the high demands of international markets by processing
different writing systems at the same time. Also, all characters can be managed in an iden-
tical manner, thus avoiding any confusion caused by different character code architectures.
Moreover, managing data in a consistent manner eliminates data corruption, because data
can be sorted, searched and manipulated using a consistent process.

Another advantage of the Unicode Standard is portability (i.e., software that can exe-
cute on disparate computers or with disparate operating systems). Most operating systems,
databases, programming languages and Web browsers currently support, or are planning to
support, Unicode.

A disadvantage of the Unicode Standard is the amount of memory required by UTF-
16 and UTF-32. ASCII character sets are 8-bits in length, so they require less storage than
the default 16-bit Unicode character set. However, the double-byte character set (DBCS)
and the multi-byte character set (MBCS) that encode Asian characters (ideographs) require
two to four bytes, respectively. In such instances, the UTF-16 or the UTF-32 encoding
forms may be used with little hindrance on memory and performance.

Another disadvantage of Unicode is that although it includes more characters than any
other character set in common use, it does not yet encode all of the world’s written characters.

Another disadvantage of the Unicode Standard is that UTF-8 and UTF-16 are variable
width encoding forms, so characters occupy different amounts of memory.

K.5 Unicode Consortium’s Web Site
If you would like to learn more about the Unicode Standard, visit www.unicode.org.
This site provides a wealth of information about the Unicode Standard that is insightful to
those new to Unicode. Currently, the home page is organized into various sections—New
to Unicode, General Information, The Consortium, The Unicode Standard, Work in
Progress and For Members.

The New to Unicode section consists of two subsections: What is Unicode and How
to Use this Site. The first subsection provides a technical introduction to Unicode by
describing design principles, character interpretations and assignments, text processing and
Unicode conformance. This subsection is recommended reading for anyone new to Uni-
code. Also, this subsection provides a list of related links that provide the reader with addi-
tional information about Unicode. The How to Use this Site subsection contains
information about using and navigating the site as well hyperlinks to additional resources.

The General Information section contains six subsections: Where is my Character,
Display Problems, Useful Resources, Enabled Products, Mail Lists and Con-
ferences. The main areas covered in this section include a link to the Unicode code charts
(a complete listing of code values) assembled by the Unicode Consortium as well as a
detailed outline on how to locate an encoded character in the code chart. Also, the section
contains advice on how to configure different operating systems and Web browsers so that

1494 Unicode® (on CD) Appendix K

the Unicode characters can be viewed properly. Moreover, from this section, the user can
navigate to other sites that provide information on various topics such as, fonts, linguistics
and other standards such as the Armenian Standards Page and the Chinese GB 18030
Encoding Standard.

The Consortium section consists of five subsections: Who we are, Our Members,
How to Join, Press Info and Contact Us. This section provides a list of the current
Unicode Consortium members as well as information on how to become a member. Privi-
leges for each member type—full, associate, specialist and individual—and the fees
assessed to each member are listed here.

The Unicode Standard section consists of nine subsections: Start Here, Latest Ver-
sion, Technical Reports, Code Charts, Unicode Data, Update & Errata, Uni-
code Policies, Glossary and Technical FAQ. This section describes the updates
applied to the latest version of the Unicode Standard as well as categorizing all defined
encoding. The user can learn how the latest version has been modified to encompass more
features and capabilities. For instance, one enhancement of Version 3.1 is that it contains
additional encoded characters. Also, if users are unfamiliar with vocabulary terms used by
the Unicode Consortium, then they can navigate to the Glossary subsection.

The Work in Progress section consists of three subsections: Calendar of Meetings,
Proposed Characters and Submitting Proposals. This section presents the user with
a catalog of the recent characters included into the Unicode Standard scheme as well as
those characters being considered for inclusion. If users determine that a character has been
overlooked, then they can submit a written proposal for the inclusion of that character. The
Submitting Proposals subsection contains strict guidelines that must be adhered to
when submitting written proposals.

The For Members section consists of two subsections: Member Resources and
Working Documents. These subsections are password protected; only consortium mem-
bers can access these links.

K.6 Using Unicode
Numerous programming languages (e.g., C, Java, JavaScript, Perl, Visual Basic, etc.) pro-
vide some level of support for the Unicode Standard. Figure K.3 shows a Java program that
prints the text “Welcome to Unicode!” in eight different languages: English, Russian,
French, German, Japanese, Portuguese, Spanish and Traditional Chinese. [Note: The Uni-
code Consortium’s Web site contains a link to code charts that lists the 16-bit Unicode code
values.]

1 // Fig. K.3: Unicode.java
2 // Demonstrating how to use Unicode in Java programs.
3
4 // Java core packages
5 import java.awt.*;
6
7 // Java extension packages
8 import javax.swing.*;
9

Fig. K.3Fig. K.3Fig. K.3Fig. K.3 Java program that uses Unicode encoding (part 1 of 3).

Appendix K Unicode® (on CD) 1495

10 public class Unicode extends JFrame {
11 private JLabel english, chinese, cyrillic, french, german,
12 japanese, portuguese, spanish;
13
14 // Unicode constructor
15 public Unicode()
16 {
17 super("Demonstrating Unicode");
18
19 // get content pane and set its layout
20 Container container = getContentPane();
21 container.setLayout(new GridLayout(8, 1));
22
23 // JLabel constructor with a string argument
24 english = new JLabel("\u0057\u0065\u006C\u0063\u006F" +
25 "\u006D\u0065\u0020\u0074\u006F\u0020Unicode\u0021");
26 english.setToolTipText("This is English");
27 container.add(english);
28
29 chinese = new JLabel("\u6B22\u8FCE\u4F7F\u7528\u0020" +
30 "\u0020Unicode\u0021");
31 chinese.setToolTipText("This is Traditional Chinese");
32 container.add(chinese);
33
34 cyrillic = new JLabel("\u0414\u043E\u0431\u0440\u043E" +
35 "\u0020\u043F\u043E\u0436\u0430\u043B\u043E\u0432" +
36 "\u0430\u0422\u044A\u0020\u0432\u0020Unicode\u0021");
37 cyrillic.setToolTipText("This is Russian");
38 container.add(cyrillic);
39
40 french = new JLabel("\u0042\u0069\u0065\u006E\u0076" +
41 "\u0065\u006E\u0075\u0065\u0020\u0061\u0075\u0020" +
42 "Unicode\u0021");
43 french.setToolTipText("This is French");
44 container.add(french);
45
46 german = new JLabel("\u0057\u0069\u006C\u006B\u006F" +
47 "\u006D\u006D\u0065\u006E\u0020\u007A\u0075\u0020" +
48 "Unicode\u0021");
49 german.setToolTipText("This is German");
50 container.add(german);
51
52 japanese = new JLabel("Unicode\u3078\u3087\u3045\u3053" +
53 "\u305D\u0021");
54 japanese.setToolTipText("This is Japanese");
55 container.add(hiragana);
56
57 portuguese = new JLabel("\u0053\u00E9\u006A\u0061\u0020" +
58 "\u0042\u0065\u006D\u0076\u0069\u006E\u0064" +
59 "\u006F\u0020Unicode\u0021");
60 portuguese.setToolTipText("This is Portuguese");
61 container.add(portuguese);
62

Fig. K.3Fig. K.3Fig. K.3Fig. K.3 Java program that uses Unicode encoding (part 2 of 3).

1496 Unicode® (on CD) Appendix K

The Unicode.java program uses escape sequences to represent characters. An
escape sequence is in the form \uyyyy, where yyyy represents the four-digit hexadecimal code
value. Lines 24 and 25 contain the series of escape sequences necessary to print “Welcome to
Unicode!” in English. The first escape sequence (\u0057) equates to the character “W,” the
second escape sequence (\u0065) equates to the character “e,” and so on. The \u0020
escape sequence (line 25) is the encoding for the space character. The \u0074 and \u006F
escape sequences equate to the word “to.” Note that “Unicode” is not encoded because it is a
registered trademark and has no equivalent translation in most languages. Line 25 also con-
tains the \u0021 escape sequence for the exclamation mark (!).

Lines 29–65 contain the escape sequences for the other seven languages. The English,
French, German, Portuguese and Spanish characters are located in the Basic Latin block,
the Japanese characters are located in the Hiragana block, the Russian characters are
located in the Cyrillic block and the Traditional Chinese characters are located in the CJK
Unified Ideographs block.

[Note: To display the output of Unicode.java properly, copy the font.proper-
ties.zh file to the font.properties files (located in the C:\Program Files\Jav-
aSoft\JRE\1.3.1\lib and in the C:\jdk1.3.1\jre\lib directories). Save the contents of
font.properties prior to overwriting them with the contents from font.proper-
ties.zh.

63 spanish = new JLabel("\u0042\u0069\u0065\u006E\u0076" +
64 "\u0065\u006E\u0069\u0064\u0061\u0020\u0061\u0020" +
65 "Unicode\u0021");
66 spanish.setToolTipText("This is Spanish");
67 container.add(spanish);
68
69 } // end Unicode constructor
70
71 // execute application
72 public static void main(String args[])
73 {
74 Unicode application = new Unicode();
75 application.setDefaultCloseOperation(
76 JFrame.EXIT_ON_CLOSE);
77 application.pack();
78 application.setVisible(true);
79
80 } // end method main
81
82 } // end class Unicode

Fig. K.3Fig. K.3Fig. K.3Fig. K.3 Java program that uses Unicode encoding (part 3 of 3).

Appendix K Unicode® (on CD) 1497

K.7 Character Ranges
The Unicode Standard assigns code values, which range from 0000 (Basic Latin) to
E007F (Tags), to the written characters of the world. Currently, there are code values for
94,140 characters. To simplify the search for a character and its associated code value, the
Unicode Standard generally groups code values by script and function (i.e., Latin charac-
ters are grouped in a block, mathematical operators are grouped in another block, etc.). As
a rule, a script is a single writing system that is used for multiple languages (e.g., the Latin
script is used for English, French, Spanish, etc.). The Code Charts page on the Unicode
Consortium Web site lists all the defined blocks and their respective code values. Figure
K.4 lists some blocks (scripts) from the Web site and their range of code values.

SUMMARY
• Before Unicode, software developers were plagued by the use of inconsistent character encoding

(i.e., numeric values for characters). Most countries and organizations had their own encoding sys-
tems, which were incompatible. A good example is the individual encoding systems on the Win-
dows and Macintosh platforms.

Script Range of Code Values

Arabic U+0600–U+06FF

Basic Latin U+0000–U+007F

Bengali (India) U+0980–U+09FF

Cherokee (Native America) U+13A0–U+13FF

CJK Unified Ideographs (East Asia) U+4E00–U+9FAF

Cyrillic (Russia and Eastern Europe) U+0400–U+04FF

Ethiopic U+1200–U+137F

Greek U+0370–U+03FF

Hangul Jamo (Korea) U+1100–U+11FF

Hebrew U+0590–U+05FF

Hiragana (Japan) U+3040–U+309F

Khmer (Cambodia) U+1780–U+17FF

Lao (Laos) U+0E80–U+0EFF

Mongolian U+1800–U+18AF

Myanmar U+1000–U+109F

Ogham (Ireland) U+1680–U+169F

Runic (Germany and Scandinavia) U+16A0–U+16FF

Sinhala (Sri Lanka) U+0D80–U+0DFF

Telugu (India) U+0C00–U+0C7F

Thai U+0E00–U+0E7F

Fig. K.4Fig. K.4Fig. K.4Fig. K.4 Some character ranges.

1498 Unicode® (on CD) Appendix K

• Computers process data by converting characters to numeric values. For instance, the character “a”
is converted to a numeric value so that a computer can manipulate that piece of data.

• Localization of global software requires significant modifications to the source code, which results
in the increased cost and delays releasing the product.

• Localization is necessary with each release of a version. By the time a software product is localized
for a particular market, a newer version, which needs to be localized as well, is ready for distribu-
tion. As a result, it is cumbersome and costly to produce and distribute global software products
in a market where there is no universal character encoding standard.

• The Unicode Consortium developed the Unicode Standard in response to the serious problems cre-
ated by multiple character encodings and the use of those encodings.

• The Unicode Standard facilitates the production and distribution of localized software. It outlines
a specification for the consistent encoding of the world’s characters and symbols.

• Software products which handle text encoded in the Unicode Standard need to be localized, but the
localization process is simpler and more efficient because the numeric values need not be converted.

• The Unicode Standard is designed to be universal, efficient, uniform and unambiguous.

• A universal encoding system encompasses all commonly used characters; an efficient encoding
system parses text files easily; a uniform encoding system assigns fixed values to all characters;
and a unambiguous encoding system represents the same character for any given value.

• Unicode extends the limited ASCII character set to include all the major characters of the world.

• Unicode makes use of three Unicode Transformation Formats (UTF): UTF-8, UTF-16 and UTF-
32, each of which may be appropriate for use in different contexts.

• UTF-8 data consists of 8-bit bytes (sequences of one, two, three or four bytes depending on the
character being encoded) and is well suited for ASCII-based systems when there is a predomi-
nance of one-byte characters (ASCII represents characters as one-byte).

• UTF-8 is a variable width encoding form that is more compact for text involving mostly Latin
characters and ASCII punctuation.

• UTF-16 is the default encoding form of the Unicode Standard. It is a variable width encoding form
that uses 16-bit code units instead of bytes. Most characters are represented by a single 16-bit unit,
but some characters require surrogate pairs.

• Without surrogate pairs, the UTF-16 encoding form can only encompass 65,000 characters, but
with the surrogate pairs, this is expanded to include over a million characters.

• UTF-32 is a 32-bit encoding form. The major advantage of the fixed-width encoding form is that
it uniformly expresses all characters, so that they are easy to handle in arrays and so forth.

• The Unicode Standard consists of characters. A character is any written component that can be rep-
resented by a numeric value.

• Characters are represented using glyphs, which are various shapes, fonts and sizes for displaying
characters.

• Code values are bit combinations that represent encoded characters. The Unicode notation for a
code value is U+yyyy in which U+ refers to the Unicode code values, as opposed to other hexadec-
imal values. The yyyy represents a four-digit hexadecimal number.

• Currently, the Unicode Standard provides code values for 94,140 character representations.

• An advantage of the Unicode Standard is its impact on the overall performance of the international
economy. Applications that conform to an encoding standard can be processed easily by computers.

• Another advantage of the Unicode Standard is its portability. Applications written in Unicode can
be easily transferred to different operating systems, databases, Web browsers, etc. Most compa-
nies currently support, or are planning to support Unicode.

Appendix K Unicode® (on CD) 1499

• To obtain more information about the Unicode Standard and the Unicode Consortium, visit
www.unicode.org. It contains a link to the code charts, which contain the 16-bit code values
for the currently encoded characters.

• Numerous programming languages provide some level of support for the Unicode Standard.

• In Java programs, the \uyyyy escape sequence represents a character, where yyyy is the four-digit
hexadecimal code value. The \u0020 escape sequence is the universal encoding for the space
character.

TERMINOLOGY

SELF-REVIEW EXERCISES
K.1 Fill in the blanks in each of the following.

a) Global software developers had to their products to a specific market before
distribution.

b) The Unicode Standard is an standard that facilitates the uniform production
and distribution of software products.

c) The four design basis that constitute the Unicode Standard are: ,
, and .

d) A is the smallest written component the can be represented with a numeric
value.

e) Software that can execute on different operating systems is said to be .

K.2 State whether each of the following is true or false. If false, explain why.
a) The Unicode Standard encompasses all the world’s characters.
b) A Unicode code value is represented as U+yyyy, where yyyy represents a number in bi-

nary notation.
c) A diacritic is a character with a special mark that emphasizes an accent.
d) Unicode is portable.
e) When designing Java programs, the escape sequence is denoted by/uyyyy.

SELF-REVIEW ANSWERS
K.1 a) localize. b) encoding. c) universal, efficient, uniform, unambiguous. d) character. e) por-
table.

\uyyyy escape sequence portability
ASCII script
block surrogate
character symbol
character set unambiguous (Unicode design basis)
code value Unicode Consortium
diacritic Unicode design basis
double-byte character set (DBCS) Unicode Standard
efficient (Unicode design basis) Unicode Transformation Format (UTF)
encode uniform (Unicode design basis)
escape sequence universal (Unicode design basis)
glyph UTF-8
hexadecimal notation UTF-16
localization UTF-32
multi-byte character set (MBCS)

1500 Unicode® (on CD) Appendix K

K.2 a) False. It encompasses the majority of the world’s characters. b) False. The yyyy represents
a hexadecimal number. c) False. A diacritic is a special mark added to a character to distinguish it
from another letter or to indicate an accent. d) True. e) False. The escape sequence is denoted by
\uyyyy.

EXERCISES
K.3 Navigate to the Unicode Consortium Web site (www.unicode.org) and write the hexa-
decimal code values for the following characters. In which block were they located?

a) Latin letter ‘Z.’
b) Latin letter ‘n’ with the ‘tilde (~).’
c) Greek letter ‘delta.’
d) Mathematical operator ‘less than or equal to.’
e) Punctuation symbol ‘open quote (“).’

K.4 Describe the Unicode Standard design basis.

K.5 Define the following terms:
a) code value.
b) surrogates.
c) Unicode Standard.

K.6 Define the following terms:
a) UTF-8.
b) UTF-16.
c) UTF-32.

K.7 Describe a scenario where it is optimal to store your data in UTF-16 format.

K.8 Using the Unicode Standard code values, write a Java program that prints your first and last
name. The program should print your name in all uppercase letters and in all lowercase letters. If you
know other languages, print your first and last name in those languages as well.

	Contents
	Preface
	Introduction to Computers, the Internet and the Web
	1. 1 Introduction
	1. 2 What Is a Computer?
	1.3 Computer Organization
	1. 4 Evolution of Operating Systems
	1.5 Personal, Distributed and Client/ Server Computing
	1.6 Machine Languages, Assembly Languages and High- Level
	Languages
	1. 7 History of C+ +
	1. 8 History of Java
	1.9 Java Class Libraries
	1.10 Other High- Level Languages
	1. 11 Structured Programming
	1.12 The Internet and the World Wide Web
	1. 13 Basics of a Typical Java Environment
	1.14 General Notes about Java and This Book
	1. 15 Thinking About Objects: Introduction to Object
	Technology and the Unified Modeling Language
	1. 16 Discovering Design Patterns: Introduction
	1. 17 Tour of the Book
	1. 18 (Optional) A Tour of the Case Study on Object- Oriented
	Design with the UML
	1. 19 (Optional) A Tour of the Discovering Design Patterns
	Sections

	Introduction to Java Applications
	2. 1 Introduction
	2. 2 A First Program in Java: Printing a Line of Text
	2. 3 Modifying Our First Java Program
	2.4 Displaying Text in a Dialog Box
	2.5 Another Java Application: Adding Integers
	2. 6 Memory Concepts
	2. 7 Arithmetic
	2.8 Decision Making: Equality and Relational Operators
	2.9 (Optional Case Study) Thinking About Objects: Examining
	the Problem Statement

	Introduction to Java Applets
	3. 1 Introduction
	3.2 Sample Applets from the Java 2 Software Development Kit
	3.3 A Simple Java Applet: Drawing a String
	3.4 Two More Simple Applets: Drawing Strings and Lines
	3. 5 Another Java Applet: Adding Floating- Point Numbers
	3.6 Viewing Applets in a Web Browser
	3.7 Java Applet Internet and World Wide Web Resources
	3. 8 (Optional Case Study) Thinking About Objects: Identifying
	the Classes in a Problem Statement

	Control Structures: Part 1
	4. 1 Introduction
	4. 2 Algorithms
	4. 3 Pseudocode
	4. 4 Control Structures
	4. 5 The if Selection Structure
	4. 6 The if / else Selection Structure
	4. 7 The Repetition Structure
	4. 8 Formulating Algorithms: Case Study 1 (Counter- Controlled
	Repetition)
	4. 9 Formulating Algorithms with Top- Down, Stepwise
	Refinement: Case Study 2 (Sentinel- Controlled Repetition)
	4.10 Formulating Algorithms with Top- Down, Stepwise
	Refinement: Case Study 3 (Nested Control Structures)
	4. 11 Assignment Operators
	4. 12 Increment and Decrement Operators
	4. 13 Primitive Data Types
	4. 14 (Optional Case Study) Thinking About Objects: Identifying
	Class Attributes

	Control Structures: Part 2
	5. 1 Introduction
	5. 2 Essentials of Counter- Controlled Repetition
	5. 3 The Repetition Structure
	5. 4 Examples Using the for Structure
	5. 5 The switch Multiple- Selection Structure
	5. 6 The do / while Repetition Structure
	5. 7 Statements break and continue
	5.8 Labeled break and continue Statements
	5.9 Logical Operators
	5. 10 Structured Programming Summary
	5. 11 (Optional Case Study) Thinking About Objects: Identifying
	Objects States and Activities

	Methods
	6. 1 Introduction
	6.2 Program Modules in Java
	6. 3 Class Methods
	6. 4 Methods
	6. 5 Method Definitions
	6. 6 Argument Promotion
	6.7 Java API Packages
	6.8 Random- Number Generation
	6. 9 Example: A Game of Chance
	6. 10 Duration of Identifiers
	6. 11 Scope Rules
	6. 12 Recursion
	6.13 Example Using Recursion: The Fibonacci Series
	6. 14 Recursion vs. Iteration
	6. 15 Method Overloading
	6.16 Methods of Class JApplet
	6. 17 (Optional Case Study) Thinking About Objects: Identifying
	Class Operations

	Arrays
	7. 1 Introduction
	7. 2 Arrays
	7. 3 Declaring and Allocating Arrays
	7. 4 Examples Using Arrays
	7. 5 References and Reference Parameters
	7.6 Passing Arrays to Methods
	7. 7 Sorting Arrays
	7.8 Searching Arrays: Linear Search and Binary Search
	7.9 Multiple- Subscripted Arrays
	7. 10 (Optional Case Study) Thinking About Objects:
	Collaboration Among Objects

	Object- Based Programming
	8. 1 Introduction
	8.2 Implementing a Time Abstract Data Type with a Class
	8.3 Class Scope
	8.4 Controlling Access to Members
	8.5 Creating Packages
	8. 6 Initializing Class Objects: Constructors
	8.7 Using Overloaded Constructors
	8. 8 Using Set and Get Methods
	8.9 Software Reusability
	8.10 Final Instance Variables
	8. 11 Composition: Objects as Instance Variables of Other
	Classes
	8. 12 Package Access
	8. 13 Using the Reference
	8. 14 Finalizers
	8. 15 Static Class Members
	8.16 Data Abstraction and Encapsulation
	8. 17 (Optional Case Study) Thinking About Objects: Starting to
	Program the Classes for the Elevator Simulation

	Object- Oriented Programming
	9. 1 Introduction
	9.2 Superclasses and Subclasses
	9. 3 protected Members
	9.4 Relationship between Superclass Objects and Subclass
	Objects
	9.5 Constructors and Finalizers in Subclasses
	9. 6 Implicit Subclass- Object- to- Superclass- Object
	Conversion
	9. 7 Software Engineering with Inheritance
	9. 8 Composition vs. Inheritance
	9. 9 Case Study: Point, Circle, Cylinder
	9. 10 Introduction to Polymorphism
	9.11 Type Fields and switch Statements
	9. 12 Dynamic Method Binding
	9. 13 final Methods and Classes
	9.14 Abstract Superclasses and Concrete Classes
	9. 15 Polymorphism Examples
	9. 16 Case Study: A Payroll System Using Polymorphism
	9.17 New Classes and Dynamic Binding
	9.18 Case Study: Inheriting Interface and Implementation
	9.19 Case Study: Creating and Using Interfaces
	9. 20 Inner Class Definitions
	9.21 Notes on Inner Class Definitions
	9.22 Type- Wrapper Classes for Primitive Types
	9. 23 (Optional Case Study) Thinking About Objects:
	Incorporating Inheritance into the Elevator Simulation
	9.24 (Optional) Discovering Design Patterns: Introducing
	Creational, Structural and Behavioral Design Patterns

	Strings and Characters
	10. 1 Introduction
	10.2 Fundamentals of Characters and Strings
	10. 3 String Constructors
	10. 4 String Methods length , charAt and getChars
	10.5 Comparing String s
	10. 6 String Method hashCode
	10.7 Locating Characters and Substrings in String s
	10.8 Extracting Substrings from String s
	10. 9 Concatenating String s
	10. 10 Miscellaneous String Methods
	10. 11 Using String Method valueOf
	10. 12 String Method intern
	10. 13 StringBuffer Class
	10. 14 StringBuffer Constructors
	10. 15 StringBuffer Methods length , capacity ,
	10. 16 StringBuffer Methods charAt , setCharAt ,
	10. 17 StringBuffer append Methods
	10. 18 StringBuffer Insertion and Deletion Methods
	10. 19 Character Class Examples
	10. 20 Class StringTokenizer
	10.21 Card Shuffling and Dealing Simulation
	10. 22 (Optional Case Study) Thinking About Objects: Event
	Handling

	Graphics and Java2D
	11. 1 Introduction
	11.2 Graphics Contexts and Graphics Objects
	11. 3 Color Control
	11. 4 Font Control
	11.5 Drawing Lines, Rectangles and Ovals
	11. 6 Drawing Arcs
	11. 7 Drawing Polygons and Polylines
	11. 8 The Java2D API
	11.9 Java2D Shapes
	11. 10 (Optional Case Study) Thinking About Objects:
	Designing Interfaces with the UML

	Graphical User Interface Components: Part 1
	12. 1 Introduction
	12. 2 Swing Overview
	12. 3 JLabel
	12.4 Event- Handling Model
	12. 5 JTextField and JPasswordField
	12. 6 JButton
	12. 7 JCheckBox and JRadioButton
	12. 8 JComboBox
	12. 9 JList
	12. 10 Multiple- Selection Lists
	12. 11 Mouse Event Handling
	12.12 Adapter Classes
	12. 13 Keyboard Event Handling
	12. 14 Layout Managers
	12. 15 Panels
	12. 16 (Optional Case Study) Thinking About Objects: Use
	Cases

	Graphical User Interface Components: Part 2
	13. 1 Introduction
	13. 2 JTextArea
	13.3 Creating a Customized Subclass of JPanel
	13.4 Creating a Self- Contained Subclass of JPanel
	13. 5 JSlider
	13. 6 Windows
	13.7 Designing Programs that Execute as Applets or
	Applications
	13. 8 Using Menus with Frames
	13. 9 Using JPopupMenus
	13.10 Pluggable Look- and- Feel
	13. 11 Using JDesktopPane and JInternalFrame
	13. 12 Layout Managers
	13. 13 BoxLayout Layout Manager
	13. 14 CardLayout Layout Manager
	13. 15 GridBagLayout Layout Manager
	13. 16 GridBagConstraints Constants RELATIVE and
	13. 17 (Optional Case Study) Thinking About Objects: Model-View-
	Controller
	13. 18 (Optional) Discovering Design Patterns: Design Patterns
	Used in Packages java. awt and javax. swing

	Exception Handling
	14. 1 Introduction
	14. 2 When Exception Handling Should Be Used
	14. 3 Other Error- Handling Techniques
	14. 4 Basics of Java Exception Handling
	14. 5 try Blocks
	14.6 Throwing an Exception
	14.7 Catching an Exception
	14.8 Exception- Handling Example: Divide by Zero
	14. 9 Rethrowing an Exception
	14. 10 throws Clause
	14. 11 Constructors, Finalizers and Exception Handling
	14. 12 Exceptions and Inheritance
	14. 13 finally Block
	14. 14 Using printStackTrace and getMessage

	Multithreading
	15. 1 Introduction
	15. 2 Class Thread : An Overview of the Thread Methods
	15.3 Thread States: Life Cycle of a Thread
	15.4 Thread Priorities and Thread Scheduling
	15.5 Thread Synchronization
	15. 6 Producer/ Consumer Relationship without Thread
	Synchronization
	15. 7 Producer/ Consumer Relationship with Thread
	Synchronization
	15. 8 Producer/ Consumer Relationship: The Circular Buffer
	15.9 Daemon Threads
	15. 10 Runnable Interface
	15. 11 Thread Groups
	15. 12 (Optional Case Study) Thinking About Objects:
	Multithreading
	15. 13 (Optional) Discovering Design Patterns: Concurrent
	Design Patterns

	Files and Streams
	16. 1 Introduction
	16.2 Data Hierarchy
	16.3 Files and Streams
	16.4 Creating a Sequential- Access File
	16.5 Reading Data from a Sequential- Access File
	16.6 Updating Sequential- Access Files
	16.7 Random- Access Files
	16.8 Creating a Random- Access File
	16. 9 Writing Data Randomly to a Random- Access File
	16.10 Reading Data Sequentially from a Random- Access File
	16.11 Example: A Transaction- Processing Program
	16. 12 Class File

	Networking
	17. 1 Introduction
	17.2 Manipulating URIs
	17.3 Reading a File on a Web Server
	17.4 Establishing a Simple Server Using Stream Sockets
	17.5 Establishing a Simple Client Using Stream Sockets
	17. 6 Client/ Server Interaction with Stream Socket Connections
	17. 7 Connectionless Client/ Server Interaction with Datagrams
	17. 8 Client/ Server Tic- Tac- Toe Using a Multithreaded Server
	17.9 Security and the Network
	17. 10 DeitelMessenger Chat Server and Client
	17. 11 (Optional) Discovering Design Patterns: Design Patterns
	Used in Packages java. io and java. net

	Multimedia: Images, Animation, Audio and Video
	18. 1 Introduction
	18.2 Loading, Displaying and Scaling Images
	18.3 Animating a Series of Images
	18. 4 Customizing LogoAnimator via Applet Parameters
	18.5 Image Maps
	18.6 Loading and Playing Audio Clips
	18.7 Internet and World Wide Web Resources

	Data Structures
	19. 1 Introduction
	19. 2 Self- Referential Classes
	19. 3 Dynamic Memory Allocation
	19.4 Linked Lists
	19. 5 Stacks
	19. 6 Queues
	19. 7 Trees

	Java Utilities Package and Bit Manipulation
	20. 1 Introduction
	20. 2 Vector Class and Enumeration Interface
	20. 3 Stack Class
	20. 4 Dictionary Class
	20. 5 Hashtable Class
	20. 6 Properties Class
	20. 7 Random Class
	20.8 Bit Manipulation and the Bitwise Operators
	20. 9 BitSet Class

	Collections
	21. 1 Introduction
	21. 2 Collections Overview
	21. 3 Class
	21. 4 Interface and Class
	21. 5 Lists
	21. 6 Algorithms
	21. 7 Sets
	21.8 Maps
	21.9 Synchronization Wrappers
	21.10 Unmodifiable Wrappers
	21. 11 Abstract Implementations
	21. 12 (Optional) Discovering Design Patterns: Design Patterns
	Used in Package java. util

	Java Media Framework and Java Sound (on CD)
	22. 1 Introduction
	22.2 Playing Media
	22.3 Formatting and Saving Captured Media
	22. 4 RTP Streaming
	22.5 Java Sound
	22. 6 Playing Sampled Audio
	22.7 Musical Instrument Digital Interface (MIDI)
	22.8 Internet and World Wide Web Resources
	22. 9 (Optional Case Study) Thinking About Objects: Animation
	and Sound in the View

	A Java Demos
	A. 1 Introduction
	A. 2 The Sites

	B Java Resources
	B. 1 Resources
	B. 2 Products
	B. 3 FAQs
	B. 4 Tutorials
	B. 5 Magazines
	B. 6 Java Applets
	B. 7 Multimedia
	B. 8 Newsgroups

	C Operator Precedence Chart
	D ASCII Character Set
	E Number Systems (on CD)
	E. 1 Introduction
	E. 2 Abbreviating Binary Numbers as Octal Numbers and
	Hexadecimal Numbers
	E. 3 Converting Octal Numbers and Hexadecimal Numbers to
	Binary Numbers
	E. 4 Converting from Binary, Octal, or Hexadecimal to Decimal
	E. 5 Converting from Decimal to Binary, Octal, or Hexadecimal
	E. 6 Negative Binary Numbers: Two s Complement Notation

	F Creating HTML Documentation with javadoc
	F. 1 Introduction
	F. 2 Documentation Comments
	F. 3 Documenting Java Source Code
	F. 4 javadoc
	F. 5 Files Produced by javadoc

	G Elevator Events and Listener Interfaces (on CD)
	G. 1 Introduction
	G. 2 Events
	G. 3 Listeners
	G. 4 Component Diagrams Revisited

	H Elevator Model (on CD)
	H. 1 Introduction
	H. 2 Class ElevatorModel
	H. 3 Classes Location and Floor
	H. 4 Class Door
	H. 5 Class Button
	H. 6 Class ElevatorShaft
	H. 7 Classes Light and Bell
	H. 8 Class Elevator
	H. 9 Class Person
	H. 10 Component Diagrams Revisited
	H. 11 Conclusion

	I Elevator View (on CD)
	I. 1 Introduction
	I. 2 Class Objects
	I. 3 Class Constants
	I. 4 Class constructor
	I. 5 Event Handling
	I. 6 Component Diagrams Revisited
	I. 7 Conclusion

	J Career Opportunities (on CD)
	J. 1 Introduction
	J. 2 Resources for the Job Seeker
	J. 3 Online Opportunities for Employers
	J. 4 Recruiting Services
	J. 5 Career Sites
	J. 6 Internet and World Wide Web Resources

	K Unicode ® ((on CD)
	K. 1 Introduction
	K. 2 Unicode Transformation Formats
	K. 3 Characters and Glyphs
	K. 4 Advantages/ Disadvantages of Unicode
	K. 5 Unicode Consortium s Web Site
	K. 6 Using Unicode
	K. 7 Character Ranges

